ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Liquid–Solid Boundaries Dominate Activity of CO2 Reduction on Gas-Diffusion Electrodes

  • Nathan T. Nesbitt*
    Nathan T. Nesbitt
    Materials and Chemical Science and Technology (MCST) Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
    *Email: [email protected]
  • Thomas Burdyny
    Thomas Burdyny
    Materials for Energy Conversion and Storage, Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
  • Hunter Simonson
    Hunter Simonson
    Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
    Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, Colorado 80303, United States
  • Danielle Salvatore
    Danielle Salvatore
    Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
    Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, Colorado 80303, United States
  • Divya Bohra
    Divya Bohra
    Materials for Energy Conversion and Storage, Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
    More by Divya Bohra
  • Recep Kas
    Recep Kas
    Materials and Chemical Science and Technology (MCST) Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
    Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, Colorado 80303, United States
    More by Recep Kas
  • , and 
  • Wilson A. Smith*
    Wilson A. Smith
    Materials and Chemical Science and Technology (MCST) Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
    Materials for Energy Conversion and Storage, Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
    Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
    Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, Colorado 80303, United States
    *Email: [email protected]
Cite this: ACS Catal. 2020, 10, 23, 14093–14106
Publication Date (Web):November 18, 2020
https://doi.org/10.1021/acscatal.0c03319
Copyright © 2020 American Chemical Society

    Article Views

    6138

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Electrochemical CO2 electrolysis to produce hydrocarbon fuels or material feedstocks offers a renewable alternative to fossilized carbon sources. Gas-diffusion electrodes (GDEs), composed of solid electrocatalysts on porous supports positioned near the interface of a conducting electrolyte and CO2 gas, have been able to demonstrate the substantial current densities needed for future commercialization. These higher reaction rates have often been ascribed to the presence of a three-phase interface, where solid, liquid, and gas provide electrons, water, and CO2, respectively. Conversely, mechanistic work on electrochemical reactions implicates a fully two-phase reaction interface, where gas molecules reach the electrocatalyst’s surface by dissolution and diffusion through the electrolyte. Because the discrepancy between an atomistic three-phase versus two-phase reaction has substantial implications for the design of catalysts, gas-diffusion layers, and cell architectures, the nuances of nomenclatures and governing phenomena surrounding the three-phase-region require clarification. Here we outline the macro, micro, and atomistic phenomena occurring within a gas-diffusion electrode to provide a focused discussion on the architecture of the often-discussed three-phase region for CO2 electrolysis. From this information, we comment on the outlook for the broader CO2 electroreduction GDE cell architecture.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscatal.0c03319.

    • Different cell architectures (Figure S1), plots of capillary pressure versus pore size (Figure S2), topography and current of ethylene-producing GDEs (Figure S3), summary of DFT and MD simulations of CO2 at a gas–liquid boundary (including Figure S4), model used for surface diffusion of CO2, electrolyte meniscus on Pt and the HOR current through it (Figure S5), and values of parameters used in surface diffusion transport estimates (Table S1) (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 102 publications.

    1. Ruonan Wang, Mingjia Zhang, Shule Zhang, Jianzhong Zheng, Yiqing Zeng, Yan Yang, Jie Ding, Xu Wu, Qin Zhong. Self-Supporting Triphase Photocatalytic CO2 Reduction to CH3OH on Controllable Core–Shell Structure with Tunable Interfacial Wettability. ACS Nano 2023, Article ASAP.
    2. Mohamed Nazmi Idros, Yuming Wu, Timothy Duignan, Mengran Li, Hayden Cartmill, Irving Maglaya, Thomas Burdyny, Geoff Wang, Thomas E. Rufford. Effect of Dispersing Solvents for an Ionomer on the Performance of Copper Catalyst Layers for CO2 Electrolysis to Multicarbon Products. ACS Applied Materials & Interfaces 2023, 15 (45) , 52461-52472. https://doi.org/10.1021/acsami.3c11096
    3. Baran Sahin, Samantha Kimberly Raymond, Felix Ntourmas, Remigiusz Pastusiak, Kerstin Wiesner-Fleischer, Maximilian Fleischer, Elfriede Simon, Olaf Hinrichsen. Accumulation of Liquid Byproducts in an Electrolyte as a Critical Factor That Compromises Long-Term Functionality of CO2-to-C2H4 Electrolysis. ACS Applied Materials & Interfaces 2023, 15 (39) , 45844-45854. https://doi.org/10.1021/acsami.3c08454
    4. Robert Haaring, Phil Woong Kang, Zunmin Guo, Jae Won Lee, Hyunjoo Lee. Developing Catalysts Integrated in Gas-Diffusion Electrodes for CO2 Electrolyzers. Accounts of Chemical Research 2023, 56 (19) , 2595-2605. https://doi.org/10.1021/acs.accounts.3c00349
    5. Tianxiang Yan, Xiaoyi Chen, Lata Kumari, Jianlong Lin, Minglu Li, Qun Fan, Haoyuan Chi, Thomas J. Meyer, Sheng Zhang, Xinbin Ma. Multiscale CO2 Electrocatalysis to C2+ Products: Reaction Mechanisms, Catalyst Design, and Device Fabrication. Chemical Reviews 2023, 123 (17) , 10530-10583. https://doi.org/10.1021/acs.chemrev.2c00514
    6. Kaige Shi, Zackary S. Parsons, Xiaofeng Feng. Sensitivity of Gas-Evolving Electrocatalysis to the Catalyst Microenvironment. ACS Energy Letters 2023, 8 (7) , 2919-2926. https://doi.org/10.1021/acsenergylett.3c00962
    7. Magda H. Barecka, Pritika DS Dameni, Marsha Zakir Muhamad, Joel W. Ager, Alexei A. Lapkin. Energy-Efficient Ethanol Concentration Method for Scalable CO2 Electrolysis. ACS Energy Letters 2023, 8 (7) , 3214-3220. https://doi.org/10.1021/acsenergylett.3c00973
    8. Tete Zhao, Jinhan Li, Jiuding Liu, Fangming Liu, Keqiang Xu, Meng Yu, Wence Xu, Fangyi Cheng. Tailoring the Catalytic Microenvironment of Cu2O with SiO2 to Enhance C2+ Product Selectivity in CO2 Electroreduction. ACS Catalysis 2023, 13 (7) , 4444-4453. https://doi.org/10.1021/acscatal.3c00056
    9. Alessandro Senocrate, Francesco Bernasconi, Daniel Rentsch, Kevin Kraft, Matthias Trottmann, Adrian Wichser, Davide Bleiner, Corsin Battaglia. Importance of Substrate Pore Size and Wetting Behavior in Gas Diffusion Electrodes for CO2 Reduction. ACS Applied Energy Materials 2022, 5 (11) , 14504-14512. https://doi.org/10.1021/acsaem.2c03054
    10. Junhyeong Kim, Wenwu Guo, Hedam Kim, Seonghyun Choe, Soo Young Kim, Sang Hyun Ahn. Gaseous CO2 Electrolysis: Progress, Challenges, and Prospects. ACS Sustainable Chemistry & Engineering 2022, 10 (43) , 14092-14111. https://doi.org/10.1021/acssuschemeng.2c04501
    11. Miaomiao Fang, Yujin Ji, Yecan Pi, Pengtang Wang, Zhiwei Hu, Jyh-Fu Lee, Huan Pang, Youyong Li, Qi Shao, Xiaoqing Huang. Aluminum-Doped Mesoporous Copper Oxide Nanofibers Enabling High-Efficiency CO2 Electroreduction to Multicarbon Products. Chemistry of Materials 2022, 34 (20) , 9023-9030. https://doi.org/10.1021/acs.chemmater.2c01478
    12. Donghuan Wu, Feng Jiao, Qi Lu. Progress and Understanding of CO2/CO Electroreduction in Flow Electrolyzers. ACS Catalysis 2022, 12 (20) , 12993-13020. https://doi.org/10.1021/acscatal.2c03348
    13. Peng Huang, Nan Li, Liang Zeng, Yujie Zhu. Bi-Loaded Cu Hollow Microtube Electrodes for N2 Electroreduction. ACS Applied Energy Materials 2022, 5 (9) , 11152-11158. https://doi.org/10.1021/acsaem.2c01745
    14. Ruixue Cui, Qing Yuan, Chao Zhang, Xuan Yang, Zhouru Ji, Zhaolin Shi, Xiaoqian Han, Yunying Wang, Jiqing Jiao, Tongbu Lu. Revealing the Behavior of Interfacial Water in Te-Doped Bi via Operando Infrared Spectroscopy for Improving Electrochemical CO2 Reduction. ACS Catalysis 2022, 12 (18) , 11294-11300. https://doi.org/10.1021/acscatal.2c03369
    15. Young Eun Kim, Wonhee Lee, You Na Ko, Jeong Eun Park, Daniel Tan, Jumi Hong, Ye Eun Jeon, Jihun Oh, Ki Tae Park. Role of Binder in Cu2O Gas Diffusion Electrodes for CO2 Reduction to C2+ Products. ACS Sustainable Chemistry & Engineering 2022, 10 (36) , 11710-11718. https://doi.org/10.1021/acssuschemeng.2c03915
    16. Iván Zelocualtecatl Montiel, Abhijit Dutta, Kiran Kiran, Alain Rieder, Anna Iarchuk, Soma Vesztergom, Marta Mirolo, Isaac Martens, Jakub Drnec, Peter Broekmann. CO2 Conversion at High Current Densities: Stabilization of Bi(III)-Containing Electrocatalysts under CO2 Gas Flow Conditions. ACS Catalysis 2022, 12 (17) , 10872-10886. https://doi.org/10.1021/acscatal.2c02549
    17. Hugo-Pieter Iglesias van Montfort, Thomas Burdyny. Mapping Spatial and Temporal Electrochemical Activity of Water and CO2 Electrolysis on Gas-Diffusion Electrodes Using Infrared Thermography. ACS Energy Letters 2022, 7 (8) , 2410-2419. https://doi.org/10.1021/acsenergylett.2c00984
    18. Jia-Qiang Zhong, Ke-Jing Yan, Jing Yang, Wei-Hua Yang, Xiao-Dong Yang. Microenvironment Alters the Oxygen Reduction Activity of Metal/N/C Catalysts at the Triple-Phase Boundary. ACS Catalysis 2022, 12 (15) , 9003-9010. https://doi.org/10.1021/acscatal.2c00362
    19. Justin C. Bui, Eric W. Lees, Lalit M. Pant, Iryna V. Zenyuk, Alexis T. Bell, Adam Z. Weber. Continuum Modeling of Porous Electrodes for Electrochemical Synthesis. Chemical Reviews 2022, 122 (12) , 11022-11084. https://doi.org/10.1021/acs.chemrev.1c00901
    20. Ying Chuan Tan, Wei Kang Quek, Beomil Kim, Sigit Sugiarto, Jihun Oh, Dan Kai. Pitfalls and Protocols: Evaluating Catalysts for CO2 Reduction in Electrolyzers Based on Gas Diffusion Electrodes. ACS Energy Letters 2022, 7 (6) , 2012-2023. https://doi.org/10.1021/acsenergylett.2c00763
    21. Gaopeng Li, Tianxiang Yan, Xiaoyi Chen, Hai Liu, Sheng Zhang, Xinbin Ma. Electrode Engineering for Electrochemical CO2 Reduction. Energy & Fuels 2022, 36 (8) , 4234-4249. https://doi.org/10.1021/acs.energyfuels.2c00271
    22. Justin C. Bui, Chanyeon Kim, Alex J. King, Oyinkansola Romiluyi, Ahmet Kusoglu, Adam Z. Weber, Alexis T. Bell. Engineering Catalyst–Electrolyte Microenvironments to Optimize the Activity and Selectivity for the Electrochemical Reduction of CO2 on Cu and Ag. Accounts of Chemical Research 2022, 55 (4) , 484-494. https://doi.org/10.1021/acs.accounts.1c00650
    23. Aidan Q. Fenwick, Alex J. Welch, Xueqian Li, Ian Sullivan, Joseph S. DuChene, Chengxiang Xiang, Harry A. Atwater. Probing the Catalytically Active Region in a Nanoporous Gold Gas Diffusion Electrode for Highly Selective Carbon Dioxide Reduction. ACS Energy Letters 2022, 7 (2) , 871-879. https://doi.org/10.1021/acsenergylett.1c02267
    24. Bangwei Deng, Ming Huang, Xiaoli Zhao, Shiyong Mou, Fan Dong. Interfacial Electrolyte Effects on Electrocatalytic CO2 Reduction. ACS Catalysis 2022, 12 (1) , 331-362. https://doi.org/10.1021/acscatal.1c03501
    25. Thomas Moore, Xiaoxing Xia, Sarah E. Baker, Eric B. Duoss, Victor A. Beck. Elucidating Mass Transport Regimes in Gas Diffusion Electrodes for CO2 Electroreduction. ACS Energy Letters 2021, 6 (10) , 3600-3606. https://doi.org/10.1021/acsenergylett.1c01513
    26. Dandan Wang, Zhenyao Ding, Hang Zhou, Liping Chen, Xinjian Feng. Au Nanoparticle-Decorated TiO2 Nanowires for Surface Plasmon Resonance-Based Photoelectrochemical Bioassays with a Solid–Liquid–Air Triphase Interface. ACS Applied Nano Materials 2021, 4 (9) , 9401-9408. https://doi.org/10.1021/acsanm.1c01899
    27. Henrik Haspel, Jorge Gascon. Is Hydroxide Just Hydroxide? Unidentical CO2 Hydration Conditions during Hydrogen Evolution and Carbon Dioxide Reduction in Zero-Gap Gas Diffusion Electrode Reactors. ACS Applied Energy Materials 2021, 4 (8) , 8506-8516. https://doi.org/10.1021/acsaem.1c01693
    28. Zhuo Xing, Xun Hu, Xiaofeng Feng. Tuning the Microenvironment in Gas-Diffusion Electrodes Enables High-Rate CO2 Electrolysis to Formate. ACS Energy Letters 2021, 6 (5) , 1694-1702. https://doi.org/10.1021/acsenergylett.1c00612
    29. Lijiang Xu, Mingzhe Li, Weiyi Lu. Time- and Pressure-Dependent Gas Diffusion in a Nanoconfined Liquid Phase. The Journal of Physical Chemistry C 2021, 125 (10) , 5596-5601. https://doi.org/10.1021/acs.jpcc.0c11318
    30. Yan Sun, Lei Zhang. Synchronous generation of H2O2 and high effective removal of inorganic arsenic/organoarsenic by visible light-driven cell. Applied Catalysis B: Environmental 2024, 343 , 123549. https://doi.org/10.1016/j.apcatb.2023.123549
    31. Xinyi Chen, Wei Chen, Chuntong Li, Shengjie Zhou, Hang Shi, Deyuan Zhao. Performance in microfluidic electrochemical cell with gradient or double-layers porous electrode for CO2 diffusion. Journal of Electroanalytical Chemistry 2024, 952 , 117960. https://doi.org/10.1016/j.jelechem.2023.117960
    32. Haoran Qiu, Feng Wang, Ya Liu, Liejin Guo. Improved product selectivity of electrochemical reduction of carbon dioxide by tuning local carbon dioxide concentration with multiphysics models. Environmental Chemistry Letters 2023, 21 (6) , 3045-3054. https://doi.org/10.1007/s10311-023-01635-w
    33. Kai Takagi, Norihiro Suzuki, Yuvaraj M. Hunge, Haruo Kuriyama, Takenori Hayakawa, Izumi Serizawa, Chiaki Terashima. Synergistic effect of Ag decorated in-liquid plasma treated titanium dioxide catalyst for efficient electrocatalytic CO2 reduction application. Science of The Total Environment 2023, 902 , 166018. https://doi.org/10.1016/j.scitotenv.2023.166018
    34. Yan Lin, Tuo Wang, Lili Zhang, Gong Zhang, Lulu Li, Qingfeng Chang, Zifan Pang, Hui Gao, Kai Huang, Peng Zhang, Zhi-Jian Zhao, Chunlei Pei, Jinlong Gong. Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-39351-2
    35. Chengbo Li, Yuan Ji, Youpeng Wang, Chunxiao Liu, Zhaoyang Chen, Jialin Tang, Yawei Hong, Xu Li, Tingting Zheng, Qiu Jiang, Chuan Xia. Applications of Metal–Organic Frameworks and Their Derivatives in Electrochemical CO2 Reduction. Nano-Micro Letters 2023, 15 (1) https://doi.org/10.1007/s40820-023-01092-8
    36. Shiyan Wang, Longlu Wang, Xianjun Zhu, Yanling Zhuang, Xianghong Niu, Qiang Zhao. A covalency-aided electrochemical mechanism for CO 2 reduction: the synergistic effect of copper and boron dual active sites drives the formation of a high-efficiency ethanol product. Nanoscale 2023, 15 (44) , 17776-17784. https://doi.org/10.1039/D3NR04288J
    37. Michael Filippi, Tim Möller, Liang Liang, Peter Strasser. Understanding the impact of catholyte flow compartment design on the efficiency of CO 2 electrolyzers. Energy & Environmental Science 2023, 16 (11) , 5265-5273. https://doi.org/10.1039/D3EE02243A
    38. Francesco Bernasconi, Alessandro Senocrate, Peter Kraus, Corsin Battaglia. Enhancing C ≥2 product selectivity in electrochemical CO 2 reduction by controlling the microstructure of gas diffusion electrodes. EES Catalysis 2023, 1 (6) , 1009-1016. https://doi.org/10.1039/D3EY00140G
    39. Christina Martens, Bernhard Schmid, Hermann Tempel, Rüdiger-A. Eichel. CO 2 flow electrolysis – limiting impact of heat and gas evolution in the electrolyte gap on current density. Green Chemistry 2023, 25 (19) , 7794-7806. https://doi.org/10.1039/D3GC02140H
    40. Zixuan Zhao, Hongtao Wang, Qi Yu, Soumendra Roy, Xiaohu Yu. Photo-/electrocatalytic approaches to CO2 conversion on Cu2O-based catalysts. Applied Catalysis A: General 2023, 667 , 119445. https://doi.org/10.1016/j.apcata.2023.119445
    41. Menglong Liu, Huifang Hu, Ying Kong, Iván Zelocualtecatl Montiel, Viliam Kolivoška, Alexander V. Rudnev, Yuhui Hou, Rolf Erni, Soma Vesztergom, Peter Broekmann. The role of ionomers in the electrolyte management of zero-gap MEA-based CO2 electrolysers: A Fumion vs. Nafion comparison. Applied Catalysis B: Environmental 2023, 335 , 122885. https://doi.org/10.1016/j.apcatb.2023.122885
    42. Zhengying Zhang, Lilong Xiong, Shixin Wang, Yuehong Xie, Wenzhi You, Xianfeng Du. A review of the Al-gas batteries and perspectives for a “Real” Al-air battery. Journal of Power Sources 2023, 580 , 233375. https://doi.org/10.1016/j.jpowsour.2023.233375
    43. Verena Theußl, Henning Weinrich, Christine Heume, Krzysztof Dzieciol, Bernhard Schmid, Hans Kungl, Hermann Tempel, Rüdiger‐A. Eichel. Impact of the Carbon Substrate for Gas Diffusion Electrodes on the Electroreduction of CO 2 to Formate. ChemElectroChem 2023, 10 (17) https://doi.org/10.1002/celc.202300121
    44. Claudio Ampelli, Francesco Tavella, Daniele Giusi, Angela Mercedes Ronsisvalle, Siglinda Perathoner, Gabriele Centi. Electrode and cell design for CO2 reduction: A viewpoint. Catalysis Today 2023, 421 , 114217. https://doi.org/10.1016/j.cattod.2023.114217
    45. Qixing Zhang, Dan Ren, Jing Gao, Zhongke Wang, Juan Wang, Sanjiang Pan, Manjing Wang, Jingshan Luo, Ying Zhao, Michael Grätzel, Xiaodan Zhang. Regulated CO adsorption by the electrode with OH− repulsive property for enhancing C–C coupling. Green Chemical Engineering 2023, 4 (3) , 331-337. https://doi.org/10.1016/j.gce.2022.07.007
    46. Artur Bekisch, Karl Skadell, Johannes Ast, Matthias Schulz, Roland Weidl, Silke Christiansen, Michael Stelter. Influence of pore size on mass transport: Bifunctional MnOx-coated nickel foam vs carbon corrosion prone commercial GDE in alkaline electrolyte. International Journal of Hydrogen Energy 2023, 145 https://doi.org/10.1016/j.ijhydene.2023.07.251
    47. Hongping Yu, Weiqiang Tang, Xiaofei Xu, Shuangliang Zhao. Molecular interaction-based reaction-diffusion coupling within catalytic nanochannels. Journal of Molecular Liquids 2023, 386 , 122518. https://doi.org/10.1016/j.molliq.2023.122518
    48. Jing-Wen DuanMu, Min-Rui Gao. Advances in bio-inspired electrocatalysts for clean energy future. Nano Research 2023, 37 https://doi.org/10.1007/s12274-023-5977-3
    49. Changfan Xu, Yulian Dong, Huaping Zhao, Yong Lei. CO 2 Conversion Toward Real‐World Applications: Electrocatalysis versus CO 2 Batteries. Advanced Functional Materials 2023, 33 (32) https://doi.org/10.1002/adfm.202300926
    50. Zheng Zhang, Xin Huang, Zhou Chen, Junjiang Zhu, Balázs Endrődi, Csaba Janáky, Dehui Deng. Membrane Electrode Assembly for Electrocatalytic CO 2 Reduction: Principle and Application. Angewandte Chemie 2023, 135 (28) https://doi.org/10.1002/ange.202302789
    51. Zheng Zhang, Xin Huang, Zhou Chen, Junjiang Zhu, Balázs Endrődi, Csaba Janáky, Dehui Deng. Membrane Electrode Assembly for Electrocatalytic CO 2 Reduction: Principle and Application. Angewandte Chemie International Edition 2023, 62 (28) https://doi.org/10.1002/anie.202302789
    52. Ruinan He, Nengneng Xu, Israr Masood ul Hasan, Luwei Peng, Lulu Li, Haitao Huang, Jinli Qiao. Advances in electrolyzer design and development for electrochemical CO 2 reduction. EcoMat 2023, 5 (7) https://doi.org/10.1002/eom2.12346
    53. Surani Bin Dolmanan, Annette Böhme, Ziting Fan, Alex J. King, Aidan Q. Fenwick, Albertus Denny Handoko, Wan Ru Leow, Adam Z. Weber, Xinbin Ma, Edwin Khoo, Harry A. Atwater, Yanwei Lum. Local microenvironment tuning induces switching between electrochemical CO 2 reduction pathways. Journal of Materials Chemistry A 2023, 11 (25) , 13493-13501. https://doi.org/10.1039/D3TA02558F
    54. Hui Kang, Jun Ma, Siglinda Perathoner, Wei Chu, Gabriele Centi, Yuefeng Liu. Understanding the complexity in bridging thermal and electrocatalytic methanation of CO 2. Chemical Society Reviews 2023, 52 (11) , 3627-3662. https://doi.org/10.1039/D2CS00214K
    55. Dan Wang, Junjun Mao, Chenchen Zhang, Jiawei Zhang, Junshan Li, Ying Zhang, Yongfa Zhu. Modulating microenvironments to enhance CO2 electroreduction performance. eScience 2023, 3 (3) , 100119. https://doi.org/10.1016/j.esci.2023.100119
    56. Haocheng Xiong, Jing Li, Donghuan Wu, Bingjun Xu, Qi Lu. Benchmarking of commercial Cu catalysts in CO 2 electro-reduction using a gas-diffusion type microfluidic flow electrolyzer. Chemical Communications 2023, 59 (37) , 5615-5618. https://doi.org/10.1039/D3CC00705G
    57. Agnes E. Thorarinsdottir, Daniel P. Erdosy, Cyrille Costentin, Jarad A. Mason, Daniel G. Nocera. Enhanced activity for the oxygen reduction reaction in microporous water. Nature Catalysis 2023, 6 (5) , 425-434. https://doi.org/10.1038/s41929-023-00958-9
    58. Patrick Wilde, Anil Özden, Henrik Winter, Thomas Quast, Jonas Weidner, Stefan Dieckhöfer, João R. C. Junqueira, Matthias Metzner, Willi Peter, Werner Leske, Denis Öhl, Tim Bobrowski, Thomas Turek, Wolfgang Schuhmann. Sprayed Ag oxygen reduction reaction gas‐diffusion electrodes for the electrocatalytic reduction of CO 2 to CO. Applied Research 2023, 2 (2) https://doi.org/10.1002/appl.202200081
    59. Chen-Cheng Liao, Tsung-Han Tsai, Chun-Chih Chang, Ming-Kang Tsai. The use of plate-type electric force field for the explicit simulations of electrochemical CO dimerization on Cu(1 1 1) surface. Chemical Physics 2023, 568 , 111821. https://doi.org/10.1016/j.chemphys.2023.111821
    60. Tianyu Zhang, Zhengyuan Li, Ashok Kumar Ummireddi, Jingjie Wu. Navigating CO utilization in tandem electrocatalysis of CO2. Trends in Chemistry 2023, 5 (4) , 252-266. https://doi.org/10.1016/j.trechm.2022.12.003
    61. Huifang Hu, Ying Kong, Menglong Liu, Viliam Kolivoška, Alexander V. Rudnev, Yuhui Hou, Rolf Erni, Soma Vesztergom, Peter Broekmann. Effective perspiration is essential to uphold the stability of zero-gap MEA-based cathodes used in CO 2 electrolysers. Journal of Materials Chemistry A 2023, 11 (10) , 5083-5094. https://doi.org/10.1039/D2TA06965B
    62. Dorottya Hursán, Csaba Janáky. Operando characterization of continuous flow CO 2 electrolyzers: current status and future prospects. Chemical Communications 2023, 59 (11) , 1395-1414. https://doi.org/10.1039/D2CC06065E
    63. Fengxia Deng, Jizhou Jiang, Ignasi Sirés. State-of-the-art review and bibliometric analysis on electro-Fenton process. Carbon Letters 2023, 33 (1) , 17-34. https://doi.org/10.1007/s42823-022-00420-z
    64. Shintaro Kato, Takuya Hashimoto, Kazuyuki Iwase, Takashi Harada, Shuji Nakanishi, Kazuhide Kamiya. Selective and high-rate CO 2 electroreduction by metal-doped covalent triazine frameworks: a computational and experimental hybrid approach. Chemical Science 2023, 14 (3) , 613-620. https://doi.org/10.1039/D2SC03754H
    65. Qiucheng Xu, Aoni Xu, Sahil Garg, Asger B. Moss, Ib Chorkendorff, Thomas Bligaard, Brian Seger. Enriching Surface‐Accessible CO 2 in the Zero‐Gap Anion‐Exchange‐Membrane‐Based CO 2 Electrolyzer. Angewandte Chemie 2023, 135 (3) https://doi.org/10.1002/ange.202214383
    66. Qiucheng Xu, Aoni Xu, Sahil Garg, Asger B. Moss, Ib Chorkendorff, Thomas Bligaard, Brian Seger. Enriching Surface‐Accessible CO 2 in the Zero‐Gap Anion‐Exchange‐Membrane‐Based CO 2 Electrolyzer. Angewandte Chemie International Edition 2023, 62 (3) https://doi.org/10.1002/anie.202214383
    67. Shaolong Wang, Dingding Ye, Xun Zhu, Yang Yang, Jinhong Chen, Zhenfei Liu, Rong Chen, Qiang Liao. Beyond the catalyst: A robust and omnidirectional hydrophobic triple-phase architecture for ameliorating air-breathing H2O2 electrosynthesis and wastewater remediation. Separation and Purification Technology 2023, 305 , 122397. https://doi.org/10.1016/j.seppur.2022.122397
    68. Dae‐Hyun Nam, Osama Shekhah, Adnan Ozden, Christopher McCallum, Fengwang Li, Xue Wang, Yanwei Lum, Taemin Lee, Jun Li, Joshua Wicks, Andrew Johnston, David Sinton, Mohamed Eddaoudi, Edward H. Sargent. High‐Rate and Selective CO 2 Electrolysis to Ethylene via Metal–Organic‐Framework‐Augmented CO 2 Availability. Advanced Materials 2022, 34 (51) https://doi.org/10.1002/adma.202207088
    69. Dan Wu, Renfei Feng, Chenyu Xu, Peng-Fei Sui, Jiujun Zhang, Xian-Zhu Fu, Jing-Li Luo. Regulating the Electron Localization of Metallic Bismuth for Boosting CO2 Electroreduction. Nano-Micro Letters 2022, 14 (1) https://doi.org/10.1007/s40820-021-00772-7
    70. Mengran Li, Erdem Irtem, Hugo-Pieter Iglesias van Montfort, Maryam Abdinejad, Thomas Burdyny. Energy comparison of sequential and integrated CO2 capture and electrochemical conversion. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-33145-8
    71. H. Yildirim Erbil. Precursor film formation on catalyst–electrolyte–gas boundaries during CO 2 electroreduction with gas diffusion electrodes. Catalysis Science & Technology 2022, 12 (23) , 6933-6944. https://doi.org/10.1039/D2CY01576E
    72. Weitian Wang, Zhiqiang Xie, Kui Li, Shule Yu, Lei Ding, Feng-Yuan Zhang. Recent progress in in-situ visualization of electrochemical reactions in electrochemical energy devices. Current Opinion in Electrochemistry 2022, 35 , 101088. https://doi.org/10.1016/j.coelec.2022.101088
    73. Ifan E L Stephens, Karen Chan, Alexander Bagger, Shannon W Boettcher, Julien Bonin, Etienne Boutin, Aya K Buckley, Raffaella Buonsanti, Etosha R Cave, Xiaoxia Chang, See Wee Chee, Alisson H M da Silva, Phil de Luna, Oliver Einsle, Balázs Endrődi, Maria Escudero-Escribano, Jorge V Ferreira de Araujo, Marta C Figueiredo, Christopher Hahn, Kentaro U Hansen, Sophia Haussener, Sara Hunegnaw, Ziyang Huo, Yun Jeong Hwang, Csaba Janáky, Buddhinie S Jayathilake, Feng Jiao, Zarko P Jovanov, Parisa Karimi, Marc T M Koper, Kendra P Kuhl, Woong Hee Lee, Zhiqin Liang, Xuan Liu, Sichao Ma, Ming Ma, Hyung-Suk Oh, Marc Robert, Beatriz Roldan Cuenya, Jan Rossmeisl, Claudie Roy, Mary P Ryan, Edward H Sargent, Paula Sebastián-Pascual, Brian Seger, Ludmilla Steier, Peter Strasser, Ana Sofia Varela, Rafaël E Vos, Xue Wang, Bingjun Xu, Hossein Yadegari, Yuxiang Zhou. 2022 roadmap on low temperature electrochemical CO 2 reduction. Journal of Physics: Energy 2022, 4 (4) , 042003. https://doi.org/10.1088/2515-7655/ac7823
    74. Tianyu Zhang, Zhengyuan Li, Xiang Lyu, Jithu Raj, Guangqi Zhang, Hyunsik Kim, Xiangning Wang, Soryong Chae, Lisa Lemen, Vesselin N. Shanov, Jingjie Wu. The Conventional Gas Diffusion Electrode May Not Be Resistant to Flooding during CO 2 /CO Reduction. Journal of The Electrochemical Society 2022, 169 (10) , 104506. https://doi.org/10.1149/1945-7111/ac9b96
    75. Jiayi Tang, Ellen Weiss, Zongping Shao. Advances in cutting‐edge electrode engineering toward CO 2 electrolysis at high current density and selectivity: A mini‐review. Carbon Neutralization 2022, 1 (2) , 140-158. https://doi.org/10.1002/cnl2.21
    76. Ying Kong, Menglong Liu, Huifang Hu, Yuhui Hou, Soma Vesztergom, María de Jesus Gálvez‐Vázquez, Iván Zelocualtecatl Montiel, Viliam Kolivoška, Peter Broekmann. Cracks as Efficient Tools to Mitigate Flooding in Gas Diffusion Electrodes Used for the Electrochemical Reduction of Carbon Dioxide. Small Methods 2022, 6 (9) https://doi.org/10.1002/smtd.202200369
    77. Lingting Ye, Zhibo Shang, Kui Xie. Selective Oxidative Coupling of Methane to Ethylene in a Solid Oxide Electrolyser Based on Porous Single‐Crystalline CeO 2 Monoliths. Angewandte Chemie 2022, 134 (32) https://doi.org/10.1002/ange.202207211
    78. Lingting Ye, Zhibo Shang, Kui Xie. Selective Oxidative Coupling of Methane to Ethylene in a Solid Oxide Electrolyser Based on Porous Single‐Crystalline CeO 2 Monoliths. Angewandte Chemie International Edition 2022, 61 (32) https://doi.org/10.1002/anie.202207211
    79. Run Shi, Lu Shang, Chao Zhou, Yunxuan Zhao, Tierui Zhang. Interfacial wettability and mass transfer characterizations for gas–liquid–solid triple‐phase catalysis. Exploration 2022, 2 (3) https://doi.org/10.1002/EXP.20210046
    80. Yijie Wang, Yuke Chen, Yiwei Zhao, Jiayuan Yu, Zhen Liu, Yujie Shi, Hong Liu, Xiao Li, Weijia Zhou. Laser-fabricated channeled Cu6Sn5/Sn as electrocatalyst and gas diffusion electrode for efficient CO2 electroreduction to formate. Applied Catalysis B: Environmental 2022, 307 , 120991. https://doi.org/10.1016/j.apcatb.2021.120991
    81. Marco Löffelholz, Jens Osiewacz, Alexander Lüken, Karen Perrey, Andreas Bulan, Thomas Turek. Modeling electrochemical CO 2 reduction at silver gas diffusion electrodes using a TFFA approach. Chemical Engineering Journal 2022, 435 , 134920. https://doi.org/10.1016/j.cej.2022.134920
    82. Huining Huang, Run Shi, Zhenhua Li, Jiaqi Zhao, Chenliang Su, Tierui Zhang. Triphase Photocatalytic CO 2 Reduction over Silver‐Decorated Titanium Oxide at a Gas–Water Boundary. Angewandte Chemie 2022, 134 (17) https://doi.org/10.1002/ange.202200802
    83. Huining Huang, Run Shi, Zhenhua Li, Jiaqi Zhao, Chenliang Su, Tierui Zhang. Triphase Photocatalytic CO 2 Reduction over Silver‐Decorated Titanium Oxide at a Gas–Water Boundary. Angewandte Chemie International Edition 2022, 61 (17) https://doi.org/10.1002/anie.202200802
    84. Alina Gawel, Theresa Jaster, Daniel Siegmund, Johannes Holzmann, Heiko Lohmann, Elias Klemm, Ulf-Peter Apfel. Electrochemical CO2 reduction - The macroscopic world of electrode design, reactor concepts & economic aspects. iScience 2022, 25 (4) , 104011. https://doi.org/10.1016/j.isci.2022.104011
    85. Ying Kong, Huifang Hu, Menglong Liu, Yuhui Hou, Viliam Kolivoška, Soma Vesztergom, Peter Broekmann. Visualisation and quantification of flooding phenomena in gas diffusion electrodes used for electrochemical CO 2 reduction: A combined EDX/ICP–MS approach. Journal of Catalysis 2022, 408 , 1-8. https://doi.org/10.1016/j.jcat.2022.02.014
    86. Kayo KOIKE, Miyuki NARA, Minori FUKUSHIMA, Hyojung BAE, Jun-Seok HA, Katsushi FUJII, Satoshi WADA. Effects of Ag Nanoparticle Coated Metal Electrodes on Electrochemical CO2 Reduction in Aqueous KHCO3. Electrochemistry 2022, 90 (3) , 037009-037009. https://doi.org/10.5796/electrochemistry.21-00133
    87. Thi Ha My Pham, Jie Zhang, Mo Li, Tzu‐Hsien Shen, Youngdon Ko, Vasiliki Tileli, Wen Luo, Andreas Züttel. Enhanced Electrocatalytic CO 2 Reduction to C 2+ Products by Adjusting the Local Reaction Environment with Polymer Binders. Advanced Energy Materials 2022, 12 (9) https://doi.org/10.1002/aenm.202103663
    88. Wen-Wen Tian, Jin-Tao Ren, Xian-Wei Lv, Zhong-Yong Yuan. A “gas-breathing” integrated air diffusion electrode design with improved oxygen utilization efficiency for high-performance Zn-air batteries. Chemical Engineering Journal 2022, 431 , 133210. https://doi.org/10.1016/j.cej.2021.133210
    89. Zhuo Xing, Kaige Shi, Xun Hu, Xiaofeng Feng. Beyond catalytic materials: Controlling local gas/liquid environment in the catalyst layer for CO2 electrolysis. Journal of Energy Chemistry 2022, 66 , 45-51. https://doi.org/10.1016/j.jechem.2021.07.006
    90. Zishuai Zhang, Eric W. Lees, Faezeh Habibzadeh, Danielle A. Salvatore, Shaoxuan Ren, Grace L. Simpson, Danika G. Wheeler, Alyssa Liu, Curtis P. Berlinguette. Porous metal electrodes enable efficient electrolysis of carbon capture solutions. Energy & Environmental Science 2022, 15 (2) , 705-713. https://doi.org/10.1039/D1EE02608A
    91. Yuwen Cheng, Xiaojian Xu, Yongtao Li, Yumin Zhang, Yan Song. CO2 reduction mechanism on the Nb2CO2 MXene surface: Effect of nonmetal and metal modification. Computational Materials Science 2022, 202 , 110971. https://doi.org/10.1016/j.commatsci.2021.110971
    92. Yuming Wu, Sahil Garg, Mengran Li, Mohamed Nazmi Idros, Zhiheng Li, Rijia Lin, Jian Chen, Guoxiong Wang, Thomas E. Rufford. Effects of microporous layer on electrolyte flooding in gas diffusion electrodes and selectivity of CO2 electrolysis to CO. Journal of Power Sources 2022, 522 , 230998. https://doi.org/10.1016/j.jpowsour.2022.230998
    93. Faria Huq, Ignacio Sanjuán, Sabrina Baha, Michael Braun, Aleksander Kostka, Vimanshu Chanda, João R. C. Junqueira, Nivedita Sikdar, Alfred Ludwig, Corina Andronescu. Influence of the PTFE Membrane Thickness on the CO 2 Electroreduction Performance of Sputtered Cu‐PTFE Gas Diffusion Electrodes. ChemElectroChem 2022, 9 (1) https://doi.org/10.1002/celc.202101279
    94. Andreas Borgschulte, Jasmin Terreni, Benjamin Fumey, Olga Sambalova, Emanuel Billeter. Short-Lived Interfaces in Energy Materials. Frontiers in Energy Research 2022, 9 https://doi.org/10.3389/fenrg.2021.784082
    95. Junnan Li, Nikolay Kornienko. Electrocatalytic carbon dioxide reduction in acid. Chem Catalysis 2022, 2 (1) , 29-38. https://doi.org/10.1016/j.checat.2021.10.016
    96. Xiaohan Yu, Wei Huang, Yanguang Li. Controllable Synthesis and Photocatalytic Applications of Two-dimensional Covalent Organic Frameworks. Acta Chimica Sinica 2022, 80 (11) , 1494. https://doi.org/10.6023/A22070303
    97. João R. C. Junqueira, Peter B. O'Mara, Patrick Wilde, Stefan Dieckhöfer, Tania M. Benedetti, Corina Andronescu, Richard D. Tilley, J. Justin Gooding, Wolfgang Schuhmann. Combining Nanoconfinement in Ag Core/Porous Cu Shell Nanoparticles with Gas Diffusion Electrodes for Improved Electrocatalytic Carbon Dioxide Reduction. ChemElectroChem 2021, 8 (24) , 4848-4853. https://doi.org/10.1002/celc.202100906
    98. Zeping Wang, Run Shi, Tierui Zhang. Three-phase electrochemistry for green ethylene production. Current Opinion in Electrochemistry 2021, 30 , 100789. https://doi.org/10.1016/j.coelec.2021.100789
    99. J.W. Blake, J.T. Padding, J.W. Haverkort. Analytical modelling of CO 2 reduction in gas-diffusion electrode catalyst layers. Electrochimica Acta 2021, 393 , 138987. https://doi.org/10.1016/j.electacta.2021.138987
    100. Mengran Li, Mohamed Nazmi Idros, Yuming Wu, Thomas Burdyny, Sahil Garg, Xiu Song Zhao, Geoff Wang, Thomas E. Rufford. The role of electrode wettability in electrochemical reduction of carbon dioxide. Journal of Materials Chemistry A 2021, 9 (35) , 19369-19409. https://doi.org/10.1039/D1TA03636J
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect