Mechanistic Insights for Low-Overpotential Electroreduction of CO2 to CO on Copper NanowiresClick to copy article linkArticle link copied!
- Liang Cao
- David Raciti
- Chenyang Li
- Kenneth J. T. Livi
- Paul F. Rottmann
- Kevin J. Hemker
- Tim Mueller
- Chao Wang
Abstract
Recent developments of copper (Cu)-based nanomaterials have enabled the electroreduction of CO2 at low overpotentials. The mechanism of low-overpotential CO2 reduction on these nanocatalysts, however, largely remains elusive. We report here a systematic investigation of CO2 reduction on highly dense Cu nanowires, with the focus placed on understanding the surface structure effects on the formation of *CO (* denotes an adsorption site on the catalyst surface) and the evolution of gas-phase CO product (CO(g)) at low overpotentials (more positive than −0.5 V). Cu nanowires of distinct nanocrystalline and surface structures are studied comparatively to build up the structure–property relationships, which are further interpreted by performing density functional theory (DFT) calculations of the reaction pathway on the various facets of Cu. A kinetic model reveals competition between CO(g) evolution and *CO poisoning depending on the electrode potential and surface structures. Open and metastable facets such as (110) and reconstructed (110) are found to be likely the active sites for the electroreduction of CO2 to CO at the low overpotentials.
Cited By
This article is cited by 102 publications.
- Yue Gong, Tao He. Tunable Production of Syngas via Pulsed-Potential Electrolysis of CO2 over Single-Crystal Cu(100). ACS Applied Energy Materials 2024, Article ASAP.
- Yao Yang, Chuqiao Shi, Julian Feijóo, Jianbo Jin, Chubai Chen, Yimo Han, Peidong Yang. Dynamic Evolution of Copper Nanowires during CO2 Reduction Probed by Operando Electrochemical 4D-STEM and X-ray Spectroscopy. Journal of the American Chemical Society 2024, 146
(33)
, 23398-23405. https://doi.org/10.1021/jacs.4c06480
- Zhaozhao Peng, Nanping Deng, Xinyi Li, Hao Chi, Hao Wang, Weimin Kang, Bowen Cheng. Controllable Preparation, Working Mechanisms, and Actual Application of Various One-Dimensional Nanomaterials as Catalysts for CO2RR: A Review. Industrial & Engineering Chemistry Research 2023, 62
(50)
, 21511-21535. https://doi.org/10.1021/acs.iecr.3c02877
- Zhengzheng Liu, Jinyuan Cao, Bowen Wu, Linping Qian, Anxiang Guan, Chao Yang, Ximeng Lv, Lijuan Zhang, Gengfeng Zheng. Surface Energy Tuning on Cu/NC Catalysts for CO Electroreduction. ACS Catalysis 2022, 12
(20)
, 12555-12562. https://doi.org/10.1021/acscatal.2c02261
- Xuanwen Xu, Hiroyuki Asakura, Saburo Hosokawa, Tsunehiro Tanaka, Kentaro Teramura. Exploring Effective Non-metal Inorganic Cocatalysts for the Photocatalytic Conversion of CO2 Using H2O as an Electron Donor. ACS Applied Energy Materials 2022, 5
(9)
, 11379-11385. https://doi.org/10.1021/acsaem.2c01865
- Federico Dattila, Ranga Rohit Seemakurthi, Yecheng Zhou, Núria López. Modeling Operando Electrochemical CO2 Reduction. Chemical Reviews 2022, 122
(12)
, 11085-11130. https://doi.org/10.1021/acs.chemrev.1c00690
- Morgan M. Cencer, Chenyang Li, Garvit Agarwal, Reginaldo Jose Gomes Neto, Chibueze V. Amanchukwu, Rajeev S. Assary. Interactions of CO2 Anion Radicals with Electrolyte Environments from First-Principles Simulations. ACS Omega 2022, 7
(21)
, 18131-18138. https://doi.org/10.1021/acsomega.2c01733
- Pengwei Qi, Liang Zhao, Zhao Deng, Hao Sun, Hailong Li, Qi Liu, Xiang Li, Yuebin Lian, Jian Cheng, Jun Guo, Yi Cui, Yang Peng. Revisiting the Grain and Valence Effect of Oxide-Derived Copper on Electrocatalytic CO2 Reduction Using Single Crystal Cu(111) Foils. The Journal of Physical Chemistry Letters 2021, 12
(16)
, 3941-3950. https://doi.org/10.1021/acs.jpclett.1c00588
- Zheng Li, Shuquan Chang, Saurabh Khuje, Shenqiang Ren. Recent Advancement of Emerging Nano Copper-Based Printable Flexible Hybrid Electronics. ACS Nano 2021, 15
(4)
, 6211-6232. https://doi.org/10.1021/acsnano.1c02209
- Yuxuan Wang, Chenyang Li, Zhanxi Fan, Ye Chen, Xing Li, Liang Cao, Canhui Wang, Lei Wang, Dong Su, Hua Zhang, Tim Mueller, Chao Wang. Undercoordinated Active Sites on 4H Gold Nanostructures for CO2 Reduction. Nano Letters 2020, 20
(11)
, 8074-8080. https://doi.org/10.1021/acs.nanolett.0c03073
- Yuanxing Wang, Cailing Niu, Yachuan Zhu, Da He, Weixin Huang. Tunable Syngas Formation from Electrochemical CO2 Reduction on Copper Nanowire Arrays. ACS Applied Energy Materials 2020, 3
(10)
, 9841-9847. https://doi.org/10.1021/acsaem.0c01504
- An Chen, Xu Zhang, Letian Chen, Sai Yao, Zhen Zhou. A Machine Learning Model on Simple Features for CO2 Reduction Electrocatalysts. The Journal of Physical Chemistry C 2020, 124
(41)
, 22471-22478. https://doi.org/10.1021/acs.jpcc.0c05964
- Kenna L. Salvatore, Kaixi Deng, Shiyu Yue, Scott C. McGuire, José A. Rodriguez, Stanislaus S. Wong. Optimized Microwave-Based Synthesis of Thermally Stable Inverse Catalytic Core–shell Motifs for CO2 Hydrogenation. ACS Applied Materials & Interfaces 2020, 12
(29)
, 32591-32603. https://doi.org/10.1021/acsami.0c06430
- Mallory G. John, Katharine Moore Tibbetts. Mechanism of Nickel Phyllosilicate Formation by Laser Ablation in Liquid. The Journal of Physical Chemistry C 2020, 124
(24)
, 13273-13282. https://doi.org/10.1021/acs.jpcc.0c03732
- Lihui Ou, Zixi He. Potential-Dependent Competitive Electroreduction of CO2 into CO and Formate on Cu(111) from an Improved H Coverage-Dependent Electrochemical Model with Explicit Solvent Effect. ACS Omega 2020, 5
(22)
, 12735-12744. https://doi.org/10.1021/acsomega.0c00227
- Jin Wook Lim, Wan Jae Dong, Jae Yong Park, Dae Myung Hong, Jong-Lam Lee. Spontaneously Formed CuSx Catalysts for Selective and Stable Electrochemical Reduction of Industrial CO2 Gas to Formate. ACS Applied Materials & Interfaces 2020, 12
(20)
, 22891-22900. https://doi.org/10.1021/acsami.0c03606
- Aarti Tiwari, Hendrik H. Heenen, Anton Simon Bjørnlund, Thomas Maagaard, EunAe Cho, Ib Chorkendorff, Henrik H. Kristoffersen, Karen Chan, Sebastian Horch. Fingerprint Voltammograms of Copper Single Crystals under Alkaline Conditions: A Fundamental Mechanistic Analysis. The Journal of Physical Chemistry Letters 2020, 11
(4)
, 1450-1455. https://doi.org/10.1021/acs.jpclett.9b03728
- Alexandros N. Karaiskakis, Samaneh Sharifi Golru, Elizabeth J. Biddinger. Effect of Electrode Geometry on Selectivity and Activity in CO2 Electroreduction. Industrial & Engineering Chemistry Research 2019, 58
(50)
, 22506-22515. https://doi.org/10.1021/acs.iecr.9b03762
- Yuxuan Wang, Hao Shen, Ken J. T. Livi, David Raciti, Han Zong, John Gregg, Mofopefoluwa Onadeko, Yidong Wan, Adam Watson, Chao Wang. Copper Nanocubes for CO2 Reduction in Gas Diffusion Electrodes. Nano Letters 2019, 19
(12)
, 8461-8468. https://doi.org/10.1021/acs.nanolett.9b02748
- Lei Ji, Le Chang, Ya Zhang, Shiyong Mou, Ting Wang, Yonglan Luo, Zhiming Wang, Xuping Sun. Electrocatalytic CO2 Reduction to Alcohols with High Selectivity over a Two-Dimensional Fe2P2S6 Nanosheet. ACS Catalysis 2019, 9
(11)
, 9721-9725. https://doi.org/10.1021/acscatal.9b03180
- Aarti Tiwari, Thomas Maagaard, Ib Chorkendorff, Sebastian Horch. Effect of Dissolved Glassware on the Structure-Sensitive Part of the Cu(111) Voltammogram in KOH. ACS Energy Letters 2019, 4
(7)
, 1645-1649. https://doi.org/10.1021/acsenergylett.9b01064
- Yao Zheng, Anthony Vasileff, Xianlong Zhou, Yan Jiao, Mietek Jaroniec, Shi-Zhang Qiao. Understanding the Roadmap for Electrochemical Reduction of CO2 to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Catalysts. Journal of the American Chemical Society 2019, 141
(19)
, 7646-7659. https://doi.org/10.1021/jacs.9b02124
- Xu Lu, Yueshen Wu, Xiaolei Yuan, Ling Huang, Zishan Wu, Jin Xuan, Yifei Wang, Hailiang Wang. High-Performance Electrochemical CO2 Reduction Cells Based on Non-noble Metal Catalysts. ACS Energy Letters 2018, 3
(10)
, 2527-2532. https://doi.org/10.1021/acsenergylett.8b01681
- Jia Zhao, Jingxiang Zhao, Fengyu Li, Zhongfang Chen. Copper Dimer Supported on a C2N Layer as an Efficient Electrocatalyst for CO2 Reduction Reaction: A Computational Study. The Journal of Physical Chemistry C 2018, 122
(34)
, 19712-19721. https://doi.org/10.1021/acs.jpcc.8b06494
- Chenyang Li, David Raciti, Tiancheng Pu, Liang Cao, Connie He, Chao Wang, Tim Mueller. Improved Prediction of Nanoalloy Structures by the Explicit Inclusion of Adsorbates in Cluster Expansions. The Journal of Physical Chemistry C 2018, 122
(31)
, 18040-18047. https://doi.org/10.1021/acs.jpcc.8b03868
- David Raciti, Chao Wang. Recent Advances in CO2 Reduction Electrocatalysis on Copper. ACS Energy Letters 2018, 3
(7)
, 1545-1556. https://doi.org/10.1021/acsenergylett.8b00553
- Wen Luo, Wei Xie, Robin Mutschler, Emad Oveisi, Gian Luca De Gregorio, Raffaella Buonsanti, Andreas Züttel. Selective and Stable Electroreduction of CO2 to CO at the Copper/Indium Interface. ACS Catalysis 2018, 8
(7)
, 6571-6581. https://doi.org/10.1021/acscatal.7b04457
- Yuxuan Wang, David Raciti, Chao Wang. High-Flux CO Reduction Enabled by Three-Dimensional Nanostructured Copper Electrodes. ACS Catalysis 2018, 8
(7)
, 5657-5663. https://doi.org/10.1021/acscatal.8b00902
- David Raciti, Yuxuan Wang, Jun Ha Park, Chao Wang. Three-Dimensional Hierarchical Copper-Based Nanostructures as Advanced Electrocatalysts for CO2 Reduction. ACS Applied Energy Materials 2018, 1
(6)
, 2392-2398. https://doi.org/10.1021/acsaem.8b00356
- Xia Bai, Jingmin Ge, Huanhuan Yang, Huiwen Tian, Xueqi Liu, Shiying Li, Zhikun Peng, Yaxi Li, Jiahao Wang, Hongpo Liu, Qun Xu. Building of rich (111) grain boundary in copper for syngas in electrochemical CO2 reduction. Applied Catalysis B: Environment and Energy 2024, 356 , 124212. https://doi.org/10.1016/j.apcatb.2024.124212
- Taozhi Sun, Jingjing Wu, Xianglong Lu, Xin Tang. Selectivities of Cu edges surface environment for C1 and C2 pathways. Molecular Catalysis 2024, 559 , 114047. https://doi.org/10.1016/j.mcat.2024.114047
- Azeem Mustafa, Bachirou Guene Lougou, Yong Shuai, Zhijiang Wang, Haseeb ur-Rehman, Samia Razzaq, Wei Wang, Ruming Pan, Fanghua Li, Lei Han. Study of CuSb bimetallic flow-through gas diffusion electrodes for efficient electrochemical CO2 reduction to CO. Journal of Colloid and Interface Science 2024, 657 , 363-372. https://doi.org/10.1016/j.jcis.2023.11.168
- Yan Lin, Tuo Wang, Lili Zhang, Gong Zhang, Lulu Li, Qingfeng Chang, Zifan Pang, Hui Gao, Kai Huang, Peng Zhang, Zhi-Jian Zhao, Chunlei Pei, Jinlong Gong. Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability. Nature Communications 2023, 14
(1)
https://doi.org/10.1038/s41467-023-39351-2
- Ruinan He, Xi Luo, Lulu Li, Yang Zhang, Luwei Peng, Nengneng Xu, Jinli Qiao. Grain boundary and interface interaction of metal (copper/indium) oxides to boost efficient electrocatalytic carbon dioxide reduction into syngas. Journal of Colloid and Interface Science 2023, 3 https://doi.org/10.1016/j.jcis.2023.12.127
- Lucas G. Verga, Yunzhe Wang, Tanmoy Chakraborty, Juarez L. F. Da Silva, Tim Mueller. The effects of near-surface atomic order on the catalytic properties of Cu
3
Au and CuAu
3
intermetallics for the CO
2
reduction reaction. Catalysis Science & Technology 2023, 13
(22)
, 6415-6430. https://doi.org/10.1039/D3CY00658A
- Liang Ma, Zhuxian Yang, Yuan Wang, Yongde Xia. Cu‐Based Catalytic Materials for Electrochemical Carbon Dioxide Reduction: Recent Advances and Perspectives. Advanced Energy and Sustainability Research 2023, 4
(10)
https://doi.org/10.1002/aesr.202300034
- Xinyi Wang, Zhenwei Zhao, Kiran Zahra, Junjun Li, Zhicheng Zhang. Sub-nanomaterials for Photo/Electro-catalytic CO2 Reduction: Achievements, Challenges, and Opportunities. Chemical Research in Chinese Universities 2023, 39
(4)
, 580-598. https://doi.org/10.1007/s40242-023-3123-0
- Aamir Hassan Shah, Yue Gong, Yanjie Wang, Abebe Reda Woldu, Tao He. Understanding the Role of Electrolyte Cations on Activity and Product Selectivity of CO2 Reduction over Cu Electrode. Catalysts 2023, 13
(7)
, 1092. https://doi.org/10.3390/catal13071092
- Qingquan Kong, Xuguang An, Qian Liu, Lisi Xie, Jing Zhang, Qinye Li, Weitang Yao, Aimin Yu, Yan Jiao, Chenghua Sun. Copper-based catalysts for the electrochemical reduction of carbon dioxide: progress and future prospects. Materials Horizons 2023, 10
(3)
, 698-721. https://doi.org/10.1039/D2MH01218A
- Yao Yang, Sheena Louisia, Sunmoon Yu, Jianbo Jin, Inwhan Roh, Chubai Chen, Maria V. Fonseca Guzman, Julian Feijóo, Peng-Cheng Chen, Hongsen Wang, Christopher J. Pollock, Xin Huang, Yu-Tsun Shao, Cheng Wang, David A. Muller, Héctor D. Abruña, Peidong Yang. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 2023, 614
(7947)
, 262-269. https://doi.org/10.1038/s41586-022-05540-0
- Bangwei Deng, Xueyang Zhao, Yizhao Li, Ming Huang, Shihan Zhang, Fan Dong. Active site identification and engineering during the dynamic evolution of copper-based catalysts for electrocatalytic CO2 reduction. Science China Chemistry 2023, 66
(1)
, 78-95. https://doi.org/10.1007/s11426-022-1412-6
- Xiaodeng Wang, Qi Hu, Guodong Li, Hengpan Yang, Chuanxin He. Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts. Electrochemical Energy Reviews 2022, 5
(S2)
https://doi.org/10.1007/s41918-022-00171-5
- Majedeh Gheytanzadeh, Alireza Baghban, Sajjad Habibzadeh, Karam Jabbour, Amin Esmaeili, Amin Hamed Mashhadzadeh, Ahmad Mohaddespour. Intelligent route to design efficient CO2 reduction electrocatalysts using ANFIS optimized by GA and PSO. Scientific Reports 2022, 12
(1)
https://doi.org/10.1038/s41598-022-25512-8
- Andrei Kolmakov, David Raciti. Scanning Electron Microscopy to Study the Nucleation and Growth Phenomena in Liquid Electrolytes under Operando Conditions. Journal of The Electrochemical Society 2022, 169
(11)
, 112510. https://doi.org/10.1149/1945-7111/aca0c9
- Fangfang Chang, Meiling Xiao, Ruifang Miao, Yongpeng Liu, Mengyun Ren, Zhichao Jia, Dandan Han, Yang Yuan, Zhengyu Bai, Lin Yang. Copper-Based Catalysts for Electrochemical Carbon Dioxide Reduction to Multicarbon Products. Electrochemical Energy Reviews 2022, 5
(3)
https://doi.org/10.1007/s41918-022-00139-5
- Zhen Zhang, Yun Zheng, Lanting Qian, Dan Luo, Haozhen Dou, Guobin Wen, Aiping Yu, Zhongwei Chen. Emerging Trends in Sustainable CO
2
‐Management Materials. Advanced Materials 2022, 34
(29)
https://doi.org/10.1002/adma.202201547
- Eduardo H. Dias, Gelson T. S. T. Da Silva, Jean C. Da Cruz, Caue Ribeiro. One‐Pot Solvothermal Synthesis of Carbon Black‐Supported CuO for Catalysis of CO
2
Electroreduction. ChemElectroChem 2022, 9
(11)
https://doi.org/10.1002/celc.202200206
- Jinze Liu, Ling Cheng, Yating Wang, Rongzhen Chen, Chuqian Xiao, Xiaodong Zhou, Yihua Zhu, Yuhang Li, Chunzhong Li. Dynamic determination of Cu
+
roles for CO
2
reduction on electrochemically stable Cu
2
O-based nanocubes. Journal of Materials Chemistry A 2022, 10
(15)
, 8459-8465. https://doi.org/10.1039/D1TA10831J
- Chenyuan Zhu, Siwen Zhao, Guoshuai Shi, Liming Zhang. Structure‐Function Correlation and Dynamic Restructuring of Cu for Highly Efficient Electrochemical CO
2
Conversion. ChemSusChem 2022, 15
(7)
https://doi.org/10.1002/cssc.202200068
- Liang Cao. Recent advances in the application of machine-learning algorithms to predict adsorption energies. Trends in Chemistry 2022, 4
(4)
, 347-360. https://doi.org/10.1016/j.trechm.2022.01.012
- Kaisong Xiang, Fenghua Shen, Yingxue Fu, Lin Wu, Zhujiang Wang, Huimin Yi, Xudong Liu, Pingshan Wang, Min Liu, Zhang Lin, Hui Liu. Boosting CO
2
electroreduction towards C
2+
products
via
CO* intermediate manipulation on copper-based catalysts. Environmental Science: Nano 2022, 9
(3)
, 911-953. https://doi.org/10.1039/D1EN00977J
- Carmen Castro-Castillo, Kamala Kanta Nanda, Elías Mardones-Herrera, Valeria Gazzano, Domingo Ruiz-León, María Jesús Aguirre, Gonzalo García, Francisco Armijo, Mauricio Isaacs. Growth direction and exposed facets of Cu/Cu2O nanostructures affect product selectivity in CO2 electroreduction. Materials Chemistry and Physics 2022, 278 , 125650. https://doi.org/10.1016/j.matchemphys.2021.125650
- Guobin Wen, Bohua Ren, Yun Zheng, Matthew Li, Catherine Silva, Shuqin Song, Zhen Zhang, Haozhen Dou, Lei Zhao, Dan Luo, Aiping Yu, Zhongwei Chen. Engineering Electrochemical Surface for Efficient Carbon Dioxide Upgrade. Advanced Energy Materials 2022, 12
(3)
https://doi.org/10.1002/aenm.202103289
- Najrul Hussain, Mohammad A. Abdelkareem, Hussain Alawadhi, Abdul-Ghani Olabi. Nanostructured Materials as Electrocatalysts for Electrochemical CO2 Reduction. 2022, 393-401. https://doi.org/10.1016/B978-0-12-815732-9.00096-6
- Jingfu He, Yuanli Li, Aoxue Huang, Qinghua Liu, Changli Li. Electrolyzer and Catalysts Design from Carbon Dioxide to Carbon Monoxide Electrochemical Reduction. Electrochemical Energy Reviews 2021, 4
(4)
, 680-717. https://doi.org/10.1007/s41918-021-00100-y
- Dongfang Cheng, Zhi-Jian Zhao, Gong Zhang, Piaoping Yang, Lulu Li, Hui Gao, Sihang Liu, Xin Chang, Sai Chen, Tuo Wang, Geoffrey A. Ozin, Zhipan Liu, Jinlong Gong. The nature of active sites for carbon dioxide electroreduction over oxide-derived copper catalysts. Nature Communications 2021, 12
(1)
https://doi.org/10.1038/s41467-020-20615-0
- Junyu Ge, Bin Ding, Shuai Hou, Manlin Luo, Donguk Nam, Hongwei Duan, Huajian Gao, Yee Cheong Lam, Hong Li. Rapid fabrication of complex nanostructures using room-temperature ultrasonic nanoimprinting. Nature Communications 2021, 12
(1)
https://doi.org/10.1038/s41467-021-23427-y
- Gong Zhang, Zhi-Jian Zhao, Dongfang Cheng, Huimin Li, Jia Yu, Qingzhen Wang, Hui Gao, Jinyu Guo, Huaiyuan Wang, Geoffrey A. Ozin, Tuo Wang, Jinlong Gong. Efficient CO2 electroreduction on facet-selective copper films with high conversion rate. Nature Communications 2021, 12
(1)
https://doi.org/10.1038/s41467-021-26053-w
- Yuhang Wang, Junlang Liu, Gengfeng Zheng. Designing Copper‐Based Catalysts for Efficient Carbon Dioxide Electroreduction. Advanced Materials 2021, 33
(46)
https://doi.org/10.1002/adma.202005798
- Zhao Li, Rui Wu, Lei Zhao, Pingbo Li, Xinxin Wei, Junjie Wang, Jun Song Chen, Tierui Zhang. Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives. Nano Research 2021, 14
(11)
, 3795-3809. https://doi.org/10.1007/s12274-021-3363-6
- Yi-Hong Xiao, Yi-Bo Tian, Zhi-Gang Gu, Jian Zhang. Surface-coordinated metal-organic framework thin films (SURMOFs): From fabrication to energy applications. EnergyChem 2021, 3
(6)
, 100065. https://doi.org/10.1016/j.enchem.2021.100065
- Chang Liu, Jun Gong, Zeyu Gao, Li Xiao, Gongwei Wang, Juntao Lu, Lin Zhuang. Regulation of the activity, selectivity, and durability of Cu-based electrocatalysts for CO2 reduction. Science China Chemistry 2021, 64
(10)
, 1660-1678. https://doi.org/10.1007/s11426-021-1120-3
- Xia Ma, Jianjian Tian, Min Wang, Xixiong Jin, Meng Shen, Lingxia Zhang. Metal–organic framework derived carbon supported Cu–In nanoparticles for highly selective CO
2
electroreduction to CO. Catalysis Science & Technology 2021, 11
(18)
, 6096-6102. https://doi.org/10.1039/D1CY00843A
- Ting Zhang, Xu Han, Hong Liu, Martí Biset-Peiró, Xuan Zhang, Pingping Tan, Pengyi Tang, Bo Yang, Lirong Zheng, Joan Ramon Morante, Jordi Arbiol. Quasi-double-star nickel and iron active sites for high-efficiency carbon dioxide electroreduction. Energy & Environmental Science 2021, 14
(9)
, 4847-4857. https://doi.org/10.1039/D1EE01592C
- Shanghong Zeng, Shiyao Shan, Aolin Lu, Shan Wang, Dominic T. Caracciolo, Richard J. Robinson, Guojun Shang, Lei Xue, Yuansong Zhao, Aiai Zhang, Yang Liu, Shangpeng Liu, Ze Liu, Fenghua Bai, Jinfang Wu, Hong Wang, Chuan-Jian Zhong. Copper-alloy catalysts: structural characterization and catalytic synergies. Catalysis Science & Technology 2021, 11
(17)
, 5712-5733. https://doi.org/10.1039/D1CY00179E
- Shiyong Mou, Yonghao Li, Luchao Yue, Jie Liang, Yonglan Luo, Qian Liu, Tingshuai Li, Siyu Lu, Abdullah M. Asiri, Xiaoli Xiong, Dongwei Ma, Xuping Sun. Cu2Sb decorated Cu nanowire arrays for selective electrocatalytic CO2 to CO conversion. Nano Research 2021, 14
(8)
, 2831-2836. https://doi.org/10.1007/s12274-021-3295-1
- Tao Liu, Jinling Wang, Xuejing Yang, Ming Gong. A review of pulse electrolysis for efficient energy conversion and chemical production. Journal of Energy Chemistry 2021, 59 , 69-82. https://doi.org/10.1016/j.jechem.2020.10.027
- Jian Shen, Rui Tang, Jun Huang, Yi Wu, Cheng Chen, Qiongzhi Zhou, Yan Huang, Radha Kishan Motkuri, Xin Jin, Hongbin Cao. Strain engineered gas-consumption electroreduction reactions: Fundamentals and perspectives. Coordination Chemistry Reviews 2021, 429 , 213649. https://doi.org/10.1016/j.ccr.2020.213649
- Yanjie Wang, Hongjia Wang, Tao He. Study on nanoporous CuBi2O4 photocathode coated with TiO2 overlayer for photoelectrochemical CO2 reduction. Chemosphere 2021, 264 , 128508. https://doi.org/10.1016/j.chemosphere.2020.128508
- Yunzhe Wang, Pandu Wisesa, Adarsh Balasubramanian, Shyam Dwaraknath, Tim Mueller. Rapid generation of optimal generalized Monkhorst-Pack grids. Computational Materials Science 2021, 187 , 110100. https://doi.org/10.1016/j.commatsci.2020.110100
- Shilong Jiao, Xianwei Fu, Li Zhang, Luhong Zhang, Shuangchen Ruan, Yu-Jia Zeng, Hongwen Huang. The lab-to-fab journey of copper-based electrocatalysts for multi-carbon production: Advances, challenges, and opportunities. Nano Today 2021, 36 , 101028. https://doi.org/10.1016/j.nantod.2020.101028
- M. Nur Hossain, Syed Ahmad, Iranaldo Santos da Silva, Heinz‐Bernhard Kraatz. Electrochemical Reduction of CO
2
at Coinage Metal Nanodendrites in Aqueous Ethanolamine. Chemistry – A European Journal 2021, 27
(4)
, 1346-1355. https://doi.org/10.1002/chem.202003039
- Yating Zhu, Jinli Yu, Zhanxi Fan, Zhicheng Zhang. 2D Materials for electrochemical carbon dioxide reduction. 2021, 183-196. https://doi.org/10.1016/B978-0-12-822894-4.00006-X
- Defei Liu, Yan Hu, Elvis Shoko, Hongbo Yu, Tayirjan Taylor Isimjan, Xiulin Yang. High selectivity of CO2 conversion to formate by porous copper hollow fiber: Microstructure and pressure effects. Electrochimica Acta 2021, 365 , 137343. https://doi.org/10.1016/j.electacta.2020.137343
- Wanlin Gao, Shuyu Liang, Rujie Wang, Qian Jiang, Yu Zhang, Qianwen Zheng, Bingqiao Xie, Cui Ying Toe, Xuancan Zhu, Junya Wang, Liang Huang, Yanshan Gao, Zheng Wang, Changbum Jo, Qiang Wang, Lidong Wang, Yuefeng Liu, Benoit Louis, Jason Scott, Anne-Cecile Roger, Rose Amal, Hong He, Sang-Eon Park. Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews 2020, 49
(23)
, 8584-8686. https://doi.org/10.1039/D0CS00025F
- Cátia Azenha, Cecilia Mateos-Pedrero, Manuel Alvarez-Guerra, Angel Irabien, Adélio Mendes. Enhancement of the electrochemical reduction of CO2 to methanol and suppression of H2 evolution over CuO nanowires. Electrochimica Acta 2020, 363 , 137207. https://doi.org/10.1016/j.electacta.2020.137207
- Wan Jae Dong, Chul Jong Yoo, Jin Wook Lim, Jae Yong Park, Kisoo Kim, Sungjoo Kim, Donghwa Lee, Jong-Lam Lee. Tailoring electronic structure of bifunctional Cu/Ag layered electrocatalysts for selective CO2 reduction to CO and CH4. Nano Energy 2020, 78 , 105168. https://doi.org/10.1016/j.nanoen.2020.105168
- Samaneh Sharifi Golru, Elizabeth J. Biddinger. Effect of anion in diluted imidazolium-based ionic liquid/buffer electrolytes for CO2 electroreduction on copper. Electrochimica Acta 2020, 361 , 136787. https://doi.org/10.1016/j.electacta.2020.136787
- Yuanxing Wang, Yachuan Zhu, Cailing Niu. Surface and length effects for aqueous electrochemical reduction of CO2 as studied over copper nanowire arrays. Journal of Physics and Chemistry of Solids 2020, 144 , 109507. https://doi.org/10.1016/j.jpcs.2020.109507
- Kayode Adesina Adegoke, Rhoda Oyeladun Adegoke, Asiata Omotayo Ibrahim, Samson Ademola Adegoke, Olugbenga Solomon Bello. Electrocatalytic conversion of CO2 to hydrocarbon and alcohol products: Realities and prospects of Cu-based materials. Sustainable Materials and Technologies 2020, 25 , e00200. https://doi.org/10.1016/j.susmat.2020.e00200
- Shiqiang (Rob) Hui, Nima Shaigan, Vladimir Neburchilov, Lei Zhang, Kourosh Malek, Michael Eikerling, Phil De Luna. Three-Dimensional Cathodes for Electrochemical Reduction of CO2: From Macro- to Nano-Engineering. Nanomaterials 2020, 10
(9)
, 1884. https://doi.org/10.3390/nano10091884
- Guobin Wen, Bohua Ren, Moon G. Park, Jie Yang, Haozhen Dou, Zhen Zhang, Ya‐Ping Deng, Zhengyu Bai, Lin Yang, Jeff Gostick, Gianluigi A. Botton, Yongfeng Hu, Zhongwei Chen. Ternary Sn‐Ti‐O Electrocatalyst Boosts the Stability and Energy Efficiency of CO
2
Reduction. Angewandte Chemie 2020, 132
(31)
, 12960-12967. https://doi.org/10.1002/ange.202004149
- Guobin Wen, Bohua Ren, Moon G. Park, Jie Yang, Haozhen Dou, Zhen Zhang, Ya‐Ping Deng, Zhengyu Bai, Lin Yang, Jeff Gostick, Gianluigi A. Botton, Yongfeng Hu, Zhongwei Chen. Ternary Sn‐Ti‐O Electrocatalyst Boosts the Stability and Energy Efficiency of CO
2
Reduction. Angewandte Chemie International Edition 2020, 59
(31)
, 12860-12867. https://doi.org/10.1002/anie.202004149
- Mallory G. John, Katharine Moore Tibbetts. Controlling the morphology of copper-silica nanocomposites from laser ablation in liquid. Applied Surface Science 2020, 510 , 145037. https://doi.org/10.1016/j.apsusc.2019.145037
- Jian Zhao, Song Xue, James Barber, Yiwei Zhou, Jie Meng, Xuebin Ke. An overview of Cu-based heterogeneous electrocatalysts for CO
2
reduction. Journal of Materials Chemistry A 2020, 8
(9)
, 4700-4734. https://doi.org/10.1039/C9TA11778D
- Jaison Jeevanandam, Anandhakumar Sundaramurthy, Varsha Sharma, Chandran Murugan, Kaushik Pal, Mohamed Hamada Abdel Kodous, Michael K. Danquah. Sustainability of One-Dimensional Nanostructures. 2020, 83-113. https://doi.org/10.1016/B978-0-12-814681-1.00004-7
- Peng Huang, Jinxi Chen, Peilin Deng, Fan Yang, Jing Pan, Kai Qi, Hongfang Liu, Bao Yu Xia. Grain refinement of self-supported copper electrode by multiple-redox treatment for enhanced carbon dioxide electroreduction towards carbon monoxide generation. Journal of Catalysis 2020, 381 , 608-614. https://doi.org/10.1016/j.jcat.2019.12.008
- Thuy-Duong Nguyen-Phan, Congjun Wang, Chris M. Marin, Yunyun Zhou, Eli Stavitski, Eric J. Popczun, Yang Yu, Wenqian Xu, Bret H. Howard, Mengling Y. Stuckman, Iradwikanari Waluyo, Paul R. Ohodnicki, Douglas R. Kauffman. Understanding three-dimensionally interconnected porous oxide-derived copper electrocatalyst for selective carbon dioxide reduction. Journal of Materials Chemistry A 2019, 7
(48)
, 27576-27584. https://doi.org/10.1039/C9TA10135G
- Ho Seok Whang, Jinkyu Lim, Min Suk Choi, Jonghyeok Lee, Hyunjoo Lee. Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals. BMC Chemical Engineering 2019, 1
(1)
https://doi.org/10.1186/s42480-019-0007-7
- Anxiang Guan, Chao Yang, Yueli Quan, Hanchen Shen, Na Cao, Tengfei Li, Yali Ji, Gengfeng Zheng. One‐dimensional Nanomaterial Electrocatalysts for CO
2
Fixation. Chemistry – An Asian Journal 2019, 14
(22)
, 3969-3980. https://doi.org/10.1002/asia.201900819
- Md Golam Kibria, Jonathan P. Edwards, Christine M. Gabardo, Cao‐Thang Dinh, Ali Seifitokaldani, David Sinton, Edward H. Sargent. Electrochemical CO
2
Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. Advanced Materials 2019, 31
(31)
https://doi.org/10.1002/adma.201807166
- Shangguo Liu, Shiping Huang. Structure engineering of Cu-based nanoparticles for electrochemical reduction of CO2. Journal of Catalysis 2019, 375 , 234-241. https://doi.org/10.1016/j.jcat.2019.05.035
- Jingyi Li, Xiang Li, Charuni M. Gunathunge, Matthias M. Waegele. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proceedings of the National Academy of Sciences 2019, 116
(19)
, 9220-9229. https://doi.org/10.1073/pnas.1900761116
- Dongxing Tan, Chaonan Cui, Jinbiao Shi, Zhixun Luo, Bingxing Zhang, Xiuniang Tan, Buxing Han, Lirong Zheng, Jing Zhang, Jianling Zhang. Nitrogen-carbon layer coated nickel nanoparticles for efficient electrocatalytic reduction of carbon dioxide. Nano Research 2019, 12
(5)
, 1167-1172. https://doi.org/10.1007/s12274-019-2372-1
- Shangguo Liu, Shiping Huang. Size effects and active sites of Cu nanoparticle catalysts for CO2 electroreduction. Applied Surface Science 2019, 475 , 20-27. https://doi.org/10.1016/j.apsusc.2018.12.251
- Ping Chen, Yan Jiao, Yi-Han Zhu, Shuang-Ming Chen, Li Song, Mietek Jaroniec, Yao Zheng, Shi-Zhang Qiao. Syngas production from electrocatalytic CO
2
reduction with high energetic efficiency and current density. Journal of Materials Chemistry A 2019, 7
(13)
, 7675-7682. https://doi.org/10.1039/C9TA01932D
- Amaha Woldu Kahsay, Kassa Belay Ibrahim, Meng-Che Tsai, Mulatu Kassie Birhanu, Soressa Abera Chala, Wei-Nien Su, Bing-Joe Hwang. Selective and Low Overpotential Electrochemical CO2 Reduction to Formate on CuS Decorated CuO Heterostructure. Catalysis Letters 2019, 149
(3)
, 860-869. https://doi.org/10.1007/s10562-019-02657-2
- Harisekhar Mitta, Putrakumar Balla, Nagaraju Nekkala, Krishna Murthy Bhaskara, Rajender Boddula, Vijyakumar Kannekanti, Ramachandra Rao Kokkerapati. Recent Progress of Carbon Dioxide Conversion into Renewable Fuels and Chemicals Using Nanomaterials. 2019, 271-293. https://doi.org/10.1007/978-3-030-04500-5_11
- Ling Liu, Chungen Liu. Origin of the overpotentials for HCOO
−
and CO formation in the electroreduction of CO
2
on Cu(211): the reductive desorption processes decide. Physical Chemistry Chemical Physics 2018, 20
(8)
, 5756-5765. https://doi.org/10.1039/C7CP08440D
- David Raciti, Mark Mao, Jun Ha Park, Chao Wang. Mass transfer effects in CO
2
reduction on Cu nanowire electrocatalysts. Catalysis Science & Technology 2018, 8
(9)
, 2364-2369. https://doi.org/10.1039/C8CY00372F
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.