ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Overcoming Pd–TiO2 Deactivation during H2 Production from Photoreforming Using Cu@Pd Nanoparticles Supported on TiO2

  • F. Platero
    F. Platero
    Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Universidad de Sevilla-CSIC, Américo Vespucio s/n, Sevilla 41092, Spain
    More by F. Platero
  • A. López-Martín
    A. López-Martín
    Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Universidad de Sevilla-CSIC, Américo Vespucio s/n, Sevilla 41092, Spain
  • A. Caballero
    A. Caballero
    Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Universidad de Sevilla-CSIC, Américo Vespucio s/n, Sevilla 41092, Spain
    More by A. Caballero
  • T. C. Rojas
    T. C. Rojas
    Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Universidad de Sevilla-CSIC, Américo Vespucio s/n, Sevilla 41092, Spain
    More by T. C. Rojas
  • M. Nolan
    M. Nolan
    Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland
    More by M. Nolan
  • , and 
  • G. Colón*
    G. Colón
    Instituto de Ciencia de Materiales de Sevilla, Centro Mixto Universidad de Sevilla-CSIC, Américo Vespucio s/n, Sevilla 41092, Spain
    *Email: [email protected]
    More by G. Colón
Cite this: ACS Appl. Nano Mater. 2021, 4, 3, 3204–3219
Publication Date (Web):March 1, 2021
https://doi.org/10.1021/acsanm.1c00345
Copyright © 2021 American Chemical Society

    Article Views

    1507

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Different Cu@Pd–TiO2 systems have been prepared by a two-step synthesis to obtain a bimetallic co-catalyst for the H2 photoreforming reaction. We find that the tailored deposition of Pd covering the Cu nanoclusters by a galvanic replacement process results in the formation of a core@shell structure. The photocatalytic H2 production after 18 h is 350 mmol/g on the Cu@Pd1.0–TiO2 bimetallic system, which is higher than that on the monometallic ones with a H2 production of 250 mmol/g on Pd-supported TiO2. Surface characterization by high-angle annular dark-field scanning transmission electron microscopy, H2-temperature-programed reduction, CO-FTIR spectroscopy, and XPS gives clear evidence of the formation of a core@shell structure. With a Pd loading of 0.2–0.3 at. %, we propose a full coverage of the Cu nanoparticles with Pd. Long-time photoreforming runs show the enhanced performance of supported Cu@Pd with respect to bare palladium leading to a more stable catalyst and ultimately higher H2 production.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsanm.1c00345.

    • Different characterization analyses, flow reaction scheme, evolution of Cu and Pd loading as measured by ICP analysis, structure and surface characterization, TEM analysis of fresh and used Cu@Pd samples, and diffuse reflectance UV–vis spectra (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 18 publications.

    1. Marcos González-Tejero, Joyce G. Villachica-Llamosas, Alba Ruiz-Aguirre, Gerardo Colón. High-Performance Photocatalytic H2 Production Using a Binary Cu/TiO2/SrTiO3 Heterojunction. ACS Applied Energy Materials 2023, 6 (7) , 4007-4015. https://doi.org/10.1021/acsaem.3c00219
    2. Xiaogang Liu, Xin Zhang, Wenjie Chen. Pd Nanoparticles Supported on N-Doped TiO2 Nanosheets: Crystal Facets, Defective Sites, and Metal–Support Interactions Boost Reforming of Formaldehyde Solution for Hydrogen Production. Langmuir 2022, 38 (44) , 13532-13542. https://doi.org/10.1021/acs.langmuir.2c02111
    3. Hristina Šalipur, Dragan Manojlović, Ksenija Milošević, Maciej Fronczak, Ana G. Silva, Davor Lončarević, Jasmina Dostanić. Unraveling the solar and visible light-induced deactivation mechanism of Pt-decorated carbon/TiO2 nanocomposite in photocatalytic hydrogen production. Journal of Environmental Chemical Engineering 2024, 12 (3) , 112862. https://doi.org/10.1016/j.jece.2024.112862
    4. Rui-Feng Yang, Sha-Sha Zhang, Dong-Jie Shi, Jian-Xun Dong, Yue-Liu Li, Jia-Xing Li, Cheng Guo, Zhao Yue, Geng Li, Wei-Ping Huang, Shou-Min Zhang, Bao-Lin Zhu. Glucose detection via photoelectrochemical sensitivity of 3D CuO-TiO2 heterojunction nanotubes/Ti combined with chemometric tools. Microchemical Journal 2024, 199 , 110017. https://doi.org/10.1016/j.microc.2024.110017
    5. Letizia Liccardo, Paolo Moras, Polina M. Sheverdyaeva, Alberto Vomiero, Alfonso Caballero, Gerardo Colón, Elisa Moretti. Surface Defect Engineered Nano‐Cu/TiO 2 Photocatalysts for Hydrogen Production. Advanced Sustainable Systems 2024, 8 (3) https://doi.org/10.1002/adsu.202300418
    6. Andrey Ten, Claire A. West, Soojin Jeong, Elizabeth R. Hopper, Yi Wang, Baixu Zhu, Quentin M. Ramasse, Xingchen Ye, Emilie Ringe. Bimetallic copper palladium nanorods: plasmonic properties and palladium content effects. Nanoscale Advances 2023, 5 (23) , 6524-6532. https://doi.org/10.1039/D3NA00523B
    7. Chunying Wang, Jingyi Wang, Xiaofeng Liu, Yaobin Li, Changbin Zhang, Yuming Zheng, Wenpo Shan. Abnormal inhibiting effect of H 2 O on Pd/SiO 2 and Na–Pd/SiO 2 catalysts for HCHO oxidation. Catalysis Science & Technology 2023, 13 (22) , 6409-6414. https://doi.org/10.1039/D3CY00796K
    8. Xianglin Pei, Siyu Long, Lingyu Zhang, Zhuoyue Liu, Wei Gong, Aiwen Lei, Dongdong Ye. Pd nano-catalyst supported on biowaste-derived porous nanofibrous carbon microspheres for efficient catalysis. Frontiers of Chemical Science and Engineering 2023, 17 (9) , 1289-1300. https://doi.org/10.1007/s11705-023-2299-7
    9. Xinxin JIANG, Masayoshi FUJI. Non-Noble Nanoparticles Cocatalysts in TiO2 for Photocatalytic Hydrogen Production from Water. A review. Journal of the Japan Society of Powder and Powder Metallurgy 2023, 70 (4) , 203-212. https://doi.org/10.2497/jjspm.70.203
    10. Niteen Jawale, Sudhir Arbuj, Govind Umarji, Manish Shinde, Bharat Kale, Sunit Rane. Ni loaded SnS 2 hexagonal nanosheets for photocatalytic hydrogen generation via water splitting. RSC Advances 2023, 13 (4) , 2418-2426. https://doi.org/10.1039/D2RA07954B
    11. L. Chang, S.-T. Yong, S.-P. Chai, L.K. Putri, L.-L. Tan, A.R. Mohamed. A review of methanol photoreforming: elucidating the mechanisms, photocatalysts and recent advancement strategies. Materials Today Chemistry 2023, 27 , 101334. https://doi.org/10.1016/j.mtchem.2022.101334
    12. F. Platero, A. Caballero, G. Colón. Tuning the co-catalyst loading for the optimization of thermo-photocatalytic hydrogen production over Cu/TiO2. Applied Catalysis A: General 2022, 643 , 118804. https://doi.org/10.1016/j.apcata.2022.118804
    13. Jihai Duan, Xin He, Zheng Ma, Jin Yue, Weiwen Wang, Chaojie Li. The composite of Zr-doped TiO2 and MOF-derived metal oxide for oxidative removal of formaldehyde at the room temperature. Microporous and Mesoporous Materials 2022, 336 , 111892. https://doi.org/10.1016/j.micromeso.2022.111892
    14. Nada Y. Tashkandi, Soha M. Albukhari, Adel A. Ismail. Mesoporous TiO2 enhanced by anchoring Mn3O4 for highly efficient photocatalyst toward photo-oxidation of ciprofloxacin. Optical Materials 2022, 127 , 112274. https://doi.org/10.1016/j.optmat.2022.112274
    15. Rosy Amalia Kurnia Putri, Nisa Nashrah, Da In Han, Wail Al Zoubi, Young Gun Ko. Chemical incorporation of Mn3O4 into TiO2 coating by benzotriazole working as electron donor: Electrochemical and catalytic performance. Composites Part B: Engineering 2022, 232 , 109609. https://doi.org/10.1016/j.compositesb.2021.109609
    16. Abniel Machín, Kenneth Fontánez, Diego García, Paola Sampayo, Carla Colón-Cruz, Gerardo J. Claudio-Serrano, Loraine Soto-Vázquez, Edgard Resto, Florian I. Petrescu, Carmen Morant, Francisco Márquez. Hydrogen Production and Degradation of Ciprofloxacin by Ag@TiO2-MoS2 Photocatalysts. Catalysts 2022, 12 (3) , 267. https://doi.org/10.3390/catal12030267
    17. Wenna Hu, Fan Wu, Wei Liu. Construction of S-scheme heterojunction by doping Bi2WO6 into Bi2O3 for efficiently enhanced visible-light photocatalytic performance. Journal of Materials Science 2022, 57 (6) , 4265-4282. https://doi.org/10.1007/s10853-022-06899-1
    18. Wenna Hu, Wei Liu. CuAlO 2 /Bi 2 WO 6 : a novel p–n type composite with significantly enhanced visible-light photocatalytic reduction of Cr(VI). Materials Research Express 2021, 8 (6) , 065901. https://doi.org/10.1088/2053-1591/ac07e8

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect