ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Rational Design of Bioinspired Catalysts for Selective Oxidations

  • Laia Vicens
    Laia Vicens
    Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
    More by Laia Vicens
  • Giorgio Olivo*
    Giorgio Olivo
    Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
    *Email for G.O.: [email protected]
  • , and 
  • Miquel Costas*
    Miquel Costas
    Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
    *Email for M.C.: [email protected]
Cite this: ACS Catal. 2020, 10, 15, 8611–8631
Publication Date (Web):July 2, 2020
https://doi.org/10.1021/acscatal.0c02073
Copyright © 2020 American Chemical Society

    Article Views

    6701

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Recognizing Nature’s unique ability to perform challenging oxygenation reactions with exquisite selectivity parameters at iron-dependent oxygenases, chemists have long sought to understand and mimic these enzymatic processes with artificial systems. In the last two decades, replication of the reactivity of non-heme iron oxygenases has become feasible even with simple coordination complexes of iron and manganese. A bona fide minimalistic functional model was the tetradentate-N4 ligand based iron complex [Fe(tpa)(CH3CN)2]2+(Fe(tpa), tpa = tris(2-methylpyridyl)amine), which activates H2O2 via a mechanism that mirrors key steps of enzymatic O2 activation processes at mononuclear iron centers: controlled O–O bond cleavage, generation of a high-valent Fe═O oxidant, and promotion of almost the full spectrum of its oxidative reactivity (C–H hydroxylation, olefin epoxidation, syn-dihydroxylation, and desaturation). These landmark discoveries set the mechanistic framework to use iron coordination complexes with nitrogen-rich ligands as catalysts for oxidizing organic substrates under synthetically relevant conditions. Due to proof-of-concept demonstrations of the potential of these catalysts in organic synthesis, this chemistry has flourished over the past decade. In parallel to the realization of the potential of this class of catalysts in diverse organic transformations, effort has been spent to manipulate the catalyst structure with the aim of tuning both the reactivity and selectivity of the oxidation reactions. This perspective provides an overview of the progress of this research. Some key features of the archetypical Fe(tpa) catalyst have stayed surprisingly true throughout this evolution, but a series of alterations that modulate its electronic, steric, or binding properties allowed a rational elicitation of a specific reactivity or selectivity. In some cases, the replacement of iron by manganese has also proven beneficial. Overall, the rational optimization of the catalyst structure has enabled the development of highly asymmetric olefin epoxidation, syn-dihydroxylation, and site-selective and even enantioselective C–H oxidation reactions.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 117 publications.

    1. Priya Singh, Allyssa A. Massie, Melissa C. Denler, Yuri Lee, Jaycee R. Mayfield, Markell J. A. Lomax, Reena Singh, Ebbe Nordlander, Timothy A. Jackson. C–H Bond Oxidation by MnIV–Oxo Complexes: Hydrogen-Atom Tunneling and Multistate Reactivity. Inorganic Chemistry 2024, Article ASAP.
    2. Jagnyesh K. Satpathy, Rolly Yadav, Umesh K. Bagha, Devesh Kumar, Chivukula V. Sastri, Sam P. de Visser. Enhanced Reactivity through Equatorial Sulfur Coordination in Nonheme Iron(IV)–Oxo Complexes: Insights from Experiment and Theory. Inorganic Chemistry 2024, 63 (15) , 6752-6766. https://doi.org/10.1021/acs.inorgchem.4c00070
    3. Marco Galeotti, Massimo Bietti, Miquel Costas. Catalyst and Medium Control over Rebound Pathways in Manganese-Catalyzed Methylenic C–H Bond Oxidation. Journal of the American Chemical Society 2024, 146 (13) , 8904-8914. https://doi.org/10.1021/jacs.3c11555
    4. Wenjuan Zhu, Peng Wu, Virginia A. Larson, Akhilesh Kumar, Xiao-Xi Li, Mi Sook Seo, Yong-Min Lee, Binju Wang, Nicolai Lehnert, Wonwoo Nam. Electronic Structure and Reactivity of Mononuclear Nonheme Iron–Peroxo Complexes as a Biomimetic Model of Rieske Oxygenases: Ring Size Effects of Macrocyclic Ligands. Journal of the American Chemical Society 2024, 146 (1) , 250-262. https://doi.org/10.1021/jacs.3c08559
    5. Varvara A. Sherstyuk, Roman V. Ottenbacher, Evgenii P. Talsi, Konstantin P. Bryliakov. Asymmetric Epoxidation vs syn-Hydroxy-Acyloxylation of Olefins in the Presence of Sterically Demanding Nonheme Manganese Complexes. ACS Catalysis 2024, 14 (1) , 498-507. https://doi.org/10.1021/acscatal.3c04832
    6. Yasir Naeem, Bianca T. Matsuo, Huw M. L. Davies. Enantioselective Intermolecular C–H Functionalization of Primary Benzylic C–H Bonds Using ((Aryl)(diazo)methyl)phosphonates. ACS Catalysis 2024, 14 (1) , 124-130. https://doi.org/10.1021/acscatal.3c04661
    7. Jie Chen, Jinyan Zhang, Ying Sun, Yuankai Xu, Yinan Yang, Yong-Min Lee, Wenhua Ji, Binju Wang, Wonwoo Nam, Bin Wang. Mononuclear Non-Heme Manganese-Catalyzed Enantioselective cis-Dihydroxylation of Alkenes Modeling Rieske Dioxygenases. Journal of the American Chemical Society 2023, 145 (50) , 27626-27638. https://doi.org/10.1021/jacs.3c09508
    8. Marco Galeotti, Woojin Lee, Sergio Sisti, Martina Casciotti, Michela Salamone, K. N. Houk, Massimo Bietti. Radical and Cationic Pathways in C(sp3)–H Bond Oxygenation by Dioxiranes of Bicyclic and Spirocyclic Hydrocarbons Bearing Cyclopropane Moieties. Journal of the American Chemical Society 2023, 145 (44) , 24021-24034. https://doi.org/10.1021/jacs.3c07163
    9. Maxim Barchenko, Patrick J. O’Malley, Sam P. de Visser. Mechanism of Nitrogen Reduction to Ammonia in a Diiron Model of Nitrogenase. Inorganic Chemistry 2023, 62 (36) , 14715-14726. https://doi.org/10.1021/acs.inorgchem.3c02089
    10. Konstantin P. Bryliakov. Transition Metal-Catalyzed Direct Stereoselective Oxygenations of C(sp3)–H Groups. ACS Catalysis 2023, 13 (16) , 10770-10795. https://doi.org/10.1021/acscatal.3c02282
    11. Arnau Call, Giorgio Capocasa, Andrea Palone, Laia Vicens, Eric Aparicio, Najoua Choukairi Afailal, Nikos Siakavaras, Maria Eugènia López Saló, Massimo Bietti, Miquel Costas. Highly Enantioselective Catalytic Lactonization at Nonactivated Primary and Secondary γ-C–H Bonds. Journal of the American Chemical Society 2023, 145 (32) , 18094-18103. https://doi.org/10.1021/jacs.3c06231
    12. Bingyang Wang, Lixian Wang, Jin Lin, Chungu Xia, Wei Sun. Multifunctional Zn-N4 Catalysts for the Coupling of CO2 with Epoxides into Cyclic Carbonates. ACS Catalysis 2023, 13 (15) , 10386-10393. https://doi.org/10.1021/acscatal.3c02449
    13. Andrea Palone, Guillem Casadevall, Sergi Ruiz-Barragan, Arnau Call, Sílvia Osuna, Massimo Bietti, Miquel Costas. C–H Bonds as Functional Groups: Simultaneous Generation of Multiple Stereocenters by Enantioselective Hydroxylation at Unactivated Tertiary C–H Bonds. Journal of the American Chemical Society 2023, 145 (29) , 15742-15753. https://doi.org/10.1021/jacs.2c10148
    14. Johann B. Kasper, Laia Vicens, C. Maurits de Roo, Ronald Hage, Miquel Costas, Wesley R. Browne. Reversible Deactivation of Manganese Catalysts in Alkene Oxidation and H2O2 Disproportionation. ACS Catalysis 2023, 13 (9) , 6403-6415. https://doi.org/10.1021/acscatal.3c00866
    15. Jie Chen, Wenxun Song, Jinping Yao, Zhimin Wu, Yong-Min Lee, Yong Wang, Wonwoo Nam, Bin Wang. Hydrogen Bonding-Assisted and Nonheme Manganese-Catalyzed Remote Hydroxylation of C–H Bonds in Nitrogen-Containing Molecules. Journal of the American Chemical Society 2023, 145 (9) , 5456-5466. https://doi.org/10.1021/jacs.2c13832
    16. Wenjuan Zhu, Akhilesh Kumar, Jin Xiong, Macon J. Abernathy, Xiao-Xi Li, Mi Sook Seo, Yong-Min Lee, Ritimukta Sarangi, Yisong Guo, Wonwoo Nam. Seeing the cis-Dihydroxylating Intermediate: A Mononuclear Nonheme Iron-Peroxo Complex in cis-Dihydroxylation Reactions Modeling Rieske Dioxygenases. Journal of the American Chemical Society 2023, 145 (8) , 4389-4393. https://doi.org/10.1021/jacs.2c13551
    17. Vladimir I. Kurganskiy, Roman V. Ottenbacher, Mikhail V. Shashkov, Evgenii P. Talsi, Denis G. Samsonenko, Konstantin P. Bryliakov. Manganese-Catalyzed Regioselective C–H Lactonization and Hydroxylation of Fatty Acids with H2O2. Organic Letters 2022, 24 (48) , 8764-8768. https://doi.org/10.1021/acs.orglett.2c03458
    18. Arnau Call, Marco Cianfanelli, Pau Besalú-Sala, Giorgio Olivo, Andrea Palone, Laia Vicens, Xavi Ribas, Josep M. Luis, Massimo Bietti, Miquel Costas. Carboxylic Acid Directed γ-Lactonization of Unactivated Primary C–H Bonds Catalyzed by Mn Complexes: Application to Stereoselective Natural Product Diversification. Journal of the American Chemical Society 2022, 144 (42) , 19542-19558. https://doi.org/10.1021/jacs.2c08620
    19. Shiv Chand, Anup Kumar Sharma, Anand Kumar Pandey, Krishna Nand Singh. Visible-Light Photoredox-Catalyzed Synthesis of trans-Oxiranes via Decarboxylative Stereospecific Epoxidation of trans-Cinnamic Acids by Aryldiazonium Salts. Organic Letters 2022, 24 (35) , 6423-6427. https://doi.org/10.1021/acs.orglett.2c02509
    20. Guilherme L. Tripodi, Jana Roithová. Unmasking the Iron–Oxo Bond of the [(Ligand)Fe-OIAr]2+/+ Complexes. Journal of the American Society for Mass Spectrometry 2022, 33 (9) , 1636-1643. https://doi.org/10.1021/jasms.2c00094
    21. Song Li, Haibei Li, Chen-Ho Tung, Lei Liu. Practical and Selective Bio-Inspired Iron-Catalyzed Oxidation of Si–H Bonds to Diversely Functionalized Organosilanols. ACS Catalysis 2022, 12 (15) , 9143-9152. https://doi.org/10.1021/acscatal.2c02678
    22. Jie Chen, Jinping Yao, Xiao-Xi Li, Yan Wang, Wenxun Song, Kyung-Bin Cho, Yong-Min Lee, Wonwoo Nam, Bin Wang. Bromoacetic Acid-Promoted Nonheme Manganese-Catalyzed Alkane Hydroxylation Inspired by α-Ketoglutarate-Dependent Oxygenases. ACS Catalysis 2022, 12 (11) , 6756-6769. https://doi.org/10.1021/acscatal.2c01096
    23. Marco Galeotti, Laia Vicens, Michela Salamone, Miquel Costas, Massimo Bietti. Resolving Oxygenation Pathways in Manganese-Catalyzed C(sp3)–H Functionalization via Radical and Cationic Intermediates. Journal of the American Chemical Society 2022, 144 (16) , 7391-7401. https://doi.org/10.1021/jacs.2c01466
    24. Honghao Guan, Chen-Ho Tung, Lei Liu. Methane Monooxygenase Mimic Asymmetric Oxidation: Self-Assembling μ-Hydroxo, Carboxylate-Bridged Diiron(III)-Catalyzed Enantioselective Dehydrogenation. Journal of the American Chemical Society 2022, 144 (13) , 5976-5984. https://doi.org/10.1021/jacs.2c00638
    25. Aili Feng, Yanhong Liu, Yiying Yang, Rongxiu Zhu, Dongju Zhang. Theoretical Insight into the Mechanism and Selectivity in Manganese-Catalyzed Oxidative C(sp3)–H Methylation. ACS Catalysis 2022, 12 (4) , 2290-2301. https://doi.org/10.1021/acscatal.1c05025
    26. Ryan C. Cammarota, Wenbin Liu, John Bacsa, Huw M. L. Davies, Matthew S. Sigman. Mechanistically Guided Workflow for Relating Complex Reactive Site Topologies to Catalyst Performance in C–H Functionalization Reactions. Journal of the American Chemical Society 2022, 144 (4) , 1881-1898. https://doi.org/10.1021/jacs.1c12198
    27. Shuangqing Li, Shuangshuang Wang, Juan Li, Yue Qi, Chao Wang, Lili Zong, Choon-Hong Tan. Monocationic Cinchoninium Catalyzed Asymmetric Oxohydroxylation of Enoates. ACS Catalysis 2021, 11 (24) , 15141-15148. https://doi.org/10.1021/acscatal.1c04849
    28. Zhichao Yang, Jieshu Qian, Chao Shan, Hongchao Li, Yuyang Yin, Bingcai Pan. Toward Selective Oxidation of Contaminants in Aqueous Systems. Environmental Science & Technology 2021, 55 (21) , 14494-14514. https://doi.org/10.1021/acs.est.1c05862
    29. Reza Latifi, Taryn D. Palluccio, Wanhua Ye, Jennifer L. Minnick, Kwame S. Glinton, Elena V. Rybak-Akimova, Sam P. de Visser, Laleh Tahsini. pH Changes That Induce an Axial Ligand Effect on Nonheme Iron(IV) Oxo Complexes with an Appended Aminopropyl Functionality. Inorganic Chemistry 2021, 60 (18) , 13821-13832. https://doi.org/10.1021/acs.inorgchem.1c01312
    30. Justin L. Lee, Dolores L. Ross, Suman K. Barman, Joseph W. Ziller, A. S. Borovik. C–H Bond Cleavage by Bioinspired Nonheme Metal Complexes. Inorganic Chemistry 2021, 60 (18) , 13759-13783. https://doi.org/10.1021/acs.inorgchem.1c01754
    31. Bingyang Wang, Jin Lin, Qiangsheng Sun, Chungu Xia, Wei Sun. Efficient Aliphatic C–H Oxidation and C═C Epoxidation Catalyzed by Porous Organic Polymer-Supported Single-Site Manganese Catalysts. ACS Catalysis 2021, 11 (17) , 10964-10973. https://doi.org/10.1021/acscatal.1c02738
    32. Gourab Mukherjee, Jagnyesh K. Satpathy, Umesh K. Bagha, M. Qadri E. Mubarak, Chivukula V. Sastri, Sam P. de Visser. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catalysis 2021, 11 (15) , 9761-9797. https://doi.org/10.1021/acscatal.1c01993
    33. Roman V. Ottenbacher, Anna A. Bryliakova, Mikhail V. Shashkov, Evgenii P. Talsi, Konstantin P. Bryliakov. To Rebound or...Rebound? Evidence for the “Alternative Rebound” Mechanism in C–H Oxidations by the Systems Nonheme Mn Complex/H2O2/Carboxylic Acid. ACS Catalysis 2021, 11 (9) , 5517-5524. https://doi.org/10.1021/acscatal.1c00811
    34. Norman Zhao, Alexander S. Filatov, Jiaze Xie, Ethan A. Hill, Andrey Yu. Rogachev, John S. Anderson. Generation and Reactivity of a NiIII2(μ-1,2-peroxo) Complex. Journal of the American Chemical Society 2020, 142 (52) , 21634-21639. https://doi.org/10.1021/jacs.0c10958
    35. Qiangsheng Sun, Wei Sun. Catalytic Enantioselective Methylene C(sp3)–H Hydroxylation Using a Chiral Manganese Complex/Carboxylic Acid System. Organic Letters 2020, 22 (24) , 9529-9533. https://doi.org/10.1021/acs.orglett.0c03585
    36. P. Kočovský. Addition Reactions: Polar Addition. 2024, 295-400. https://doi.org/10.1002/9781119716846.ch9
    37. Konstantin P. Bryliakov. Mechanisms of C(sp3)–H and C=C selective oxidative heterofunctionalizations by non-heme Fe and Mn mimics of oxygenase enzymes. Coordination Chemistry Reviews 2024, 508 , 215793. https://doi.org/10.1016/j.ccr.2024.215793
    38. Dmitry S. Bushmin, Denis G. Samsonenko, Evgenii P. Talsi, Oleg Y. Lyakin, Konstantin P. Bryliakov. Diverting Ni‐Catalyzed Direct Benzylic C−H Hydroxylation towards Trifluoroethoxylation. ChemCatChem 2024, 16 (7) https://doi.org/10.1002/cctc.202301346
    39. Samuel A. Brunclik, Elizabeth N. Grotemeyer, Zahra Aghaei, Mohammad Rasel Mian, Timothy A. Jackson. Investigating Ligand Sphere Perturbations on MnIII–Alkylperoxo Complexes. Molecules 2024, 29 (8) , 1849. https://doi.org/10.3390/molecules29081849
    40. Konstantin P. Bryliakov. Bioinspired Selective Catalytic C‐H Oxygenation, Halogenation, and Azidation of Steroids. 2024, 369-387. https://doi.org/10.1002/9781119870647.ch17
    41. Daiki Doiuchi, Nanako Shimoda, Koushi Okazaki, Tatsuya Uchida. Acid‐Cooperative Transition Metal‐Catalysed Oxygen‐Atom‐Transfer: Ruthenium‐Catalysed C−H Oxygenation. Advanced Synthesis & Catalysis 2024, https://doi.org/10.1002/adsc.202301453
    42. Hanjie Zhang, Xiaoyu Qin, Junping Wang, Li Ma, Tianfeng Chen. Metal complex catalysts broaden bioorthogonal reactions. Science China Chemistry 2024, 67 (2) , 428-449. https://doi.org/10.1007/s11426-023-1615-1
    43. Linda E. Eijsink, Andy S. Sardjan, Esther G. Sinnema, Hugo den Besten, Yanrong Zhang, Ronald Hage, Keimpe J. van den Berg, Jitte Flapper, Ben L. Feringa, Wesley R. Browne. Activation of alkyl hydroperoxides by manganese complexes of tmtacn for initiation of radical polymerisation of alkenes. Catalysis Science & Technology 2024, 249 https://doi.org/10.1039/D4CY00042K
    44. Roman Ezhov, Gabriel Bury, Olga Maximova, Elliot Daniel Grant, Mio Kondo, Shigeyuki Masaoka, Yulia Pushkar. Pentanuclear iron complex for water oxidation: Spectroscopic analysis of reactive intermediates in solution and catalyst immobilization into the MOF-based photoanode. Journal of Catalysis 2024, 429 , 115230. https://doi.org/10.1016/j.jcat.2023.115230
    45. Daojian Tang, Kun Dang, Jiaming Wang, Chuncheng Chen, Jincai Zhao, Yuchao Zhang. Solar-driven green synthesis of epoxides. Science China Chemistry 2023, 66 (12) , 3415-3425. https://doi.org/10.1007/s11426-023-1757-4
    46. Roxanne Bercy, Jean‐Noël Rebilly, Christian Herrero, Régis Guillot, Hélène Maisonneuve, Frédéric Banse. Beneficial Effect of Acetic Acid on the Formation of Fe III (OOH) Species and on the Catalytic Activity of Bioinspired Nonheme Fe II Complexes.. European Journal of Inorganic Chemistry 2023, 26 (34) https://doi.org/10.1002/ejic.202300236
    47. S. G. Zlotin, K. S. Egorova, V. P. Ananikov, A. A. Akulov, M. V. Varaksin, O. N. Chupakhin, V. N. Charushin, K. P. Bryliakov, A. D. Averin, I. P. Beletskaya, E. L. Dolengovski, Yu. H. Budnikova, O. G. Sinyashin, Z. N. Gafurov, A. O. Kantyukov, D. G. Yakhvarov, A. V. Aksenov, M. N. Elinson, V. G. Nenajdenko, A. M. Chibiryaev, N. S. Nesterov, E. A. Kozlova, O. N. Martyanov, I. A. Balova, V. N. Sorokoumov, D. A. Guk, E. K. Beloglazkina, D. A. Lemenovskii, I. Yu. Chukicheva, L. L. Frolova, E. S. Izmest'ev, I. A. Dvornikova, A. V. Popov, A. V. Kutchin, D. M. Borisova, A. A. Kalinina, A. M. Muzafarov, I. V. Kuchurov, A. L. Maximov, A. V. Zolotukhina. The green chemistry paradigm in modern organic synthesis. Russian Chemical Reviews 2023, 92 (12) , RCR5104. https://doi.org/10.59761/RCR5104
    48. Roman V. Ottenbacher, Anna A. Bryliakova, Vladimir I. Kurganskii, Petr V. Prikhodchenko, Alexander G. Medvedev, Konstantin P. Bryliakov. Bioinspired Non‐Heme Mn Catalysts for Regio‐ and Stereoselective Oxyfunctionalizations with H 2 O 2. Chemistry – A European Journal 2023, 29 (66) https://doi.org/10.1002/chem.202302772
    49. Henrik P. H. Wong, Frédéric Banse, Sam P. de Visser. Disproportionation of H 2 O 2 to Dioxygen on a Nonheme Iron Center. A Computational Study. ChemCatChem 2023, 15 (22) https://doi.org/10.1002/cctc.202300957
    50. Tatsuya Uchida. Development of Catalytic Site‐Selective C−H Oxidation. The Chemical Record 2023, 23 (11) https://doi.org/10.1002/tcr.202300156
    51. Elizabeth N. Grotemeyer, Joshua D. Parham, Timothy A. Jackson. Reaction landscape of a mononuclear Mn III –hydroxo complex with hydrogen peroxide. Dalton Transactions 2023, 52 (40) , 14350-14370. https://doi.org/10.1039/D3DT02672H
    52. Samuel A. Brunclik, Adedamola A. Opalade, Timothy A. Jackson. Electronic structure contributions to O–O bond cleavage reactions for Mn III -alkylperoxo complexes. Dalton Transactions 2023, 52 (39) , 13878-13894. https://doi.org/10.1039/D3DT01672B
    53. Roman V. Ottenbacher, Alexander G. Medvedev, Andrey A. Nefedov, Konstantin P. Bryliakov. Why non-heme Mn complexes of amino 2-quinolylmethyl ligands are inactive in oxidation catalysis? An insight from X-ray data. Inorganic Chemistry Communications 2023, 156 , 111282. https://doi.org/10.1016/j.inoche.2023.111282
    54. Roman V. Ottenbacher, Denis G. Samsonenko, Anna A. Bryliakova, Andrey A. Nefedov, Konstantin P. Bryliakov. Manganese catalyzed direct regio- and stereoselective hydroxylation of 5α- and 5β-androstane derivatives. Journal of Catalysis 2023, 425 , 32-39. https://doi.org/10.1016/j.jcat.2023.06.003
    55. Arnau Vicens, Laia Vicens, Giorgio Olivo, Osvaldo Lanzalunga, Stefano Di Stefano, Miquel Costas. Site-selective methylene C–H oxidation of an alkyl diamine enabled by supramolecular recognition using a bioinspired manganese catalyst. Faraday Discussions 2023, 244 , 51-61. https://doi.org/10.1039/D2FD00177B
    56. Hossay Abas, Peter Blencowe, Joanna L. Brookfield, Lucy A. Harwood. Selective Hydroxylation of C(sp 3 )−H Bonds in Steroids. Chemistry – A European Journal 2023, 29 (44) https://doi.org/10.1002/chem.202301066
    57. Yuanxin Cao, Juan A. Valdez‐Moreira, Sam Hay, Jeremy M. Smith, Sam P. de Visser. Reactivity Differences of Trigonal Pyramidal Nonheme Iron(IV)‐Oxo and Iron(III)‐Oxo Complexes: Experiment and Theory. Chemistry – A European Journal 2023, 29 (42) https://doi.org/10.1002/chem.202300271
    58. Umesh Kumar Bagha, Rolly Yadav, Thirakorn Mokkawes, Jagnyesh Kumar Satpathy, Devesh Kumar, Chivukula V. Sastri, Sam P. de Visser. Defluorination of Fluorophenols by a Nonheme Iron(IV)‐Oxo Species: Observation of a New Intermediate Along the Reaction. Chemistry – A European Journal 2023, 29 (39) https://doi.org/10.1002/chem.202300478
    59. Mònica Rodríguez, Aleksandr Y. Pereverzev, Jana Roithová. Octahedral Iron‐Acyl‐Nitrenoid Intermediates in Sulphur −Nitrogen Coupling and Hydrogen Atom Transfer Reactions. ChemCatChem 2023, 15 (12) https://doi.org/10.1002/cctc.202300410
    60. Xiao Xiao, Kaini Xu, Zhong-Hua Gao, Zhou-Hao Zhu, Changqing Ye, Baoguo Zhao, Sanzhong Luo, Song Ye, Yong-Gui Zhou, Senmiao Xu, Shou-Fei Zhu, Hongli Bao, Wei Sun, Xiaoming Wang, Kuiling Ding. Biomimetic asymmetric catalysis. Science China Chemistry 2023, 66 (6) , 1553-1633. https://doi.org/10.1007/s11426-023-1578-y
    61. Eduard Masferrer-Rius, Robertus J. M. Klein Gebbink. Non-Noble Metal Aromatic Oxidation Catalysis: From Metalloenzymes to Synthetic Complexes. Catalysts 2023, 13 (4) , 773. https://doi.org/10.3390/catal13040773
    62. Sai Anvesh Bezawada, Neira Ušto, Chloe Wilke, Michael Barnes-Flaspoler, Rajamoni Jagan, Eike B. Bauer. Ferrocenophanium Stability and Catalysis. Molecules 2023, 28 (6) , 2729. https://doi.org/10.3390/molecules28062729
    63. Jie Chen, Wenxun Song, Yong-Min Lee, Wonwoo Nam, Bin Wang. Biologically inspired nonheme iron complex-catalyzed cis-dihydroxylation of alkenes modeling Rieske dioxygenases. Coordination Chemistry Reviews 2023, 477 , 214945. https://doi.org/10.1016/j.ccr.2022.214945
    64. Magy A. Mekhail, Kristof Pota, Sugam Kharel, David M. Freire, Kayla N. Green. Pyridine modifications regulate the electronics and reactivity of Fe–pyridinophane complexes. Dalton Transactions 2023, 52 (4) , 892-901. https://doi.org/10.1039/D2DT03485A
    65. Oleg Y. Lyakin, Dmitry S. Bushmin, Evgenii P. Talsi, Konstantin P. Bryliakov. Ni‐ and Pd‐based homogeneous catalyst systems for direct oxygenation of C(sp 3 )‐H groups. Applied Organometallic Chemistry 2023, 37 (1) https://doi.org/10.1002/aoc.6908
    66. Renata Siedlecka. Selectivity in the Aliphatic C–H Bonds Oxidation (Hydroxylation) Catalyzed by Heme- and Non-Heme Metal Complexes—Recent Advances. Catalysts 2023, 13 (1) , 121. https://doi.org/10.3390/catal13010121
    67. Xinyang Zhao, Lu Zhu, Xue Wu, Wei Wei, Jing Zhao. Bio-inspired catalysis. 2023, 373-406. https://doi.org/10.1016/B978-0-12-823144-9.00140-0
    68. Alizée Boullé, Aminata Doumbia, Jean-Pierre Mahy, Frédéric Avenier. Unprotected amine transfer performed by non-heme iron( ii ) complexes. Chemical Communications 2022, 59 (1) , 79-81. https://doi.org/10.1039/D2CC04992A
    69. Purushothaman Rajeshwaran, Jonathan Trouvé, Khalil Youssef, Rafael Gramage‐Doria. Sustainable Wacker‐Type Oxidations. Angewandte Chemie 2022, 134 (50) https://doi.org/10.1002/ange.202211016
    70. Purushothaman Rajeshwaran, Jonathan Trouvé, Khalil Youssef, Rafael Gramage‐Doria. Sustainable Wacker‐Type Oxidations. Angewandte Chemie International Edition 2022, 61 (50) https://doi.org/10.1002/anie.202211016
    71. Dennis Verspeek, Sebastian Ahrens, Anke Spannenberg, Xiaodong Wen, Yong Yang, Yong-Wang Li, Kathrin Junge, Matthias Beller. Manganese N , N , N -pincer complex-catalyzed epoxidation of unactivated aliphatic olefins. Catalysis Science & Technology 2022, 12 (24) , 7341-7348. https://doi.org/10.1039/D2CY01472F
    72. Jing Tian, Daqian Xu, Wei Sun. Cobalt(II)‐Catalyzed Transfer Hydrogenation of Simple Alkenes. Advanced Synthesis & Catalysis 2022, 364 (22) , 3874-3880. https://doi.org/10.1002/adsc.202200712
    73. Jintao Zhang, Mingyong Wang, Tingting Wan, Haotian Shi, Aijing Lv, Wei Xiao, Shuqiang Jiao. Novel (Pt‐O x )‐(Co‐O y ) Nonbonding Active Structures on Defective Carbon from Oxygen‐Rich Coal Tar Pitch for Efficient HER and ORR. Advanced Materials 2022, 34 (45) https://doi.org/10.1002/adma.202206960
    74. Roman V. Ottenbacher, Denis G. Samsonenko, Andrey A. Nefedov, Konstantin P. Bryliakov. Direct regio- and stereoselective mono- and polyoxyfunctionalization of estrone derivatives at C(sp3)-H bonds. Journal of Catalysis 2022, 415 , 12-18. https://doi.org/10.1016/j.jcat.2022.09.020
    75. Jimei Zhou, Minxian Jia, Menghui Song, Zhiliang Huang, Alexander Steiner, Qidong An, Jianwei Ma, Zhiyin Guo, Qianqian Zhang, Huaming Sun, Craig Robertson, John Bacsa, Jianliang Xiao, Chaoqun Li. Chemoselective Oxyfunctionalization of Functionalized Benzylic Compounds with a Manganese Catalyst. Angewandte Chemie 2022, 134 (30) https://doi.org/10.1002/ange.202205983
    76. Jimei Zhou, Minxian Jia, Menghui Song, Zhiliang Huang, Alexander Steiner, Qidong An, Jianwei Ma, Zhiyin Guo, Qianqian Zhang, Huaming Sun, Craig Robertson, John Bacsa, Jianliang Xiao, Chaoqun Li. Chemoselective Oxyfunctionalization of Functionalized Benzylic Compounds with a Manganese Catalyst. Angewandte Chemie International Edition 2022, 61 (30) https://doi.org/10.1002/anie.202205983
    77. Chi (Chip) Le, Minwoo Bae, Sina Kiamehr, Emily P. Balskus. Emerging Chemical Diversity and Potential Applications of Enzymes in the DMSO Reductase Superfamily. Annual Review of Biochemistry 2022, 91 (1) , 475-504. https://doi.org/10.1146/annurev-biochem-032620-110804
    78. Biswanath Das, Afnan Al-Hunaiti, Akina Carey, Sven Lidin, Serhiy Demeshko, Timo Repo, Ebbe Nordlander. A di‑iron(III) μ-oxido complex as catalyst precursor in the oxidation of alkanes and alkenes. Journal of Inorganic Biochemistry 2022, 231 , 111769. https://doi.org/10.1016/j.jinorgbio.2022.111769
    79. Peter Comba, George Nunn, Frederik Scherz, Paul H. Walton. Intermediate-spin iron( iv )-oxido species with record reactivity. Faraday Discussions 2022, 234 , 232-244. https://doi.org/10.1039/D1FD00073J
    80. Alexandra M. Zima, Oleg Y. Lyakin, Anna A. Bryliakova, Dmitrii E. Babushkin, Konstantin P. Bryliakov, Evgenii P. Talsi. Reactivity vs. Selectivity of Biomimetic Catalyst Systems of the Fe(PDP) Family through the Nature and Spin State of the Active Iron‐Oxygen Species. The Chemical Record 2022, 22 (5) https://doi.org/10.1002/tcr.202100334
    81. HISASHI Shimakoshi. Bioinspired Catalyst Learned from B12-dependent Enzymes. 2022, 207-226. https://doi.org/10.1039/9781839164828-00207
    82. Priya Singh, Melissa C. Denler, Jaycee R. Mayfield, Timothy A. Jackson. Differences in chemoselectivity in olefin oxidation by a series of non-porphyrin manganese( iv )-oxo complexes. Dalton Transactions 2022, 51 (15) , 5938-5949. https://doi.org/10.1039/D2DT00876A
    83. Jiyoung Lee, Sungjin Moon, Soyoung Park, Cheal Kim. Synthesis, characterization and catalytic activities of nonheme manganese(III) complexes: Preferential formation of cis olefin oxide owing to steric hindrance. Polyhedron 2022, 216 , 115716. https://doi.org/10.1016/j.poly.2022.115716
    84. Varvara A. Drozd, Roman V. Ottenbacher, Konstantin P. Bryliakov. Asymmetric Epoxidation of Olefins with Sodium Percarbonate Catalyzed by Bis-amino-bis-pyridine Manganese Complexes. Molecules 2022, 27 (8) , 2538. https://doi.org/10.3390/molecules27082538
    85. Emily C. Monkcom, Hidde A. Negenman, Eduard Masferrer‐Rius, Martin Lutz, Shengfa Ye, Eckhard Bill, Robertus J. M. Klein Gebbink. 2H1C Mimicry: Bioinspired Iron and Zinc Complexes Supported by N,N,O Phenolate Ligands. European Journal of Inorganic Chemistry 2022, 2022 (9) https://doi.org/10.1002/ejic.202101046
    86. Marco Galeotti, Michela Salamone, Massimo Bietti. Electronic control over site-selectivity in hydrogen atom transfer (HAT) based C(sp 3 )–H functionalization promoted by electrophilic reagents. Chemical Society Reviews 2022, 51 (6) , 2171-2223. https://doi.org/10.1039/D1CS00556A
    87. Jin Lin, Fang Wang, Jing Tian, Jisheng Zhang, Yong Wang, Wei Sun. Theoretical and experimental investigations of the enantioselective epoxidation of olefins catalyzed by manganese complexes. Chinese Chemical Letters 2022, 33 (3) , 1515-1518. https://doi.org/10.1016/j.cclet.2021.08.092
    88. Hafiz Saqib Ali, Sam P. de Visser. Electrostatic Perturbations in the Substrate‐Binding Pocket of Taurine/α‐Ketoglutarate Dioxygenase Determine its Selectivity. Chemistry – A European Journal 2022, 28 (9) https://doi.org/10.1002/chem.202104167
    89. Laia Vicens, Giorgio Olivo, Miquel Costas. Remote Amino Acid Recognition Enables Effective Hydrogen Peroxide Activation at a Manganese Oxidation Catalyst. Angewandte Chemie 2022, 134 (7) https://doi.org/10.1002/ange.202114932
    90. Laia Vicens, Giorgio Olivo, Miquel Costas. Remote Amino Acid Recognition Enables Effective Hydrogen Peroxide Activation at a Manganese Oxidation Catalyst. Angewandte Chemie International Edition 2022, 61 (7) https://doi.org/10.1002/anie.202114932
    91. Jing Tian, Jin Lin, Jisheng Zhang, Chungu Xia, Wei Sun. Asymmetric Epoxidation of Olefins Catalyzed by Substituted Aminobenzimidazole Manganese Complexes Derived from L ‐Proline. Advanced Synthesis & Catalysis 2022, 364 (3) , 593-600. https://doi.org/10.1002/adsc.202101151
    92. Bingyang Wang, Jin Lin, Chungu Xia, Wei Sun. Porous organic polymer-supported manganese catalysts with tunable wettability for efficient oxidation of secondary alcohols. Journal of Catalysis 2022, 406 , 87-95. https://doi.org/10.1016/j.jcat.2022.01.002
    93. Alexandra M. Zima, Dmitrii E. Babushkin, Oleg Y. Lyakin, Konstantin P. Bryliakov, Evgenii P. Talsi. High‐Spin and Low‐Spin State Perferryl Intermediates: Reactivity‐Selectivity Correlation in Fe(PDP) Catalyzed Oxidation of (+)‐Sclareolide. ChemCatChem 2022, 14 (2) https://doi.org/10.1002/cctc.202101430
    94. Katharina Bleher, Peter Comba, Dieter Faltermeier, Ashutosh Gupta, Marion Kerscher, Saskia Krieg, Bodo Martin, Gunasekaran Velmurugan, Shuyi Yang. Non‐Heme‐Iron‐Mediated Selective Halogenation of Unactivated Carbon−Hydrogen Bonds. Chemistry – A European Journal 2022, 28 (4) https://doi.org/10.1002/chem.202103452
    95. T. Uchida, R. Irie. Oxidation: C–O Bond Formation by C–H Activation. 2022https://doi.org/10.1016/B978-0-32-390644-9.00067-6
    96. Miquel Costas. Site and Enantioselective Aliphatic C−H Oxidation with Bioinspired Chiral Complexes. The Chemical Record 2021, 21 (12) , 4000-4014. https://doi.org/10.1002/tcr.202100227
    97. Periyakaruppan Karuppasamy. Selective Oxidation of L-Methionine, L-Ethionine, N-Acetyl-L-Methionine, L-Buthionine Catalyzed by [FeIII-Salen]Cl Complexes: A Spectral, Kinetic, and Electrochemical Study. Russian Journal of Physical Chemistry A 2021, 95 (S2) , S230-S241. https://doi.org/10.1134/S0036024421150127
    98. Eduard Masferrer-Rius, Fanshi Li, Martin Lutz, Robertus J. M. Klein Gebbink. Exploration of highly electron-rich manganese complexes in enantioselective oxidation catalysis; a focus on enantioselective benzylic oxidation. Catalysis Science & Technology 2021, 11 (23) , 7751-7763. https://doi.org/10.1039/D1CY01642C
    99. Sergio Fernandez, Geyla C. Dubed Bandomo, Julio Lloret‐Fillol. Manganese Complexes for Electro‐ and Photocatalytic Transformations. 2021, 137-181. https://doi.org/10.1002/9783527826131.ch5
    100. Eduard Masferrer‐Rius, Margarida Borrell, Martin Lutz, Miquel Costas, Robertus J. M. Klein Gebbink. Aromatic C−H Hydroxylation Reactions with Hydrogen Peroxide Catalyzed by Bulky Manganese Complexes. Advanced Synthesis & Catalysis 2021, 363 (15) , 3783-3795. https://doi.org/10.1002/adsc.202001590
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect