Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Light-Induced Inverse Electron Demand Diels–Alder Reaction as an Approach for Grafting Macromolecules to Glass Surfaces
My Activity

Figure 1Loading Img
    Article

    Light-Induced Inverse Electron Demand Diels–Alder Reaction as an Approach for Grafting Macromolecules to Glass Surfaces
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    ACS Applied Polymer Materials

    Cite this: ACS Appl. Polym. Mater. 2021, 3, 8, 3721–3732
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsapm.1c00031
    Published July 21, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    This study aims to develop a grafting technique for glass surfaces by light-induced inverse electron demand Diels–Alder (photo-IEDDA) reaction. The approach depends on the in situ formation of tetrazine molecule in the reaction medium and a subsequent IEDDA reaction of tetrazine moieties with trans-cyclooctene groups. First, light-induced formation of a tetrazine derivative from a precursor, 6-(6-(pyridin-2-yl)-1,4-dihydro-1,2,4,5-tetrazin-3-yl)pyridin-3-amine (PPA-dHTz), in the presence of a photosensitizer under visible light irradiation was evaluated by nuclear magnetic resonance (NMR) spectroscopy. For grafting glass surfaces, dihydrotetrazine (dHTz) end-functionalized poly(N-isopropylacrylamide) (PNIPAAm-dHTz) and poly(dl-lactide) (PLA-dHTz) were prepared by reversible addition-fragmentation chain-transfer (RAFT) polymerization and ring-opening polymerization (ROP), respectively, and postpolymerization functionalization with a dihydrotetrazine molecule (PPA-dHTz). However, glass surfaces were decorated with trans-cyclooctenol (TCO) groups by functionalization with 3-aminopropyltriethoxysilane, succinic anhydride, and TCO successively. Then, photo-IEDDA was performed between the dHTz end-functionalized polymers and TCO-decorated glass surface in the presence of methylene blue and under visible light irradiation. To extend the applicability of the approach, grafting TCO-functionalized protein, namely, Concanavalin A-TCO, to dHTz-modified glass surface was achieved as well. In this case, glass surfaces were functionalized with PPA-dHTz. The successful polymer and protein grafting to glass surfaces were shown with X-ray photoelectron spectroscopy, contact angle measurement, scanning electron microscopy, atomic force microscopy, and Fourier transform infrared (FT-IR) spectroscopy.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsapm.1c00031.

    • Materials, some experimental methods, and characterizations including NMR and XPS spectroscopy (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article has not yet been cited by other publications.

    ACS Applied Polymer Materials

    Cite this: ACS Appl. Polym. Mater. 2021, 3, 8, 3721–3732
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsapm.1c00031
    Published July 21, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    1192

    Altmetric

    -

    Citations

    -
    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.