ACS Publications. Most Trusted. Most Cited. Most Read
3D Printing of Neural Tissues Derived from Human Induced Pluripotent Stem Cells Using a Fibrin-Based Bioink
My Activity

Figure 1Loading Img
    Methods/Protocols

    3D Printing of Neural Tissues Derived from Human Induced Pluripotent Stem Cells Using a Fibrin-Based Bioink
    Click to copy article linkArticle link copied!

    • Emily Abelseth
      Emily Abelseth
      Biomedical Engineering Program, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8W 2Y2, Canada
    • Laila Abelseth
      Laila Abelseth
      Biomedical Engineering Program, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8W 2Y2, Canada
    • Laura De la Vega
      Laura De la Vega
      Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8W 2Y2, Canada
    • Simon T. Beyer
      Simon T. Beyer
      Aspect Biosystems, 1781 W 75th Avenue, Vancouver, British Columbia V6P 6P2, Canada
    • Samuel J. Wadsworth
      Samuel J. Wadsworth
      Aspect Biosystems, 1781 W 75th Avenue, Vancouver, British Columbia V6P 6P2, Canada
    • Stephanie M. Willerth*
      Stephanie M. Willerth
      Department of Mechanical Engineering  and  Division of Medical Sciences, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8W 2Y2, Canada
      *Email: [email protected]
    Other Access OptionsSupporting Information (3)

    ACS Biomaterials Science & Engineering

    Cite this: ACS Biomater. Sci. Eng. 2019, 5, 1, 234–243
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsbiomaterials.8b01235
    Published November 26, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    3D bioprinting offers the opportunity to automate the process of tissue engineering, which combines biomaterial scaffolds and cells to generate substitutes for diseased or damaged tissues. These bioprinting methods construct tissue replacements by positioning cells encapsulated in bioinks into specific locations in the resulting constructs. Human induced pluripotent stem cells (hiPSCs) serve as an important tool when engineering neural tissues. These cells can be expanded indefinitely and differentiated into the cell types found in the central nervous systems, including neurons. One common method for differentiating hiPSCs into neural tissue requires the formation of aggregates inside of defined diameter microwells cultured in chemically defined media. However, 3D bioprinting of such hiPSC-derived aggregates has not been previously reported in the literature, as it requires the development of specialized bioinks for supporting cell survival and differentiation into mature neural phenotypes. Here we detail methods including preparing base material components of the bioink, producing the bioink, and the steps involved in printing 3D neural tissues derived from hiPSC-derived neural aggregates using Aspect Biosystems’ novel RX1 printer and their lab-on-a-printer (LOP) technology.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsbiomaterials.8b01235.

    • Movie S1, bioprinting with the RX1 printer step 1 (MPG)

    • Movie S2, bioprinting with the RX1 printer step 2 (MPG)

    • Movie S3, bioprinting with the RX1 printer step 3 (MPG)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 129 publications.

    1. S. Cem Millik, Naroa Sadaba, Shayna L. Hilburg, Eva Sanchez-Rexach, Meijing Zhang, Siwei Yu, Alexander F. Vass, Lilo D. Pozzo, Alshakim Nelson. 3D-Printed Protein-Based Bioplastics with Tunable Mechanical Properties Using Glycerol or Hyperbranched Poly(glycerol)s as Plasticizers. Biomacromolecules 2025, 26 (3) , 1725-1736. https://doi.org/10.1021/acs.biomac.4c01497
    2. Ilkay Irem Ozbek, Hale Saybasili, Kutlu O. Ulgen. Applications of 3D Bioprinting Technology to Brain Cells and Brain Tumor Models: Special Emphasis to Glioblastoma. ACS Biomaterials Science & Engineering 2024, 10 (5) , 2616-2635. https://doi.org/10.1021/acsbiomaterials.3c01569
    3. Wen He, Jinjun Deng, Binghe Ma, Kai Tao, Zhi Zhang, Seeram Ramakrishna, Weizheng Yuan, Tao Ye. Recent Advancements of Bioinks for 3D Bioprinting of Human Tissues and Organs. ACS Applied Bio Materials 2024, 7 (1) , 17-43. https://doi.org/10.1021/acsabm.3c00806
    4. Steven T. G. Street, Josie Chrenek, Robert L. Harniman, Keiran Letwin, Judith M. Mantell, Ufuk Borucu, Stephanie M. Willerth, Ian Manners. Length-Controlled Nanofiber Micelleplexes as Efficient Nucleic Acid Delivery Vehicles. Journal of the American Chemical Society 2022, 144 (43) , 19799-19812. https://doi.org/10.1021/jacs.2c06695
    5. Alina Kirillova, Taylor R. Yeazel, Darya Asheghali, Shannon R. Petersen, Sophia Dort, Ken Gall, Matthew L. Becker. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chemical Reviews 2021, 121 (18) , 11238-11304. https://doi.org/10.1021/acs.chemrev.0c01200
    6. Sonu Kumar, Abhimanyu Tharayil, Sabu Thomas. 3D Bioprinting of Nature-Inspired Hydrogel Inks Based on Synthetic Polymers. ACS Applied Polymer Materials 2021, 3 (8) , 3685-3701. https://doi.org/10.1021/acsapm.1c00567
    7. Carlos Mota, Sandra Camarero-Espinosa, Matthew B. Baker, Paul Wieringa, Lorenzo Moroni. Bioprinting: From Tissue and Organ Development to in Vitro Models. Chemical Reviews 2020, 120 (19) , 10547-10607. https://doi.org/10.1021/acs.chemrev.9b00789
    8. João B. Costa, Jihoon Park, Adam M. Jorgensen, Joana Silva-Correia, Rui L. Reis, Joaquim M. Oliveira, Anthony Atala, James J. Yoo, Sang Jin Lee. 3D Bioprinted Highly Elastic Hybrid Constructs for Advanced Fibrocartilaginous Tissue Regeneration. Chemistry of Materials 2020, 32 (19) , 8733-8746. https://doi.org/10.1021/acs.chemmater.0c03556
    9. Partha Sarathi Sheet, Dipankar Koley. Dendritic Hydrogel Bioink for 3D Printing of Bacterial Microhabitat. ACS Applied Bio Materials 2019, 2 (12) , 5941-5948. https://doi.org/10.1021/acsabm.9b00866
    10. Kun Wang, Léa Trichet, Clément Rieu, Cécile Peccate, Gaëlle Pembouong, Laurent Bouteiller, Thibaud Coradin. Interactions of Organosilanes with Fibrinogen and Their Influence on Muscle Cell Proliferation in 3D Fibrin Hydrogels. Biomacromolecules 2019, 20 (10) , 3684-3695. https://doi.org/10.1021/acs.biomac.9b00686
    11. Jillian M. Buriak, (Editor-in-Chief, Chemistry of Materials)David L. Kaplan (Editor-in-Chief, ACS Biomaterials Science & Engineering). Our 2019 Virtual Issue: Methods and Protocols in Materials Science. ACS Biomaterials Science & Engineering 2019, 5 (5) , 2052-2053. https://doi.org/10.1021/acsbiomaterials.9b00506
    12. Jillian M. Buriak, (Editor-in-Chief, Chemistry of Materials)David L. Kaplan (Editor-in-Chief, ACS Biomaterials Science & Engineering). Our 2019 Virtual Issue: Methods and Protocols in Materials Science. Chemistry of Materials 2019, 31 (8) , 2683-2684. https://doi.org/10.1021/acs.chemmater.9b01420
    13. Miriam Seiti, Elena Laura Mazzoldi, Stefano Pandini, Eleonora Ferraris, Paola Serena Ginestra. Fabrication of 3D soft polymeric constructs at high structural integrity through bioprinting optimization of suspended hydrogels. Bioprinting 2025, 47 , e00403. https://doi.org/10.1016/j.bprint.2025.e00403
    14. Gulimiheranmu Maisumu, Stephanie Willerth, Michael W. Nestor, Ben Waldau, Stefan Schülke, Francesco V. Nardi, Osama Ahmed, You Zhou, Madel Durens, Bo Liang, Abraam M. Yakoub. Brain organoids: building higher-order complexity and neural circuitry models. Trends in Biotechnology 2025, 609 https://doi.org/10.1016/j.tibtech.2025.02.009
    15. Brandon Daul, Ryan Martin, Phillip Glass, Reza Moonesi Rad, Richard Inho Joh, Fanben Meng, Daeha Joung. 3D Printed Magnetic Origami Scaffolds for Guided Tissue Assembly. Advanced Materials Interfaces 2025, 10 https://doi.org/10.1002/admi.202400903
    16. Amanda Orr, Farnoosh Kalantarnia, Shama Nazir, Behzad Bolandi, Dominic Alderson, Kerrin O’Grady, Mina Hoorfar, Lisa M. Julian, Stephanie M. Willerth. Recent advances in 3D bioprinted neural models: A systematic review on the applications to drug discovery. Advanced Drug Delivery Reviews 2025, 218 , 115524. https://doi.org/10.1016/j.addr.2025.115524
    17. Nooshin Zandi, Michael Daniele, Ashley Brown. Advances in Fibrin-Based Bioprinting for Skin Tissue Regeneration: Exploring Design, and Innovative Approaches. Biomedical Materials & Devices 2025, 3 (1) , 330-348. https://doi.org/10.1007/s44174-024-00198-w
    18. Cemile Kilic Bektas, Jeffrey Luo, Brian Conley, Kim-Phuong N. Le, Ki-Bum Lee. 3D bioprinting approaches for enhancing stem cell-based neural tissue regeneration. Acta Biomaterialia 2025, 193 , 20-48. https://doi.org/10.1016/j.actbio.2025.01.006
    19. Maria V. Hangad, Alejandro Forigua, Kali Scheck, Stephanie M. Willerth, Katherine S. Elvira. Investigating How All‐Trans Retinoic Acid Polycaprolactone (atRA‐PCL) Microparticles Alter the Material Properties of 3D Printed Fibrin Constructs. Macromolecular Bioscience 2025, 14 https://doi.org/10.1002/mabi.202400464
    20. Shama Nazir, Abigail H. Feresten, Lisa Lin, Harald Hutter, Lisa M. Julian. Extracellular matrix of the nervous system. 2025, 97-147. https://doi.org/10.1016/B978-0-323-95730-4.00002-0
    21. Andy Shar, Phillip Glass, Brandon Daul, Reza Moonesi Rad, Daeha Joung. Neural tissue engineering. 2025, 413-476. https://doi.org/10.1016/B978-0-323-95730-4.00010-X
    22. Ruchi Sharma, Victor Allisson da Silva, Maria Victoria Hangad, Stephanie Willerth. Recent developments in 3D bioprinting for neural tissue engineering. 2025, 549-592. https://doi.org/10.1016/B978-0-323-95730-4.00012-3
    23. Arezoo Dadashzadeh, Saeid Moghassemi, Christiani A. Amorim. Bioprinting of a Liposomal Oxygen-Releasing Scaffold for Ovary Tissue Engineering. Tissue Engineering Part A 2025, 31 (1-2) , 69-78. https://doi.org/10.1089/ten.tea.2024.0003
    24. Ana Catarina Sousa, Rui Alvites, Bruna Lopes, Patrícia Sousa, Alícia Moreira, André Coelho, José Domingos Santos, Luís Atayde, Nuno Alves, Ana Colette Maurício. Three-Dimensional Printing/Bioprinting and Cellular Therapies for Regenerative Medicine: Current Advances. Journal of Functional Biomaterials 2025, 16 (1) , 28. https://doi.org/10.3390/jfb16010028
    25. Yuxiang Zhu, Shenghan Guo, Dharneedar Ravichandran, Arunachalam Ramanathan, M. Taylor Sobczak, Alaina F. Sacco, Dhanush Patil, Sri Vaishnavi Thummalapalli, Tiffany V. Pulido, Jessica N. Lancaster, Johnny Yi, Jeffrey L. Cornella, David G. Lott, Xiangfan Chen, Xuan Mei, Yu Shrike Zhang, Linbing Wang, Xianqiao Wang, Yiping Zhao, Mohammad K. Hassan, Lindsay B. Chambers, Taylor G. Theobald, Sui Yang, Liang Liang, Kenan Song. 3D‐Printed Polymeric Biomaterials for Health Applications. Advanced Healthcare Materials 2025, 14 (1) https://doi.org/10.1002/adhm.202402571
    26. Wenya Chi, Ruiyao Liu, Wenbo Zhou, Weilin Li, Yuan Yu. The mechanisms of interaction between biomaterials and cells/cellular microenvironment and the applications in neural injuries. Chinese Chemical Letters 2024, 87 , 110587. https://doi.org/10.1016/j.cclet.2024.110587
    27. . Sources, Structures, and Properties of Other Polypeptides. 2024, 143-151. https://doi.org/10.1002/9783527845583.ch10
    28. Abrar Islam, Nuray Vakitbilir, Nátaly Almeida, Rodrigo França. Advances in 3D Bioprinting for Neuroregeneration: A Literature Review of Methods, Bioinks, and Applications. Micro 2024, 4 (3) , 490-508. https://doi.org/10.3390/micro4030031
    29. Shalini Dasgupta, Vriti Sharma, Ananya Barui. Cellular Requirements and Preparation for Bioprinting. 2024, 39-83. https://doi.org/10.1002/9781119894407.ch2
    30. Ying Betty Li, Marina Rukhlova, Dongling Zhang, Jordan Nhan, Caroline Sodja, Erin Bedford, Jean-Philippe St-Pierre, Anna Jezierski. Single-Step 3D Bioprinting of Alginate–Collagen Type I Hydrogel Fiber Rings to Promote Angiogenic Network Formation. Tissue Engineering Part C: Methods 2024, 30 (7) , 289-306. https://doi.org/10.1089/ten.tec.2024.0083
    31. Noella Abraham, Tejaswini Kolipaka, Giriraj Pandey, Mansi Negi, Dadi A. Srinivasarao, Saurabh Srivastava. Revolutionizing pancreatic islet organoid transplants: Improving engraftment and exploring future frontiers. Life Sciences 2024, 343 , 122545. https://doi.org/10.1016/j.lfs.2024.122545
    32. Nidhi Chauhan, Kirti Saxena, Rachna Rawal, Utkarsh Jain. Advanced Bioink Materials for Tissue Engineering Applications. Current Tissue Microenvironment Reports 2024, 5 (1) , 13-23. https://doi.org/10.1007/s43152-023-00050-1
    33. Barrett T. Smith, Sara M. Hashmi. In situ polymer gelation in confined flow controls intermittent dynamics. Soft Matter 2024, 20 (8) , 1858-1868. https://doi.org/10.1039/D3SM01389H
    34. Yue Ma, Bo Deng, Runbang He, Pengyu Huang. Advancements of 3D bioprinting in regenerative medicine: Exploring cell sources for organ fabrication. Heliyon 2024, 10 (3) , e24593. https://doi.org/10.1016/j.heliyon.2024.e24593
    35. Quan Li, Guangyan Qi, Xiuzhi Susan Sun. Advanced Hydrogel for Physiological 3D Colonies of Pluripotent Stem Cells. 2024https://doi.org/10.5772/intechopen.112656
    36. Mohit Angolkar, Sharanya Paramshetti, Sathveeka Narayanan, Asha Spandana, Riyaz Ali Osmani, Hosahalli Veerbhadra Gangadharappa, Balamuralidhara Veeranna, Shakeel Ahmed. Revolutionizing Regeneration: Bio-Based Nanomaterials in Tissue Engineering. 2024, 95-139. https://doi.org/10.1007/978-981-97-0542-9_5
    37. Jiachen Liu, Changxue Xu. Improving Uniformity of Cell Distribution in Post-Inkjet-Based Bioprinting. Journal of Manufacturing Science and Engineering 2024, 146 (1) https://doi.org/10.1115/1.4063134
    38. Xiao Xue Zeng, Jie Bangzhe Zeng. Systems Medicine as a Strategy to Deal with Alzheimer’s Disease. Journal of Alzheimer's Disease 2023, 96 (4) , 1411-1426. https://doi.org/10.3233/JAD-230739
    39. Amir A. Elhadad, Ana Rosa-Sainz, Raquel Cañete, Estela Peralta, Belén Begines, Mario Balbuena, Ana Alcudia, Y. Torres. Applications and multidisciplinary perspective on 3D printing techniques: Recent developments and future trends. Materials Science and Engineering: R: Reports 2023, 156 , 100760. https://doi.org/10.1016/j.mser.2023.100760
    40. Claire Benwood, Jonathan Walters-Shumka, Kali Scheck, Stephanie M. Willerth. 3D bioprinting patient-derived induced pluripotent stem cell models of Alzheimer’s disease using a smart bioink. Bioelectronic Medicine 2023, 9 (1) https://doi.org/10.1186/s42234-023-00112-7
    41. Yu Yin, Ephraim J. Vázquez-Rosado, Danielle Wu, Vignesh Viswananthan, Andrew Farach, Mary C. Farach-Carson, Daniel A. Harrington. Microfluidic coaxial 3D bioprinting of cell-laden microfibers and microtubes for salivary gland tissue engineering. Biomaterials Advances 2023, 154 , 213588. https://doi.org/10.1016/j.bioadv.2023.213588
    42. David Patrocinio, Victor Galván-Chacón, J. Carlos Gómez-Blanco, Sonia P. Miguel, Jorge Loureiro, Maximiano P. Ribeiro, Paula Coutinho, J. Blas Pagador, Francisco M. Sanchez-Margallo. Biopolymers for Tissue Engineering: Crosslinking, Printing Techniques, and Applications. Gels 2023, 9 (11) , 890. https://doi.org/10.3390/gels9110890
    43. Cecilia Traldi, Vanessa Chiappini, Giovanna Menduti, Chiara Tonda-Turo, Marina Boido. Advanced materials and biofabrication technologies to design in vitro functional central nervous system models. Frontiers in Medical Engineering 2023, 1 https://doi.org/10.3389/fmede.2023.1270943
    44. Sen Wang, Luge Bai, Xiaoxuan Hu, Siqi Yao, Zhiyan Hao, JiaJia Zhou, Xiao Li, Haixia Lu, Jiankang He, Ling Wang, Dichen Li. 3D Bioprinting of Neurovascular Tissue Modeling with Collagen‐Based Low‐Viscosity Composites. Advanced Healthcare Materials 2023, 12 (25) https://doi.org/10.1002/adhm.202300004
    45. X.B. Chen, A. Fazel Anvari-Yazdi, X. Duan, A. Zimmerling, R. Gharraei, N.K. Sharma, S. Sweilem, L. Ning. Biomaterials / bioinks and extrusion bioprinting. Bioactive Materials 2023, 28 , 511-536. https://doi.org/10.1016/j.bioactmat.2023.06.006
    46. Juqing Song, Baiheng Lv, Wencong Chen, Peng Ding, Yong He. Advances in 3D printing scaffolds for peripheral nerve and spinal cord injury repair. International Journal of Extreme Manufacturing 2023, 5 (3) , 032008. https://doi.org/10.1088/2631-7990/acde21
    47. Antonia van Rijt, Evan Stefanek, Karolina Valente. Preclinical Testing Techniques: Paving the Way for New Oncology Screening Approaches. Cancers 2023, 15 (18) , 4466. https://doi.org/10.3390/cancers15184466
    48. Meaghan E. Harley-Troxell, Richard Steiner, Rigoberto C. Advincula, David E. Anderson, Madhu Dhar. Interactions of Cells and Biomaterials for Nerve Tissue Engineering: Polymers and Fabrication. Polymers 2023, 15 (18) , 3685. https://doi.org/10.3390/polym15183685
    49. Farnaz Niknam, Vahid Rahmanian, Seyyed Mojtaba Mousavi, Seyyed Alireza Hashemi, Aziz Babapoor, Chin Wei Lai. Bioinspired Hydrogels Through 3D Bioprinting. 2023, 147-168. https://doi.org/10.1002/9781394167043.ch6
    50. Meghan Robinson, Sydney Sparanese, Luke Witherspoon, Ryan Flannigan. Human in vitro spermatogenesis as a regenerative therapy — where do we stand?. Nature Reviews Urology 2023, 20 (8) , 461-479. https://doi.org/10.1038/s41585-023-00723-4
    51. Clifford Pereira, Sabrina Valentina Lazar, Aijun Wang. Bioengineering approaches for nerve graft revascularization: Current concepts and future directions. WIREs Mechanisms of Disease 2023, 15 (4) https://doi.org/10.1002/wsbm.1609
    52. Adam S. Mullis, David L. Kaplan. Functional bioengineered tissue models of neurodegenerative diseases. Biomaterials 2023, 298 , 122143. https://doi.org/10.1016/j.biomaterials.2023.122143
    53. Ivana Hernandez, Salma P. Ramirez, Wendy V. Salazar, Sarahi Mendivil, Andrea Guevara, Akshay Patel, Carla D. Loyola, Zayra N. Dorado, Binata Joddar. A Semi-Three-Dimensional Bioprinted Neurocardiac System for Tissue Engineering of a Cardiac Autonomic Nervous System Model. Bioengineering 2023, 10 (7) , 834. https://doi.org/10.3390/bioengineering10070834
    54. Francesca Antonelli. 3D Cell Models in Radiobiology: Improving the Predictive Value of In Vitro Research. International Journal of Molecular Sciences 2023, 24 (13) , 10620. https://doi.org/10.3390/ijms241310620
    55. Sarah L. Higginbottom, Eva Tomaskovic-Crook, Jeremy M. Crook. Considerations for modelling diffuse high-grade gliomas and developing clinically relevant therapies. Cancer and Metastasis Reviews 2023, 42 (2) , 507-541. https://doi.org/10.1007/s10555-023-10100-7
    56. Mahdiyar Shahbazi, Henry Jäger, Rammile Ettelaie, Adeleh Mohammadi, Peyman Asghartabar Kashi. Multimaterial 3D printing of self-assembling smart thermo-responsive polymers into 4D printed objects: A review. Additive Manufacturing 2023, 71 , 103598. https://doi.org/10.1016/j.addma.2023.103598
    57. Ravindra V. Badhe, Abhinav Chatterjee, Divya Bijukumar, Mathew T. Mathew. Current advancements in bio-ink technology for cartilage and bone tissue engineering. Bone 2023, 171 , 116746. https://doi.org/10.1016/j.bone.2023.116746
    58. Fei Xing, Jiawei Xu, Peiyun Yu, Yuxi Zhou, Man Zhe, Rong Luo, Ming Liu, Zhou Xiang, Xin Duan, Ulrike Ritz. Recent advances in biofabrication strategies based on bioprinting for vascularized tissue repair and regeneration. Materials & Design 2023, 229 , 111885. https://doi.org/10.1016/j.matdes.2023.111885
    59. Ying Betty Li, Caroline Sodja, Marina Rukhlova, Jordan Nhan, Joshua J.A. Poole, Harry Allen, Selam Yimer, Ewa Baumann, Erin Bedford, Hannah Prazak, Will J. Costain, Sangeeta Murugkar, Jean-Philippe St-Pierre, Leila Mostaço-Guidolin, Anna Jezierski. Angiogenesis driven extracellular matrix remodeling of 3D bioprinted vascular networks. Bioprinting 2023, 30 , e00258. https://doi.org/10.1016/j.bprint.2023.e00258
    60. Ethan Hau Yin Lam, Fengqing Yu, Sabrina Zhu, Zongjie Wang. 3D Bioprinting for Next-Generation Personalized Medicine. International Journal of Molecular Sciences 2023, 24 (7) , 6357. https://doi.org/10.3390/ijms24076357
    61. Sania Raees, Faheem Ullah, Fatima Javed, Hazizan Md. Akil, Muhammad Jadoon Khan, Muhammad Safdar, Israf Ud Din, Mshari A. Alotaibi, Abdulrahman I. Alharthi, M. Afroz Bakht, Akil Ahmad, Amal A. Nassar. Classification, processing, and applications of bioink and 3D bioprinting: A detailed review. International Journal of Biological Macromolecules 2023, 232 , 123476. https://doi.org/10.1016/j.ijbiomac.2023.123476
    62. Dániel Sztankovics, Dorottya Moldvai, Gábor Petővári, Rebeka Gelencsér, Ildikó Krencz, Regina Raffay, Titanilla Dankó, Anna Sebestyén. 3D bioprinting and the revolution in experimental cancer model systems—A review of developing new models and experiences with in vitro 3D bioprinted breast cancer tissue-mimetic structures. Pathology and Oncology Research 2023, 29 https://doi.org/10.3389/pore.2023.1610996
    63. Murugiah Krishani, Wong Yen Shin, Hazwani Suhaimi, Nonni Soraya Sambudi. Development of Scaffolds from Bio-Based Natural Materials for Tissue Regeneration Applications: A Review. Gels 2023, 9 (2) , 100. https://doi.org/10.3390/gels9020100
    64. Victor Ya. Prinz, Konstantin B. Fritzler. 3D Printed Biohybrid Microsystems. Advanced Materials Technologies 2023, 8 (2) https://doi.org/10.1002/admt.202101633
    65. Shaojun Liang, Yijun Su, Rui Yao. 3D Bioprinting of Induced Pluripotent Stem Cells and Disease Modeling. 2023, 29-56. https://doi.org/10.1007/164_2023_646
    66. Ritesh Verma, Neetu Dhanda, Raksha Rathore, Deepa Suhag, Fayu Wan, Atul Thakur, Preeti Thakur. Bioprinting for Therapeutics. 2023, 245-268. https://doi.org/10.1007/978-981-99-6105-4_12
    67. M.C. Teixeira, K.K. Singh, B.A.G. de Melo, P. Severino, J.C. Cardoso, Eliana B. Souto. 3D bioprinting: An innovative technique for biofabrication applied to regenerative medicine and tissue engineering. 2023, 195-232. https://doi.org/10.1016/B978-0-323-90471-1.00012-8
    68. Anni Mörö, Sumanta Samanta, Laura Honkamäki, Vignesh K Rangasami, Paula Puistola, Maija Kauppila, Susanna Narkilahti, Susanna Miettinen, Oommen Oommen, Heli Skottman. Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation. Biofabrication 2023, 15 (1) , 015020. https://doi.org/10.1088/1758-5090/acab34
    69. João Rocha Maia, Rita Sobreiro-Almeida, Franck Cleymand, João F Mano. Biomaterials of human source for 3D printing strategies. Journal of Physics: Materials 2023, 6 (1) , 012002. https://doi.org/10.1088/2515-7639/acada1
    70. Ines Bilkic, Diana Sotelo, Stephanie Anujarerat, Nickolas R. Ortiz, Matthew Alonzo, Raven El Khoury, Carla C. Loyola, Binata Joddar. Development of an extrusion-based 3D-printing strategy for clustering of human neural progenitor cells. Heliyon 2022, 8 (12) , e12250. https://doi.org/10.1016/j.heliyon.2022.e12250
    71. Giulia Tarricone, Irene Carmagnola, Valeria Chiono. Tissue-Engineered Models of the Human Brain: State-of-the-Art Analysis and Challenges. Journal of Functional Biomaterials 2022, 13 (3) , 146. https://doi.org/10.3390/jfb13030146
    72. Ziyi Li, Lixin Liu, Yongming Chen. Direct 3D printing of thermosensitive AOP127-oxidized dextran hydrogel with dual dynamic crosslinking and high toughness. Carbohydrate Polymers 2022, 291 , 119616. https://doi.org/10.1016/j.carbpol.2022.119616
    73. Pooja Jain, Himanshu Kathuria, Nileshkumar Dubey. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials 2022, 287 , 121639. https://doi.org/10.1016/j.biomaterials.2022.121639
    74. Josie Chrenek, Rebecca Kirsch, Kali Scheck, Stephanie M. Willerth. Protocol for printing 3D neural tissues using the BIO X equipped with a pneumatic printhead. STAR Protocols 2022, 3 (2) , 101348. https://doi.org/10.1016/j.xpro.2022.101348
    75. Nureddin Ashammakhi, Amin GhavamiNejad, Rumeysa Tutar, Annabelle Fricker, Ipsita Roy, Xanthippi Chatzistavrou, Ehsanul Hoque Apu, Kim-Lien Nguyen, Taby Ahsan, Ippokratis Pountos, Edward J. Caterson. Highlights on Advancing Frontiers in Tissue Engineering. Tissue Engineering Part B: Reviews 2022, 28 (3) , 633-664. https://doi.org/10.1089/ten.teb.2021.0012
    76. Ali Malekpour, Xiongbiao Chen. Printability and Cell Viability in Extrusion-Based Bioprinting from Experimental, Computational, and Machine Learning Views. Journal of Functional Biomaterials 2022, 13 (2) , 40. https://doi.org/10.3390/jfb13020040
    77. Fei Xu, Chloe Dawson, Makenzie Lamb, Eva Mueller, Evan Stefanek, Mohsen Akbari, Todd Hoare. Hydrogels for Tissue Engineering: Addressing Key Design Needs Toward Clinical Translation. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.849831
    78. Nicolas Germain, Melanie Dhayer, Salim Dekiouk, Philippe Marchetti. Current Advances in 3D Bioprinting for Cancer Modeling and Personalized Medicine. International Journal of Molecular Sciences 2022, 23 (7) , 3432. https://doi.org/10.3390/ijms23073432
    79. Alp Ozgun, David Lomboni, Hallie Arnott, William A. Staines, John Woulfe, Fabio Variola. Biomaterials-based strategies for in vitro neural models. Biomaterials Science 2022, 10 (5) , 1134-1165. https://doi.org/10.1039/D1BM01361K
    80. Monika Rajput, Pritiranjan Mondal, Parul Yadav, Kaushik Chatterjee. Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin. International Journal of Biological Macromolecules 2022, 202 , 644-656. https://doi.org/10.1016/j.ijbiomac.2022.01.081
    81. Ahmed Fatimi, Oseweuba Valentine Okoro, Daria Podstawczyk, Julia Siminska-Stanny, Amin Shavandi. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Gels 2022, 8 (3) , 179. https://doi.org/10.3390/gels8030179
    82. Abigail Newman Frisch, Lior Debbi, Margarita Shuhmaher, Shaowei Guo, Shulamit Levenberg. Advances in vascularization and innervation of constructs for neural tissue engineering. Current Opinion in Biotechnology 2022, 73 , 188-197. https://doi.org/10.1016/j.copbio.2021.08.012
    83. David A Yefroyev, Sha Jin. Induced Pluripotent Stem Cells for Treatment of Alzheimer’s and Parkinson’s Diseases. Biomedicines 2022, 10 (2) , 208. https://doi.org/10.3390/biomedicines10020208
    84. Alen Trubelja, F. Kurtis Kasper, Mary C. Farach-Carson, Daniel A. Harrington. Bringing hydrogel-based craniofacial therapies to the clinic. Acta Biomaterialia 2022, 138 , 1-20. https://doi.org/10.1016/j.actbio.2021.10.056
    85. Zhouquan Fu, Liliang Ouyang, Runze Xu, Yang Yang, Wei Sun. Responsive biomaterials for 3D bioprinting: A review. Materials Today 2022, 52 , 112-132. https://doi.org/10.1016/j.mattod.2022.01.001
    86. Gabriele Griffanti, Rayan Fairag, Derek H. Rosenzweig, Lisbet Haglund, Showan N. Nazhat. Automated biofabrication of anisotropic dense fibrin gels accelerate osteoblastic differentiation of seeded mesenchymal stem cells. Journal of Materials Research 2021, 36 (24) , 4867-4882. https://doi.org/10.1557/s43578-021-00433-w
    87. Ruchi Sharma, Claire Benwood, Stephanie M. Willerth. Drug‐releasing Microspheres for Stem Cell Differentiation. Current Protocols 2021, 1 (12) https://doi.org/10.1002/cpz1.331
    88. Quan Li, Guangyan Qi, Xuming Liu, Jianfa Bai, Jikai Zhao, Guosheng Tang, Yu Shrike Zhang, Ruby Chen‐Tsai, Meng Zhang, Donghai Wang, Yuanyuan Zhang, Anthony Atala, Jia‐Qiang He, Xiuzhi Susan Sun. Universal Peptide Hydrogel for Scalable Physiological Formation and Bioprinting of 3D Spheroids from Human Induced Pluripotent Stem Cells. Advanced Functional Materials 2021, 31 (41) https://doi.org/10.1002/adfm.202104046
    89. Salwa, Lalit Kumar. Engrafted stem cell therapy for Alzheimer's disease: A promising treatment strategy with clinical outcome. Journal of Controlled Release 2021, 338 , 837-857. https://doi.org/10.1016/j.jconrel.2021.09.007
    90. Aleeza Zilberman, R. Chase Cornelison. Microphysiological models of the central nervous system with fluid flow. Brain Research Bulletin 2021, 174 , 72-83. https://doi.org/10.1016/j.brainresbull.2021.05.015
    91. Anabela Veiga, Inês V. Silva, Marta M. Duarte, Ana L. Oliveira. Current Trends on Protein Driven Bioinks for 3D Printing. Pharmaceutics 2021, 13 (9) , 1444. https://doi.org/10.3390/pharmaceutics13091444
    92. Melissa Cadena, Liqun Ning, Alexia King, Boeun Hwang, Linqi Jin, Vahid Serpooshan, Steven A. Sloan. 3D Bioprinting of Neural Tissues. Advanced Healthcare Materials 2021, 10 (15) https://doi.org/10.1002/adhm.202001600
    93. Laura De la Vega, Laila Abelseth, Ruchi Sharma, Juan Triviño-Paredes, Milena Restan, Stephanie M. Willerth. 3D Bioprinting Human‐Induced Pluripotent Stem Cells and Drug‐Releasing Microspheres to Produce Responsive Neural Tissues. Advanced NanoBiomed Research 2021, 1 (8) https://doi.org/10.1002/anbr.202000077
    94. Jagoda Litowczenko, Marta J. Woźniak-Budych, Katarzyna Staszak, Karolina Wieszczycka, Stefan Jurga, Bartosz Tylkowski. Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioactive Materials 2021, 6 (8) , 2412-2438. https://doi.org/10.1016/j.bioactmat.2021.01.007
    95. Milena Restan Perez, Ruchi Sharma, Nadia Zeina Masri, Stephanie Michelle Willerth. 3D Bioprinting Mesenchymal Stem Cell-Derived Neural Tissues Using a Fibrin-Based Bioink. Biomolecules 2021, 11 (8) , 1250. https://doi.org/10.3390/biom11081250
    96. Janko Kajtez, Fredrik Nilsson, Alessandro Fiorenzano, Malin Parmar, Jenny Emnéus. 3D biomaterial models of human brain disease. Neurochemistry International 2021, 147 , 105043. https://doi.org/10.1016/j.neuint.2021.105043
    97. Ruchi Sharma, Rebecca Kirsch, Karolina Papera Valente, Milena Restan Perez, Stephanie Michelle Willerth. Physical and Mechanical Characterization of Fibrin-Based Bioprinted Constructs Containing Drug-Releasing Microspheres for Neural Tissue Engineering Applications. Processes 2021, 9 (7) , 1205. https://doi.org/10.3390/pr9071205
    98. Wufei Dai, Yating Yang, Yumin Yang, Wei Liu. Material advancement in tissue-engineered nerve conduit. Nanotechnology Reviews 2021, 10 (1) , 488-503. https://doi.org/10.1515/ntrev-2021-0028
    99. Shahram Amini, Hossein Salehi, Mohsen Setayeshmehr, Masoud Ghorbani. Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages. Polymers for Advanced Technologies 2021, 32 (6) , 2267-2289. https://doi.org/10.1002/pat.5263
    100. Danielle Warren, Eva Tomaskovic-Crook, Gordon G. Wallace, Jeremy M. Crook. Engineering in vitro human neural tissue analogs by 3D bioprinting and electrostimulation. APL Bioengineering 2021, 5 (2) https://doi.org/10.1063/5.0032196
    Load all citations

    ACS Biomaterials Science & Engineering

    Cite this: ACS Biomater. Sci. Eng. 2019, 5, 1, 234–243
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsbiomaterials.8b01235
    Published November 26, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    4164

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.