MOF-Derived PdCo and PdMn Systems as Versatile Catalysts in Alkyne SemihydrogenationClick to copy article linkArticle link copied!
- Jordan Santiago MartinezJordan Santiago MartinezInstituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, Valencia 46022, SpainMore by Jordan Santiago Martinez
- Luigi CarpisassiLuigi CarpisassiLaboratory of Green S.O.C─Dipartimento di Chimica biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, Perugia 06123, ItalyMore by Luigi Carpisassi
- Gonzalo EgeaGonzalo EgeaInstituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, Valencia 46022, SpainMore by Gonzalo Egea
- Jaime Mazarío*Jaime Mazarío*Email: [email protected]Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, Valencia 46022, SpainMore by Jaime Mazarío
- Christian Wittee LopesChristian Wittee LopesDepartment of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-990, BrazilMore by Christian Wittee Lopes
- Carmen Mora-MorenoCarmen Mora-MorenoDivisión de Microscopía Electrónica de los Servicios Centralizados de Investigación Científica y Tecnológica de la Universidad de Cádiz (DME-UCA), Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro S/N, Puerto Real, Cádiz 11510, SpainDepartamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro S/N, Puerto Real, Cádiz 11510, SpainMore by Carmen Mora-Moreno
- Susana TrasobaresSusana TrasobaresDivisión de Microscopía Electrónica de los Servicios Centralizados de Investigación Científica y Tecnológica de la Universidad de Cádiz (DME-UCA), Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro S/N, Puerto Real, Cádiz 11510, SpainDepartamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro S/N, Puerto Real, Cádiz 11510, SpainMore by Susana Trasobares
- Luigi VaccaroLuigi VaccaroLaboratory of Green S.O.C─Dipartimento di Chimica biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, Perugia 06123, ItalyMore by Luigi Vaccaro
- Jose Juan CalvinoJose Juan CalvinoDivisión de Microscopía Electrónica de los Servicios Centralizados de Investigación Científica y Tecnológica de la Universidad de Cádiz (DME-UCA), Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro S/N, Puerto Real, Cádiz 11510, SpainDepartamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro S/N, Puerto Real, Cádiz 11510, SpainMore by Jose Juan Calvino
- Giovanni AgostiniGiovanni AgostiniALBA Synchrotron Light Facility, Carrer de la Llum 2-26, Cerdanyola del Valles, Barcelona 08290, SpainMore by Giovanni Agostini
- Pascual Oña-Burgos*Pascual Oña-Burgos*Email: [email protected]Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avda. de los Naranjos s/n, Valencia 46022, SpainMore by Pascual Oña-Burgos
Abstract
This study investigates the structure and catalytic properties of bimetallic nanocomposites derived from PdCo- and PdMn-based metal–organic frameworks. These materials, synthesized via chemical (Q) and thermal treatments (T), resulted in PdCo-QT and PdMn-QT catalysts containing Pd-based nanoparticles modified with Co or Mn and supported on N-doped carbon. Detailed characterization techniques confirm these complex structures, including high-resolution transmission electron microscopy, scanning transmission electron microscopy energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy. The catalytic performances of these materials were evaluated for the selective semihydrogenation of phenylacetylene and 4-octyne under soft conditions (1 H2 bar, room temperature) in batch reactors, demonstrating very high selectivity (≥95 mol %) toward alkenes at high conversion levels (≥94 mol %). Moreover, they displayed significant stability after five catalytic cycles with minimal leaching and highly competitive values of alkyne productivity in the semihydrogenation of phenylacetylene. The study also explored the potential of these catalysts in continuous gas-phase reactions, where PdCo-QT demonstrated remarkable catalytic activity and selectivity with a high gas hourly space velocity.
This publication is licensed under
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
Introduction
Scheme 1
Materials and Methods
Catalyst Preparation
Preparation of PdM-MOFs (M = Co or Mn)

Chemical Treatment: Preparation of PdM-Q (M = Co or Mn)
Chemical-Thermal Treatment: Preparation of PdM-QT (M = Co or Mn)
Characterization Techniques
Elemental Analysis (E.A.)
Inductively Coupled Plasma Spectrometry
Thermogravimetric Analysis
Powder X-ray Diffraction
Gas Adsorption Measurements
TEM–STEM Characterization
Field Emission Scanning Electron Microscopy
Raman Spectroscopy
X-ray Absorption Spectroscopy
X-ray Photoelectron Spectroscopy
Catalytic Tests and Stability
Liquid-Phase General Procedure
Reusability Tests
Leaching Tests (Catalyst Filtration)
Gas-Phase General Procedure
Results and Discussion
Catalyst Characterization
material | Pd wt %a | M | M wt %a | Pd/M ratio (mol %) | N wt %b | C wt %b | H wt %b | cBET surface area (m2·g–1) | dpore size (Å) |
---|---|---|---|---|---|---|---|---|---|
PdCo-QT | 27.9 | Co | 15.6 | 1:1 | 1.7 | 23.2 | 0.4 | 118 | 59 |
PdMn-QT | 36.5 | Mn | 25.1 | 1:1.4 | 1.9 | 22.0 | 0.4 | 133 | 70 |
Calculated by ICP.
Calculated by EA.
From N2-adsorption isotherm (BET method).
From N2-desorption isotherm (BJH-plot method).
Figure 1
Figure 1. Electron microscopy characterization of (1) PdCo-QT (left panel) and (2) PdMn-QT (right panel). (a,b) Representative STEM-HAADF images of the PdMn-QT catalyst; (c) representative HR-TEM image of the PdMn-QT catalyst and the measured interplanar distances. FFTs of the HRTEM images, depicting reflections characteristic of the ordered phases, are shown as insets; (d) nanoparticle size distributions.
Figure 2
Figure 2. XRD patterns of PdM synthesized materials, (a) PdCo and (b) PdMn. Note: different colors for (*) indicate different compositions.
Figure 3
Figure 3. STEM–XEDS and STEM-EELS of PdMn-QT sample. (a) HAADF image and the corresponding elemental maps extracted from the STEM-SI-XEDS: (b) Pd and (c) Mn; and (f) an area representative XEDS spectrum. (d) HAADF image; and the images corresponding to three components of the ICA analysis of the whole set of STEM-EELS-SI data, (e,g,h). (i) EELS spectrum corresponding to the three independent components, a Pd–O–Mn, a C–N–O, and an external C–O component.
Figure 4
Figure 4. STEM–EDX and STEM-EELS of PdCo-QT sample. (a,e) HAADF images; (b,f) Pd and (c,g) Co elemental maps extracted from the STEM-SI-EDS, and (d,h) representative XEDS spectra. (i) a HAADF image; and the images corresponding to three components of the ICA analysis of the whole set of STEM-EELS-SI data: a (j–l). (m) EELS spectra corresponding to the three independent components: a Pd–Co component, a C–N–O component, and an external C–O component.
Figure 5
Figure 5. XANES spectra at the (a,e) Pd K, (c) Co K and (g) Mn–K-edges, and k2 weighted |FT| EXAFS spectra of (b,f) Pd, (d) Co, and (h) Mn data of MOF-derived PdCo and PdMn samples.
Figure 6
Figure 6. Pd 3d XP spectra of (a) PdCo-based samples, (b) PdMn-based samples.
Figure 7
Figure 7. (a,b) C 1s XP spectra, (c,d) N 1s XP spectra of PdCo and PdMn-based samples, respectively. *: –CF2– contamination.
Terminal Alkyne Catalytic Results (Phenylacetylene)
Figure 8
Figure 8. (a) Conversion vs selectivity plot of various PdM-based materials used in the selective hydrogenation of phenylacetylene, (b) activity and selectivity comparison of several Pd-based materials after 7 h of phenylacetylene hydrogenation reaction. Reaction Conditions: 5 mmol of phenylacetylene, substrate/Pd molar ratio: 323/1, 5 mL EtOH, r.t., 1 bar H2, 1000 rpm. Note: PdIn-QT reported in ref (33).

entry | catalyst | time (h) | conv (%) | selec. to A (%) | TON | TOF (h–1) | productivity (galkene gcat–1 h–1) |
---|---|---|---|---|---|---|---|
1 | Pd/C commercial | 5 | 94 | 84 | 303 | 60.6 | 5.0 |
2 | Pd/Lindlar | 7 | 99 | 82 | 319 | 45.6 | 1.4 |
3 | PdCo-QT | 8 | 95 | 97 | 152.7 | 19.1 | 10.1 |
4 | PdMn-QT | 8 | 96 | 97 | 133.3 | 16.7 | 13.5 |
Reaction conditions: 5 mmol of phenylacetylene, substrate/Pd molar ratio: 323/1, 5 mL EtOH, r.t., 1 H2 bar. TON = mol of converted alkyne/mol of metal, TOF = TON·time–1.
Figure 9
Figure 9. Kinetic curves of (a) PdCo-QT, (b) PdMn-QT, (c) Pd/C commercial, and (d) Pd/Lindlar catalysts. Reaction conditions: 5 mmol of phenylacetylene, substrate/Pd molar ratio: 323/1, 5 mL EtOH, 1000 rpm, r.t., 1 H2 bar.
Catalytic Stability of PdCo, PdMn Materials in the Phenylacetylene Semihydrogenation
Figure 10
Figure 10. Catalyst filtration and stability cyclic test of PdCo-QT (left panel) and PdMn-QT (right panel) catalyst at 7 h of reaction time. Reaction conditions: 5 mmol of phenylacetylene, substrate/Pd molar ratio: 323/1, 5 mL EtOH, r.t., 1 bar H2, 1000 rpm.
Figure 11
Figure 11. Electron microscopy characterization after 5 catalytic cycles of (1) PdCo-QT (left panel) and (2) PdMn-QT (right panel). (a,b) Representative STEM-HAADF images, (c) representative HR-TEM images and the measured interplanar distances. FFTs of the HRTEM images, depicting reflections characteristic of the phases PdCo and PdMn, are shown as insets; (d) nanoparticle size distributions.
Internal Alkyne Catalytic Results (4-Octyne)
Figure 12
Figure 12. (a–d) Catalytic batch results of 4-octyne selective hydrogenation with PdCo-QT, PdMn-QT, Pd/C, and Pd-Lindlar catalysts, respectively. Reaction conditions: 5 mmol of 4-octyne, substrate/Pd molar ratio: 323/1, 5 mL EtOH, 1000 rpm, r.t., 1 bar H2.
catalyst | aalkyne conversion (mol %) | aalkene selectivity (mol %) | amolar ratio (Z/E) | balkyne conversion (mol %) | balkene selectivity (mol %) | bmolar ratio (Z/E) |
---|---|---|---|---|---|---|
PdCo-QT | 99 | 99 | 0.97 | 99 | 97 | 0.93 |
PdMn-QT | 99 | 98 | 0.94 | 99 | 97 | 0.98 |
Pd/C commercial | 99 | 0 | 99 | 0 | ||
Pd/Lindlar | 99 | 99 | 0.99 | 99 | 90 | 0.99 |
5 h.
24 h.
Reaction conditions: 5 mmol of 4-octyne, substrate/Pd mol ratio: 323/1, 5 mL EtOH, r.t., 1 bar H2, 1000 rpm.
Process Intensification Using PdCo-QT and PdMn-QT Materials

5 h.
65 h.
19 h. GHSV = mLalkyne+N2·time–1·gcat–1.
Reaction conditions: 150 °C.
Figure 13
Figure 13. Catalytic flow results of (a,c,e) phenylacetylene and (b,d,f) 4-octyne selective hydrogenation with PdCo-QT, PdMn-QT, and Pd-Lindlar catalysts, respectively. Reaction Conditions: 150 °C, see Table 4.
Conclusions
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscatal.4c07149.
Supporting information includes additional descriptions of materials and procedures used; characterization studies (TEM and XPS) on the PdM-MOF and PdM-Q materials; additional XAS data; complementary tests to evaluate the catalytic activity and the catalytic stability of the materials; and literature reference data (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgments
Financial support by Severo Ochoa centre of excellence program (CEX2021-001230-S) is gratefully acknowledged. The authors thank the financial support from the Spanish Government (PID2022-140111OB-I00, TED2021-130191B-C41, and TED2021-130191B-C44 funded by MCIN/AEI/10.13039/501100011033 and European Union NextGenerationEU/PRTR). This study forms part of the Advanced Materials program and was supported by MCIN with partial funding from European Union Next Generation EU (PRTR-C17. I1) and by Generalitat Valenciana (MFA/2022/047). In addition, this work has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 101022507. C.W.L. acknowledges the National Council for Scientific and Technological Development─CNPq/Brazil (443418/2023-3) and PPGQ-UFPR for financial support. The Italian Ministry of University and Research (MUR) is also thanked for PRIN-PNRR 2022 project “P2022XKWH7─CircularWaste” and PRIN P20223ARWAY─REWIND. HR-STEM studies were performed at the DME-UCA node of the ELECMI Spanish Unique Infrastructure (ICTS) for Electron Microscopy of Materials. Some of these experiments were performed at CLAESS and NOTOS beamlines at ALBA Synchrotron with the collaboration of ALBA staff (Eduardo Villalobos, Carlos Escudero, and Carlo Marini). A. Yuste Rodrigo is acknowledged for experimental contributions.
References
This article references 73 other publications.
- 1Crespo-Quesada, M.; Cárdenas-Lizana, F.; Dessimoz, A. L.; Kiwi-Minsker, L. Modern Trends in Catalyst and Process Design for Alkyne Hydrogenations. ACS Catal. 2012, 2 (8), 1773– 1786, DOI: 10.1021/cs300284rGoogle ScholarThere is no corresponding record for this reference.
- 2Trotuş, I. T.; Zimmermann, T.; Schüth, F. Catalytic Reactions of Acetylene: A Feedstock for the Chemical Industry Revisited. Chem. Rev. 2014, 114 (3), 1761– 1782, DOI: 10.1021/cr400357rGoogle ScholarThere is no corresponding record for this reference.
- 3Wang, Z.; Luo, Q.; Mao, S.; Wang, C.; Xiong, J.; Chen, Z.; Wang, Y. Fundamental Aspects of Alkyne Semi-Hydrogenation over Heterogeneous Catalysts. Nano Res. 2022, 15 (12), 10044– 10062, DOI: 10.1007/s12274-022-4590-1Google ScholarThere is no corresponding record for this reference.
- 4Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of Acetylene. Science 2008, 320 (5881), 1320– 1322, DOI: 10.1126/science.1156660Google ScholarThere is no corresponding record for this reference.
- 5Bridier, B.; López, N.; Pérez-Ramírez, J.; Pérez-Ramírez, J.; Bridier, B.; Lopez Dalton Trans, N.; Janssen, M.; Müller, C.; Vogt, D.; Trans, D.; Zou, X.; Sun, J.; Ajellal, N.; Carpentier, J.-F.; Guillaume, C.; Guillaume, S. M.; Helou, M.; Poirier, V.; Sarazin, Y.; Trifonov, A.; López, N. Molecular Understanding of Alkyne Hydrogenation for the Design of Selective Catalysts. Dalton Trans. 2010, 39 (36), 8412– 8419, DOI: 10.1039/c0dt00010hGoogle ScholarThere is no corresponding record for this reference.
- 6Li, X. T.; Chen, L.; Shang, C.; Liu, Z. P. Selectivity Control in Alkyne Semihydrogenation: Recent Experimental and Theoretical Progress. Chin. J. Catal. 2022, 43 (8), 1991– 2000, DOI: 10.1016/S1872-2067(21)64036-6Google ScholarThere is no corresponding record for this reference.
- 7Chinchilla, R.; Nájera, C. Chemicals from Alkynes with Palladium Catalysts. Chem. Rev. 2014, 114 (3), 1783– 1826, DOI: 10.1021/cr400133pGoogle ScholarThere is no corresponding record for this reference.
- 8Hamm, G.; Schmidt, T.; Breitbach, J.; Franke, D.; Becker, C.; Wandelt, K. The Adsorption of Ethene on Pd(111) and Ordered Sn/Pd(111) Surface Alloys. Z. Phys. Chem. 2009, 223 (1–2), 209– 232, DOI: 10.1524/zpch.2009.6033Google ScholarThere is no corresponding record for this reference.
- 9Dunphy, J.; Rose, M.; Behler, S.; Ogletree, D.; Salmeron, M.; Sautet, P. Acetylene Structure and Dynamics on Pd(111). Phys. Rev. B:Condens. Matter Mater. Phys. 1998, 57 (20), R12705, DOI: 10.1103/PhysRevB.57.R12705Google ScholarThere is no corresponding record for this reference.
- 10Teschner, D.; Borsodi, J.; Wootsch, A.; Révay, Z.; Hävecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlögl, R. The Roles of Subsurface Carbon and Hydrogen in Palladium-Catalyzed Alkyne Hydrogenation. Science 2008, 320 (5872), 86– 89, DOI: 10.1126/science.1155200Google ScholarThere is no corresponding record for this reference.
- 11Thanh, C. N.; Didillon, B.; Sarrazin, P.; Cameron, C. Selective Hydrogenation Catalyst and a Process Using That Catalyst. U.S. Patent 6,054,409 A, 1996.Google ScholarThere is no corresponding record for this reference.
- 12Lindlar, H. Hydrogenation of Acetylenic Bond Utilizing a Palladium-Lead Catalyst. U.S. Patent 2,681,938 A, 1950.Google ScholarThere is no corresponding record for this reference.
- 13Luo, Q.; Wang, Z.; Chen, Y.; Mao, S.; Wu, K.; Zhang, K.; Li, Q.; Lv, G.; Huang, G.; Li, H.; Wang, Y. Dynamic Modification of Palladium Catalysts with Chain Alkylamines for the Selective Hydrogenation of Alkynes. ACS Appl. Mater. Interfaces 2021, 13 (27), 31775– 31784, DOI: 10.1021/acsami.1c09682Google ScholarThere is no corresponding record for this reference.
- 14Long, W.; Brunelli, N. A.; Didas, S. A.; Ping, E. W.; Jones, C. W. Aminopolymer-Silica Composite-Supported Pd Catalysts for Selective Hydrogenation of Alkynes. ACS Catal. 2013, 3 (8), 1700– 1708, DOI: 10.1021/cs3007395Google ScholarThere is no corresponding record for this reference.
- 15Zhao, X.; Zhou, L.; Zhang, W.; Hu, C.; Dai, L.; Ren, L.; Wu, B.; Fu, G.; Zheng, N. Thiol Treatment Creates Selective Palladium Catalysts for Semihydrogenation of Internal Alkynes. Chem 2018, 4 (5), 1080– 1091, DOI: 10.1016/j.chempr.2018.02.011Google ScholarThere is no corresponding record for this reference.
- 16Witte, P. T.; Berben, P. H.; Boland, S.; Boymans, E. H.; Vogt, D.; Geus, J. W.; Donkervoort, J. G. BASF NanoSelect Technology: Innovative Supported Pd- and Pt-Based Catalysts for Selective Hydrogenation Reactions. Top. Catal. 2012, 55 (7–10), 505– 511, DOI: 10.1007/s11244-012-9818-yGoogle ScholarThere is no corresponding record for this reference.
- 17Liu, Y.; Wang, B.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D.; Li, Y. Polyoxometalate-Based Metal–Organic Framework as Molecular Sieve for Highly Selective Semi-Hydrogenation of Acetylene on Isolated Single Pd Atom Sites. Angew. Chem., Int. Ed. 2021, 60 (41), 22522– 22528, DOI: 10.1002/anie.202109538Google ScholarThere is no corresponding record for this reference.
- 18Zhou, S.; Shang, L.; Zhao, Y.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L.; Zhang, T. Pd Single-Atom Catalysts on Nitrogen-Doped Graphene for the Highly Selective Photothermal Hydrogenation of Acetylene to Ethylene. Adv. Mater. 2019, 31 (18), 1900509, DOI: 10.1002/adma.201900509Google ScholarThere is no corresponding record for this reference.
- 19Guo, Y.; Li, Y.; Du, X.; Li, L.; Jiang, Q.; Qiao, B. Pd Single-Atom Catalysts Derived from Strong Metal-Support Interaction for Selective Hydrogenation of Acetylene. Nano Res. 2022, 15 (12), 10037– 10043, DOI: 10.1007/s12274-022-4376-5Google ScholarThere is no corresponding record for this reference.
- 20Wu, Y.; Lu, X.; Cui, P.; Jia, W.; Zhou, J.; Wang, Y.; Zahid, H.; Wu, Y.; Rafique, M. U.; Yin, X.; Li, B.; Wang, L.; Xiang, G. Enhancing Alkyne Semi-Hydrogenation through Engineering Metal-Support Interactions of Pd on Oxides. Nano Res. 2024, 17 (5), 3707– 3713, DOI: 10.1007/s12274-023-6280-zGoogle ScholarThere is no corresponding record for this reference.
- 21Bai, R.; He, G.; Li, J.; Li, L.; Zhang, T.; Wang, X.; Zhang, W.; Zou, Y.; Zhang, J.; Mei, D.; Corma, A.; Yu, J. Heteroatoms-Stabilized Single Palladium Atoms on Amorphous Zeolites: Breaking the Tradeoff between Catalytic Activity and Selectivity for Alkyne Semihydrogenation. Angew. Chem., Int. Ed. 2024, 63, e202410017 DOI: 10.1002/anie.202410017Google ScholarThere is no corresponding record for this reference.
- 22Liu, H.; Li, J.; Liang, X.; Ren, H.; Yin, H.; Wang, L.; Yang, D.; Wang, D.; Li, Y. Encapsulation of Pd Single-Atom Sites in Zeolite for Highly Efficient Semihydrogenation of Alkynes. J. Am. Chem. Soc. 2024, 146 (34), 24033– 24041, DOI: 10.1021/jacs.4c07674Google ScholarThere is no corresponding record for this reference.
- 23Pei, G. X.; Liu, X. Y.; Yang, X.; Zhang, L.; Wang, A.; Li, L.; Wang, H.; Wang, X.; Zhang, T. Performance of Cu-Alloyed Pd Single-Atom Catalyst for Semihydrogenation of Acetylene under Simulated Front-End Conditions. ACS Catal. 2017, 7 (2), 1491– 1500, DOI: 10.1021/acscatal.6b03293Google ScholarThere is no corresponding record for this reference.
- 24Da Silva, F. P.; Fiorio, J. L.; Gonçalves, R. V.; Teixeira-Neto, E.; Rossi, L. M. Synergic Effect of Copper and Palladium for Selective Hydrogenation of Alkynes. Ind. Eng. Chem. Res. 2018, 57 (48), 16209– 16216, DOI: 10.1021/acs.iecr.8b03627Google ScholarThere is no corresponding record for this reference.
- 25Huang, F.; Peng, M.; Chen, Y.; Cai, X.; Qin, X.; Wang, N.; Xiao, D.; Jin, L.; Wang, G.; Wen, X.-D.; Liu, H.; Ma, D. Low-Temperature Acetylene Semi-Hydrogenation over the Pd1–Cu1 Dual-Atom Catalyst. J. Am. Chem. Soc. 2022, 144 (40), 18485– 18493, DOI: 10.1021/jacs.2c07208Google ScholarThere is no corresponding record for this reference.
- 26Zhao, L.; Qin, X.; Zhang, X.; Cai, X.; Huang, F.; Jia, Z.; Diao, J.; Xiao, D.; Jiang, Z.; Lu, R.; Wang, N.; Liu, H.; Ma, D. A Magnetically Separable Pd Single-Atom Catalyst for Efficient Selective Hydrogenation of Phenylacetylene. Adv. Mater. 2022, 34 (20), 2110455, DOI: 10.1002/adma.202110455Google ScholarThere is no corresponding record for this reference.
- 27Zhou, H.; Yang, X.; Li, L.; Liu, X.; Huang, Y.; Pan, X.; Wang, A.; Li, J.; Zhang, T. PdZn Intermetallic Nanostructure with Pd-Zn-Pd Ensembles for Highly Active and Chemoselective Semi-Hydrogenation of Acetylene. ACS Catal. 2016, 6 (2), 1054– 1061, DOI: 10.1021/acscatal.5b01933Google ScholarThere is no corresponding record for this reference.
- 28Miyazaki, M.; Furukawa, S.; Takayama, T.; Yamazoe, S.; Komatsu, T. Surface Modification of PdZn Nanoparticles via Galvanic Replacement for the Selective Hydrogenation of Terminal Alkynes. ACS Appl. Nano Mater. 2019, 2 (5), 3307– 3314, DOI: 10.1021/acsanm.9b00761Google ScholarThere is no corresponding record for this reference.
- 29Armbrüster, M.; Kovnir, K.; Behrens, M.; Teschner, D.; Grin, Y.; Schlögl, R. Pd-Ga Intermetallic Compounds as Highly Selective Semihydrogenation Catalysts. J. Am. Chem. Soc. 2010, 132 (42), 14745– 14747, DOI: 10.1021/ja106568tGoogle ScholarThere is no corresponding record for this reference.
- 30Armbrüster, M.; Wowsnick, G.; Friedrich, M.; Heggen, M.; Cardoso-Gil, R. Synthesis and Catalytic Properties of Nanoparticulate Intermetallic Ga-Pd Compounds. J. Am. Chem. Soc. 2011, 133 (23), 9112– 9118, DOI: 10.1021/ja202869dGoogle ScholarThere is no corresponding record for this reference.
- 31Luo, Y.; Alarcón Villaseca, S.; Friedrich, M.; Teschner, D.; Knop-Gericke, A.; Armbrüster, M. Addressing Electronic Effects in the Semi-Hydrogenation of Ethyne by InPd2 and Intermetallic Ga–Pd Compounds. J. Catal. 2016, 338, 265– 272, DOI: 10.1016/j.jcat.2016.03.025Google ScholarThere is no corresponding record for this reference.
- 32Feng, Q.; Zhao, S.; Wang, Y.; Dong, J.; Chen, W.; He, D.; Wang, D.; Yang, J.; Zhu, Y.; Zhu, H.; Gu, L.; Li, Z.; Liu, Y.; Yu, R.; Li, J.; Li, Y. Isolated Single-Atom Pd Sites in Intermetallic Nanostructures: High Catalytic Selectivity for Semihydrogenation of Alkynes. J. Am. Chem. Soc. 2017, 139 (21), 7294– 7301, DOI: 10.1021/jacs.7b01471Google ScholarThere is no corresponding record for this reference.
- 33Martinez, J. S.; Mazarío, J.; Lopes, C. W.; Trasobares, S.; Calvino Gamez, J. J.; Agostini, G.; Oña-Burgos, P. Efficient Alkyne Semihydrogenation Catalysis Enabled by Synergistic Chemical and Thermal Modifications of a PdIn MOF. ACS Catal. 2024, 14 (7), 4768– 4785, DOI: 10.1021/acscatal.4c00310Google ScholarThere is no corresponding record for this reference.
- 34Lou, B.; Kang, H.; Yuan, W.; Ma, L.; Huang, W.; Wang, Y.; Jiang, Z.; Du, Y.; Zou, S.; Fan, J. Highly Selective Acetylene Semihydrogenation Catalyst with an Operation Window Exceeding 150 °C. ACS Catal. 2021, 11 (10), 6073– 6080, DOI: 10.1021/acscatal.1c00804Google ScholarThere is no corresponding record for this reference.
- 35Albani, D.; Shahrokhi, M.; Chen, Z.; Mitchell, S.; Hauert, R.; López, N.; Pérez-Ramírez, J. Selective Ensembles in Supported Palladium Sulfide Nanoparticles for Alkyne Semi-Hydrogenation. Nat. Commun. 2018, 9 (1), 2634– 2711, DOI: 10.1038/s41467-018-05052-4Google ScholarThere is no corresponding record for this reference.
- 36Chan, C. W. A.; Tam, K. Y.; Cookson, J.; Bishop, P.; Tsang, S. C.; Baiker, A.; Wong, C.; Chan, A.; Tam, K. Y.; Cookson, J.; Bishop, P.; Tsang, S. C. Palladium with Interstitial Carbon Atoms as a Catalyst for Ultraselective Hydrogenation in the Liquid Phase. Catal. Sci. Technol. 2011, 1 (9), 1584– 1592, DOI: 10.1039/c1cy00257kGoogle ScholarThere is no corresponding record for this reference.
- 37Chan, C. W. A.; Xie, Y.; Cailuo, N.; Yu, K. M. K.; Cookson, J.; Bishop, P.; Tsang, S. C. New Environmentally Friendly Catalysts Containing Pd–Interstitial Carbon Made from Pd–Glucose Precursors for Ultraselective Hydrogenations in the Liquid Phase. Chem. Commun. 2011, 47 (28), 7971– 7973, DOI: 10.1039/c1cc12681dGoogle ScholarThere is no corresponding record for this reference.
- 38Huang, F.; Deng, Y.; Chen, Y.; Cai, X.; Peng, M.; Jia, Z.; Ren, P.; Xiao, D.; Wen, X.; Wang, N.; Liu, H.; Ma, D. Atomically Dispersed Pd on Nanodiamond/Graphene Hybrid for Selective Hydrogenation of Acetylene. J. Am. Chem. Soc. 2018, 140 (41), 13142– 13146, DOI: 10.1021/jacs.8b07476Google ScholarThere is no corresponding record for this reference.
- 39Chan, C. W. A.; Mahadi, A. H.; Li, M. M. J.; Corbos, E. C.; Tang, C.; Jones, G.; Kuo, W. C. H.; Cookson, J.; Brown, C. M.; Bishop, P. T.; Tsang, S. C. E. Interstitial Modification of Palladium Nanoparticles with Boron Atoms as a Green Catalyst for Selective Hydrogenation. Nat. Commun. 2014, 5 (1), 5787– 5810, DOI: 10.1038/ncomms6787Google ScholarThere is no corresponding record for this reference.
- 40He, Y.; Liu, Y.; Yang, P.; Du, Y.; Feng, J.; Cao, X.; Yang, J.; Li, D. Fabrication of a PdAg Mesocrystal Catalyst for the Partial Hydrogenation of Acetylene. J. Catal. 2015, 330, 61– 70, DOI: 10.1016/j.jcat.2015.06.017Google ScholarThere is no corresponding record for this reference.
- 41Ball, M. R.; Rivera-Dones, K. R.; Gilcher, E. B.; Ausman, S. F.; Hullfish, C. W.; Lebrón, E. A.; Dumesic, J. A. AgPd and CuPd Catalysts for Selective Hydrogenation of Acetylene. ACS Catal. 2020, 10 (15), 8567– 8581, DOI: 10.1021/acscatal.0c01536Google ScholarThere is no corresponding record for this reference.
- 42Martinez, J.; Mazarío, J.; Olloqui-Sariego, J. L.; Calvente, J. J.; Darawsheh, M. D.; Mínguez-Espallargas, G.; Domine, M. E.; Oña-Burgos, P.; Martinez, J.; Mazarío, J.; E Domine, M.; Oña-Burgos, P.; Oña-Burgos, P.; Calvente, J. J. Bimetallic Intersection in PdFe@FeOx-C Nanomaterial for Enhanced Water Splitting Electrocatalysis. Adv. Sustainable Syst. 2022, 6 (7), 2200096, DOI: 10.1002/adsu.202200096Google ScholarThere is no corresponding record for this reference.
- 43Darawsheh, M. D.; Mazarío, J.; Lopes, C. W.; Giménez-Marqués, M.; Domine, M. E.; Meira, D. M.; Martínez, J.; Mínguez Espallargas, G.; Oña-Burgos, P. MOF-Mediated Synthesis of Supported Fe-Doped Pd Nanoparticles under Mild Conditions for Magnetically Recoverable Catalysis. Chem.─Eur. J. 2020, 26 (60), 13659– 13667, DOI: 10.1002/chem.202001895Google ScholarThere is no corresponding record for this reference.
- 44Dang, S.; Zhu, Q. L.; Xu, Q. Nanomaterials Derived from Metal–Organic Frameworks. Nat. Rev. Mater. 2017, 3 (1), 17075– 17114, DOI: 10.1038/natrevmats.2017.75Google ScholarThere is no corresponding record for this reference.
- 45Bavykina, A.; Kolobov, N.; Khan, I. S.; Bau, J. A.; Ramirez, A.; Gascon, J. Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem. Rev. 2020, 120 (16), 8468– 8535, DOI: 10.1021/acs.chemrev.9b00685Google ScholarThere is no corresponding record for this reference.
- 46Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Characterization of Porous Solids VII. Surf. Sci. Catal. 2007, 160, 49– 56, DOI: 10.1016/S0167-2991(07)80008-5Google ScholarThere is no corresponding record for this reference.
- 47Jeanguillaume, C.; Colliex, C. Spectrum-Image: The next Step in EELS Digital Acquisition and Processing. Ultramicroscopy 1989, 28 (1–4), 252– 257, DOI: 10.1016/0304-3991(89)90304-5Google ScholarThere is no corresponding record for this reference.
- 48de la Pena, F.; Ostasevicius, T.; Tonaas Fauske, V.; Burdet, P.; Jokubauskas, P.; Nord, M.; Sarahan, M.; Prestat, E.; Johnstone, D. N.; Taillon, J.; Jan Caron, J. C.; Furnival, T.; MacArthur, K. E.; Eljarrat, A.; Mazzucco, S.; Migunov, V.; Aarholt, T.; Walls, M.; Winkler, F.; Donval, G.; Martineau, B.; Garmannslund, A.; Zagonel, L.-F.; Iyengar, I. Electron Microscopy (Big and Small) Data Analysis With the Open Source Software Package HyperSpy. Microsc. Microanal. 2017, 23 (S1), 214– 215, DOI: 10.1017/S1431927617001751Google ScholarThere is no corresponding record for this reference.
- 50Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT. J. Synchrotron Rad. 2005, 12 (4), 537– 541, DOI: 10.1107/s0909049505012719Google ScholarThere is no corresponding record for this reference.
- 51Moulder, J.; Stickle, W.; Sobol, W.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation, 1992.Google ScholarThere is no corresponding record for this reference.
- 52Bratsos, I.; Tampaxis, C.; Spanopoulos, I.; Demitri, N.; Charalambopoulou, G.; Vourloumis, D.; Steriotis, T. A.; Trikalitis, P. N. Heterometallic In(III)-Pd(II) Porous Metal-Organic Framework with Square-Octahedron Topology Displaying High CO2 Uptake and Selectivity toward CH4 and N2. Inorg. Chem. 2018, 57 (12), 7244– 7251, DOI: 10.1021/acs.inorgchem.8b00910Google ScholarThere is no corresponding record for this reference.
- 53Ferrari, A. C.; Robertson, J. Raman Spectroscopy of Amorphous, Nanostructured, Diamondlike Carbon, and Nanodiamond. Philos. Trans. R. Soc., A 2004, 362 (1824), 2477– 2512, DOI: 10.1098/rsta.2004.1452Google ScholarThere is no corresponding record for this reference.
- 54Li, Z.; Deng, L.; Kinloch, I. A.; Young, R. J. Raman Spectroscopy of Carbon Materials and Their Composites: Graphene, Nanotubes and Fibres. Prog. Mater. Sci. 2023, 135, 101089, DOI: 10.1016/j.pmatsci.2023.101089Google ScholarThere is no corresponding record for this reference.
- 55Wang, Y.; Alsmeyer, D. C.; McCreery, R. L. Raman Spectroscopy of Carbon Materials: Structural Basis of Observed Spectra. Chem. Mater. 1990, 2 (5), 557– 563, DOI: 10.1021/cm00011a018Google ScholarThere is no corresponding record for this reference.
- 56Bernard, M.; Hugot-Le Goff, A.; Thi, B. V.; Cordoba de Torresi, S. Electrochromic Reactions in Manganese Oxides: I. Raman Analysis. J. Electrochem. Soc. 1993, 140 (11), 3065– 3070, DOI: 10.1149/1.2220986Google ScholarThere is no corresponding record for this reference.
- 57Yang, J.; Liu, H.; Martens, W. N.; Frost, R. L. Synthesis and Characterization of Cobalt Hydroxide, Cobalt Oxyhydroxide, and Cobalt Oxide Nanodiscs. J. Phys. Chem. C 2010, 114 (1), 111– 119, DOI: 10.1021/jp908548fGoogle ScholarThere is no corresponding record for this reference.
- 58Yoshii, T.; Nakatsuka, K.; Kuwahara, Y.; Mori, K.; Hiromi Yamashita, H. Y. Synthesis of Carbon-Supported Pd–Co Bimetallic Catalysts Templated by Co Nanoparticles Using the Galvanic Replacement Method for Selective Hydrogenation. RSC Adv. 2017, 7 (36), 22294– 22300, DOI: 10.1039/c7ra03846aGoogle ScholarThere is no corresponding record for this reference.
- 59Franch-Martí, C.; Alonso-Escobar, C.; Jorda, J. L.; Peral, I.; Hernández-Fenollosa, J.; Corma, A.; Palomares, A. E.; Rey, F.; Guilera, G. TNU-9, a New Zeolite for the Selective Catalytic Reduction of NO: An in Situ X-Ray Absorption Spectroscopy Study. J. Catal. 2012, 295, 22– 30, DOI: 10.1016/j.jcat.2012.07.011Google ScholarThere is no corresponding record for this reference.
- 60Chalmin, E.; Farges, F.; Brown, G. E. A Pre-Edge Analysis of Mn K-Edge XANES Spectra to Help Determine the Speciation of Manganese in Minerals and Glasses. Contrib. Mineral. Petrol. 2009, 157 (1), 111– 126, DOI: 10.1007/s00410-008-0323-zGoogle ScholarThere is no corresponding record for this reference.
- 61Militello, M. C.; Simko, S. J. Palladium Chloride (PdCl2) by XPS. Surf. Sci. Spectra 1994, 3 (4), 402– 409, DOI: 10.1116/1.1247785Google ScholarThere is no corresponding record for this reference.
- 62Sun, C.; Liu, X.; Bai, X. Highly Efficient Dehydrogenation of Dodecahydro-N-Ethylcarbazole over Al2O3 Supported PdCo Bimetallic Nanocatalysts Prepared by Galvanic Replacement. Int. J. Hydrogen Energy 2024, 49, 1547– 1557, DOI: 10.1016/j.ijhydene.2023.10.118Google ScholarThere is no corresponding record for this reference.
- 63Frost, D. C.; McDowell, C. A.; Woolsey, I. S. X-Ray Photoelectron Spectra of Cobalt Compounds. Mol. Phys. 1974, 27 (6), 1473– 1489, DOI: 10.1080/00268977400101251Google ScholarThere is no corresponding record for this reference.
- 64Ivanova, T.; Naumkin, A.; Sidorov, A.; Eremenko, I.; Kiskin, M. X-Ray Photoelectron Spectra and Electron Structure of Polynuclear Cobalt Complexes. J. Electron Spectrosc. Relat. Phenom. 2007, 156–158, 200– 203, DOI: 10.1016/j.elspec.2006.12.005Google ScholarThere is no corresponding record for this reference.
- 65Gengenbach, T. R.; Major, G. H.; Linford, M. R.; Easton, C. D. Practical Guides for X-Ray Photoelectron Spectroscopy (XPS): Interpreting the Carbon 1s Spectrum. J. Vac. Sci. Technol., A 2021, 39 (1), 13204, DOI: 10.1116/6.0000682Google ScholarThere is no corresponding record for this reference.
- 66Morgan, D. J. Comments on the XPS Analysis of Carbon Materials. C 2021, 7 (3), 51, DOI: 10.3390/c7030051Google ScholarThere is no corresponding record for this reference.
- 67Li, H.; Tan, X.; Zhang, J. Coordination-Driven Terpyridyl Phosphine Pd(II) Gels. Chin. J. Chem. 2015, 33 (1), 141– 146, DOI: 10.1002/cjoc.201400479Google ScholarThere is no corresponding record for this reference.
- 68Ibusuki, T.; Saito, Y. Coordinate Bonding Properties of Complexes of Pyridine with Platinum(II) and Mercury(II) Chlorides. Inorg. Chim. Acta 1976, 19 (C), 87– 90, DOI: 10.1016/S0020-1693(00)91078-8Google ScholarThere is no corresponding record for this reference.
- 69Artyushkova, K. Misconceptions in Interpretation of Nitrogen Chemistry from X-Ray Photoelectron Spectra. J. Vac. Sci. Technol., A 2020, 38 (3), 31002, DOI: 10.1116/1.5135923Google ScholarThere is no corresponding record for this reference.
- 70Kato, T.; Yamada, Y.; Nishikawa, Y.; Otomo, T.; Sato, H.; Sato, S. Origins of Peaks of Graphitic and Pyrrolic Nitrogen in N1s X-Ray Photoelectron Spectra of Carbon Materials: Quaternary Nitrogen, Tertiary Amine, or Secondary Amine?. J. Mater. Sci. 2021, 56 (28), 15798– 15811, DOI: 10.1007/s10853-021-06283-5Google ScholarThere is no corresponding record for this reference.
- 71Wang, B.; Mathiesen, J. K.; Kirsch, A.; Schlegel, N.; Anker, A. S.; Johansen, F. L.; Kjær, E. T. S.; Aalling-Frederiksen, O.; Nielsen, T. M.; Thomsen, M. S.; Jakobsen, R. K.; Arenz, M.; Jensen, K. M. Ø. Formation of Intermetallic PdIn Nanoparticles: Influence of Surfactants on Nanoparticle Atomic Structure. Nanoscale Adv. 2023, 5 (24), 6913– 6924, DOI: 10.1039/D3NA00582HGoogle ScholarThere is no corresponding record for this reference.
- 72García-Trenco, A.; Regoutz, A.; White, E. R.; Payne, D. J.; Shaffer, M. S. P.; Williams, C. K. PdIn Intermetallic Nanoparticles for the Hydrogenation of CO2 to Methanol. Appl. Catal., B 2018, 220, 9– 18, DOI: 10.1016/j.apcatb.2017.07.069Google ScholarThere is no corresponding record for this reference.
- 73Gentry, S. T.; Kendra, S. F.; Bezpalko, M. W. Ostwald Ripening in Metallic Nanoparticles: Stochastic Kinetics. J. Phys. Chem. C 2011, 115 (26), 12736– 12741, DOI: 10.1021/jp2009786Google ScholarThere is no corresponding record for this reference.
Cited By
This article has not yet been cited by other publications.
Article Views
Altmetric
Citations
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
Abstract
Scheme 1
Scheme 1. Synthetic Routes Described in This Work to Achieve the Final Catalytic CompositesFigure 1
Figure 1. Electron microscopy characterization of (1) PdCo-QT (left panel) and (2) PdMn-QT (right panel). (a,b) Representative STEM-HAADF images of the PdMn-QT catalyst; (c) representative HR-TEM image of the PdMn-QT catalyst and the measured interplanar distances. FFTs of the HRTEM images, depicting reflections characteristic of the ordered phases, are shown as insets; (d) nanoparticle size distributions.
Figure 2
Figure 2. XRD patterns of PdM synthesized materials, (a) PdCo and (b) PdMn. Note: different colors for (*) indicate different compositions.
Figure 3
Figure 3. STEM–XEDS and STEM-EELS of PdMn-QT sample. (a) HAADF image and the corresponding elemental maps extracted from the STEM-SI-XEDS: (b) Pd and (c) Mn; and (f) an area representative XEDS spectrum. (d) HAADF image; and the images corresponding to three components of the ICA analysis of the whole set of STEM-EELS-SI data, (e,g,h). (i) EELS spectrum corresponding to the three independent components, a Pd–O–Mn, a C–N–O, and an external C–O component.
Figure 4
Figure 4. STEM–EDX and STEM-EELS of PdCo-QT sample. (a,e) HAADF images; (b,f) Pd and (c,g) Co elemental maps extracted from the STEM-SI-EDS, and (d,h) representative XEDS spectra. (i) a HAADF image; and the images corresponding to three components of the ICA analysis of the whole set of STEM-EELS-SI data: a (j–l). (m) EELS spectra corresponding to the three independent components: a Pd–Co component, a C–N–O component, and an external C–O component.
Figure 5
Figure 5. XANES spectra at the (a,e) Pd K, (c) Co K and (g) Mn–K-edges, and k2 weighted |FT| EXAFS spectra of (b,f) Pd, (d) Co, and (h) Mn data of MOF-derived PdCo and PdMn samples.
Figure 6
Figure 6. Pd 3d XP spectra of (a) PdCo-based samples, (b) PdMn-based samples.
Figure 7
Figure 7. (a,b) C 1s XP spectra, (c,d) N 1s XP spectra of PdCo and PdMn-based samples, respectively. *: –CF2– contamination.
Figure 8
Figure 8. (a) Conversion vs selectivity plot of various PdM-based materials used in the selective hydrogenation of phenylacetylene, (b) activity and selectivity comparison of several Pd-based materials after 7 h of phenylacetylene hydrogenation reaction. Reaction Conditions: 5 mmol of phenylacetylene, substrate/Pd molar ratio: 323/1, 5 mL EtOH, r.t., 1 bar H2, 1000 rpm. Note: PdIn-QT reported in ref (33).
Figure 9
Figure 9. Kinetic curves of (a) PdCo-QT, (b) PdMn-QT, (c) Pd/C commercial, and (d) Pd/Lindlar catalysts. Reaction conditions: 5 mmol of phenylacetylene, substrate/Pd molar ratio: 323/1, 5 mL EtOH, 1000 rpm, r.t., 1 H2 bar.
Figure 10
Figure 10. Catalyst filtration and stability cyclic test of PdCo-QT (left panel) and PdMn-QT (right panel) catalyst at 7 h of reaction time. Reaction conditions: 5 mmol of phenylacetylene, substrate/Pd molar ratio: 323/1, 5 mL EtOH, r.t., 1 bar H2, 1000 rpm.
Figure 11
Figure 11. Electron microscopy characterization after 5 catalytic cycles of (1) PdCo-QT (left panel) and (2) PdMn-QT (right panel). (a,b) Representative STEM-HAADF images, (c) representative HR-TEM images and the measured interplanar distances. FFTs of the HRTEM images, depicting reflections characteristic of the phases PdCo and PdMn, are shown as insets; (d) nanoparticle size distributions.
Figure 12
Figure 12. (a–d) Catalytic batch results of 4-octyne selective hydrogenation with PdCo-QT, PdMn-QT, Pd/C, and Pd-Lindlar catalysts, respectively. Reaction conditions: 5 mmol of 4-octyne, substrate/Pd molar ratio: 323/1, 5 mL EtOH, 1000 rpm, r.t., 1 bar H2.
Figure 13
Figure 13. Catalytic flow results of (a,c,e) phenylacetylene and (b,d,f) 4-octyne selective hydrogenation with PdCo-QT, PdMn-QT, and Pd-Lindlar catalysts, respectively. Reaction Conditions: 150 °C, see Table 4.
References
This article references 73 other publications.
- 1Crespo-Quesada, M.; Cárdenas-Lizana, F.; Dessimoz, A. L.; Kiwi-Minsker, L. Modern Trends in Catalyst and Process Design for Alkyne Hydrogenations. ACS Catal. 2012, 2 (8), 1773– 1786, DOI: 10.1021/cs300284rThere is no corresponding record for this reference.
- 2Trotuş, I. T.; Zimmermann, T.; Schüth, F. Catalytic Reactions of Acetylene: A Feedstock for the Chemical Industry Revisited. Chem. Rev. 2014, 114 (3), 1761– 1782, DOI: 10.1021/cr400357rThere is no corresponding record for this reference.
- 3Wang, Z.; Luo, Q.; Mao, S.; Wang, C.; Xiong, J.; Chen, Z.; Wang, Y. Fundamental Aspects of Alkyne Semi-Hydrogenation over Heterogeneous Catalysts. Nano Res. 2022, 15 (12), 10044– 10062, DOI: 10.1007/s12274-022-4590-1There is no corresponding record for this reference.
- 4Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of Acetylene. Science 2008, 320 (5881), 1320– 1322, DOI: 10.1126/science.1156660There is no corresponding record for this reference.
- 5Bridier, B.; López, N.; Pérez-Ramírez, J.; Pérez-Ramírez, J.; Bridier, B.; Lopez Dalton Trans, N.; Janssen, M.; Müller, C.; Vogt, D.; Trans, D.; Zou, X.; Sun, J.; Ajellal, N.; Carpentier, J.-F.; Guillaume, C.; Guillaume, S. M.; Helou, M.; Poirier, V.; Sarazin, Y.; Trifonov, A.; López, N. Molecular Understanding of Alkyne Hydrogenation for the Design of Selective Catalysts. Dalton Trans. 2010, 39 (36), 8412– 8419, DOI: 10.1039/c0dt00010hThere is no corresponding record for this reference.
- 6Li, X. T.; Chen, L.; Shang, C.; Liu, Z. P. Selectivity Control in Alkyne Semihydrogenation: Recent Experimental and Theoretical Progress. Chin. J. Catal. 2022, 43 (8), 1991– 2000, DOI: 10.1016/S1872-2067(21)64036-6There is no corresponding record for this reference.
- 7Chinchilla, R.; Nájera, C. Chemicals from Alkynes with Palladium Catalysts. Chem. Rev. 2014, 114 (3), 1783– 1826, DOI: 10.1021/cr400133pThere is no corresponding record for this reference.
- 8Hamm, G.; Schmidt, T.; Breitbach, J.; Franke, D.; Becker, C.; Wandelt, K. The Adsorption of Ethene on Pd(111) and Ordered Sn/Pd(111) Surface Alloys. Z. Phys. Chem. 2009, 223 (1–2), 209– 232, DOI: 10.1524/zpch.2009.6033There is no corresponding record for this reference.
- 9Dunphy, J.; Rose, M.; Behler, S.; Ogletree, D.; Salmeron, M.; Sautet, P. Acetylene Structure and Dynamics on Pd(111). Phys. Rev. B:Condens. Matter Mater. Phys. 1998, 57 (20), R12705, DOI: 10.1103/PhysRevB.57.R12705There is no corresponding record for this reference.
- 10Teschner, D.; Borsodi, J.; Wootsch, A.; Révay, Z.; Hävecker, M.; Knop-Gericke, A.; Jackson, S. D.; Schlögl, R. The Roles of Subsurface Carbon and Hydrogen in Palladium-Catalyzed Alkyne Hydrogenation. Science 2008, 320 (5872), 86– 89, DOI: 10.1126/science.1155200There is no corresponding record for this reference.
- 11Thanh, C. N.; Didillon, B.; Sarrazin, P.; Cameron, C. Selective Hydrogenation Catalyst and a Process Using That Catalyst. U.S. Patent 6,054,409 A, 1996.There is no corresponding record for this reference.
- 12Lindlar, H. Hydrogenation of Acetylenic Bond Utilizing a Palladium-Lead Catalyst. U.S. Patent 2,681,938 A, 1950.There is no corresponding record for this reference.
- 13Luo, Q.; Wang, Z.; Chen, Y.; Mao, S.; Wu, K.; Zhang, K.; Li, Q.; Lv, G.; Huang, G.; Li, H.; Wang, Y. Dynamic Modification of Palladium Catalysts with Chain Alkylamines for the Selective Hydrogenation of Alkynes. ACS Appl. Mater. Interfaces 2021, 13 (27), 31775– 31784, DOI: 10.1021/acsami.1c09682There is no corresponding record for this reference.
- 14Long, W.; Brunelli, N. A.; Didas, S. A.; Ping, E. W.; Jones, C. W. Aminopolymer-Silica Composite-Supported Pd Catalysts for Selective Hydrogenation of Alkynes. ACS Catal. 2013, 3 (8), 1700– 1708, DOI: 10.1021/cs3007395There is no corresponding record for this reference.
- 15Zhao, X.; Zhou, L.; Zhang, W.; Hu, C.; Dai, L.; Ren, L.; Wu, B.; Fu, G.; Zheng, N. Thiol Treatment Creates Selective Palladium Catalysts for Semihydrogenation of Internal Alkynes. Chem 2018, 4 (5), 1080– 1091, DOI: 10.1016/j.chempr.2018.02.011There is no corresponding record for this reference.
- 16Witte, P. T.; Berben, P. H.; Boland, S.; Boymans, E. H.; Vogt, D.; Geus, J. W.; Donkervoort, J. G. BASF NanoSelect Technology: Innovative Supported Pd- and Pt-Based Catalysts for Selective Hydrogenation Reactions. Top. Catal. 2012, 55 (7–10), 505– 511, DOI: 10.1007/s11244-012-9818-yThere is no corresponding record for this reference.
- 17Liu, Y.; Wang, B.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D.; Li, Y. Polyoxometalate-Based Metal–Organic Framework as Molecular Sieve for Highly Selective Semi-Hydrogenation of Acetylene on Isolated Single Pd Atom Sites. Angew. Chem., Int. Ed. 2021, 60 (41), 22522– 22528, DOI: 10.1002/anie.202109538There is no corresponding record for this reference.
- 18Zhou, S.; Shang, L.; Zhao, Y.; Shi, R.; Waterhouse, G. I. N.; Huang, Y. C.; Zheng, L.; Zhang, T. Pd Single-Atom Catalysts on Nitrogen-Doped Graphene for the Highly Selective Photothermal Hydrogenation of Acetylene to Ethylene. Adv. Mater. 2019, 31 (18), 1900509, DOI: 10.1002/adma.201900509There is no corresponding record for this reference.
- 19Guo, Y.; Li, Y.; Du, X.; Li, L.; Jiang, Q.; Qiao, B. Pd Single-Atom Catalysts Derived from Strong Metal-Support Interaction for Selective Hydrogenation of Acetylene. Nano Res. 2022, 15 (12), 10037– 10043, DOI: 10.1007/s12274-022-4376-5There is no corresponding record for this reference.
- 20Wu, Y.; Lu, X.; Cui, P.; Jia, W.; Zhou, J.; Wang, Y.; Zahid, H.; Wu, Y.; Rafique, M. U.; Yin, X.; Li, B.; Wang, L.; Xiang, G. Enhancing Alkyne Semi-Hydrogenation through Engineering Metal-Support Interactions of Pd on Oxides. Nano Res. 2024, 17 (5), 3707– 3713, DOI: 10.1007/s12274-023-6280-zThere is no corresponding record for this reference.
- 21Bai, R.; He, G.; Li, J.; Li, L.; Zhang, T.; Wang, X.; Zhang, W.; Zou, Y.; Zhang, J.; Mei, D.; Corma, A.; Yu, J. Heteroatoms-Stabilized Single Palladium Atoms on Amorphous Zeolites: Breaking the Tradeoff between Catalytic Activity and Selectivity for Alkyne Semihydrogenation. Angew. Chem., Int. Ed. 2024, 63, e202410017 DOI: 10.1002/anie.202410017There is no corresponding record for this reference.
- 22Liu, H.; Li, J.; Liang, X.; Ren, H.; Yin, H.; Wang, L.; Yang, D.; Wang, D.; Li, Y. Encapsulation of Pd Single-Atom Sites in Zeolite for Highly Efficient Semihydrogenation of Alkynes. J. Am. Chem. Soc. 2024, 146 (34), 24033– 24041, DOI: 10.1021/jacs.4c07674There is no corresponding record for this reference.
- 23Pei, G. X.; Liu, X. Y.; Yang, X.; Zhang, L.; Wang, A.; Li, L.; Wang, H.; Wang, X.; Zhang, T. Performance of Cu-Alloyed Pd Single-Atom Catalyst for Semihydrogenation of Acetylene under Simulated Front-End Conditions. ACS Catal. 2017, 7 (2), 1491– 1500, DOI: 10.1021/acscatal.6b03293There is no corresponding record for this reference.
- 24Da Silva, F. P.; Fiorio, J. L.; Gonçalves, R. V.; Teixeira-Neto, E.; Rossi, L. M. Synergic Effect of Copper and Palladium for Selective Hydrogenation of Alkynes. Ind. Eng. Chem. Res. 2018, 57 (48), 16209– 16216, DOI: 10.1021/acs.iecr.8b03627There is no corresponding record for this reference.
- 25Huang, F.; Peng, M.; Chen, Y.; Cai, X.; Qin, X.; Wang, N.; Xiao, D.; Jin, L.; Wang, G.; Wen, X.-D.; Liu, H.; Ma, D. Low-Temperature Acetylene Semi-Hydrogenation over the Pd1–Cu1 Dual-Atom Catalyst. J. Am. Chem. Soc. 2022, 144 (40), 18485– 18493, DOI: 10.1021/jacs.2c07208There is no corresponding record for this reference.
- 26Zhao, L.; Qin, X.; Zhang, X.; Cai, X.; Huang, F.; Jia, Z.; Diao, J.; Xiao, D.; Jiang, Z.; Lu, R.; Wang, N.; Liu, H.; Ma, D. A Magnetically Separable Pd Single-Atom Catalyst for Efficient Selective Hydrogenation of Phenylacetylene. Adv. Mater. 2022, 34 (20), 2110455, DOI: 10.1002/adma.202110455There is no corresponding record for this reference.
- 27Zhou, H.; Yang, X.; Li, L.; Liu, X.; Huang, Y.; Pan, X.; Wang, A.; Li, J.; Zhang, T. PdZn Intermetallic Nanostructure with Pd-Zn-Pd Ensembles for Highly Active and Chemoselective Semi-Hydrogenation of Acetylene. ACS Catal. 2016, 6 (2), 1054– 1061, DOI: 10.1021/acscatal.5b01933There is no corresponding record for this reference.
- 28Miyazaki, M.; Furukawa, S.; Takayama, T.; Yamazoe, S.; Komatsu, T. Surface Modification of PdZn Nanoparticles via Galvanic Replacement for the Selective Hydrogenation of Terminal Alkynes. ACS Appl. Nano Mater. 2019, 2 (5), 3307– 3314, DOI: 10.1021/acsanm.9b00761There is no corresponding record for this reference.
- 29Armbrüster, M.; Kovnir, K.; Behrens, M.; Teschner, D.; Grin, Y.; Schlögl, R. Pd-Ga Intermetallic Compounds as Highly Selective Semihydrogenation Catalysts. J. Am. Chem. Soc. 2010, 132 (42), 14745– 14747, DOI: 10.1021/ja106568tThere is no corresponding record for this reference.
- 30Armbrüster, M.; Wowsnick, G.; Friedrich, M.; Heggen, M.; Cardoso-Gil, R. Synthesis and Catalytic Properties of Nanoparticulate Intermetallic Ga-Pd Compounds. J. Am. Chem. Soc. 2011, 133 (23), 9112– 9118, DOI: 10.1021/ja202869dThere is no corresponding record for this reference.
- 31Luo, Y.; Alarcón Villaseca, S.; Friedrich, M.; Teschner, D.; Knop-Gericke, A.; Armbrüster, M. Addressing Electronic Effects in the Semi-Hydrogenation of Ethyne by InPd2 and Intermetallic Ga–Pd Compounds. J. Catal. 2016, 338, 265– 272, DOI: 10.1016/j.jcat.2016.03.025There is no corresponding record for this reference.
- 32Feng, Q.; Zhao, S.; Wang, Y.; Dong, J.; Chen, W.; He, D.; Wang, D.; Yang, J.; Zhu, Y.; Zhu, H.; Gu, L.; Li, Z.; Liu, Y.; Yu, R.; Li, J.; Li, Y. Isolated Single-Atom Pd Sites in Intermetallic Nanostructures: High Catalytic Selectivity for Semihydrogenation of Alkynes. J. Am. Chem. Soc. 2017, 139 (21), 7294– 7301, DOI: 10.1021/jacs.7b01471There is no corresponding record for this reference.
- 33Martinez, J. S.; Mazarío, J.; Lopes, C. W.; Trasobares, S.; Calvino Gamez, J. J.; Agostini, G.; Oña-Burgos, P. Efficient Alkyne Semihydrogenation Catalysis Enabled by Synergistic Chemical and Thermal Modifications of a PdIn MOF. ACS Catal. 2024, 14 (7), 4768– 4785, DOI: 10.1021/acscatal.4c00310There is no corresponding record for this reference.
- 34Lou, B.; Kang, H.; Yuan, W.; Ma, L.; Huang, W.; Wang, Y.; Jiang, Z.; Du, Y.; Zou, S.; Fan, J. Highly Selective Acetylene Semihydrogenation Catalyst with an Operation Window Exceeding 150 °C. ACS Catal. 2021, 11 (10), 6073– 6080, DOI: 10.1021/acscatal.1c00804There is no corresponding record for this reference.
- 35Albani, D.; Shahrokhi, M.; Chen, Z.; Mitchell, S.; Hauert, R.; López, N.; Pérez-Ramírez, J. Selective Ensembles in Supported Palladium Sulfide Nanoparticles for Alkyne Semi-Hydrogenation. Nat. Commun. 2018, 9 (1), 2634– 2711, DOI: 10.1038/s41467-018-05052-4There is no corresponding record for this reference.
- 36Chan, C. W. A.; Tam, K. Y.; Cookson, J.; Bishop, P.; Tsang, S. C.; Baiker, A.; Wong, C.; Chan, A.; Tam, K. Y.; Cookson, J.; Bishop, P.; Tsang, S. C. Palladium with Interstitial Carbon Atoms as a Catalyst for Ultraselective Hydrogenation in the Liquid Phase. Catal. Sci. Technol. 2011, 1 (9), 1584– 1592, DOI: 10.1039/c1cy00257kThere is no corresponding record for this reference.
- 37Chan, C. W. A.; Xie, Y.; Cailuo, N.; Yu, K. M. K.; Cookson, J.; Bishop, P.; Tsang, S. C. New Environmentally Friendly Catalysts Containing Pd–Interstitial Carbon Made from Pd–Glucose Precursors for Ultraselective Hydrogenations in the Liquid Phase. Chem. Commun. 2011, 47 (28), 7971– 7973, DOI: 10.1039/c1cc12681dThere is no corresponding record for this reference.
- 38Huang, F.; Deng, Y.; Chen, Y.; Cai, X.; Peng, M.; Jia, Z.; Ren, P.; Xiao, D.; Wen, X.; Wang, N.; Liu, H.; Ma, D. Atomically Dispersed Pd on Nanodiamond/Graphene Hybrid for Selective Hydrogenation of Acetylene. J. Am. Chem. Soc. 2018, 140 (41), 13142– 13146, DOI: 10.1021/jacs.8b07476There is no corresponding record for this reference.
- 39Chan, C. W. A.; Mahadi, A. H.; Li, M. M. J.; Corbos, E. C.; Tang, C.; Jones, G.; Kuo, W. C. H.; Cookson, J.; Brown, C. M.; Bishop, P. T.; Tsang, S. C. E. Interstitial Modification of Palladium Nanoparticles with Boron Atoms as a Green Catalyst for Selective Hydrogenation. Nat. Commun. 2014, 5 (1), 5787– 5810, DOI: 10.1038/ncomms6787There is no corresponding record for this reference.
- 40He, Y.; Liu, Y.; Yang, P.; Du, Y.; Feng, J.; Cao, X.; Yang, J.; Li, D. Fabrication of a PdAg Mesocrystal Catalyst for the Partial Hydrogenation of Acetylene. J. Catal. 2015, 330, 61– 70, DOI: 10.1016/j.jcat.2015.06.017There is no corresponding record for this reference.
- 41Ball, M. R.; Rivera-Dones, K. R.; Gilcher, E. B.; Ausman, S. F.; Hullfish, C. W.; Lebrón, E. A.; Dumesic, J. A. AgPd and CuPd Catalysts for Selective Hydrogenation of Acetylene. ACS Catal. 2020, 10 (15), 8567– 8581, DOI: 10.1021/acscatal.0c01536There is no corresponding record for this reference.
- 42Martinez, J.; Mazarío, J.; Olloqui-Sariego, J. L.; Calvente, J. J.; Darawsheh, M. D.; Mínguez-Espallargas, G.; Domine, M. E.; Oña-Burgos, P.; Martinez, J.; Mazarío, J.; E Domine, M.; Oña-Burgos, P.; Oña-Burgos, P.; Calvente, J. J. Bimetallic Intersection in PdFe@FeOx-C Nanomaterial for Enhanced Water Splitting Electrocatalysis. Adv. Sustainable Syst. 2022, 6 (7), 2200096, DOI: 10.1002/adsu.202200096There is no corresponding record for this reference.
- 43Darawsheh, M. D.; Mazarío, J.; Lopes, C. W.; Giménez-Marqués, M.; Domine, M. E.; Meira, D. M.; Martínez, J.; Mínguez Espallargas, G.; Oña-Burgos, P. MOF-Mediated Synthesis of Supported Fe-Doped Pd Nanoparticles under Mild Conditions for Magnetically Recoverable Catalysis. Chem.─Eur. J. 2020, 26 (60), 13659– 13667, DOI: 10.1002/chem.202001895There is no corresponding record for this reference.
- 44Dang, S.; Zhu, Q. L.; Xu, Q. Nanomaterials Derived from Metal–Organic Frameworks. Nat. Rev. Mater. 2017, 3 (1), 17075– 17114, DOI: 10.1038/natrevmats.2017.75There is no corresponding record for this reference.
- 45Bavykina, A.; Kolobov, N.; Khan, I. S.; Bau, J. A.; Ramirez, A.; Gascon, J. Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem. Rev. 2020, 120 (16), 8468– 8535, DOI: 10.1021/acs.chemrev.9b00685There is no corresponding record for this reference.
- 46Rouquerol, J.; Llewellyn, P.; Rouquerol, F. Characterization of Porous Solids VII. Surf. Sci. Catal. 2007, 160, 49– 56, DOI: 10.1016/S0167-2991(07)80008-5There is no corresponding record for this reference.
- 47Jeanguillaume, C.; Colliex, C. Spectrum-Image: The next Step in EELS Digital Acquisition and Processing. Ultramicroscopy 1989, 28 (1–4), 252– 257, DOI: 10.1016/0304-3991(89)90304-5There is no corresponding record for this reference.
- 48de la Pena, F.; Ostasevicius, T.; Tonaas Fauske, V.; Burdet, P.; Jokubauskas, P.; Nord, M.; Sarahan, M.; Prestat, E.; Johnstone, D. N.; Taillon, J.; Jan Caron, J. C.; Furnival, T.; MacArthur, K. E.; Eljarrat, A.; Mazzucco, S.; Migunov, V.; Aarholt, T.; Walls, M.; Winkler, F.; Donval, G.; Martineau, B.; Garmannslund, A.; Zagonel, L.-F.; Iyengar, I. Electron Microscopy (Big and Small) Data Analysis With the Open Source Software Package HyperSpy. Microsc. Microanal. 2017, 23 (S1), 214– 215, DOI: 10.1017/S1431927617001751There is no corresponding record for this reference.
- 50Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT. J. Synchrotron Rad. 2005, 12 (4), 537– 541, DOI: 10.1107/s0909049505012719There is no corresponding record for this reference.
- 51Moulder, J.; Stickle, W.; Sobol, W.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation, 1992.There is no corresponding record for this reference.
- 52Bratsos, I.; Tampaxis, C.; Spanopoulos, I.; Demitri, N.; Charalambopoulou, G.; Vourloumis, D.; Steriotis, T. A.; Trikalitis, P. N. Heterometallic In(III)-Pd(II) Porous Metal-Organic Framework with Square-Octahedron Topology Displaying High CO2 Uptake and Selectivity toward CH4 and N2. Inorg. Chem. 2018, 57 (12), 7244– 7251, DOI: 10.1021/acs.inorgchem.8b00910There is no corresponding record for this reference.
- 53Ferrari, A. C.; Robertson, J. Raman Spectroscopy of Amorphous, Nanostructured, Diamondlike Carbon, and Nanodiamond. Philos. Trans. R. Soc., A 2004, 362 (1824), 2477– 2512, DOI: 10.1098/rsta.2004.1452There is no corresponding record for this reference.
- 54Li, Z.; Deng, L.; Kinloch, I. A.; Young, R. J. Raman Spectroscopy of Carbon Materials and Their Composites: Graphene, Nanotubes and Fibres. Prog. Mater. Sci. 2023, 135, 101089, DOI: 10.1016/j.pmatsci.2023.101089There is no corresponding record for this reference.
- 55Wang, Y.; Alsmeyer, D. C.; McCreery, R. L. Raman Spectroscopy of Carbon Materials: Structural Basis of Observed Spectra. Chem. Mater. 1990, 2 (5), 557– 563, DOI: 10.1021/cm00011a018There is no corresponding record for this reference.
- 56Bernard, M.; Hugot-Le Goff, A.; Thi, B. V.; Cordoba de Torresi, S. Electrochromic Reactions in Manganese Oxides: I. Raman Analysis. J. Electrochem. Soc. 1993, 140 (11), 3065– 3070, DOI: 10.1149/1.2220986There is no corresponding record for this reference.
- 57Yang, J.; Liu, H.; Martens, W. N.; Frost, R. L. Synthesis and Characterization of Cobalt Hydroxide, Cobalt Oxyhydroxide, and Cobalt Oxide Nanodiscs. J. Phys. Chem. C 2010, 114 (1), 111– 119, DOI: 10.1021/jp908548fThere is no corresponding record for this reference.
- 58Yoshii, T.; Nakatsuka, K.; Kuwahara, Y.; Mori, K.; Hiromi Yamashita, H. Y. Synthesis of Carbon-Supported Pd–Co Bimetallic Catalysts Templated by Co Nanoparticles Using the Galvanic Replacement Method for Selective Hydrogenation. RSC Adv. 2017, 7 (36), 22294– 22300, DOI: 10.1039/c7ra03846aThere is no corresponding record for this reference.
- 59Franch-Martí, C.; Alonso-Escobar, C.; Jorda, J. L.; Peral, I.; Hernández-Fenollosa, J.; Corma, A.; Palomares, A. E.; Rey, F.; Guilera, G. TNU-9, a New Zeolite for the Selective Catalytic Reduction of NO: An in Situ X-Ray Absorption Spectroscopy Study. J. Catal. 2012, 295, 22– 30, DOI: 10.1016/j.jcat.2012.07.011There is no corresponding record for this reference.
- 60Chalmin, E.; Farges, F.; Brown, G. E. A Pre-Edge Analysis of Mn K-Edge XANES Spectra to Help Determine the Speciation of Manganese in Minerals and Glasses. Contrib. Mineral. Petrol. 2009, 157 (1), 111– 126, DOI: 10.1007/s00410-008-0323-zThere is no corresponding record for this reference.
- 61Militello, M. C.; Simko, S. J. Palladium Chloride (PdCl2) by XPS. Surf. Sci. Spectra 1994, 3 (4), 402– 409, DOI: 10.1116/1.1247785There is no corresponding record for this reference.
- 62Sun, C.; Liu, X.; Bai, X. Highly Efficient Dehydrogenation of Dodecahydro-N-Ethylcarbazole over Al2O3 Supported PdCo Bimetallic Nanocatalysts Prepared by Galvanic Replacement. Int. J. Hydrogen Energy 2024, 49, 1547– 1557, DOI: 10.1016/j.ijhydene.2023.10.118There is no corresponding record for this reference.
- 63Frost, D. C.; McDowell, C. A.; Woolsey, I. S. X-Ray Photoelectron Spectra of Cobalt Compounds. Mol. Phys. 1974, 27 (6), 1473– 1489, DOI: 10.1080/00268977400101251There is no corresponding record for this reference.
- 64Ivanova, T.; Naumkin, A.; Sidorov, A.; Eremenko, I.; Kiskin, M. X-Ray Photoelectron Spectra and Electron Structure of Polynuclear Cobalt Complexes. J. Electron Spectrosc. Relat. Phenom. 2007, 156–158, 200– 203, DOI: 10.1016/j.elspec.2006.12.005There is no corresponding record for this reference.
- 65Gengenbach, T. R.; Major, G. H.; Linford, M. R.; Easton, C. D. Practical Guides for X-Ray Photoelectron Spectroscopy (XPS): Interpreting the Carbon 1s Spectrum. J. Vac. Sci. Technol., A 2021, 39 (1), 13204, DOI: 10.1116/6.0000682There is no corresponding record for this reference.
- 66Morgan, D. J. Comments on the XPS Analysis of Carbon Materials. C 2021, 7 (3), 51, DOI: 10.3390/c7030051There is no corresponding record for this reference.
- 67Li, H.; Tan, X.; Zhang, J. Coordination-Driven Terpyridyl Phosphine Pd(II) Gels. Chin. J. Chem. 2015, 33 (1), 141– 146, DOI: 10.1002/cjoc.201400479There is no corresponding record for this reference.
- 68Ibusuki, T.; Saito, Y. Coordinate Bonding Properties of Complexes of Pyridine with Platinum(II) and Mercury(II) Chlorides. Inorg. Chim. Acta 1976, 19 (C), 87– 90, DOI: 10.1016/S0020-1693(00)91078-8There is no corresponding record for this reference.
- 69Artyushkova, K. Misconceptions in Interpretation of Nitrogen Chemistry from X-Ray Photoelectron Spectra. J. Vac. Sci. Technol., A 2020, 38 (3), 31002, DOI: 10.1116/1.5135923There is no corresponding record for this reference.
- 70Kato, T.; Yamada, Y.; Nishikawa, Y.; Otomo, T.; Sato, H.; Sato, S. Origins of Peaks of Graphitic and Pyrrolic Nitrogen in N1s X-Ray Photoelectron Spectra of Carbon Materials: Quaternary Nitrogen, Tertiary Amine, or Secondary Amine?. J. Mater. Sci. 2021, 56 (28), 15798– 15811, DOI: 10.1007/s10853-021-06283-5There is no corresponding record for this reference.
- 71Wang, B.; Mathiesen, J. K.; Kirsch, A.; Schlegel, N.; Anker, A. S.; Johansen, F. L.; Kjær, E. T. S.; Aalling-Frederiksen, O.; Nielsen, T. M.; Thomsen, M. S.; Jakobsen, R. K.; Arenz, M.; Jensen, K. M. Ø. Formation of Intermetallic PdIn Nanoparticles: Influence of Surfactants on Nanoparticle Atomic Structure. Nanoscale Adv. 2023, 5 (24), 6913– 6924, DOI: 10.1039/D3NA00582HThere is no corresponding record for this reference.
- 72García-Trenco, A.; Regoutz, A.; White, E. R.; Payne, D. J.; Shaffer, M. S. P.; Williams, C. K. PdIn Intermetallic Nanoparticles for the Hydrogenation of CO2 to Methanol. Appl. Catal., B 2018, 220, 9– 18, DOI: 10.1016/j.apcatb.2017.07.069There is no corresponding record for this reference.
- 73Gentry, S. T.; Kendra, S. F.; Bezpalko, M. W. Ostwald Ripening in Metallic Nanoparticles: Stochastic Kinetics. J. Phys. Chem. C 2011, 115 (26), 12736– 12741, DOI: 10.1021/jp2009786There is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscatal.4c07149.
Supporting information includes additional descriptions of materials and procedures used; characterization studies (TEM and XPS) on the PdM-MOF and PdM-Q materials; additional XAS data; complementary tests to evaluate the catalytic activity and the catalytic stability of the materials; and literature reference data (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.