ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Lanthanide-Doped Bi2SiO5@SiO2 Core–Shell Upconverting Nanoparticles for Stable Ratiometric Optical Thermometry

  • Michele Back*
    Michele Back
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Mestre-Venezia, Italy
    Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
    *Email: [email protected]
    More by Michele Back
  • Elisa Casagrande
    Elisa Casagrande
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Mestre-Venezia, Italy
  • Carlo A. Brondin
    Carlo A. Brondin
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Mestre-Venezia, Italy
  • Emmanuele Ambrosi
    Emmanuele Ambrosi
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Mestre-Venezia, Italy
    “Giovanni Stevanato” Centre for Electron Microscopy, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Mestre-Venezia, Italy
  • Davide Cristofori
    Davide Cristofori
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Mestre-Venezia, Italy
    “Giovanni Stevanato” Centre for Electron Microscopy, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Mestre-Venezia, Italy
  • Jumpei Ueda
    Jumpei Ueda
    Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
    More by Jumpei Ueda
  • Setsuhisa Tanabe
    Setsuhisa Tanabe
    Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan
  • Enrico Trave
    Enrico Trave
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Mestre-Venezia, Italy
    More by Enrico Trave
  • , and 
  • Pietro Riello
    Pietro Riello
    Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Mestre-Venezia, Italy
Cite this: ACS Appl. Nano Mater. 2020, 3, 3, 2594–2604
Publication Date (Web):February 12, 2020
https://doi.org/10.1021/acsanm.0c00003
Copyright © 2020 American Chemical Society

    Article Views

    1953

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The development of nanomaterials with high sensitivity to external stimuli such as temperature is critical to investigate the driving force of not only biological processes but also catalytic mechanisms in extreme environments. However, the instability of nano-objects at high temperatures and different environments is a serious drawback limiting often their real use. This is particularly severe in the case of bismuth-based compounds, making the development of highly stable bismuth-based nanosystems a challenge. Here, we report the synthesis of uniform crystalline lanthanide-doped Bi2SiO5 nanoparticles into a silica shell of a controlled thickness (Bi2SiO5:Ln@SiO2) for the design of a reliable ratiometric optical thermometer stable at high temperatures and extreme acid environments. The fine control of the SiO2 shell thickness is modeled based on a theoretical and experimental approach. The formation of the Bi2SiO5 single phase is triggered by the local reactivity between Bi2O3 and SiO2 in the Bi2O3@SiO2 system, leading to a double-layered Bi2SiO5@SiO2 hollow nanosystem. The potential of the Bi2SiO5:Ln@SiO2 nanosystem as a ratiometric nanothermometer is demonstrated for the upconverting Yb–Er couple. The performances were evaluated in the wide range of linearity of the Boltzmann law (280–800 K) showing suitable values of relative sensitivity, temperature uncertainty, and repeatability (R > 99%) not only for biological applications but also to probe the temperature in extreme environments. In fact, the strategy results in an acid-inert thermal probe up to pH < 1 overcoming the weakness of bismuth-based materials to acid environments with promising properties for in situ thermometry of catalytic reactions.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsanm.0c00003.

    • Figures S1–S9 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 53 publications.

    1. Bingzhu Zheng, Jingyue Fan, Bing Chen, Xian Qin, Juan Wang, Feng Wang, Renren Deng, Xiaogang Liu. Rare-Earth Doping in Nanostructured Inorganic Materials. Chemical Reviews 2022, 122 (6) , 5519-5603. https://doi.org/10.1021/acs.chemrev.1c00644
    2. Ilya E. Kolesnikov, Daria V. Mamonova, Mikhail A. Kurochkin, Evgenii Yu Kolesnikov, Erkki Lähderanta, Alina A. Manshina. YVO4 Nanoparticles Doped with Eu3+ and Nd3+ for Optical Nanothermometry. ACS Applied Nano Materials 2021, 4 (11) , 12481-12489. https://doi.org/10.1021/acsanm.1c02992
    3. Reza Taheri Ghahrizjani, Mashhood Ghafarkani, Samira Janghorban, Mohsen Ameri, Mohsen Azadinia, Ezeddin Mohajerani, Mahdi Qaryan, Pegah Eslami, Hatef Fouladinasab. ZnO–SrAl2O4:Eu Nanocomposite-Based Optical Sensors for Luminescence Thermometry. ACS Applied Nano Materials 2021, 4 (9) , 9190-9199. https://doi.org/10.1021/acsanm.1c01717
    4. Michele Back, Elisa Casagrande, Enrico Trave, Davide Cristofori, Emmanuele Ambrosi, Federico Dallo, Marco Roman, Jumpei Ueda, Jian Xu, Setsuhisa Tanabe, Alvise Benedetti, Pietro Riello. Confined-Melting-Assisted Synthesis of Bismuth Silicate Glass-Ceramic Nanoparticles: Formation and Optical Thermometry Investigation. ACS Applied Materials & Interfaces 2020, 12 (49) , 55195-55204. https://doi.org/10.1021/acsami.0c17897
    5. Hang Zhang, Yujun Liang, Hang Yang, Shiqi Liu, Haoran Li, Yuming Gong, Yongjun Chen, Guogang Li. Highly Sensitive Dual-Mode Optical Thermometry in Double-Perovskite Oxides via Pr3+/Dy3+ Energy Transfer. Inorganic Chemistry 2020, 59 (19) , 14337-14346. https://doi.org/10.1021/acs.inorgchem.0c02118
    6. Fábio J. Caixeta, Ana R. N. Bastos, Alexandre M. P. Botas, Leonardo S. Rosa, Vítor S. Souza, Fernanda H. Borges, Albano N. C. Neto, Alban Ferrier, Philippe Goldner, Luís D. Carlos, Rogéria R. Gonçalves, Rute A. S. Ferreira. High-Quantum-Yield Upconverting Er3+/Yb3+-Organic–Inorganic Hybrid Dual Coatings for Real-Time Temperature Sensing and Photothermal Conversion. The Journal of Physical Chemistry C 2020, 124 (37) , 19892-19903. https://doi.org/10.1021/acs.jpcc.0c03874
    7. Michele Back, Jumpei Ueda, Mikhail G. Brik, Setsuhisa Tanabe. Pushing the Limit of Boltzmann Distribution in Cr3+-Doped CaHfO3 for Cryogenic Thermometry. ACS Applied Materials & Interfaces 2020, 12 (34) , 38325-38332. https://doi.org/10.1021/acsami.0c08965
    8. Annu Balhara, Santosh K. Gupta, Brindaban Modak, Sushri S. Nanda, Suryanarayan Dash, Kathi Sudarshan, Raghunath Acharya. Th 4+ Co‐doped YF 3  : Yb 3+ , Er 3+ Nanostructures for Enhanced Visible and NIR‐II Emissions and Potential Application as Cryogenic Thermometer. ChemPhotoChem 2024, 8 (2) https://doi.org/10.1002/cptc.202300125
    9. Priyanka Yadav, Shivangi Rao, O. V. Sreejith, Ramaswamy Murugan, Rajamani Nagarajan. Quasi-2D Bi 0.775 Ln 0.225 O 1.5 (Ln = La, Pr, Nd, Sm, Eu): reversible iodine intercalation and their evaluation as the anode in the lithium-ion battery system. Dalton Transactions 2024, 53 (5) , 2294-2305. https://doi.org/10.1039/D3DT03834C
    10. Zonghao Lei, Houhe Dong, Lijie Sun, Bing Teng, Yanfei Zou, Degao Zhong. Eulytite-type Ba 3 Yb(PO 4 ) 3 :Tm/Er/Ho as a high sensitivity optical thermometer over a broad temperature range. Journal of Materials Chemistry C 2024, 12 (2) , 628-638. https://doi.org/10.1039/D3TC03663D
    11. Pawan Kumar, Rajkumar Patel, Navadeep Shrivastava, Madhumita Patel, Simon Rondeau-Gagné, Gurpreet Singh Selopal. Aspects of luminescence nanoprobes for thermometry: Progress and outlook. Applied Materials Today 2023, 35 , 101931. https://doi.org/10.1016/j.apmt.2023.101931
    12. Anton I. Kostyukov, Ekaterina I. Shuvarakova, Aleksandr A. Nashivochnikov, Mariana I. Rakhmanova, Svetlana V. Cherepanova, Arcady V. Ishchenko, Alexander F. Bedilo. Effect of SiO2 shell on photoluminescence enhancement of Eu3+ doped nanophosphor based on monoclinic Y2O3. Journal of Alloys and Compounds 2023, 966 , 171566. https://doi.org/10.1016/j.jallcom.2023.171566
    13. Yixiao Han, Leipeng Li, Chongyang Cai, Pei Li, Tao Li, Xiumei Han, Dengfeng Peng, Yanmin Yang. Application convenient and energy-saving mechano-optics of Er 3+ -doped X 2 O 2 S (X = Y/Lu/Gd) for thermometry. Journal of Materials Chemistry C 2023, 11 (46) , 16143-16151. https://doi.org/10.1039/D3TC02259E
    14. Kamel Saidi, Christian Hernández-Álvarez, Marcin Runowski, Mohamed Dammak, Inocencio R. Martín. Ultralow pressure sensing and luminescence thermometry based on the emissions of Er 3+ /Yb 3+ codoped Y 2 Mo 4 O 15 phosphors. Dalton Transactions 2023, 52 (41) , 14904-14916. https://doi.org/10.1039/D3DT02613B
    15. Qing-Feng Li, Longlong Zhang, Mengdan Shen, Erqing Li, Jin-Tao Wang, Qilin Dai. Fabrication of diarylethene-based reversible fluorescent switch encapsulated in silicone material and its photostimulus response mechanism. Dyes and Pigments 2023, 218 , 111505. https://doi.org/10.1016/j.dyepig.2023.111505
    16. Xiushuai Guan, Xiaochao Zhang, Changming Zhang, Rui Li, Jianxin Liu, Yunfang Wang, Yawen Wang, Caimei Fan, Zhong Li. Original self-assembled S-scheme BiOBr-(0 0 1)/Bi2SiO5/Bi heterojunction photocatalyst with rich oxygen vacancy for boosting CO2 reduction performance. Journal of Colloid and Interface Science 2023, 644 , 426-436. https://doi.org/10.1016/j.jcis.2023.04.097
    17. Samirkumar R. Bhelave, Abhijeet R. Kadam, Atul N. Yerpude, Sanjay J. Dhoble. Intensity enhancement of photoluminescence in Tb 3+ /Eu 3+ co‐doped Ca 14 Zn 6 Al 10 O 35 phosphor for WLEDs. Luminescence 2023, 38 (4) , 379-388. https://doi.org/10.1002/bio.4456
    18. T. V. Bermeshev, E. Yu. Podshibyakina, M. P. Bundin, E. V. Mazurova, A. S. Samoilo, A. S. Yasinskii, O. V. Yushkova, D. S. Voroshilov, V. M. Bespalov, A. N. Zaloga, P. O. Yur’ev. Crystallization and Decomposition of Compounds with the Aurivillius Crystal Structure in the Bi2GeO5–Bi2SiO5 Pseudobinary Metastable System. Physics of Metals and Metallography 2023, 124 (2) , 205-216. https://doi.org/10.1134/S0031918X23700102
    19. Yuan ting Wu, Lin Han, Meng yao Guan, Shu ming Xu, Li hui Guo. Controllable synthesis and catalytic activity of bismuth silicate: Thin-layered photocatalysts with the effect of template agent. Ceramics International 2023, 49 (4) , 6996-7004. https://doi.org/10.1016/j.ceramint.2022.10.141
    20. Hui Jin, Meng Yang, Rijun Gui. Ratiometric upconversion luminescence nanoprobes from construction to sensing, imaging, and phototherapeutics. Nanoscale 2023, 15 (3) , 859-906. https://doi.org/10.1039/D2NR05721B
    21. Miao Peng, Hui Luo, Wei Xiong, Tengfang Kuang, Xinlin Chen, Xiang Han, Guangzong Xiao, Zhongqi Tan. Enhanced optical trapping of ZrO 2 @TiO 2 photonic force probe with broadened solvent compatibility. Optics Express 2022, 30 (26) , 46060. https://doi.org/10.1364/OE.474927
    22. Xiuling Liu, Xiaoyun Mi, Yanyan Guo, Liping Lu, Quansheng Liu, Zhaohui Bai, Xiyan Zhang, Hancheng Zhu. Highly sensitive and near-infrared excitable optical thermometer based on CaGdAl3O7: Tm3+, Yb3+, Zn2+. Journal of Alloys and Compounds 2022, 929 , 167240. https://doi.org/10.1016/j.jallcom.2022.167240
    23. Anastasiia Shabalina, Alexandra Golubovskaya, Elena Fakhrutdinova, Sergei Kulinich, Olga Vodyankina, Valery Svetlichnyi. Phase and Structural Thermal Evolution of Bi–Si–O Catalysts Obtained via Laser Ablation. Nanomaterials 2022, 12 (22) , 4101. https://doi.org/10.3390/nano12224101
    24. Joana Costa Martins, Artiom Skripka, Carlos D. S. Brites, Antonio Benayas, Rute A. S. Ferreira, Fiorenzo Vetrone, Luís D. Carlos. Upconverting nanoparticles as primary thermometers and power sensors. Frontiers in Photonics 2022, 3 https://doi.org/10.3389/fphot.2022.1037473
    25. Keyla M. N. de Souza, Rodolfo N. Silva, Juliana A. B. Silva, Carlos D. S. Brites, Biju Francis, Rute A. S. Ferreira, Luís D. Carlos, Ricardo L. Longo. Novel and High‐Sensitive Primary and Self‐Referencing Thermometers Based on the Excitation Spectra of Lanthanide Ions. Advanced Optical Materials 2022, 10 (19) https://doi.org/10.1002/adom.202200770
    26. Sofia Zanella, Enrico Trave, Elisa Moretti, Aldo Talon, Michele Back, Luís D. Carlos, Rute A. S. Ferreira, Carlos D. S. Brites. Designing Ln3+-doped BiF3 particles for luminescent primary thermometry and molecular logic. Frontiers in Photonics 2022, 3 https://doi.org/10.3389/fphot.2022.1010958
    27. Xiushuai Guan, Xiaochao Zhang, Changming Zhang, Rui Li, Jianxin Liu, Yunfang Wang, Yawen Wang, Caimei Fan, Zhong Li. In Situ Hydrothermal Synthesis of Metallic Bi Self‐Deposited Bi 2 SiO 5 with Enhanced Photocatalytic CO 2 Reduction Performance. Solar RRL 2022, 6 (9) https://doi.org/10.1002/solr.202200346
    28. João F. C. B. Ramalho, Lília M. S. Dias, Lianshe Fu, Alexandre M. P. Botas, Luís D. Carlos, Albano N. Carneiro Neto, Paulo S. André, Rute A. S. Ferreira. Customized Luminescent Multiplexed Quick‐Response Codes as Reliable Temperature Mobile Optical Sensors for eHealth and Internet of Things. Advanced Photonics Research 2022, 3 (6) https://doi.org/10.1002/adpr.202100206
    29. T. H. Q. Vu, B. Bondzior, D. Stefańska, P. J. Dereń. An Er 3+ doped Ba 2 MgWO 6 double perovskite: a phosphor for low-temperature thermometry. Dalton Transactions 2022, 51 (20) , 8056-8065. https://doi.org/10.1039/D2DT00554A
    30. Ilya E Kolesnikov, Elena V Afanaseva, Mikhail A Kurochkin, Elena I Vaishlia, Evgenii Yu Kolesnikov, Erkki Lähderanta. Dual-center co-doped and mixed ratiometric LuVO 4 :Nd 3+ /Yb 3+ nanothermometers. Nanotechnology 2022, 33 (16) , 165504. https://doi.org/10.1088/1361-6528/ac49c3
    31. Yunfei Zhuang, Dawei Wang, Zhiping Yang. Upconversion luminescence and optical thermometry based on non-thermally-coupled levels of Ca9Y(PO4)7: Tm3+, Yb3+ phosphor. Optical Materials 2022, 126 , 112167. https://doi.org/10.1016/j.optmat.2022.112167
    32. Enrico Sabbioni, Simone Manenti, Riccardo Magarini, Claudia Petrarca, Anna Maria Giuseppina Poma, Gloria Zaccariello, Michele Back, Alvise Benedetti, Mario Di Gioacchino, Elio Mignini, Giulio Pirotta, Renato Riscassi, Andrea Salvini, Flavia Groppi. Fast and non-destructive neutron activation analysis for simultaneous determination of TiO2 and SiO2 in sunscreens with attention to regulatory and research issues. Analytica Chimica Acta 2022, 1200 , 339601. https://doi.org/10.1016/j.aca.2022.339601
