ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch ArticleNEXT

Electrocatalytic and Solar-Driven Reduction of Aqueous CO2 with Molecular Cobalt Phthalocyanine–Metal Oxide Hybrid Materials

  • Souvik Roy
    Souvik Roy
    Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
    School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, U.K.
    More by Souvik Roy
  • Melanie Miller
    Melanie Miller
    Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
  • Julien Warnan
    Julien Warnan
    Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
  • Jane J. Leung
    Jane J. Leung
    Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
  • Constantin D. Sahm
    Constantin D. Sahm
    Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
  • , and 
  • Erwin Reisner*
    Erwin Reisner
    Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
    *Email for E.R.: [email protected]
Cite this: ACS Catal. 2021, 11, 3, 1868–1876
Publication Date (Web):January 27, 2021
https://doi.org/10.1021/acscatal.0c04744
Copyright © 2021 American Chemical Society

    Article Views

    5517

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    Electrolytic and solar-driven reduction of CO2 to CO using heterogenized molecular catalysts are promising approaches toward the production of a key chemical feedstock, as well as mitigating CO2 emissions. Here, we report a molecular cobalt phthalocyanine catalyst bearing four phosphonic acid anchoring groups (CoPcP) that can be immobilized on metal oxide electrodes. A hybrid electrode with CoPcP on mesoporous TiO2 (mesoTiO2) converts CO2 to CO in aqueous electrolyte solution at a near-neutral pH (7.3) with high selectivity and a turnover number for CO (TONCO) of 1949 ± 5 after 2 h of controlled-potential electrolysis at −1.09 V against the standard hydrogen electrode (∼550 mV overpotential). In situ UV–visible spectroelectrochemical investigations alluded to a catalytic mechanism that involves non-rate-limiting CO2 binding to the doubly reduced catalyst. Finally, the integration of the mesoTiO2|CoPcP assembly with a p-type silicon (Si) photoelectrode allowed the construction of a benchmark precious-metal-free molecular photocathode that achieves a TONCO of 939 ± 132 with 66% selectivity for CO (CO/H2 = 1.9) under fully aqueous conditions. The electrocatalytic and photoelectrochemical (PEC) activities of CoPcP were compared to those of state of the art synthetic and enzymatic CO2 reduction catalysts, demonstrating the excellent performance of CoPcP and its suitability for integration in tandem PEC devices.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscatal.0c04744.

    • Synthetic details for CoPcP, 1H and 13C NMR of the compounds, SEM images of mesoTiO2|CoPcP electrodes with EDX mapping, XPS data, additional data on electrolysis, photoelectrolysis, and gas chromatography, 13CO2 labeling experiment, and spectroelectrochemical data on mesoITO electrodes (PDF)

    • Electrochromic behavior of the mesoITO|CoPcP electrode (MP4)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 46 publications.

    1. Julian Guerrero, Elisabeth Bajard, Nathanaelle Schneider, Fabienne Dumoulin, Daniel Lincot, Umit Isci, Marc Robert, Negar Naghavi. Multifunctional Photovoltaic Window Layers for Solar-Driven Catalytic Conversion of CO2: The Case of CIGS Solar Cells. ACS Energy Letters 2023, 8 (8) , 3488-3493. https://doi.org/10.1021/acsenergylett.3c01205
    2. Jia-Wei Wang, Xian Zhang, Lucia Velasco, Michael Karnahl, Zizi Li, Zhi-Mei Luo, Yanjun Huang, Jin Yu, Wenhui Hu, Xiaoyi Zhang, Kosei Yamauchi, Ken Sakai, Dooshaye Moonshiram, Gangfeng Ouyang. Precious-Metal-Free CO2 Photoreduction Boosted by Dynamic Coordinative Interaction between Pyridine-Tethered Cu(I) Sensitizers and a Co(II) Catalyst. JACS Au 2023, 3 (7) , 1984-1997. https://doi.org/10.1021/jacsau.3c00218
    3. Shihuai Wang, Xutao Gao, Xiaoyong Mo, David Lee Phillips, Edmund C.M. Tse. Immobilization of a Molecular Copper Complex and a Carboxylate-Terminated Cocatalyst on a Metal Oxide Electrode for Enhanced Electrocatalytic Oxygen Reduction. ACS Catalysis 2023, 13 (8) , 5599-5608. https://doi.org/10.1021/acscatal.3c00384
    4. Giada Bedendi, Lilian D. De Moura Torquato, Sophie Webb, Cécile Cadoux, Amogh Kulkarni, Selmihan Sahin, Plinio Maroni, Ross D. Milton, Matteo Grattieri. Enzymatic and Microbial Electrochemistry: Approaches and Methods. ACS Measurement Science Au 2022, 2 (6) , 517-541. https://doi.org/10.1021/acsmeasuresciau.2c00042
    5. Laura Buglioni, Fabian Raymenants, Aidan Slattery, Stefan D. A. Zondag, Timothy Noël. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chemical Reviews 2022, 122 (2) , 2752-2906. https://doi.org/10.1021/acs.chemrev.1c00332
    6. Yan Yue, Peiyu Cai, Kai Xu, Hanying Li, Hongzheng Chen, Hong-Cai Zhou, Ning Huang. Stable Bimetallic Polyphthalocyanine Covalent Organic Frameworks as Superior Electrocatalysts. Journal of the American Chemical Society 2021, 143 (43) , 18052-18060. https://doi.org/10.1021/jacs.1c06238
    7. Nicolas Queyriaux. Redox-Active Ligands in Electroassisted Catalytic H+ and CO2 Reductions: Benefits and Risks. ACS Catalysis 2021, 11 (7) , 4024-4035. https://doi.org/10.1021/acscatal.1c00237
    8. Peilei He. Organic–Inorganic Hybrid Materials for CO 2 Photo/Electro‐Conversion. 2023, 93-110. https://doi.org/10.1002/9783527841806.ch5
    9. Jose Antonio Abarca, Guillermo Díaz-Sainz, Ivan Merino-Garcia, Angel Irabien, Jonathan Albo. Photoelectrochemical CO2 electrolyzers: From photoelectrode fabrication to reactor configuration. Journal of Energy Chemistry 2023, 85 , 455-480. https://doi.org/10.1016/j.jechem.2023.06.032
    10. Hao Zhang, Jiefeng Diao, Yonghui Liu, Han Zhao, Bryan K. Y. Ng, Zhiyuan Ding, Zhenyu Guo, Huanxin Li, Jun Jia, Chang Yu, Fang Xie, Graeme Henkelman, Maria‐Magdalena Titirici, John Robertson, Peter Nellist, Chunying Duan, Yuzheng Guo, D. Jason Riley, Jieshan Qiu. In‐Situ‐Grown Cu Dendrites Plasmonically Enhance Electrocatalytic Hydrogen Evolution on Facet‐Engineered Cu 2 O. Advanced Materials 2023, 9 https://doi.org/10.1002/adma.202305742
    11. Alexey V. Yagodin, Ilya A. Mikheev, Dmitry A. Bunin, Anna A. Sinelshchikova, Alexander G. Martynov, Yulia G. Gorbunova, Aslan Yu Tsivadze. Tetraquinoxalinoporphyrazine – π-extended NIR-absorbing photosensitizer with improved photostability. Dyes and Pigments 2023, 216 , 111326. https://doi.org/10.1016/j.dyepig.2023.111326
    12. Ziang Shang, Xueting Feng, Guanzhen Chen, Rong Qin, Yunhu Han. Recent Advances on Single‐Atom Catalysts for Photocatalytic CO 2 Reduction. Small 2023, 414 https://doi.org/10.1002/smll.202304975
    13. Zhihe Wei, Yanhui Su, Weiyi Pan, Junxia Shen, Ronglei Fan, Wenjun Yang, Zhao Deng, Mingrong Shen, Yang Peng. Covalently Grafting Graphene onto Si Photocathode to Expedite Aqueous Photoelectrochemical CO 2 Reduction. Angewandte Chemie 2023, 135 (28) https://doi.org/10.1002/ange.202305558
    14. Zhihe Wei, Yanhui Su, Weiyi Pan, Junxia Shen, Ronglei Fan, Wenjun Yang, Zhao Deng, Mingrong Shen, Yang Peng. Covalently Grafting Graphene onto Si Photocathode to Expedite Aqueous Photoelectrochemical CO 2 Reduction. Angewandte Chemie International Edition 2023, 62 (28) https://doi.org/10.1002/anie.202305558
    15. Suraj Gupta, Rohan Fernandes, Rupali Patel, Matjaž Spreitzer, Nainesh Patel. A review of cobalt-based catalysts for sustainable energy and environmental applications. Applied Catalysis A: General 2023, 661 , 119254. https://doi.org/10.1016/j.apcata.2023.119254
    16. Yucheng Jin, Xiaoning Zhan, Yingting Zheng, Hailong Wang, Xiaolin Liu, Baoqiu Yu, Xu Ding, Tianyu Zheng, Kang Wang, Dongdong Qi, Jianzhuang Jiang. In-situ growing nickel phthalocyanine supramolecular structure on carbon nanotubes for efficient electrochemical CO2 conversion. Applied Catalysis B: Environmental 2023, 327 , 122446. https://doi.org/10.1016/j.apcatb.2023.122446
    17. Jian Zhao, Honghong Lyu, Zhiqiang Wang, Chunlu Ma, Shuna Jia, Wenwen Kong, Boxiong Shen. Phthalocyanine and porphyrin catalysts for electrocatalytic reduction of carbon dioxide: Progress in regulation strategies and applications. Separation and Purification Technology 2023, 312 , 123404. https://doi.org/10.1016/j.seppur.2023.123404
    18. Kangli Xu, Qingming Zhang, Xiaoxia Zhou, Min Zhu, Hangrong Chen. Recent Progress and Perspectives on Photocathode Materials for CO2 Catalytic Reduction. Nanomaterials 2023, 13 (10) , 1683. https://doi.org/10.3390/nano13101683
    19. Hironobu Ozawa, Ryoma Kikunaga, Hajime Suzuki, Ryu Abe, Ken Sakai. Efficient syngas production with controllable CO : H 2 ratios based on aqueous electrocatalytic CO 2 reduction over mesoporous TiO 2 films modified with a cobalt porphyrin molecular catalyst. Sustainable Energy & Fuels 2023, 7 (7) , 1627-1632. https://doi.org/10.1039/D2SE01595A
    20. Wan Jae Dong, Zetian Mi. One-dimensional III-nitrides: towards ultrahigh efficiency, ultrahigh stability artificial photosynthesis. Journal of Materials Chemistry A 2023, 11 (11) , 5427-5459. https://doi.org/10.1039/D2TA09967E
    21. C. E. Creissen. Molecular Catalysts Immobilised on Photocathodes for Solar Fuel Generation. 2023, 120-156. https://doi.org/10.1039/9781839167768-00120
    22. Qianqi Lin. A primer to in-situ opto- and spectro-electrochemistry. Current Opinion in Electrochemistry 2023, 37 , 101201. https://doi.org/10.1016/j.coelec.2022.101201
    23. Yuanrui Li, Shutao Li, Hongwei Huang. Metal-enhanced strategies for photocatalytic and photoelectrochemical CO2 reduction. Chemical Engineering Journal 2023, 457 , 141179. https://doi.org/10.1016/j.cej.2022.141179
    24. Bo Shang, Conor L. Rooney, David J. Gallagher, Bernie T. Wang, Andrey Krayev, Hadar Shema, Oliver Leitner, Nia J. Harmon, Langqiu Xiao, Colton Sheehan, Samuel R. Bottum, Elad Gross, James F. Cahoon, Thomas E. Mallouk, Hailiang Wang. Aqueous Photoelectrochemical CO 2 Reduction to CO and Methanol over a Silicon Photocathode Functionalized with a Cobalt Phthalocyanine Molecular Catalyst. Angewandte Chemie 2023, 135 (4) https://doi.org/10.1002/ange.202215213
    25. Bo Shang, Conor L. Rooney, David J. Gallagher, Bernie T. Wang, Andrey Krayev, Hadar Shema, Oliver Leitner, Nia J. Harmon, Langqiu Xiao, Colton Sheehan, Samuel R. Bottum, Elad Gross, James F. Cahoon, Thomas E. Mallouk, Hailiang Wang. Aqueous Photoelectrochemical CO 2 Reduction to CO and Methanol over a Silicon Photocathode Functionalized with a Cobalt Phthalocyanine Molecular Catalyst. Angewandte Chemie International Edition 2023, 62 (4) https://doi.org/10.1002/anie.202215213
    26. Beatriu Domingo-Tafalla, Tamal Chatterjee, Emilio Palomares. Recent advances in the rational designing of metalloporphyrinoid-based CO2 reduction catalysts: From molecular structural tuning to the application in catalysis. Journal of Porphyrins and Phthalocyanines 2023, 27 (01n04) , 23-46. https://doi.org/10.1142/S1088424623300033
    27. Zhi‐Wen Yang, Jin‐Mei Chen, Li‐Qi Qiu, Wen‐Jun Xie, Liang‐Nian He. Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angewandte Chemie 2022, 134 (44) https://doi.org/10.1002/ange.202205301
    28. Zhi‐Wen Yang, Jin‐Mei Chen, Li‐Qi Qiu, Wen‐Jun Xie, Liang‐Nian He. Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angewandte Chemie International Edition 2022, 61 (44) https://doi.org/10.1002/anie.202205301
    29. Gaosheng Ren, Tianfu Dai, Yu Tang, Zhihui Su, Nan Xu, Weichen Du, Chengyi Dai, Xiaoxun Ma. Preparation of hydrophobic three-dimensional hierarchical porous zinc oxide for the promotion of electrochemical CO2 reduction. Journal of CO2 Utilization 2022, 65 , 102256. https://doi.org/10.1016/j.jcou.2022.102256
    30. Lutfi Kurnianditia Putri, Boon‐Junn Ng, Wee‐Jun Ong, Siang‐Piao Chai, Abdul Rahman Mohamed. Toward Excellence in Photocathode Engineering for Photoelectrochemical CO 2 Reduction: Design Rationales and Current Progress. Advanced Energy Materials 2022, 12 (41) https://doi.org/10.1002/aenm.202201093
    31. Domenico Grammatico, Andrew J. Bagnall, Ludovico Riccardi, Marc Fontecave, Bao‐Lian Su, Laurent Billon. Heterogenised Molecular Catalysts for Sustainable Electrochemical CO 2 Reduction. Angewandte Chemie 2022, 134 (38) https://doi.org/10.1002/ange.202206399
    32. Domenico Grammatico, Andrew J. Bagnall, Ludovico Riccardi, Marc Fontecave, Bao‐Lian Su, Laurent Billon. Heterogenised Molecular Catalysts for Sustainable Electrochemical CO 2 Reduction. Angewandte Chemie International Edition 2022, 61 (38) https://doi.org/10.1002/anie.202206399
    33. Halise Yalazan, Halit Kantekin, Özlem Budak, Atıf Koca. Non-peripheral tetra methoxylated pyrazoline bearing CoII, CuII and MnIIICl phthalocyanines: Syntheses, electrochemistry and spectroelectrochemistry. Journal of Organometallic Chemistry 2022, 973-974 , 122405. https://doi.org/10.1016/j.jorganchem.2022.122405
    34. Deng Li, Kaixin Yang, Juhong Lian, Junqing Yan, Shengzhong (Frank) Liu. Powering the World with Solar Fuels from Photoelectrochemical CO 2 Reduction: Basic Principles and Recent Advances. Advanced Energy Materials 2022, 12 (31) https://doi.org/10.1002/aenm.202201070
    35. Zhihe Wei, Qiaoqiao Mu, Ronglei Fan, Yanhui Su, Yongtao Lu, Zhao Deng, Mingrong Shen, Yang Peng. Cupric porphyrin frameworks on multi-junction silicon photocathodes to expedite the kinetics of CO 2 turnover. Nanoscale 2022, 14 (25) , 8906-8913. https://doi.org/10.1039/D2NR01921C
    36. Zhibing Wen, Suxian Xu, Yong Zhu, Guoquan Liu, Hua Gao, Licheng Sun, Fei Li. Aqueous CO 2 Reduction on Si Photocathodes Functionalized by Cobalt Molecular Catalysts/Carbon Nanotubes. Angewandte Chemie International Edition 2022, 61 (24) https://doi.org/10.1002/anie.202201086
    37. Zhibing Wen, Suxian Xu, Yong Zhu, Guoquan Liu, Hua Gao, Licheng Sun, Fei Li. Aqueous CO 2 Reduction on Si Photocathodes Functionalized by Cobalt Molecular Catalysts/Carbon Nanotubes. Angewandte Chemie 2022, 134 (24) https://doi.org/10.1002/ange.202201086
    38. Nazli Farajzadeh, Çetin Çelik, Sadin Özdemir, Serpil Gonca, Makbule Burkut Koçak. Biological properties of novel mono and double-decker hexadeca-substituted metal phthalocyanines. New Journal of Chemistry 2022, 46 (15) , 7177-7186. https://doi.org/10.1039/D1NJ05721A
    39. Yucong Miao, Mingfei Shao. Photoelectrocatalysis for high-value-added chemicals production. Chinese Journal of Catalysis 2022, 43 (3) , 595-610. https://doi.org/10.1016/S1872-2067(21)63923-2
    40. Yang Zhang, Donglai Pan, Ying Tao, Huan Shang, Dieqing Zhang, Guisheng Li, Hexing Li. Photoelectrocatalytic Reduction of CO 2 to Syngas via SnO x ‐Enhanced Cu 2 O Nanowires Photocathodes. Advanced Functional Materials 2022, 32 (8) https://doi.org/10.1002/adfm.202109600
    41. Siphesihle Robin Nxele, Reitumetse Nkhahle, Tebello Nyokong. The synergistic effects of coupling Au nanoparticles with an alkynyl Co(II) phthalocyanine on the detection of prostate specific antigen. Talanta 2022, 237 , 122948. https://doi.org/10.1016/j.talanta.2021.122948
    42. Halise Yalazan, Özlem Budak, Halit Kantekin, Atıf Koca. Non-Peripheral Tetra Methoxylated Pyrazoline Bearing Coii, Cuii and Mniiicl Phthalocyanines: Syntheses, Electrochemistry and Spectroelectrochemistry. SSRN Electronic Journal 2022, 196 https://doi.org/10.2139/ssrn.4048122
    43. Halise Yalazan, Halit Kantekin, Özlem Budak, Atıf Koca. Non-Peripheral Tetra Methoxylated Pyrazoline Bearing Coii, Cuii and Mniiicl Phthalocyanines: Syntheses, Electrochemistry and Spectroelectrochemistry. SSRN Electronic Journal 2022, 196 https://doi.org/10.2139/ssrn.4066316
    44. Yu Kita, Yutaka Amao. pH-Controlled selective synthesis of lactate from pyruvate with a photoredox system of water-soluble zinc porphyrin, an electron mediator and platinum nanoparticles dispersed by polyvinylpyrrolidone. Sustainable Energy & Fuels 2021, 5 (23) , 6004-6013. https://doi.org/10.1039/D1SE01399H
    45. Ruwen Wang, Etienne Boutin, Nicolas Barreau, Fabrice Odobel, Julien Bonin, Marc Robert. Carbon Dioxide Reduction to Methanol with a Molecular Cobalt‐Catalyst‐Loaded Porous Carbon Electrode Assisted by a CIGS Photovoltaic Cell**. ChemPhotoChem 2021, 5 (8) , 705-710. https://doi.org/10.1002/cptc.202100035
    46. Hongwei Li, Wei Xu, Jinjie Qian, Ting-Ting Li. Construction of a polymeric cobalt phthalocyanine@mesoporous graphitic carbon nitride composite for efficient photocatalytic CO 2 reduction. Chemical Communications 2021, 57 (57) , 6987-6990. https://doi.org/10.1039/D1CC02468J

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect