Practical Design of 3,6-Di-tert-butyldiphenyldibenzofulvene Derivatives with Enhanced Aggregation-Induced Emission
- Carla CunhaCarla CunhaUniversity of Coimbra, CQC-IMS, Department of Chemistry, Rua Larga, Coimbra 3004-535, PortugalMore by Carla Cunha
- ,
- Mariana S. PeixotoMariana S. PeixotoUniversity of Coimbra, CQC-IMS, Department of Chemistry, Rua Larga, Coimbra 3004-535, PortugalMore by Mariana S. Peixoto
- ,
- Joana SantosJoana SantosUniversity of Coimbra, CQC-IMS, Department of Chemistry, Rua Larga, Coimbra 3004-535, PortugalMore by Joana Santos
- ,
- Paulo E. AbreuPaulo E. AbreuUniversity of Coimbra, CQC-IMS, Department of Chemistry, Rua Larga, Coimbra 3004-535, PortugalMore by Paulo E. Abreu
- ,
- José A. PaixãoJosé A. PaixãoUniversity of Coimbra, CFisUC, Department of Physics, Rua Larga, Coimbra 3004-516, PortugalMore by José A. Paixão
- ,
- Marta PineiroMarta PineiroUniversity of Coimbra, CQC-IMS, Department of Chemistry, Rua Larga, Coimbra 3004-535, PortugalMore by Marta Pineiro
- , and
- J. Sérgio Seixas de Melo*J. Sérgio Seixas de Melo*Email: [email protected]University of Coimbra, CQC-IMS, Department of Chemistry, Rua Larga, Coimbra 3004-535, PortugalMore by J. Sérgio Seixas de Melo
Abstract

Diphenyldibenzofulvene derivatives consisting of an aromatic tert-butyl-substituted fluorene stator and different rotors consisting of nonsubstituted phenyl groups (3,6-dtb-DPBF) and monomethyl-substituted (3,6-dtb-DPBFMe) and dimethyl-substituted [3,6-dtb-DPBF(Me)2] forms have been synthesized and found to display aggregation-induced emission (AIE). The incremental number of substituents from 3,6-dtb-DPBF to the 3,6-dtb-DPBFMe and 3,6-dtb-DPBF(Me)2 derivatives promotes significant changes, from a good solvent (acetonitrile, MeCN), where it is very poorly emissive, to thin films or aggregates, in MeCN/water mixtures, and a huge increment in fluorescence emission, which is found to be dependent on the water fraction, fw. The characteristics (size and distribution) of the aggregates were further corroborated with dynamic light scattering measurements. From time-resolved fluorescence experiments (TCSPC and FLIM), the increase in the contribution of the longer decay component is linked to the emission of the aggregate (AIE effect). To assist in the elucidation of the aggregation process at a molecular level, the data were complemented with computational studies [time-dependent density functional theory (TDDFT) and molecular dynamics (MD) simulations]. From MD, the octamer properly addresses the properties of the aggregate. As determined by the X-ray data, the crystal structure of a two-unit special disposition is identical to the geometry of the most stable structure obtained from MD and TDDFT calculations.
This publication is licensed under
License Summary*
You are free to share (copy and redistribute) this article in any medium or format and to adapt (remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share (copy and redistribute) this article in any medium or format and to adapt (remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share (copy and redistribute) this article in any medium or format and to adapt (remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
Introduction
Scheme 1

aθ corresponds to the rotation of the ethylenic C═C π-bond, and ψ and ϕ correspond to the rotations of the phenyl groups around the C–C σ-bonds.
Experimental Section
Materials and Instrumentation
Structural Characterization
Photophysical Measurements
FLIM (fluorescence lifetime imaging microscopy)
Dynamic Light Scattering (DLS) Measurements
Solutions and Film Preparation
X-ray Diffraction
Time-Dependent Density Functional Theory (TDDFT) Studies
Molecular Dynamics (MD) Simulations
Synthesis and Structural Characterization of the 3,6-dtb-Diphenyldibenzofulvene Derivatives
Synthesis of 3,6-Di-tert-butyldiphenyldibenzofulvene (3,6-dtb-DPBF)
Synthesis of 3,6-Di-tert-butyldiphenyldibenzofulvene (3,6-dtb-DPBFMe)
Synthesis of 3,6-Di-tert-butyldiphenyldibenzofulvene [3,6-dtb-DPBF(Me)2]
Results and Discussion
Synthesis
Scheme 2

Figure 1

Figure 1. (A) Molecular structure of compound 3,6-dtb-DPBF (asymmetric unit) depicting the anisotropic displacement ellipsoids at the 50% probability level. (B) Unit cell (left) and molecular packing (right) of 3,6-dtb-DPBF.
Photophysical Studies
Figure 2

Figure 2. Dependence of the absorption spectra of 3,6-dtb-DPBF derivatives on the water content in MeCN/water mixtures (in MeCN and aggregate solution). fw = 75% for 3,6-dtb-DPBF. fw = 60% for 3,6-dtb-DPBFMe. fw = 80% for 3,6-dtb-DPBF(Me)2. fw is the volume percentage of water in the mixtures.
Figure 3

Figure 3. Room-temperature fluorescence emission spectra for the 3,6-dtb-DPBF derivatives (A) 3,6-dtb-DPBF, (B) 3,6-dtb-DPBFMe, and (C) 3,6-dtb-DPBF(Me)2 in MeCN/water mixtures (λexc = 320 nm) and the respective correlations of emission area with an increasing water fraction (fw = 0–95%). Photoluminescence color coordinates of the 3,6-dtb-DPBF derivatives in acetonitrile and when aggregated in solution (MeCN/water mixtures) plotted in the CIE 1931 chromaticity diagram and photos under ultraviolet irradiation (with λexc = 254 nm) of the fluorescence emission of the 3,6-dtb-DPBF derivatives in MeCN/water mixtures [from left (0%) to right (95%) with increments of water fraction (% v/v)].
compound | medium | λabs (nm) | λem (nm) | ΔSS (cm–1) | ϕF |
---|---|---|---|---|---|
DPBFb | MeCN | 234 | 420 | 6772 | 4 × 10–5 |
258 | |||||
327 | |||||
agg (fw = 70%) | 237 | 470 | 10672 | 0.110 | |
267 | |||||
313 | |||||
3,6-dtb-DPBF | MeCN | 240 | ND | ND | ND |
264 | |||||
322 | |||||
agg (fw = 75%) | 240 | 465 | 9647 | 0.120 | |
266 | |||||
321 | |||||
3,6-dtb-DPBFMe | MeCN | 237 | ND | ND | ND |
264 | |||||
331 | |||||
agg (fw = 60%) | 239 | 468 | 9785 | 0.171 | |
266 | |||||
321 | |||||
3,6-dtb-DPBF(Me)2 | MeCN | 238 | ND | ND | ND |
263 | |||||
338 | |||||
agg (fw = 80%) | 228 | 463 | 9750 | 0.216 | |
264 | |||||
319 |
Dependence with fw, from Time-Resolved Fluorescence
Figure 4

Figure 4. Fluorescence decays times (τi) and pre-exponential factors (ai) for the 3,6-dtb-DPBF derivatives obtained with the ps-TCSPC technique in MeCN/water mixtures, with different water fractions, fw, at 293 K, with λexc = 261 nm and λem = 470 nm. Legend: empty symbols, monomer lifetimes; filled symbols, aggregate lifetimes.
Dynamic Light Scattering
Figure 5

Figure 5. DLS particle size distribution curves obtained in MeCN/water (>70–95% H2O, % v/v) mixtures for the 3,6-dtb-DPBF derivatives. The count rates (% intensity) and the mean values of the hydrodynamic radius with MeCN/water mixtures, with different water fraction values, fw, are displayed.
Dependence on O2 Saturation and N2 Saturation of the Time-Resolved Fluorescence Data
compound | conditions | ϕF | τ1 (ns) | τ2 (ns) | a1 (% C1) | a2 (% C2) | χ2 |
---|---|---|---|---|---|---|---|
3,6-dtb-DPBF (fw = 75%) | N2 sat. | 0.104 | 1.02 | 29.45 | 0.045 (0.2) | 0.955 (99.8) | 1.03 |
air | 0.120 | 0.90 | 29.49 | 0.023 (0.1) | 0.977 (99.9) | 1.11 | |
O2 sat. | 0.053 | 1.45 | 27.39 | 0.231 (2) | 0.769 (98) | 1.02 | |
3,6-dtb-DPBFMe (fw = 60%) | N2 sat. | 0.139 | 2.46 | 32.83 | 0.099 (1) | 0.901 (99) | 1.05 |
air | 0.171 | 2.55 | 33.02 | 0.101 (1) | 0.899 (99) | 1.05 | |
O2 sat. | 0.116 | 2.55 | 32.81 | 0.150 (1) | 0.850 (99) | 1.03 | |
3,6-dtb-DPBF(Me)2 (fw = 80%) | N2 sat. | 0.196 | 3.85 | 36.87 | 0.134 (2) | 0.866 (98) | 1.05 |
air | 0.216 | 3.78 | 37.16 | 0.146 (2) | 0.854 (98) | 1.09 | |
O2 sat. | 0.117 | 2.96 | 33.48 | 0.264 (3) | 0.736 (97) | 0.99 |
Results of MD Simulations
Figure 6

Figure 6. Normalized histograms of the cluster size of the 3,6-dtb-DPBF, 3,6-dtb-DPBFMe, and 3,6-dtb-DPBF(Me)2 simulations showing the relative populations of molecules in aggregates of different sizes. All four solvents were considered in this analysis: acetonitrile (left), 40:60 MeCN/water (second), 25:75 MeCN/water (third), and water (right). The plots are in order of increasing polarity (from left to right). N represents the number of molecules in the aggregate.
Figure 7

Figure 7. Radial distribution functions of the solvent molecules [pure acetonitrile (dashed blue line), pure water (dashed red line), acetonitrile (solid blue line), and water (solid red line) in a 25:75 MeCN/water mixture] around the 3,6-dtb-DPBF molecules. The inset illustrates the RDF calculated for the 3,6-dtb-DPBF aggregate (black), the water molecules (red), and the acetonitrile molecules (blue).
Figure 8

Figure 8. Snapshots of the MD simulation representing the main stages until the aggregation of the eight monomers in the simulations of the (a) 3,6-dtb-DPBF, (b) 3,6-dtb-DPBFMe, and (c) 3,6-dtb-DPBFMe2 molecules in a 25:75 MeCN/water mixture. Each monomer is represented by a different color. The simulation time is shown in each frame. Snapshots were obtained with the VMD (Visual Molecular Dynamics) program. (26)
Figure 9

Figure 9. Cluster analysis of two (top) and eight (bottom) monomers in the simulations of the 3,6-dtb-DPBF (left), 3,6-dtb-DPBFMe (middle), and 3,6-dtb-DPBF(Me)2 (right) molecules in the 25:75 MeCN/water mixture. Each monomer is represented by a different color.
Emission Properties in Thin Films
Figure 10

Figure 10. Absorption (dashed line) and emission (solid line) spectra of the 3,6-dtb-DPBF derivatives in Zeonex films. Photoluminescence color coordinates of the films are plotted in the CIE 1931 chromaticity diagram.
compound | λabs (nm) | λem (nm) | ΔSS (cm–1) | ϕF |
---|---|---|---|---|
DPBFa | 341 | 483 | 8622 | 0.044 |
3,6-dtb-DPBF | 235 | 577 | 11739 | 0.008 |
259 | ||||
344 | ||||
3,6-dtb-DPBFMe | 236 | 571 | 11058 | 0.011 |
263 | ||||
350 | ||||
3,6-dtb-DPBF(Me)2 | 241 | 561 | 10746 | 0.013 |
266 | ||||
350 |
Data from ref (3).
Fluorescence Lifetime Imaging Microscopy (FLIM) Studies
Figure 11

Figure 11. Fluorescence lifetime imaging microscopy (FLIM) images of the 3,6-dtb-DPBF derivatives and photographs of the films under ultraviolet excitation (λexc = 375 nm).
Conclusion
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaom.2c00067.
Crystallographic data (CIF)
Materials and instrumentation; experimental procedures; 1H NMR, 13C NMR, HRMS(ESI), and DLS spectra of the compounds; and steady-state and time-resolved fluorescence data collected as a function of water fraction and in films (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgments
This work was carried out with the support of Centro de Química de Coimbra and Centro de Física da Universidade de Coimbra [FCT (Fundação para a Ciência e a Tecnologia) references UIDB/00313/2020 and UIDP/00313/2020, UIDB/04564/2020, and UIDP/04564/2020] and the COMPETE 2020 Operational Thematic Program for Competitiveness and Internationalization (Project “Hylight”, 02/SAICT/2017, PTDC/QUI-QFI/31625/2017), co-financed by national funds through the FCT/MCTES, the European Union through the European Regional Development Fund (ERDF) under the Portugal 2020 Partnership Agreement, and the Deutsche Forschungsgemeinschaft (DFG, Grant SCHE 410/33). The research leading to these results has received funding from Laserlab-Europe (Grant Agreement 284464, EC’s Seventh Framework Programme). C.C. thanks FCT for a Ph.D. Grant (2020.09661.BD). The authors also acknowledge the UC-NMR facility for obtaining the NMR data (www.nmrccc.uc.pt).
DPBF | diphenyldibenzofulvene |
fw | water fraction |
MeCN | acetonitrile |
References
This article references 45 other publications.
- 1Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Tang, B. Z.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D. Aggregation-Induced Emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740– 1741, DOI: 10.1039/b105159hGoogle ScholarThere is no corresponding record for this reference.
- 2Tong, H.; Dong, Y.; Häußler, M.; Lam, J. W.; Sung, H. H.-Y.; Williams, I. D.; Sun, J.; Tang, B. Z. Tunable Aggregation-induced Emission of Diphenyldibenzofulvenes. Chem. Commun. 2006, 10, 1133– 1135, DOI: 10.1039/b515798fGoogle ScholarThere is no corresponding record for this reference.
- 3Rodrigues, A. C. B.; Peixoto, M.; Gomes, C.; Pineiro, M.; Seixas de Melo, J. S. Aggregation–induced Emission Leading to White Light Emission in Diphenylbenzofulvene Derivatives. Chem. - Eur. J. 2022, 28 (7), e202103768 DOI: 10.1002/chem.202103768Google ScholarThere is no corresponding record for this reference.
- 4Rodrigues, A. C. B.; Seixas de Melo, J. S. Aggregation-induced Emission: From Small Molecules to Polymers - Historical Background, Mechanisms and Photophysics. Aggregation-Induced Emission 2022, 209– 246, DOI: 10.1007/978-3-030-89933-2_7Google ScholarThere is no corresponding record for this reference.
- 5Rodrigues, A. C. B.; Pina, J.; Seixas de Melo, J. S. Structure-relation Properties of N-substituted Phenothiazines in Solution and Solid State: Photophysical, Photostability and Aggregation-induced Emission Studies. J. Mol. Liq. 2020, 317, 113966, DOI: 10.1016/j.molliq.2020.113966Google ScholarThere is no corresponding record for this reference.
- 6Li, Q.; Blancafort, L. A Conical Intersection Model to Explain Aggregation-induced Emission in Diphenyldibenzofulvene. Chem. Commun. 2013, 49 (53), 5966– 5968, DOI: 10.1039/c3cc41730aGoogle ScholarThere is no corresponding record for this reference.
- 7Hong, Y.; Lam, J. W.; Tang, B. Z. Aggregation-induced Emission: Phenomenon, Mechanism and Applications. Chem. Commun. 2009, 29, 4332– 4353, DOI: 10.1039/b904665hGoogle ScholarThere is no corresponding record for this reference.
- 8Yamamoto, N. Free Energy Profile Analysis for the Aggregation-induced Emission of Diphenyldibenzofulvene. J. Phys. Chem. A 2020, 124 (24), 4939– 4945, DOI: 10.1021/acs.jpca.0c03240Google ScholarThere is no corresponding record for this reference.
- 9Yang, C.; Li, Y.; Wang, J.; He, J.; Hou, H.; Li, K. Fast and Highly Selective Detection of Acetaldehyde in Liquor and Spirits by Forming Aggregation-induced Emission Luminogen. Sens. Actuators, B 2019, 285, 617– 624, DOI: 10.1016/j.snb.2019.01.104Google ScholarThere is no corresponding record for this reference.
- 10Cai, X.; Liu, B. Aggregation–induced Emission: Recent Advances in Materials and Biomedical Applications. Angew. Chem. Int. Ed 2020, 59 (25), 9868– 9886, DOI: 10.1002/anie.202000845Google ScholarThere is no corresponding record for this reference.
- 11Xu, S.; Duan, Y.; Liu, B. Precise Molecular Design for High–performance Luminogens with Aggregation–induced Emission. Adv. Mater. 2020, 32 (1), 1903530, DOI: 10.1002/adma.201903530Google ScholarThere is no corresponding record for this reference.
- 12Würthner, F. Aggregation–induced Emission (AIE): A Historical Perspective. Angew. Chem. Int. Ed 2020, 59 (34), 14192– 14196, DOI: 10.1002/anie.202007525Google ScholarThere is no corresponding record for this reference.
- 13Abdollahi, M. F.; You, J.; Wang, T.; Zhao, Y. Molecular Tuning of the Crystallization-induced Emission Enhancement of Diphenyldibenzofulvene luminogens. Chem. Commun. 2021, 57 (4), 484– 487, DOI: 10.1039/D0CC07013KGoogle ScholarThere is no corresponding record for this reference.
- 14Dong, Y. Q.; Lam, J. W.; Tang, B. Z. Mechanochromic Luminescence of Aggregation-induced Emission Luminogens. J. Phys. Chem. Lett. 2015, 6 (17), 3429– 3436, DOI: 10.1021/acs.jpclett.5b01090Google ScholarThere is no corresponding record for this reference.
- 15Luo, X.; Li, J.; Li, C.; Heng, L.; Dong, Y. Q.; Liu, Z.; Bo, Z.; Tang, B. Z. Reversible Switching of the Emission of Diphenyldibenzofulvenes by Thermal and Mechanical Stimuli. Adv. Mater. 2011, 23 (29), 3261– 3265, DOI: 10.1002/adma.201101059Google ScholarThere is no corresponding record for this reference.
- 16Rodrigues, A. C. B.; Geisler, I. S.; Klein, P.; Pina, J.; Neuhaus, F. J.; Dreher, E.; Lehmann, C. W.; Scherf, U.; Seixas de Melo, J. S. Designing Highly Fluorescent, Arylated Poly (Phenylene Vinylene)s of Intrinsic Microporosity. J. Mater. Chem. C 2020, 8 (7), 2248– 2257, DOI: 10.1039/C9TC06028FGoogle ScholarThere is no corresponding record for this reference.
- 17Duan, Y.; Ma, H.; Tian, H.; Liu, J.; Deng, X.; Peng, Q.; Dong, Y. Q. Construction of a Luminogen Exhibiting High Contrast and Multicolored Emission Switching Through Combination of a Bulky Conjugation Core and Tolyl Groups. Chem. Asian J. 2019, 14 (6), 864– 870, DOI: 10.1002/asia.201801608Google ScholarThere is no corresponding record for this reference.
- 18Tong, H.; Dong, Y.; Hong, Y.; Häussler, M.; Lam, J. W.; Sung, H. H.-Y.; Yu, X.; Sun, J.; Williams, I. D.; Kwok, H. S.; Tang, B. Z. Aggregation-induced Emission: Effects of Molecular Structure, Solid-state Conformation, and Morphological Packing Arrangement on Light-emitting Behaviors of Diphenyldibenzofulvene Derivatives. J. Phys. Chem. C 2007, 111 (5), 2287– 2294, DOI: 10.1021/jp0630828Google ScholarThere is no corresponding record for this reference.
- 19Pinheiro, D.; Pineiro, M.; Galvão, A. M.; Seixas de Melo, J. S. Deep in Blue with Green Chemistry: Influence of Solvent and Chain Length on the Behaviour of N-and N, N′-alkyl Indigo Derivatives. Chem. Sci. 2021, 12 (1), 303– 313, DOI: 10.1039/D0SC04958AGoogle ScholarThere is no corresponding record for this reference.
- 20de Castro, C. S.; Cova, T. F.; Pais, A. C.; Pinheiro, D.; Nunez, C.; Lodeiro, C.; Seixas de Melo, J. S. Probing Metal Cations with Two New Schiff Base Bischromophoric Pyrene Based Chemosensors: Synthesis, Photophysics and Interactions Patterns. Dyes Pigm. 2016, 134, 601– 612, DOI: 10.1016/j.dyepig.2016.08.016Google ScholarThere is no corresponding record for this reference.
- 21Pietsch, C.; Vollrath, A.; Hoogenboom, R.; Schubert, U. S. A Fluorescent Thermometer Based on a Pyrene-labeled Thermoresponsive Polymer. Sensors 2010, 10 (9), 7979– 7990, DOI: 10.3390/s100907979Google ScholarThere is no corresponding record for this reference.
- 22Clark, W.; Steel, C. Photochemistry of 2, 3-diazabicyclo [2.2. 2] oct-2-ene. J. Am. Chem. Soc. 1971, 93 (24), 6347– 6355, DOI: 10.1021/ja00753a001Google ScholarThere is no corresponding record for this reference.
- 23Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M. T. Handbook of photochemistry; CRC Press: Boca Raton, FL, 2006.Google ScholarThere is no corresponding record for this reference.
- 24Kovacs, H.; Mark, A. E.; Van Gunsteren, W. F. Solvent Structure at a Hydrophobic Protein Surface. Proteins Struct. Funct. Bioinf 1997, 27 (3), 395– 404, DOI: 10.1002/(SICI)1097-0134(199703)27:3<395::AID-PROT7>3.0.CO;2-CGoogle ScholarThere is no corresponding record for this reference.
- 25Sarma, R.; Paul, S. The Effect of Pressure on the Hydration Structure Around Hydrophobic Solute: A Molecular Dynamics Simulation Study. J. Chem. Phys. 2012, 136 (11), 114510, DOI: 10.1063/1.3694834Google ScholarThere is no corresponding record for this reference.
- 26Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graphics 1996, 14 (1), 33– 38, DOI: 10.1016/0263-7855(96)00018-5Google ScholarThere is no corresponding record for this reference.
- 27Seixas de Melo, J. S. The Influence of Oxygen on the Lifetime of Luminescent Probes. A Simple Device for Degassing Solutions for Fluorescence Measurements. Chem. Educ. 2005, 10 (05), 29– 35Google ScholarThere is no corresponding record for this reference.
- 28Smith, T.; Guild, J. The CIE Colorimetric Standards and their Use. Trans. Opt. Soc. 1932, 33 (3), 73, DOI: 10.1088/1475-4878/33/3/301Google ScholarThere is no corresponding record for this reference.
- 29Pina, J.; Seixas de Melo, J. S.; Burrows, H.; Maçanita, A.; Galbrecht, F.; Bunnagel, T.; Scherf, U. Alternating Binaphthyl–thiophene Copolymers: Synthesis, Spectroscopy, and Photophysics and Their Relevance to the Question of Energy Migration versus Conformational Relaxation. Macromolecules 2009, 42 (5), 1710– 1719, DOI: 10.1021/ma802395cGoogle ScholarThere is no corresponding record for this reference.
- 30Striker, G.; Subramaniam, V.; Seidel, C. A.; Volkmer, A. Photochromicity and Fluorescence Lifetimes of Green Fluorescent Protein. J. Phys. Chem. B 1999, 103 (40), 8612– 8617, DOI: 10.1021/jp991425eGoogle ScholarThere is no corresponding record for this reference.
- 31Pina, J.; Seixas de Melo, J. S.; Burrows, H.; Bilge, A.; Farrell, T.; Forster, M.; Scherf, U. Spectral and Photophysical Studies on Cruciform Oligothiophenes in Solution and the Solid State. J. Phys. Chem. B 2006, 110 (31), 15100– 15106, DOI: 10.1021/jp060707tGoogle ScholarThere is no corresponding record for this reference.
- 32Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14 (11), 1347– 1363, DOI: 10.1002/jcc.540141112Google ScholarThere is no corresponding record for this reference.
- 33Lindahl, A.; Hess; ; van der Spoel GROMACS 2019 Source code; Zenodo, 2018.Google ScholarThere is no corresponding record for this reference.
- 34Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations Through Multi-level Parallelism From Laptops to Supercomputers. SoftwareX 2015, 1, 19– 25, DOI: 10.1016/j.softx.2015.06.001Google ScholarThere is no corresponding record for this reference.
- 35Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25 (9), 1157– 1174, DOI: 10.1002/jcc.20035Google ScholarThere is no corresponding record for this reference.
- 36Dupradeau, F.-Y.; Pigache, A.; Zaffran, T.; Savineau, C.; Lelong, R.; Grivel, N.; Lelong, D.; Rosanski, W.; Cieplak, P. The R.E.D. Tools: Advances in RESP and ESP Charge Derivation and Force Field Library Building. Phys. Chem. Chem. Phys. 2010, 12 (28), 7821– 7839, DOI: 10.1039/c0cp00111bGoogle ScholarThere is no corresponding record for this reference.
- 37Sousa da Silva, A. W.; Vranken, W. F. ACPYPE-Antechamber Python Parser Interface. BMC Res. Notes 2012, 5 (1), 1– 8, DOI: 10.1186/1756-0500-5-367Google ScholarThere is no corresponding record for this reference.
- 38Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations. J. Mol. Graphics Modell 2006, 25 (2), 247– 260, DOI: 10.1016/j.jmgm.2005.12.005Google ScholarThere is no corresponding record for this reference.
- 39Abascal, J. L.; Vega, C. A General Purpose Model for the Condensed Phases of water: TIP4P/2005. J. Chem. Phys. 2005, 123 (23), 234505, DOI: 10.1063/1.2121687Google ScholarThere is no corresponding record for this reference.
- 40Nikitin, A. M.; Lyubartsev, A. P. New Six–site Acetonitrile Model for Simulations of Liquid Acetonitrile and its Aqueous Mixtures. J. Comput. Chem. 2007, 28 (12), 2020– 2026, DOI: 10.1002/jcc.20721Google ScholarThere is no corresponding record for this reference.
- 41Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling Through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101, DOI: 10.1063/1.2408420Google ScholarThere is no corresponding record for this reference.
- 42Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52 (12), 7182– 7190, DOI: 10.1063/1.328693Google ScholarThere is no corresponding record for this reference.
- 43Hess, B.; Bekker, H.; Berendsen, H. J.; Fraaije, J. G. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18 (12), 1463– 1472, DOI: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-HGoogle ScholarThere is no corresponding record for this reference.
- 44Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N· log (N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98 (12), 10089– 10092, DOI: 10.1063/1.464397Google ScholarThere is no corresponding record for this reference.
- 45Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103 (19), 8577– 8593, DOI: 10.1063/1.470117Google ScholarThere is no corresponding record for this reference.
Cited By
This article has not yet been cited by other publications.
Abstract
Scheme 1
Scheme 1. DPBF Structure with the Two Phenyl Rotors and the Fluorene Stator in a Three-Dimensional Perspective in Which θ, ψ, and ϕ Represent Internal Rotations That Can Be Used to Characterize Conformational Changes in DPBFaaθ corresponds to the rotation of the ethylenic C═C π-bond, and ψ and ϕ correspond to the rotations of the phenyl groups around the C–C σ-bonds.
Scheme 2
Scheme 2. General Synthetic Route, Structures, and Acronyms of 3,6-dtb-Diphenyldibenzofulvene Derivatives [3,6-dtb-DPBF, 3,6-dtb-DPBFMe, and 3,6-dtb-DPBF(Me)2]Figure 1
Figure 1. (A) Molecular structure of compound 3,6-dtb-DPBF (asymmetric unit) depicting the anisotropic displacement ellipsoids at the 50% probability level. (B) Unit cell (left) and molecular packing (right) of 3,6-dtb-DPBF.
Figure 2
Figure 2. Dependence of the absorption spectra of 3,6-dtb-DPBF derivatives on the water content in MeCN/water mixtures (in MeCN and aggregate solution). fw = 75% for 3,6-dtb-DPBF. fw = 60% for 3,6-dtb-DPBFMe. fw = 80% for 3,6-dtb-DPBF(Me)2. fw is the volume percentage of water in the mixtures.
Figure 3
Figure 3. Room-temperature fluorescence emission spectra for the 3,6-dtb-DPBF derivatives (A) 3,6-dtb-DPBF, (B) 3,6-dtb-DPBFMe, and (C) 3,6-dtb-DPBF(Me)2 in MeCN/water mixtures (λexc = 320 nm) and the respective correlations of emission area with an increasing water fraction (fw = 0–95%). Photoluminescence color coordinates of the 3,6-dtb-DPBF derivatives in acetonitrile and when aggregated in solution (MeCN/water mixtures) plotted in the CIE 1931 chromaticity diagram and photos under ultraviolet irradiation (with λexc = 254 nm) of the fluorescence emission of the 3,6-dtb-DPBF derivatives in MeCN/water mixtures [from left (0%) to right (95%) with increments of water fraction (% v/v)].
Figure 4
Figure 4. Fluorescence decays times (τi) and pre-exponential factors (ai) for the 3,6-dtb-DPBF derivatives obtained with the ps-TCSPC technique in MeCN/water mixtures, with different water fractions, fw, at 293 K, with λexc = 261 nm and λem = 470 nm. Legend: empty symbols, monomer lifetimes; filled symbols, aggregate lifetimes.
Figure 5
Figure 5. DLS particle size distribution curves obtained in MeCN/water (>70–95% H2O, % v/v) mixtures for the 3,6-dtb-DPBF derivatives. The count rates (% intensity) and the mean values of the hydrodynamic radius with MeCN/water mixtures, with different water fraction values, fw, are displayed.
Figure 6
Figure 6. Normalized histograms of the cluster size of the 3,6-dtb-DPBF, 3,6-dtb-DPBFMe, and 3,6-dtb-DPBF(Me)2 simulations showing the relative populations of molecules in aggregates of different sizes. All four solvents were considered in this analysis: acetonitrile (left), 40:60 MeCN/water (second), 25:75 MeCN/water (third), and water (right). The plots are in order of increasing polarity (from left to right). N represents the number of molecules in the aggregate.
Figure 7
Figure 7. Radial distribution functions of the solvent molecules [pure acetonitrile (dashed blue line), pure water (dashed red line), acetonitrile (solid blue line), and water (solid red line) in a 25:75 MeCN/water mixture] around the 3,6-dtb-DPBF molecules. The inset illustrates the RDF calculated for the 3,6-dtb-DPBF aggregate (black), the water molecules (red), and the acetonitrile molecules (blue).
Figure 8
Figure 8. Snapshots of the MD simulation representing the main stages until the aggregation of the eight monomers in the simulations of the (a) 3,6-dtb-DPBF, (b) 3,6-dtb-DPBFMe, and (c) 3,6-dtb-DPBFMe2 molecules in a 25:75 MeCN/water mixture. Each monomer is represented by a different color. The simulation time is shown in each frame. Snapshots were obtained with the VMD (Visual Molecular Dynamics) program. (26)
Figure 9
Figure 9. Cluster analysis of two (top) and eight (bottom) monomers in the simulations of the 3,6-dtb-DPBF (left), 3,6-dtb-DPBFMe (middle), and 3,6-dtb-DPBF(Me)2 (right) molecules in the 25:75 MeCN/water mixture. Each monomer is represented by a different color.
Figure 10
Figure 10. Absorption (dashed line) and emission (solid line) spectra of the 3,6-dtb-DPBF derivatives in Zeonex films. Photoluminescence color coordinates of the films are plotted in the CIE 1931 chromaticity diagram.
Figure 11
Figure 11. Fluorescence lifetime imaging microscopy (FLIM) images of the 3,6-dtb-DPBF derivatives and photographs of the films under ultraviolet excitation (λexc = 375 nm).
References
ARTICLE SECTIONSThis article references 45 other publications.
- 1Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Tang, B. Z.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D. Aggregation-Induced Emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740– 1741, DOI: 10.1039/b105159hGoogle ScholarThere is no corresponding record for this reference.
- 2Tong, H.; Dong, Y.; Häußler, M.; Lam, J. W.; Sung, H. H.-Y.; Williams, I. D.; Sun, J.; Tang, B. Z. Tunable Aggregation-induced Emission of Diphenyldibenzofulvenes. Chem. Commun. 2006, 10, 1133– 1135, DOI: 10.1039/b515798fGoogle ScholarThere is no corresponding record for this reference.
- 3Rodrigues, A. C. B.; Peixoto, M.; Gomes, C.; Pineiro, M.; Seixas de Melo, J. S. Aggregation–induced Emission Leading to White Light Emission in Diphenylbenzofulvene Derivatives. Chem. - Eur. J. 2022, 28 (7), e202103768 DOI: 10.1002/chem.202103768Google ScholarThere is no corresponding record for this reference.
- 4Rodrigues, A. C. B.; Seixas de Melo, J. S. Aggregation-induced Emission: From Small Molecules to Polymers - Historical Background, Mechanisms and Photophysics. Aggregation-Induced Emission 2022, 209– 246, DOI: 10.1007/978-3-030-89933-2_7Google ScholarThere is no corresponding record for this reference.
- 5Rodrigues, A. C. B.; Pina, J.; Seixas de Melo, J. S. Structure-relation Properties of N-substituted Phenothiazines in Solution and Solid State: Photophysical, Photostability and Aggregation-induced Emission Studies. J. Mol. Liq. 2020, 317, 113966, DOI: 10.1016/j.molliq.2020.113966Google ScholarThere is no corresponding record for this reference.
- 6Li, Q.; Blancafort, L. A Conical Intersection Model to Explain Aggregation-induced Emission in Diphenyldibenzofulvene. Chem. Commun. 2013, 49 (53), 5966– 5968, DOI: 10.1039/c3cc41730aGoogle ScholarThere is no corresponding record for this reference.
- 7Hong, Y.; Lam, J. W.; Tang, B. Z. Aggregation-induced Emission: Phenomenon, Mechanism and Applications. Chem. Commun. 2009, 29, 4332– 4353, DOI: 10.1039/b904665hGoogle ScholarThere is no corresponding record for this reference.
- 8Yamamoto, N. Free Energy Profile Analysis for the Aggregation-induced Emission of Diphenyldibenzofulvene. J. Phys. Chem. A 2020, 124 (24), 4939– 4945, DOI: 10.1021/acs.jpca.0c03240Google ScholarThere is no corresponding record for this reference.
- 9Yang, C.; Li, Y.; Wang, J.; He, J.; Hou, H.; Li, K. Fast and Highly Selective Detection of Acetaldehyde in Liquor and Spirits by Forming Aggregation-induced Emission Luminogen. Sens. Actuators, B 2019, 285, 617– 624, DOI: 10.1016/j.snb.2019.01.104Google ScholarThere is no corresponding record for this reference.
- 10Cai, X.; Liu, B. Aggregation–induced Emission: Recent Advances in Materials and Biomedical Applications. Angew. Chem. Int. Ed 2020, 59 (25), 9868– 9886, DOI: 10.1002/anie.202000845Google ScholarThere is no corresponding record for this reference.
- 11Xu, S.; Duan, Y.; Liu, B. Precise Molecular Design for High–performance Luminogens with Aggregation–induced Emission. Adv. Mater. 2020, 32 (1), 1903530, DOI: 10.1002/adma.201903530Google ScholarThere is no corresponding record for this reference.
- 12Würthner, F. Aggregation–induced Emission (AIE): A Historical Perspective. Angew. Chem. Int. Ed 2020, 59 (34), 14192– 14196, DOI: 10.1002/anie.202007525Google ScholarThere is no corresponding record for this reference.
- 13Abdollahi, M. F.; You, J.; Wang, T.; Zhao, Y. Molecular Tuning of the Crystallization-induced Emission Enhancement of Diphenyldibenzofulvene luminogens. Chem. Commun. 2021, 57 (4), 484– 487, DOI: 10.1039/D0CC07013KGoogle ScholarThere is no corresponding record for this reference.
- 14Dong, Y. Q.; Lam, J. W.; Tang, B. Z. Mechanochromic Luminescence of Aggregation-induced Emission Luminogens. J. Phys. Chem. Lett. 2015, 6 (17), 3429– 3436, DOI: 10.1021/acs.jpclett.5b01090Google ScholarThere is no corresponding record for this reference.
- 15Luo, X.; Li, J.; Li, C.; Heng, L.; Dong, Y. Q.; Liu, Z.; Bo, Z.; Tang, B. Z. Reversible Switching of the Emission of Diphenyldibenzofulvenes by Thermal and Mechanical Stimuli. Adv. Mater. 2011, 23 (29), 3261– 3265, DOI: 10.1002/adma.201101059Google ScholarThere is no corresponding record for this reference.
- 16Rodrigues, A. C. B.; Geisler, I. S.; Klein, P.; Pina, J.; Neuhaus, F. J.; Dreher, E.; Lehmann, C. W.; Scherf, U.; Seixas de Melo, J. S. Designing Highly Fluorescent, Arylated Poly (Phenylene Vinylene)s of Intrinsic Microporosity. J. Mater. Chem. C 2020, 8 (7), 2248– 2257, DOI: 10.1039/C9TC06028FGoogle ScholarThere is no corresponding record for this reference.
- 17Duan, Y.; Ma, H.; Tian, H.; Liu, J.; Deng, X.; Peng, Q.; Dong, Y. Q. Construction of a Luminogen Exhibiting High Contrast and Multicolored Emission Switching Through Combination of a Bulky Conjugation Core and Tolyl Groups. Chem. Asian J. 2019, 14 (6), 864– 870, DOI: 10.1002/asia.201801608Google ScholarThere is no corresponding record for this reference.
- 18Tong, H.; Dong, Y.; Hong, Y.; Häussler, M.; Lam, J. W.; Sung, H. H.-Y.; Yu, X.; Sun, J.; Williams, I. D.; Kwok, H. S.; Tang, B. Z. Aggregation-induced Emission: Effects of Molecular Structure, Solid-state Conformation, and Morphological Packing Arrangement on Light-emitting Behaviors of Diphenyldibenzofulvene Derivatives. J. Phys. Chem. C 2007, 111 (5), 2287– 2294, DOI: 10.1021/jp0630828Google ScholarThere is no corresponding record for this reference.
- 19Pinheiro, D.; Pineiro, M.; Galvão, A. M.; Seixas de Melo, J. S. Deep in Blue with Green Chemistry: Influence of Solvent and Chain Length on the Behaviour of N-and N, N′-alkyl Indigo Derivatives. Chem. Sci. 2021, 12 (1), 303– 313, DOI: 10.1039/D0SC04958AGoogle ScholarThere is no corresponding record for this reference.
- 20de Castro, C. S.; Cova, T. F.; Pais, A. C.; Pinheiro, D.; Nunez, C.; Lodeiro, C.; Seixas de Melo, J. S. Probing Metal Cations with Two New Schiff Base Bischromophoric Pyrene Based Chemosensors: Synthesis, Photophysics and Interactions Patterns. Dyes Pigm. 2016, 134, 601– 612, DOI: 10.1016/j.dyepig.2016.08.016Google ScholarThere is no corresponding record for this reference.
- 21Pietsch, C.; Vollrath, A.; Hoogenboom, R.; Schubert, U. S. A Fluorescent Thermometer Based on a Pyrene-labeled Thermoresponsive Polymer. Sensors 2010, 10 (9), 7979– 7990, DOI: 10.3390/s100907979Google ScholarThere is no corresponding record for this reference.
- 22Clark, W.; Steel, C. Photochemistry of 2, 3-diazabicyclo [2.2. 2] oct-2-ene. J. Am. Chem. Soc. 1971, 93 (24), 6347– 6355, DOI: 10.1021/ja00753a001Google ScholarThere is no corresponding record for this reference.
- 23Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M. T. Handbook of photochemistry; CRC Press: Boca Raton, FL, 2006.Google ScholarThere is no corresponding record for this reference.
- 24Kovacs, H.; Mark, A. E.; Van Gunsteren, W. F. Solvent Structure at a Hydrophobic Protein Surface. Proteins Struct. Funct. Bioinf 1997, 27 (3), 395– 404, DOI: 10.1002/(SICI)1097-0134(199703)27:3<395::AID-PROT7>3.0.CO;2-CGoogle ScholarThere is no corresponding record for this reference.
- 25Sarma, R.; Paul, S. The Effect of Pressure on the Hydration Structure Around Hydrophobic Solute: A Molecular Dynamics Simulation Study. J. Chem. Phys. 2012, 136 (11), 114510, DOI: 10.1063/1.3694834Google ScholarThere is no corresponding record for this reference.
- 26Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graphics 1996, 14 (1), 33– 38, DOI: 10.1016/0263-7855(96)00018-5Google ScholarThere is no corresponding record for this reference.
- 27Seixas de Melo, J. S. The Influence of Oxygen on the Lifetime of Luminescent Probes. A Simple Device for Degassing Solutions for Fluorescence Measurements. Chem. Educ. 2005, 10 (05), 29– 35Google ScholarThere is no corresponding record for this reference.
- 28Smith, T.; Guild, J. The CIE Colorimetric Standards and their Use. Trans. Opt. Soc. 1932, 33 (3), 73, DOI: 10.1088/1475-4878/33/3/301Google ScholarThere is no corresponding record for this reference.
- 29Pina, J.; Seixas de Melo, J. S.; Burrows, H.; Maçanita, A.; Galbrecht, F.; Bunnagel, T.; Scherf, U. Alternating Binaphthyl–thiophene Copolymers: Synthesis, Spectroscopy, and Photophysics and Their Relevance to the Question of Energy Migration versus Conformational Relaxation. Macromolecules 2009, 42 (5), 1710– 1719, DOI: 10.1021/ma802395cGoogle ScholarThere is no corresponding record for this reference.
- 30Striker, G.; Subramaniam, V.; Seidel, C. A.; Volkmer, A. Photochromicity and Fluorescence Lifetimes of Green Fluorescent Protein. J. Phys. Chem. B 1999, 103 (40), 8612– 8617, DOI: 10.1021/jp991425eGoogle ScholarThere is no corresponding record for this reference.
- 31Pina, J.; Seixas de Melo, J. S.; Burrows, H.; Bilge, A.; Farrell, T.; Forster, M.; Scherf, U. Spectral and Photophysical Studies on Cruciform Oligothiophenes in Solution and the Solid State. J. Phys. Chem. B 2006, 110 (31), 15100– 15106, DOI: 10.1021/jp060707tGoogle ScholarThere is no corresponding record for this reference.
- 32Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. General Atomic and Molecular Electronic Structure System. J. Comput. Chem. 1993, 14 (11), 1347– 1363, DOI: 10.1002/jcc.540141112Google ScholarThere is no corresponding record for this reference.
- 33Lindahl, A.; Hess; ; van der Spoel GROMACS 2019 Source code; Zenodo, 2018.Google ScholarThere is no corresponding record for this reference.
- 34Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations Through Multi-level Parallelism From Laptops to Supercomputers. SoftwareX 2015, 1, 19– 25, DOI: 10.1016/j.softx.2015.06.001Google ScholarThere is no corresponding record for this reference.
- 35Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25 (9), 1157– 1174, DOI: 10.1002/jcc.20035Google ScholarThere is no corresponding record for this reference.
- 36Dupradeau, F.-Y.; Pigache, A.; Zaffran, T.; Savineau, C.; Lelong, R.; Grivel, N.; Lelong, D.; Rosanski, W.; Cieplak, P. The R.E.D. Tools: Advances in RESP and ESP Charge Derivation and Force Field Library Building. Phys. Chem. Chem. Phys. 2010, 12 (28), 7821– 7839, DOI: 10.1039/c0cp00111bGoogle ScholarThere is no corresponding record for this reference.
- 37Sousa da Silva, A. W.; Vranken, W. F. ACPYPE-Antechamber Python Parser Interface. BMC Res. Notes 2012, 5 (1), 1– 8, DOI: 10.1186/1756-0500-5-367Google ScholarThere is no corresponding record for this reference.
- 38Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. Automatic Atom Type and Bond Type Perception in Molecular Mechanical Calculations. J. Mol. Graphics Modell 2006, 25 (2), 247– 260, DOI: 10.1016/j.jmgm.2005.12.005Google ScholarThere is no corresponding record for this reference.
- 39Abascal, J. L.; Vega, C. A General Purpose Model for the Condensed Phases of water: TIP4P/2005. J. Chem. Phys. 2005, 123 (23), 234505, DOI: 10.1063/1.2121687Google ScholarThere is no corresponding record for this reference.
- 40Nikitin, A. M.; Lyubartsev, A. P. New Six–site Acetonitrile Model for Simulations of Liquid Acetonitrile and its Aqueous Mixtures. J. Comput. Chem. 2007, 28 (12), 2020– 2026, DOI: 10.1002/jcc.20721Google ScholarThere is no corresponding record for this reference.
- 41Bussi, G.; Donadio, D.; Parrinello, M. Canonical Sampling Through Velocity Rescaling. J. Chem. Phys. 2007, 126, 014101, DOI: 10.1063/1.2408420Google ScholarThere is no corresponding record for this reference.
- 42Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52 (12), 7182– 7190, DOI: 10.1063/1.328693Google ScholarThere is no corresponding record for this reference.
- 43Hess, B.; Bekker, H.; Berendsen, H. J.; Fraaije, J. G. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18 (12), 1463– 1472, DOI: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-HGoogle ScholarThere is no corresponding record for this reference.
- 44Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N· log (N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98 (12), 10089– 10092, DOI: 10.1063/1.464397Google ScholarThere is no corresponding record for this reference.
- 45Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103 (19), 8577– 8593, DOI: 10.1063/1.470117Google ScholarThere is no corresponding record for this reference.
Supporting Information
Supporting Information
ARTICLE SECTIONSThe Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaom.2c00067.
Crystallographic data (CIF)
Materials and instrumentation; experimental procedures; 1H NMR, 13C NMR, HRMS(ESI), and DLS spectra of the compounds; and steady-state and time-resolved fluorescence data collected as a function of water fraction and in films (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.