    33. Guoran Huang, Xiaofeng Wu, Shiping Zhan, Yunxin Liu. Simultaneous enhancement of fluorescence intensity, thermometric sensitivity and SNR of upconversion thermometers via optical field localization. Journal of Materials Chemistry C 2022, 10 (13) , 5190-5199. https://doi.org/10.1039/D1TC05838J
    34. A.V. Shabalina, E.D. Fakhrutdinova, A.G. Golubovskaya, S.M. Kuzmin, S.V. Koscheev, S.A. Kulinich, V.A. Svetlichnyi, O.V. Vodyankina. Laser-assisted preparation of highly-efficient photocatalytic nanomaterial based on bismuth silicate. Applied Surface Science 2022, 575 , 151732. https://doi.org/10.1016/j.apsusc.2021.151732
    35. Lin Han, Qingju Ning, Yuanting Wu, Bailin Zeng, Mengyao Guan. Development of a novel visible light-driven Bi2O2SiO3-Si2Bi24O40 photocatalyst with cross-linked sheet layered: The conversion of lattice oxygen to adsorbed oxygen improves catalytic activity. Journal of Alloys and Compounds 2022, 893 , 162324. https://doi.org/10.1016/j.jallcom.2021.162324
    36. João F.C.B. Ramalho, Albano N. Carneiro Neto, Luís D. Carlos, Paulo S. André, Rute A.S. Ferreira. Lanthanides for the new generation of optical sensing and Internet of Things. 2022, 31-128. https://doi.org/10.1016/bs.hpcre.2021.12.001
    37. Forough Jahanbazi, Yuanbing Mao. Recent advances on metal oxide-based luminescence thermometry. Journal of Materials Chemistry C 2021, 9 (46) , 16410-16439. https://doi.org/10.1039/D1TC03455C
    38. Hang Liu, Xiukai Jian, Mingtai Liu, Kailin Wang, Guangyao Bai, Yuhong Zhang. Investigation on the upconversion luminescence and ratiometric thermal sensing of SrWO 4 :Yb 3+ /RE 3+ (RE = Ho/Er) phosphors. RSC Advances 2021, 11 (58) , 36689-36697. https://doi.org/10.1039/D1RA06745A
    39. Wei Tang, Chuandong Zuo, Yingkui Li, Chaoyang Ma, Xuanyi Yuan, Zicheng Wen, Yongge Cao. A wide temperature range dual-mode luminescence thermometer based on Pr 3+ -doped Ba(Zr 0.16 Mg 0.28 Ta 0.56 )O 3 transparent ceramic. Journal of Materials Chemistry C 2021, 9 (42) , 15112-15120. https://doi.org/10.1039/D1TC03330A
    40. Kamel Saidi, Wajdi Chaabani, Mohamed Dammak. Highly sensitive optical temperature sensing based on pump-power-dependent upconversion luminescence in LiZnPO 4 :Yb 3+ –Er 3+ /Ho 3+ phosphors. RSC Advances 2021, 11 (49) , 30926-30936. https://doi.org/10.1039/D1RA06049J
    41. Joanna Stefanska, Kamila Maciejewska, Lukasz Marciniak. Blue-emitting single band ratiometric luminescent thermometry based on LaF 3 :Pr 3+. New Journal of Chemistry 2021, 45 (27) , 11898-11904. https://doi.org/10.1039/D1NJ01869H
    42. João F. C. B. Ramalho, Luís D. Carlos, Paulo S. André, Rute A. S. Ferreira. mOptical Sensing for the Internet of Things: A Smartphone‐Controlled Platform for Temperature Monitoring. Advanced Photonics Research 2021, 2 (6) https://doi.org/10.1002/adpr.202000211
    43. Mei Lin, Shengbin Cheng, Xiaofeng Wu, Shiping Zhan, Yunxin Liu. Optical temperature sensing based on upconversion nanoparticles with enhanced sensitivity via dielectric superlensing modulation. Journal of Materials Science 2021, 56 (17) , 10438-10448. https://doi.org/10.1007/s10853-021-05943-w
    44. Dongxun Chen, Yanjie Liang, Shihai Miao, Jianqiang Bi, Kangning Sun. Nd3+-doped Bi2SiO5 nanospheres for stable ratiometric optical thermometry in the first biological window. Journal of Luminescence 2021, 234 , 117967. https://doi.org/10.1016/j.jlumin.2021.117967
    45. Joana Costa Martins, Ana R. N. Bastos, Rute A. S. Ferreira, Xin Wang, Guanying Chen, Luís D. Carlos. Primary Luminescent Nanothermometers for Temperature Measurements Reliability Assessment. Advanced Photonics Research 2021, 2 (5) https://doi.org/10.1002/adpr.202000169
    46. Guotao Xiang, Qing Xia, Xiaotong Liu, Yongjie Wang, Sha Jiang, Li Li, Xianju Zhou, Li Ma, Xiaojun Wang, Jiahua Zhang. Upconversion nanoparticles modified by Cu 2 S for photothermal therapy along with real-time optical thermometry. Nanoscale 2021, 13 (15) , 7161-7168. https://doi.org/10.1039/D0NR09115D
    47. Debashrita Sarkar, Khushboo S. Paliwal, Sagar Ganguli, Athma E. Praveen, Dipannita Saha, Venkataramanan Mahalingam. Engineering of oxygen vacancy as defect sites in silicates for removal of diverse organic pollutants and enhanced aromatic alcohol oxidation. Journal of Environmental Chemical Engineering 2021, 9 (2) , 105134. https://doi.org/10.1016/j.jece.2021.105134
    48. Dongxun Chen, Jianqiang Bi, Weili Wang, Xiaojia Wang, Yuhai Zhang, Yanjie Liang. Rapid aqueous-phase synthesis of highly stable K 0.3 Bi 0.7 F 2.4 upconversion nanocrystalline particles at low temperature. Inorganic Chemistry Frontiers 2021, 8 (4) , 1039-1048. https://doi.org/10.1039/D0QI01284J
    49. Dongxun Chen, Shihai Miao, Yanjie Liang, Weili Wang, Shao Yan, Jianqiang Bi, Kangning Sun. Controlled synthesis and photoluminescence properties of Bi 2 SiO 5 :Eu 3+ core-shell nanospheres with an intense 5 D 0 → 7 F 4 transition. Optical Materials Express 2021, 11 (2) , 355. https://doi.org/10.1364/OME.414564
    50. Luca Di Giampaolo, Gloria Zaccariello, Alvise Benedetti, Giulia Vecchiotti, Francesca Caposano, Enrico Sabbioni, Flavia Groppi, Simone Manenti, Qiao Niu, Anna Maria Giuseppina Poma, Mario Di Gioacchino, Claudia Petrarca. Genotoxicity and Immunotoxicity of Titanium Dioxide-Embedded Mesoporous Silica Nanoparticles (TiO2@MSN) in Primary Peripheral Human Blood Mononuclear Cells (PBMC). Nanomaterials 2021, 11 (2) , 270. https://doi.org/10.3390/nano11020270
    51. Lorenzo Branzi, Michele Back, Paolo Cortelletti, Nicola Pinna, Alvise Benedetti, Adolfo Speghini. Sodium niobate based hierarchical 3D perovskite nanoparticle clusters. Dalton Transactions 2020, 49 (43) , 15195-15203. https://doi.org/10.1039/D0DT02768E
    52. Debashrita Sarkar, Sagar Ganguli, Athma E. Praveen, Venkataramanan Mahalingam. Defect induced “super mop” like behaviour of Eu 3+ -doped hierarchical Bi 2 SiO 5 nanoparticles for improved catalytic and adsorptive behaviour. Materials Advances 2020, 1 (6) , 2019-2032. https://doi.org/10.1039/D0MA00363H
    53. Elisa Casagrande, Michele Back, Davide Cristofori, Jumpei Ueda, Setsuhisa Tanabe, Stefano Palazzolo, Flavio Rizzolio, Vincenzo Canzonieri, Enrico Trave, Pietro Riello. Upconversion-mediated Boltzmann thermometry in double-layered Bi 2 SiO 5 :Yb 3+ ,Tm 3+ @SiO 2 hollow nanoparticles. Journal of Materials Chemistry C 2020, 8 (23) , 7828-7836. https://doi.org/10.1039/D0TC01457E

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect