ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch ArticleNEXT

Selective Organocatalytic Preparation of Trimethylene Carbonate from Oxetane and Carbon Dioxide

  • Jin Huang
    Jin Huang
    Laboratory of Polymeric and Composite Materials (LPCM), Centre of Innovation of Research in Materials and Polymers (CIRMAP), Place du Parc, 20, 7000 Mons, Belgium
    School of Chemistry, University of Birmingham, Edgbaston B15 2TT, Birmingham, U.K.
    More by Jin Huang
  • Coralie Jehanno
    Coralie Jehanno
    POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
  • Joshua C. Worch
    Joshua C. Worch
    School of Chemistry, University of Birmingham, Edgbaston B15 2TT, Birmingham, U.K.
  • Fernando Ruipérez
    Fernando Ruipérez
    POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
  • Haritz Sardon
    Haritz Sardon
    POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastián, Spain
  • Andrew P. Dove*
    Andrew P. Dove
    School of Chemistry, University of Birmingham, Edgbaston B15 2TT, Birmingham, U.K.
    *Email: [email protected]
  • , and 
  • Olivier Coulembier*
    Olivier Coulembier
    Laboratory of Polymeric and Composite Materials (LPCM), Centre of Innovation of Research in Materials and Polymers (CIRMAP), Place du Parc, 20, 7000 Mons, Belgium
    *Email: [email protected]
Cite this: ACS Catal. 2020, 10, 10, 5399–5404
Publication Date (Web):April 14, 2020
https://doi.org/10.1021/acscatal.0c00689
Copyright © 2020 American Chemical Society

    Article Views

    2435

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The organocatalytic coupling of oxetanes and carbon dioxide (CO2) offers a sustainable route to poly(trimethylene carbonate)s and/or functional six-membered cyclic carbonate monomers. This transformation is more challenging than when using more strained epoxide comonomers and even more so when it is performed using metal-free routes. Herein, we report an organocatalytic oxetane/CO2 coupling procedure that enables the selection of cyclic carbonate or polymer from a common intermediate. Using a novel I2-based binary catalyst system, cyclic carbonate with high selectivity (up to 94%) was obtained at 55 °C, whereas simply changing the temperature to 105 °C yielded the polycarbonate with Mn of up to 6.4 kDa, thus showing that either trimethylene carbonate or its concomitant polycarbonate product can be selected solely by the manipulation of the reaction conditions.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscatal.0c00689.

    • General methods, synthesis details, I2-catalyzed coupling of oxetane/CO2 in the presence of various ammonium salt cocatalysts, different catalyst proportions of I2 and TBAAc, solvent effects, copolymerization, NMR, UV–vis spectrum, MALDI-ToF, reaction kinetics, and computational details (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 30 publications.

    1. Chihiro Maeda, Hina Inoue, Ayano Ichiki, Takumi Okihara, Tadashi Ema. Synthesis of Trimethylene Carbonates and Polycarbonates from Oxetanes and CO2 Using Bifunctional Aluminum Porphyrin Catalysts. ACS Catalysis 2022, 12 (20) , 13042-13049. https://doi.org/10.1021/acscatal.2c03583
    2. Chenyang Hu, Xuan Pang, Xuesi Chen. Self-Switchable Polymerization: A Smart Approach to Sequence-Controlled Degradable Copolymers. Macromolecules 2022, 55 (6) , 1879-1893. https://doi.org/10.1021/acs.macromol.2c00085
    3. Jin Huang, Peter Olsén, Erik Svensson Grape, A. Ken Inge, Karin Odelius. Simple Approach to Macrocyclic Carbonates with Fast Polymerization Rates and Their Polymer-to-Monomer Regeneration. Macromolecules 2022, 55 (2) , 608-614. https://doi.org/10.1021/acs.macromol.1c02225
    4. Wei Yu, Edward Maynard, Viviane Chiaradia, Maria C. Arno, Andrew P. Dove. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chemical Reviews 2021, 121 (18) , 10865-10907. https://doi.org/10.1021/acs.chemrev.0c00883
    5. Cheng-Jian Zhang, Shao-Qi Wu, Senthil Boopathi, Xing-Hong Zhang, Xin Hong, Yves Gnanou, Xiao-Shuang Feng. Versatility of Boron-Mediated Coupling Reaction of Oxetanes and Epoxides with CO2: Selective Synthesis of Cyclic Carbonates or Linear Polycarbonates. ACS Sustainable Chemistry & Engineering 2020, 8 (34) , 13056-13063. https://doi.org/10.1021/acssuschemeng.0c04768
    6. Matteo Lanzi, Arjan W. Kleij. Recent Advances in the Synthesis and Polymerization of New CO 2 ‐Based Cyclic †. Chinese Journal of Chemistry 2024, 42 (4) , 430-443. https://doi.org/10.1002/cjoc.202300502
    7. Christoph Fornacon-Wood, Bhargav R. Manjunatha, Merlin R. Stühler, Cesare Gallizioli, Carsten Müller, Patrick Pröhm, Alex J. Plajer. Precise cooperative sulfur placement leads to semi-crystallinity and selective depolymerisability in CS2/oxetane copolymers. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-39951-y
    8. Laura Valentino, Vincenzo Campisciano, Chloé Célis, Vincent Lemaur, Roberto Lazzaroni, Michelangelo Gruttadauria, Carmela Aprile, Francesco Giacalone. Highly cross-linked bifunctional magnesium porphyrin-imidazolium bromide polymer: Unveiling the key role of co-catalysts proximity for CO2 conversion into cyclic carbonates. Journal of Catalysis 2023, 428 , 115143. https://doi.org/10.1016/j.jcat.2023.115143
    9. Peiran Wei, Gulzar A. Bhat, Donald J. Darensbourg. Enabling New Approaches: Recent Advances in Processing Aliphatic Polycarbonate‐Based Materials. Angewandte Chemie 2023, 135 (48) https://doi.org/10.1002/ange.202307507
    10. Peiran Wei, Gulzar A. Bhat, Donald J. Darensbourg. Enabling New Approaches: Recent Advances in Processing Aliphatic Polycarbonate‐Based Materials. Angewandte Chemie International Edition 2023, 62 (48) https://doi.org/10.1002/anie.202307507
    11. Joseph Grondin, Christian Aupetit, Jean-Marc Vincent, Thierry Tassaing. Cyclic Carbonates through the Photo-Induced Carboxylative Cyclization of Allylic Alcohol with CO2: A Comprehensive Kinetic Study of the Reaction Mechanism by In Situ ATR-IR Spectroscopy. Catalysts 2023, 13 (6) , 939. https://doi.org/10.3390/catal13060939
    12. Ion Olazabal, Emelin Luna, Steven De Meester, Coralie Jehanno, Haritz Sardon. Upcycling of BPA-PC into trimethylene carbonate by solvent assisted organocatalysed depolymerisation. Polymer Chemistry 2023, 14 (19) , 2299-2307. https://doi.org/10.1039/D3PY00441D
    13. Fabiana Siragusa, Christophe Detrembleur, Bruno Grignard. The advent of recyclable CO 2 -based polycarbonates. Polymer Chemistry 2023, 14 (11) , 1164-1183. https://doi.org/10.1039/D2PY01258H
    14. Xiaoqian Wang, Ziyu Huo, Xiaoyu Xie, Narasimhamurthy Shanaiah, Rong Tong. Recent Advances in Sequence‐Controlled Ring‐Opening Copolymerizations of Monomer Mixtures. Chemistry – An Asian Journal 2023, 18 (4) https://doi.org/10.1002/asia.202201147
    15. Celine W.S. Yeung, Georgina E.K.K. Seah, Angeline Y.X. Tan, Si Yin Tee, Jason Y.C. Lim, Shermin S. Goh. Functional polymers from CO2 as feedstock. 2023, 129-171. https://doi.org/10.1016/B978-0-323-91198-6.00005-X
    16. Chengjian Zhang, Xiaowei Geng, Xinghong Zhang, Yves Gnanou, Xiaoshuang Feng. Alkyl borane-mediated metal-free ring-opening (co)polymerizations of oxygenated monomers. Progress in Polymer Science 2023, 136 , 101644. https://doi.org/10.1016/j.progpolymsci.2022.101644
    17. Mani Sengoden, Gulzar A. Bhat, Donald J. Darensbourg. Bifunctional organoboron–phosphonium catalysts for coupling reactions of CO 2 and epoxides. RSC Advances 2022, 12 (50) , 32440-32447. https://doi.org/10.1039/D2RA06358A
    18. Krzysztof Kaluzynski, Julia Pretula, Sławomir Kaźmierski, Piotr Lewinski, Marek Cypryk, Stanislaw Penczek. Cationic polymerization of cyclic trimethylene carbonate induced with initiator and catalyst in one molecule: Polymer structure, kinetics and DFT. Journal of Catalysis 2022, 415 , 200-217. https://doi.org/10.1016/j.jcat.2022.10.009
    19. Gulzar A. Bhat, Donald J. Darensbourg. Progress in the catalytic reactions of CO 2 and epoxides to selectively provide cyclic or polymeric carbonates. Green Chemistry 2022, 24 (13) , 5007-5034. https://doi.org/10.1039/D2GC01422J
    20. Charlène Ngassam Tounzoua, Bruno Grignard, Christophe Detrembleur. Exovinylene Cyclic Carbonates: Multifaceted CO 2 ‐Based Building Blocks for Modern Chemistry and Polymer Science. Angewandte Chemie 2022, 134 (22) https://doi.org/10.1002/ange.202116066
    21. Charlène Ngassam Tounzoua, Bruno Grignard, Christophe Detrembleur. Exovinylene Cyclic Carbonates: Multifaceted CO 2 ‐Based Building Blocks for Modern Chemistry and Polymer Science. Angewandte Chemie International Edition 2022, 61 (22) https://doi.org/10.1002/anie.202116066
    22. Thomas A. R. Horton, Meng Wang, Michael P. Shaver. Polymeric frustrated Lewis pairs in CO 2 /cyclic ether coupling catalysis. Chemical Science 2022, 13 (13) , 3845-3850. https://doi.org/10.1039/D2SC00894G
    23. Wen‐Bing Li, Xiao‐Bing Lu. Polymerization Reactions with CO 2. 2022, 1305-1335. https://doi.org/10.1002/9783527831883.ch29
    24. Alex J. Plajer, Charlotte K. Williams. Heterocycle/Heteroallene Ring‐Opening Copolymerization: Selective Catalysis Delivering Alternating Copolymers. Angewandte Chemie 2022, 134 (1) https://doi.org/10.1002/ange.202104495
    25. Alex J. Plajer, Charlotte K. Williams. Heterocycle/Heteroallene Ring‐Opening Copolymerization: Selective Catalysis Delivering Alternating Copolymers. Angewandte Chemie International Edition 2022, 61 (1) https://doi.org/10.1002/anie.202104495
    26. Masayoshi Honda, Ryo Nakamura, Hiroshi Sugimoto. Copolymerization of carbon dioxide and oxetane catalyzed by aluminum porphyrin complex system. Journal of Polymer Science 2021, 59 (24) , 3122-3130. https://doi.org/10.1002/pol.20210536
    27. David K. Tran, Ahmed Z. Rashad, Donald J. Darensbourg, Karen L. Wooley. Sustainable synthesis of CO 2 -derived polycarbonates from d -xylose. Polymer Chemistry 2021, 12 (37) , 5271-5278. https://doi.org/10.1039/D1PY00784J
    28. Hao Geng, Chenlu Zhang, Minli Tao, Ning Ma, Wenqin Zhang. Ionic microenvironment constructed in quaternary ammonium modified polyacrylonitrile fiber for efficient CO2 fixation. Journal of CO2 Utilization 2021, 49 , 101559. https://doi.org/10.1016/j.jcou.2021.101559
    29. Josefa Anaya, Ramón M. Sánchez. Four-membered ring systems. 2021, 53-91. https://doi.org/10.1016/B978-0-323-98410-2.00004-7
    30. Gulzar A. Bhat, Ming Luo, Donald J. Darensbourg. Catalysis of carbon dioxide and oxetanes to produce aliphatic polycarbonates. Green Chemistry 2020, 22 (22) , 7707-7724. https://doi.org/10.1039/D0GC03219K

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect