ACS Publications. Most Trusted. Most Cited. Most Read
Catalytic Strategies for the Cycloaddition of Pure, Diluted, and Waste CO2 to Epoxides under Ambient Conditions
My Activity
    Review

    Catalytic Strategies for the Cycloaddition of Pure, Diluted, and Waste CO2 to Epoxides under Ambient Conditions
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand
    Other Access OptionsSupporting Information (1)

    ACS Catalysis

    Cite this: ACS Catal. 2018, 8, 1, 419–450
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acscatal.7b03580
    Published November 29, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Cyclic organic carbonates represent a relevant class of chemicals that can be prepared from CO2 by cycloaddition to epoxides. The application of efficient catalysts is crucial in allowing the cycloaddition reaction to proceed under very mild conditions of temperature, pressure, and CO2 concentration, thus resulting in a sustainable and carbon-balanced approach to CO2 conversion. This is particularly the case if impure waste CO2 could be employed as a feedstock. In this Review, we have critically analyzed the burgeoning literature on the cycloaddition of CO2 to epoxides with the aim to provide state-of-the-art knowledge on the catalysts that can convert CO2 to carbonates under ambient conditions. These have been systematically organized in families of compounds and critically scrutinized in terms of catalytic activity, availability and mechanistic features. Finally, we provide an overview on the catalytic systems able to function using diluted and impure CO2 as a feedstock.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.7b03580.

    • Supporting tables for the catalytic data in Tables 18; supporting data for catalytic performance comparison (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 615 publications.

    1. Rongchang Luo, Min Chen, Ke Lin, Xinrui Xia, Zixuan Zhang, Yu Chen. Boosting CO2 Catalytic Fixation to Cyclic Carbonates over Aluminum Porphyrin-Based Porous Hyper-Cross-Linked Ionic Polymers via Synthetic Control of Active Site Proximity. ACS Applied Materials & Interfaces 2025, Article ASAP.
    2. Kechi Chen, Jianxin Huang, Zhiyuan Chen, Yang Liu, Rongchang Luo. Synthesis of Three-Dimensional Porous Porphyrin Poly(ionic liquid)s via the Menshutkin Reaction: Designing Metal-Free and Metal-Based Catalysts for Efficient Conversion of CO2 into Cyclic Carbonates. Industrial & Engineering Chemistry Research 2025, 64 (2) , 939-947. https://doi.org/10.1021/acs.iecr.4c02548
    3. Blanca Ivonne Vergara-Arenas, Rachel L. Nicholls, Guillermo E. Negrón-Silva, Leticia Lomas-Romero, José Antonio Morales-Sern, Bao N. Nguyen. Effects of Mixed Metal Oxide Catalysts on the Synthesis of Cyclic Carbonates from Epoxides under Atmospheric CO2 Pressure. ACS Omega 2025, 10 (1) , 673-682. https://doi.org/10.1021/acsomega.4c07538
    4. Junchuan Sun, Guanwu Lian, Zhongxin Chen, Zhigang Zou, Lu Wang. Merger of Single-Atom Catalysis and Photothermal Catalysis for Future Chemical Production. ACS Nano 2024, 18 (51) , 34572-34595. https://doi.org/10.1021/acsnano.4c13030
    5. Fatemeh Kalantari, Ali Morsali. Multifunctional Magnetic Chiral HKUST MOF Decorated by Triazine, Fe3O4, and Cu(l-Proline)2 Complex for Green and Mild Asymmetric Catalysis. ACS Applied Materials & Interfaces 2024, 16 (50) , 69262-69281. https://doi.org/10.1021/acsami.4c14424
    6. Jing Zhang, Xiaoqian Li, Fangfang Su, Yangyang Xin, Dechao Wang, Yisong Liu, Dongdong Yao, Yaping Zheng. ZIF-8 Porous Liquids with Different Sterically Hindered Solvents and Porous Guests for Catalytic Conversion of Carbon Dioxide. ACS Applied Materials & Interfaces 2024, 16 (45) , 61957-61969. https://doi.org/10.1021/acsami.4c11776
    7. Huafeng Li, Hui Kong, Jianzhong Guo, Bing Li, Shanshan Zhang, Suzhi Li, Junwei Zhao, Liqun Bai. First Photocatalytic Synthesis of Cyclic Carbonates from CO2 Using Bromide-Functionalized Polyoxometalate without Additional Cocatalyst. ACS Sustainable Chemistry & Engineering 2024, 12 (44) , 16396-16408. https://doi.org/10.1021/acssuschemeng.4c06676
    8. Marco Bottin, Carmela De Risi, Giovanna Sotgiu, Sara Buoso, Omar Ginoble Pandoli, Lorenzo Poletti, Graziano Di Carmine, Carmine D’Agostino, Daniele Ragno, Alessandro Massi. Organocatalytic Keratin Sponges for the Chemical Fixation of CO2 into Cyclic Carbonates. ACS Sustainable Chemistry & Engineering 2024, 12 (33) , 12482-12492. https://doi.org/10.1021/acssuschemeng.4c03594
    9. Rupak Chatterjee, Sudip Bhattacharjee, Asim Bhaumik. CO2–Philic Fluorinated Porous Organic Polyaminal in Photocatalytic Thiol–Ene Chemistry: Decoding the Effect of F-Atoms. ACS Applied Polymer Materials 2024, 6 (14) , 8514-8522. https://doi.org/10.1021/acsapm.4c01446
    10. Que Thi Nguyen, Yejin Bae, Xuan Huy Do, Sang Hoon Kim, Jongbeom Na, Kyung-Youl Baek, Yu-Ri Lee. Synthesis of Hierarchical Mesoporous ZIF-8 Functionalized with 1,2,4-Triazole by Mixed-Ligand Strategy for Enhanced CO2 Fixation Under Atmospheric Pressure. Energy & Fuels 2024, 38 (8) , 7097-7107. https://doi.org/10.1021/acs.energyfuels.4c00264
    11. Sobhan Rezayati, Ali Morsali. Functionalization of Magnetic UiO-66-NH2 with a Chiral Cu(l-proline)2 Complex as a Hybrid Asymmetric Catalyst for CO2 Conversion into Cyclic Carbonates. Inorganic Chemistry 2024, 63 (13) , 6051-6066. https://doi.org/10.1021/acs.inorgchem.4c00376
    12. Kelong Liu, Longchao Du, Tingting Wang. Coordination Synergy between Iridium Photosensitizers and Metal Nanoclusters Leading to Enhanced CO2 Cycloaddition under Mild Conditions. Inorganic Chemistry 2024, 63 (10) , 4614-4627. https://doi.org/10.1021/acs.inorgchem.3c04181
    13. Jiajun Zhou, Yuqing Zhao, Yi Feng, Xiaojie Zhang, Binyuan Liu. Ionic Porous Organic Polymer Loaded with Zn(II) Ions for Efficient Cycloaddition of CO2 and Epoxides to Cyclic Carbonate. Energy & Fuels 2024, 38 (5) , 4417-4428. https://doi.org/10.1021/acs.energyfuels.3c05156
    14. Tingting Wang, Fengfeng Chen, Lingjing Jiang, Jinze Li, Kai Chen, Junkuo Gao. Metal–Organic-Framework-Derived Bromine and Nitrogen Dual-Doped Porous Carbon for CO2 Photocycloaddition Reaction. Inorganic Chemistry 2024, 63 (9) , 4224-4232. https://doi.org/10.1021/acs.inorgchem.3c04308
    15. Hongyu Zhu, Qiuyan Shen, Yaya Yuan, Hao Gao, Shuo Zhou, Feng-Lei Yang, Liming Sun, Xiaojun Wang, Jianjian Yi, Xiguang Han. Engineering the Sulfide Semiconductor/Photoinactive-MOF Heterostructure with a Hollow Cuboctahedral Structure to Enhance Photocatalytic CO2-Epoxide-Cycloaddition Efficiency. Inorganic Chemistry 2024, 63 (9) , 4078-4085. https://doi.org/10.1021/acs.inorgchem.3c03683
    16. Liangsheng Xu, Yu Wang, Zhenkun Sun, Zheng Chen, Guofeng Zhao, Fritz E. Kühn, Wei-Guo Jia, Ruirui Yun, Rui Zhong. Recyclable N-Heterocyclic Carbene Porous Coordination Polymers with Two Distinct Metal Sites for Transformation of CO2 to Cyclic Carbonates. Inorganic Chemistry 2024, 63 (4) , 1828-1839. https://doi.org/10.1021/acs.inorgchem.3c03390
    17. Bing Zhang, Xin Cheng, Kang Cheng, Yu Fu, Wen-Ze Li. Fabrication of Metal–Organic Framework-Based Mixed-Matrix Membranes by “Soft Spray” Technique. Inorganic Chemistry 2024, 63 (2) , 1102-1108. https://doi.org/10.1021/acs.inorgchem.3c03425
    18. Lina Yin, Renjie Zhou, Yiping Lv, Wenhao Wang, Heng Zhang, Hongguang Liu. Exploring a Substitution Strategy to Ethylene Oxide for CO2 Sequestration and Catalytic Conversion: A Theoretical Study. ACS Omega 2023, 8 (48) , 45645-45652. https://doi.org/10.1021/acsomega.3c05909
    19. Vusala A. Aliyeva, Ana B. Paninho, Ana V. M. Nunes, Anirban Karmakar, Atash V. Gurbanov, Arianna R. Rutigliano, Emma Gallo, Kamran T. Mahmudov, Armando J. L. Pombeiro. Halogen Bonding in the Decoration of Secondary Coordination Sphere of Zinc(II) and Cadmium(II) Complexes: Catalytic Application in Cycloaddition Reaction of CO2 with Epoxides. ACS Omega 2023, 8 (45) , 42290-42300. https://doi.org/10.1021/acsomega.3c04262
    20. Jitpisut Poolwong, Felix Kracht, Eric Moinet, Yucang Liang, Valerio D’Elia, Reiner Anwander. Samarium- and Ytterbium-Grafted Periodic Mesoporous Silica for Carbon Dioxide Capture and Conversion. Inorganic Chemistry 2023, 62 (43) , 17972-17984. https://doi.org/10.1021/acs.inorgchem.3c02995
    21. Shingo Hasegawa, Keisuke Nakamura, Kosuke Soga, Kei Usui, Yuichi Manaka, Ken Motokura. Concerted Hydrosilylation Catalysis by Silica-Immobilized Cyclic Carbonates and Surface Silanols. JACS Au 2023, 3 (10) , 2692-2697. https://doi.org/10.1021/jacsau.3c00306
    22. Hua-Qing Yin, Ming-Yang Cui, Hao Wang, Yuan-Zhao Peng, Jia Chen, Tong-Bu Lu, Zhi-Ming Zhang. CO2 Cycloaddition under Ambient Conditions over Cu–Fe Bimetallic Metal–Organic Frameworks. Inorganic Chemistry 2023, 62 (34) , 13722-13730. https://doi.org/10.1021/acs.inorgchem.3c01011
    23. Chang-Long Tan, Ming-Yu Qi, Zi-Rong Tang, Yi-Jun Xu. Isolated Single-Atom Cobalt in the ZnIn2S4 Monolayer with Exposed Zn Sites for CO2 Photofixation. ACS Catalysis 2023, 13 (12) , 8317-8329. https://doi.org/10.1021/acscatal.3c00992
    24. Tanika Kessaratikoon, Tharinee Theerathanagorn, Daniel Crespy, Valerio D’Elia. Organocatalytic Polymers from Affordable and Readily Available Building Blocks for the Cycloaddition of CO2 to Epoxides. The Journal of Organic Chemistry 2023, 88 (8) , 4894-4924. https://doi.org/10.1021/acs.joc.2c02447
    25. Anna Zabelina, Jakub Dedek, Olga Guselnikova, Denis Zabelin, Andrii Trelin, Elena Miliutina, Zdenka Kolska, Jakub Siegel, Vaclav Svorcik, Jiri Vana, Oleksiy Lyutakov. Photoinduced CO2 Conversion under Arctic Conditions─The High Potential of Plasmon Chemistry under Low Temperature. ACS Catalysis 2023, 13 (6) , 3830-3840. https://doi.org/10.1021/acscatal.2c05891
    26. Kyung-Ryul Oh, Hyunjoon Lee, Gwang-Nam Yun, Changho Yoo, Ji Woong Yoon, Ali Awad, Hyun-Wook Jeong, Young Kyu Hwang. Fabrication of Hierarchical, Porous, Bimetallic, Zeolitic Imidazolate Frameworks with the Incorporation of Square Planar Pd and Its Catalytic Application. ACS Applied Materials & Interfaces 2023, 15 (7) , 9296-9306. https://doi.org/10.1021/acsami.2c20240
    27. Min Chen, Xiangying Liu, Yiying Yang, Wei Xu, Kechi Chen, Rongchang Luo. Aluminum Porphyrin-Based Ionic Porous Aromatic Frameworks Having High Surface Areas and Highly Dispersed Dual-Function Sites for Boosting the Catalytic Conversion of CO2 into Cyclic Carbonates. ACS Applied Materials & Interfaces 2023, 15 (6) , 8263-8274. https://doi.org/10.1021/acsami.2c22824
    28. Yunlong Yang, Yuanlong Guo, Chengtao Gao, Michael North, Jili Yuan, Haibo Xie, Qiang Zheng. Fabrication of Carboxylic Acid and Imidazolium Ionic Liquid Functionalized Porous Cellulosic Materials for the Efficient Conversion of Carbon Dioxide into Cyclic Carbonates. ACS Sustainable Chemistry & Engineering 2023, 11 (6) , 2634-2646. https://doi.org/10.1021/acssuschemeng.2c06976
    29. Somboon Chaemchuen, Xiaotong Hou, Zhonghan Cheng, Kui Zhou, Serge Zhuiykov, Francis Verpoort. Thermal Solid–Solid Transformation Synthesis of Zinc Anchored in Hierarchical Porous N-Doped Carbon for Efficient CO2 Applications. Energy & Fuels 2023, 37 (3) , 2188-2200. https://doi.org/10.1021/acs.energyfuels.2c03949
    30. Habib Ullah, Zakir Ullah, Zafar A. K. Khattak, Mohsin Ali Marwat, Baoyi Yu, Hyung Wook Kwon, Hyun You Kim, Francis Verpoort. Formation of Value-Added Cyclic Carbonates by Coupling of Epoxides and CO2by Ruthenium Pincer Hydrazone Complexes under Atmospheric Pressure. Energy & Fuels 2023, 37 (3) , 2178-2187. https://doi.org/10.1021/acs.energyfuels.2c03611
    31. Malay Dolai, Surajit Biswas, Eufemio Moreno-Pineda, Wolfgang Wernsdorfer, Mahammad Ali, Razan A. Alshgari, Saikh Md. Wabaidur, Ashutosh Ghosh. CO2 Fixation by Dimeric Tb(III) Complexes: Synthesis, Structure, and Magnetism. Crystal Growth & Design 2023, 23 (2) , 801-810. https://doi.org/10.1021/acs.cgd.2c01026
    32. Xiangying Liu, Yiying Yang, Min Chen, Wei Xu, Kechi Chen, Rongchang Luo. High-Surface-Area Metalloporphyrin-Based Porous Ionic Polymers by the Direct Condensation Strategy for Enhanced CO2 Capture and Catalytic Conversion into Cyclic Carbonates. ACS Applied Materials & Interfaces 2023, 15 (1) , 1085-1096. https://doi.org/10.1021/acsami.2c18283
    33. Weize Wang, Weixuan Chen, Wenke Yuan, Hai-Qun Xu, Bo Liu. Hexagonal Cages and Lewis Acid–Base Sites in a Metal–Organic Framework for Synergistic CO2 Capture and Conversion under Mild Conditions. Inorganic Chemistry 2022, 61 (45) , 17937-17942. https://doi.org/10.1021/acs.inorgchem.2c03144
    34. Chihiro Maeda, Hina Inoue, Ayano Ichiki, Takumi Okihara, Tadashi Ema. Synthesis of Trimethylene Carbonates and Polycarbonates from Oxetanes and CO2 Using Bifunctional Aluminum Porphyrin Catalysts. ACS Catalysis 2022, 12 (20) , 13042-13049. https://doi.org/10.1021/acscatal.2c03583
    35. Constanza Terazzi, Karoline Laatz, Jan von Langermann, Thomas Werner. Synthesis of Cyclic Carbonates Catalyzed by CaI2–Et3N and Studies on Their Biocatalytic Kinetic Resolution. ACS Sustainable Chemistry & Engineering 2022, 10 (40) , 13335-13342. https://doi.org/10.1021/acssuschemeng.2c03210
    36. Dexin Wang, Amir Said, Yanshu Liu, Huihui Niu, Caiyun Liu, Guo Wang, Zhaoyang Li, Chen-Ho Tung, Yifeng Wang. Cr–Ti Mixed Oxide Molecular Cages: Synthesis, Structure, Photoresponse, and Photocatalytic Properties. Inorganic Chemistry 2022, 61 (37) , 14887-14898. https://doi.org/10.1021/acs.inorgchem.2c02605
    37. Prakash Nayak, Anna Chandrasekar Murali, Pradeep Kumar Pal, U. Deva Priyakumar, Vadapalli Chandrasekhar, Krishnan Venkatasubbaiah. Tetra-Coordinated Boron-Functionalized Phenanthroimidazole-Based Zinc Salen as a Photocatalyst for the Cycloaddition of CO2 and Epoxides. Inorganic Chemistry 2022, 61 (37) , 14511-14516. https://doi.org/10.1021/acs.inorgchem.2c02693
    38. Yin-Hang Chai, Ying Zhao, Xi-Yan Liu, Zi-Yan Cui, Bang-Tun Zhao, Lu-Fang Ma. Rational Construction of Two Zn–Organic Frameworks for Selective Luminescent Sensing and Efficient CO2 Chemical Fixation. Crystal Growth & Design 2022, 22 (9) , 5559-5570. https://doi.org/10.1021/acs.cgd.2c00663
    39. Sreenath Pappuru, Dina Shpasser, Raanan Carmieli, Pini Shekhter, Friederike C. Jentoft, Oz M. Gazit. Atmospheric-Pressure Conversion of CO2 to Cyclic Carbonates over Constrained Dinuclear Iron Catalysts. ACS Omega 2022, 7 (28) , 24656-24661. https://doi.org/10.1021/acsomega.2c02488
    40. Zhanhao Zhang, Yun-Fang Yang, Yuan-Bin She. Computational Exploration of Dinuclear MgCo Complex-Catalyzed Ring-Opening Copolymerization of Cyclohexene Oxide and CO2. Macromolecules 2022, 55 (13) , 5766-5774. https://doi.org/10.1021/acs.macromol.2c00309
    41. Gen Li, Xue Zhou, Zhonggang Wang. Construction of Hierarchical Porous Polycyanurate Networks with Cobaltoporphyrin for CO2 Adsorption and Efficient Conversion to Cyclic Di- and Tri-Carbonates. Macromolecules 2022, 55 (11) , 4832-4840. https://doi.org/10.1021/acs.macromol.2c00544
    42. Xiaolong Bai, Zhenping Su, Jiaojiao Wei, Linjing Ma, Sujiao Duan, Ning Wang, Xiongfu Zhang, Jun Li. Zinc(II)porphyrin-Based Porous Ionic Polymers (PIPs) as Multifunctional Heterogeneous Catalysts for the Conversion of CO2 to Cyclic Carbonates. Industrial & Engineering Chemistry Research 2022, 61 (15) , 5093-5102. https://doi.org/10.1021/acs.iecr.2c00161
    43. Hsin-Jung Tsai, Yu-Chia Su, Guan-Lin Liu, Bao-Tsan Ko. Dinuclear Nickel and Cobalt Complexes Containing Biocompatible Carboxylate Derivatives as Effective Catalysts for Coupling of Carbon Dioxide with Epoxides: Synthesis, Characterization, and Catalysis. Organometallics 2022, 41 (5) , 594-605. https://doi.org/10.1021/acs.organomet.1c00671
    44. Xuetong Li, Alba Villar-Yanez, Charlene Ngassam Tounzoua, Jordi Benet-Buchholz, Bruno Grignard, Carles Bo, Christophe Detrembleur, Arjan W. Kleij. Cascade Transformation of Carbon Dioxide and Alkyne-1,n-diols into Densely Substituted Cyclic Carbonates. ACS Catalysis 2022, 12 (5) , 2854-2860. https://doi.org/10.1021/acscatal.1c05773
    45. Yuting He, Xue Li, Hongping Li, Jing Ding, Hui Wan, Guofeng Guan. Understanding the Ingenious Dual Role-Playing of CO2 in One-Pot Pressure-Swing Synthesis of Linear Carbonate. ACS Sustainable Chemistry & Engineering 2022, 10 (7) , 2556-2568. https://doi.org/10.1021/acssuschemeng.2c00014
    46. Gen Li, Wan-Shan Liu, Shuai-Liang Yang, Lin Zhang, Ran Bu, En-Qing Gao. Anion-Afforded Functions of Ionic Metal–Organic Frameworks: Ionochromism, Anion Conduction, and Catalysis. Inorganic Chemistry 2022, 61 (2) , 902-910. https://doi.org/10.1021/acs.inorgchem.1c02741
    47. Yuxia Liu, Shiting Wang, Zhifeng Dai, Yubing Xiong. Cobalt Porphyrin-Cross-Linked Poly(Ionic Liquid)s as Efficient Heterogeneous Catalysts for Carbon Dioxide Conversion under Mild Conditions. Industrial & Engineering Chemistry Research 2021, 60 (50) , 18218-18229. https://doi.org/10.1021/acs.iecr.1c03340
    48. Alexey A. Tsygankov, Denis Chusov. Straightforward Access to High-Performance Organometallic Catalysts by Fluoride Activation: Proof of Principle on Asymmetric Cyanation, Asymmetric Michael Addition, CO2 Addition to Epoxide, and Reductive Alkylation of Amines by Tetrahydrofuran. ACS Catalysis 2021, 11 (21) , 13077-13084. https://doi.org/10.1021/acscatal.1c03785
    49. Julia P. S. C. Leal, Werberson A. Bezerra, Rafael P. das Chagas, Chris H. J. Franco, Felipe T. Martins, Alexandre M. Meireles, Felipe C. T. Antonio, Paula Homem-de-Mello, Thiago T. Tasso, Jorge L. S. Milani. Metal–Cocatalyst Interaction Governs the Catalytic Activity of MII-Porphyrazines for Chemical Fixation of CO2. Inorganic Chemistry 2021, 60 (16) , 12263-12273. https://doi.org/10.1021/acs.inorgchem.1c01462
    50. Lina Liu, Sanjeevi Jayakumar, Jian Chen, Lin Tao, He Li, Qihua Yang, Can Li. Synthesis of Bifunctional Porphyrin Polymers for Catalytic Conversion of Dilute CO2 to Cyclic Carbonates. ACS Applied Materials & Interfaces 2021, 13 (25) , 29522-29531. https://doi.org/10.1021/acsami.1c04624
    51. Tongtong Wang, Xuedan Song, Hailong Xu, Miaomiao Chen, Jie Zhang, Min Ji. Recyclable and Magnetically Functionalized Metal–Organic Framework Catalyst: IL/Fe3O4@HKUST-1 for the Cycloaddition Reaction of CO2 with Epoxides. ACS Applied Materials & Interfaces 2021, 13 (19) , 22836-22844. https://doi.org/10.1021/acsami.1c03345
    52. Jiraya Kiriratnikom, Nattiya Laiwattanapaisarn, Kunnigar Vongnam, Nopparat Thavornsin, Pornpen Sae-ung, Sophon Kaeothip, Anucha Euapermkiati, Supawadee Namuangruk, Khamphee Phomphrai. Highly Active Chromium Complexes Supported by Constrained Schiff-Base Ligands for Cycloaddition of Carbon Dioxide to Epoxides. Inorganic Chemistry 2021, 60 (9) , 6147-6151. https://doi.org/10.1021/acs.inorgchem.0c03732
    53. Yongqiang Gu, Ran Ping, Fusheng Liu, Guangyu Zhang, Mengshuai Liu, Jianmin Sun. Novel Carbon Nitride/Metal Oxide Nanocomposites as Efficient and Robust Catalysts for Coupling of CO2 and Epoxides. Industrial & Engineering Chemistry Research 2021, 60 (16) , 5723-5732. https://doi.org/10.1021/acs.iecr.0c05966
    54. Nicola Zanda, Anna Sobolewska, Esther Alza, Arjan W. Kleij, Miquel A. Pericàs. Organocatalytic and Halide-Free Synthesis of Glycerol Carbonate under Continuous Flow. ACS Sustainable Chemistry & Engineering 2021, 9 (12) , 4391-4397. https://doi.org/10.1021/acssuschemeng.1c01060
    55. Philip B. V. Scholten, Grégory Cartigny, Bruno Grignard, Antoine Debuigne, Henri Cramail, Michael A. R. Meier, Christophe Detrembleur. Functional Polyethylenes by Organometallic-Mediated Radical Polymerization of Biobased Carbonates. ACS Macro Letters 2021, 10 (3) , 313-320. https://doi.org/10.1021/acsmacrolett.1c00037
    56. Xiao-Li Yang, Yang-Tian Yan, Wen-Juan Wang, Ze-Ze Hao, Wen-Yan Zhang, Wenhuan Huang, Yao-Yu Wang. A 2-Fold Interpenetrated Nitrogen-Rich Metal–Organic Framework: Dye Adsorption and CO2 Capture and Conversion. Inorganic Chemistry 2021, 60 (5) , 3156-3164. https://doi.org/10.1021/acs.inorgchem.0c03506
    57. Jiaxi Xu, Anmei Xian, Zhenjiang Li, Jingjing Liu, Zhihao Zhang, Rui Yan, Luoyu Gao, Bo Liu, Lili Zhao, Kai Guo. A Strained Ion Pair Permits Carbon Dioxide Fixation at Atmospheric Pressure by C–H H-Bonding Organocatalysis. The Journal of Organic Chemistry 2021, 86 (4) , 3422-3432. https://doi.org/10.1021/acs.joc.0c02790
    58. Guangyao Zhai, Yuanyuan Liu, Longfei Lei, Jiajia Wang, Zeyan Wang, Zhaoke Zheng, Peng Wang, Hefeng Cheng, Ying Dai, Baibiao Huang. Light-Promoted CO2 Conversion from Epoxides to Cyclic Carbonates at Ambient Conditions over a Bi-Based Metal–Organic Framework. ACS Catalysis 2021, 11 (4) , 1988-1994. https://doi.org/10.1021/acscatal.0c05145
    59. Yu-Huang Zou, Qiu-Jin Wu, Qi Yin, Yuan-Biao Huang, Rong Cao. Self-Assembly of Imidazolium-Functionalized Zr-Based Metal–Organic Polyhedra for Catalytic Conversion of CO2 into Cyclic Carbonates. Inorganic Chemistry 2021, 60 (4) , 2112-2116. https://doi.org/10.1021/acs.inorgchem.0c01199
    60. David Valverde, Raúl Porcar, Pedro Lozano, Eduardo García-Verdugo, Santiago V. Luis. Multifunctional Polymers Based on Ionic Liquid and Rose Bengal Fragments for the Conversion of CO2 to Carbonates. ACS Sustainable Chemistry & Engineering 2021, 9 (5) , 2309-2318. https://doi.org/10.1021/acssuschemeng.0c08388
    61. Ranlong Duan, Chenyang Hu, Yanchuan Zhou, Yuezhou Huang, Zhiqiang Sun, Han Zhang, Xuan Pang. Propylene Oxide Cycloaddition with Carbon Dioxide and Homopolymerization: Application of Commercial Beta Zeolites. Industrial & Engineering Chemistry Research 2021, 60 (3) , 1210-1218. https://doi.org/10.1021/acs.iecr.1c00080
    62. Yu-Chia Su, Bao-Tsan Ko. Alternating Copolymerization of Carbon Dioxide with Epoxides Using Highly Active Dinuclear Nickel Complexes: Catalysis and Kinetics. Inorganic Chemistry 2021, 60 (2) , 852-865. https://doi.org/10.1021/acs.inorgchem.0c02902
    63. Jun-Bin Shi, Qingqing Bu, Bin-Yuan Liu, Bin Dai, Ning Liu. Organocatalytic Strategy for the Fixation of CO2 via Carboxylation of Terminal Alkynes. The Journal of Organic Chemistry 2021, 86 (2) , 1850-1860. https://doi.org/10.1021/acs.joc.0c02673
    64. Fei Chen, Sheng Tao, Qian-Qian Deng, Donghui Wei, Ning Liu, Bin Dai. Binuclear Tridentate Hemilabile Copper(I) Catalysts for Utilization of CO2 into Oxazolidinones from Propargylic Amines. The Journal of Organic Chemistry 2020, 85 (23) , 15197-15212. https://doi.org/10.1021/acs.joc.0c02065
    65. Zhen-Xing Bian, Yong-Zheng Zhang, Dan Tian, Xiuling Zhang, Lin-Hua Xie, Minjian Zhao, Yabo Xie, Jian-Rong Li. Co7-Cluster-Based Metal–Organic Frameworks with Mixed Carboxylate and Pyrazolate Ligands: Construction and CO2 Adsorption and Fixation. Crystal Growth & Design 2020, 20 (12) , 7972-7978. https://doi.org/10.1021/acs.cgd.0c01232
    66. Yaju Chen, Rongchang Luo, Qinggang Ren, Xiantai Zhou, Hongbing Ji. Click-Based Porous Ionic Polymers with Intercalated High-Density Metalloporphyrin for Sustainable CO2 Transformation. Industrial & Engineering Chemistry Research 2020, 59 (46) , 20269-20277. https://doi.org/10.1021/acs.iecr.0c03766
    67. Y. B. N. Tran, Phuong T. K. Nguyen, Quang T. Luong, Khoi D. Nguyen. Series of M-MOF-184 (M = Mg, Co, Ni, Zn, Cu, Fe) Metal–Organic Frameworks for Catalysis Cycloaddition of CO2. Inorganic Chemistry 2020, 59 (22) , 16747-16759. https://doi.org/10.1021/acs.inorgchem.0c02807
    68. Wen-Yue Song, Qiuli Liu, Qingqing Bu, Donghui Wei, Bin Dai, Ning Liu. Rational Design of Cobalt Complexes Based on the trans Effect of Hybrid Ligands and Evaluation of their Catalytic Activity in the Cycloaddition of Carbon Dioxide with Epoxide. Organometallics 2020, 39 (19) , 3546-3561. https://doi.org/10.1021/acs.organomet.0c00525
    69. Xiu Xin, Haiwen Shan, Tian Tian, Yaorong Wang, Dan Yuan, Hongpeng You, Yingming Yao. Conversion of CO2 into Cyclic Carbonates under Ambient Conditions Catalyzed by Rare-Earth Metal Complexes Bearing Poly(phenolato) Ligand. ACS Sustainable Chemistry & Engineering 2020, 8 (35) , 13185-13194. https://doi.org/10.1021/acssuschemeng.0c01736
    70. Noé Fanjul-Mosteirín, Judith Martín, Carlos Valdés, Carmen Concellón, Vicente del Amo. Broadening the Scope of Steroidal Scaffolds: The Umpolung of a Bis-Primary Amine Precatalyst for the Insertion of CO2 into Epoxides. Organic Letters 2020, 22 (17) , 6988-6992. https://doi.org/10.1021/acs.orglett.0c02537
    71. Yasunori Toda, Kousuke Hashimoto, Yoko Mori, Hiroyuki Suga. A Phosphonium Ylide as a Ligand for [3 + 2] Coupling Reactions of Epoxides with Heterocumulenes under Mild Conditions. The Journal of Organic Chemistry 2020, 85 (16) , 10980-10987. https://doi.org/10.1021/acs.joc.0c01101
    72. Yang Xu, Haitao Yu, Buyin Shi, Shengguang Gao, Li Zhang, Xiaohong Li, Xiaojuan Liao, Kun Huang. Room-Temperature Synthesis of Hollow Carbazole-Based Covalent Triazine Polymers with Multiactive Sites for Efficient Iodine Capture-Catalysis Cascade Application. ACS Applied Polymer Materials 2020, 2 (8) , 3704-3713. https://doi.org/10.1021/acsapm.0c00582
    73. Lucie Červenková Št’astná, Alena Krupková, Roman Petrickovic, Monika Müllerová, Jindřich Matoušek, Martin Koštejn, Petra Cuřínová, Věra Jandová, Stanislav Šabata, Tomáš Strašák. Multivalent Bifunctional Carbosilane Dendrimer-Supported Ammonium and Phosphonium Organocatalysts for the Coupling of CO2 and Epoxides. ACS Sustainable Chemistry & Engineering 2020, 8 (31) , 11692-11703. https://doi.org/10.1021/acssuschemeng.0c03367
    74. Kun Guo, Arjan W. Kleij. Cu-Catalyzed Synthesis of Tetrasubstituted 2,3-Allenols through Decarboxylative Silylation of Alkyne-Substituted Cyclic Carbonates. Organic Letters 2020, 22 (10) , 3942-3945. https://doi.org/10.1021/acs.orglett.0c01222
    75. Marc F. Obst, Ashot Gevorgyan, Annette Bayer, Kathrin H. Hopmann. Mechanistic Insights into Copper-Catalyzed Carboxylations. Organometallics 2020, 39 (9) , 1545-1552. https://doi.org/10.1021/acs.organomet.9b00710
    76. Cristina Maquilón, Bart Limburg, Victor Laserna, Diego Garay-Ruiz, Joan González-Fabra, Carles Bo, Marta Martínez Belmonte, Eduardo C. Escudero-Adán, Arjan W. Kleij. Effect of an Al(III) Complex on the Regio- and Stereoisomeric Formation of Bicyclic Organic Carbonates. Organometallics 2020, 39 (9) , 1642-1651. https://doi.org/10.1021/acs.organomet.9b00773
    77. William D. Jones (Associate Editor). Carbon Capture and Conversion. Journal of the American Chemical Society 2020, 142 (11) , 4955-4957. https://doi.org/10.1021/jacs.0c02356
    78. Christoph Wulf, Matthias Reckers, Anna Perechodjuk, Thomas Werner. Catalytic Systems for the Synthesis of Biscarbonates and Their Impact on the Sequential Preparation of Non-Isocyanate Polyurethanes. ACS Sustainable Chemistry & Engineering 2020, 8 (3) , 1651-1658. https://doi.org/10.1021/acssuschemeng.9b06662
    79. Manoja K. Samantaray, Valerio D’Elia, Eva Pump, Laura Falivene, Moussab Harb, Samy Ould Chikh, Luigi Cavallo, Jean-Marie Basset. The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chemical Reviews 2020, 120 (2) , 734-813. https://doi.org/10.1021/acs.chemrev.9b00238
    80. Jing Li, Yulan Han, Tuo Ji, Nanhua Wu, Han Lin, Jun Jiang, Jiahua Zhu. Porous Metallosalen Hypercrosslinked Ionic Polymers for Cooperative CO2 Cycloaddition Conversion. Industrial & Engineering Chemistry Research 2020, 59 (2) , 676-684. https://doi.org/10.1021/acs.iecr.9b05304
    81. Jiachen He, Jie Li, Qiuxia Han, Chen Si, Guiqin Niu, Mingxue Li, Jingping Wang, Jingyang Niu. Photoactive Metal–Organic Framework for the Reduction of Aryl Halides by the Synergistic Effect of Consecutive Photoinduced Electron-Transfer and Hydrogen-Atom-Transfer Processes. ACS Applied Materials & Interfaces 2020, 12 (2) , 2199-2206. https://doi.org/10.1021/acsami.9b13538
    82. Jing Li, Yulan Han, Han Lin, Nanhua Wu, Qinkun Li, Jun Jiang, Jiahua Zhu. Cobalt–Salen-Based Porous Ionic Polymer: The Role of Valence on Cooperative Conversion of CO2 to Cyclic Carbonate. ACS Applied Materials & Interfaces 2020, 12 (1) , 609-618. https://doi.org/10.1021/acsami.9b16913
    83. Felipe de la Cruz-Martínez, Marc Martínez de Sarasa Buchaca, Javier Martínez, Juan Fernández-Baeza, Luis F. Sánchez-Barba, Antonio Rodríguez-Diéguez, José A. Castro-Osma, Agustín Lara-Sánchez. Synthesis of Bio-Derived Cyclic Carbonates from Renewable Resources. ACS Sustainable Chemistry & Engineering 2019, 7 (24) , 20126-20138. https://doi.org/10.1021/acssuschemeng.9b06016
    84. Yasunori Toda, Yutaka Komiyama, Hiroyoshi Esaki, Kazuaki Fukushima, Hiroyuki Suga. Methoxy Groups Increase Reactivity of Bifunctional Tetraarylphosphonium Salt Catalysts for Carbon Dioxide Fixation: A Mechanistic Study. The Journal of Organic Chemistry 2019, 84 (23) , 15578-15589. https://doi.org/10.1021/acs.joc.9b02581
    85. Fataneh Norouzi, Hamid Reza Khavasi. Diversity-Oriented Metal Decoration on UiO-Type Metal–Organic Frameworks: an Efficient Approach to Increase CO2 Uptake and Catalytic Conversion to Cyclic Carbonates. ACS Omega 2019, 4 (21) , 19037-19045. https://doi.org/10.1021/acsomega.9b02035
    86. Sethuraman Muthuramalingam, Muniyandi Sankaralingam, Marappan Velusamy, Ramasamy Mayilmurugan. Catalytic Conversion of Atmospheric CO2 into Organic Carbonates by Nickel(II) Complexes of Diazepane-Based N4 Ligands. Inorganic Chemistry 2019, 58 (19) , 12975-12985. https://doi.org/10.1021/acs.inorgchem.9b01908
    87. Fusheng Liu, Yongqiang Gu, Hao Xin, Penghui Zhao, Jun Gao, Mengshuai Liu. Multifunctional Phosphonium-Based Deep Eutectic Ionic Liquids: Insights into Simultaneous Activation of CO2 and Epoxide and Their Subsequent Cycloaddition. ACS Sustainable Chemistry & Engineering 2019, 7 (19) , 16674-16681. https://doi.org/10.1021/acssuschemeng.9b04090
    88. Yadong Zhang, Ke Liu, Lei Wu, Hu Zhong, Niu Luo, Yunxiao Zhu, Minman Tong, Zhouyang Long, Guojian Chen. Silanol-Enriched Viologen-Based Ionic Porous Hybrid Polymers for Efficient Catalytic CO2 Fixation into Cyclic Carbonates under Mild Conditions. ACS Sustainable Chemistry & Engineering 2019, 7 (19) , 16907-16916. https://doi.org/10.1021/acssuschemeng.9b04627
    89. Fei Chen, Qiao-Chu Zhang, Donghui Wei, Qingqing Bu, Bin Dai, Ning Liu. Highly Stereo-Controlled Synthesis of Fatty Acid-Derived Cyclic Carbonates by Using Iron(II) Complex and Nucleophilic Halide. The Journal of Organic Chemistry 2019, 84 (18) , 11407-11416. https://doi.org/10.1021/acs.joc.9b01068
    90. Santanu Chand, Shyam Chand Pal, Manas Mondal, Subrata Hota, Arun Pal, Rupam Sahoo, Madhab C. Das. Three-Dimensional Co(II)-Metal–Organic Frameworks with Varying Porosities and Open Metal Sites toward Multipurpose Heterogeneous Catalysis under Mild Conditions. Crystal Growth & Design 2019, 19 (9) , 5343-5353. https://doi.org/10.1021/acs.cgd.9b00823
    91. Kori A. Andrea, Erika D. Butler, Tyler R. Brown, Timothy S. Anderson, Dakshita Jagota, Cassidy Rose, Emily M. Lee, Sarah D. Goulding, Jennifer N. Murphy, Francesca M. Kerton, Christopher M. Kozak. Iron Complexes for Cyclic Carbonate and Polycarbonate Formation: Selectivity Control from Ligand Design and Metal-Center Geometry. Inorganic Chemistry 2019, 58 (16) , 11231-11240. https://doi.org/10.1021/acs.inorgchem.9b01909
    92. Yuya Hu, Johannes Steinbauer, Vivian Stefanow, Anke Spannenberg, Thomas Werner. Polyethers as Complexing Agents in Calcium-Catalyzed Cyclic Carbonate Synthesis. ACS Sustainable Chemistry & Engineering 2019, 7 (15) , 13257-13269. https://doi.org/10.1021/acssuschemeng.9b02502
    93. Arpita Hazra Chowdhury, Ipsita Hazra Chowdhury, Sk. Manirul Islam. Titanium Phosphate with Flower-like Morphology As an Effective Reusable Catalyst for Chemical Fixation of CO2 at Mild Reaction Conditions. Industrial & Engineering Chemistry Research 2019, 58 (27) , 11779-11786. https://doi.org/10.1021/acs.iecr.9b01158
    94. Noé Fanjul-Mosteirín, Coralie Jehanno, Fernando Ruipérez, Haritz Sardon, Andrew P. Dove. Rational Study of DBU Salts for the CO2 Insertion into Epoxides for the Synthesis of Cyclic Carbonates. ACS Sustainable Chemistry & Engineering 2019, 7 (12) , 10633-10640. https://doi.org/10.1021/acssuschemeng.9b01300
    95. Yang Zhou, Wenli Zhang, Long Ma, Yu Zhou, Jun Wang. Amino Acid Anion Paired Mesoporous Poly(ionic liquids) as Metal-/Halogen-Free Heterogeneous Catalysts for Carbon Dioxide Fixation. ACS Sustainable Chemistry & Engineering 2019, 7 (10) , 9387-9398. https://doi.org/10.1021/acssuschemeng.9b00591
    96. Lian-Qiang Wei, Bao-Hui Ye. Efficient Conversion of CO2 via Grafting Urea Group into a [Cu2(COO)4]-Based Metal–Organic Framework with Hierarchical Porosity. Inorganic Chemistry 2019, 58 (7) , 4385-4393. https://doi.org/10.1021/acs.inorgchem.8b03525
    97. Fusheng Liu, Yongqiang Gu, Penghui Zhao, Jun Gao, Mengshuai Liu. Cooperative Conversion of CO2 to Cyclic Carbonates in Dual-Ionic Ammonium Salts Catalytic Medium at Ambient Temperature. ACS Sustainable Chemistry & Engineering 2019, 7 (6) , 5940-5945. https://doi.org/10.1021/acssuschemeng.8b05997
    98. Yu Gu, Keitaro Matsuda, Akira Nakayama, Masazumi Tamura, Yoshinao Nakagawa, Keiichi Tomishige. Direct Synthesis of Alternating Polycarbonates from CO2 and Diols by Using a Catalyst System of CeO2 and 2-Furonitrile. ACS Sustainable Chemistry & Engineering 2019, 7 (6) , 6304-6315. https://doi.org/10.1021/acssuschemeng.8b06870
    99. Chihiro Maeda, Mayato Mitsuzane, Tadashi Ema. Chiral Bifunctional Metalloporphyrin Catalysts for Kinetic Resolution of Epoxides with Carbon Dioxide. Organic Letters 2019, 21 (6) , 1853-1856. https://doi.org/10.1021/acs.orglett.9b00447
    100. Kazuto Takaishi, Takafumi Okuyama, Shota Kadosaki, Masanobu Uchiyama, Tadashi Ema. Hemisquaramide Tweezers as Organocatalysts: Synthesis of Cyclic Carbonates from Epoxides and CO2. Organic Letters 2019, 21 (5) , 1397-1401. https://doi.org/10.1021/acs.orglett.9b00117
    Load more citations

    ACS Catalysis

    Cite this: ACS Catal. 2018, 8, 1, 419–450
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acscatal.7b03580
    Published November 29, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    12k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.