ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Engineered Ammonia Lyases for the Production of Challenging Electron-Rich l-Phenylalanines

Cite this: ACS Catal. 2018, 8, 4, 3129–3132
Publication Date (Web):March 7, 2018
https://doi.org/10.1021/acscatal.8b00496
Copyright © 2018 American Chemical Society

    Article Views

    1664

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Engineered variants of phenylalanine ammonia lyase from Planctomyces brasiliensis were developed through rational design efforts focusing on the aryl binding pocket of the active site, guided by structural and phylogenetic inference. Inherent problems traditionally associated with the biocatalytic hydroamination of acrylic acids, such as low conversion and poor regioselectivity with alkyl and methoxy derivatives, could be overcome. The PbPAL variants described here represent a valuable addition to the biocatalytic toolbox, allowing previously inaccessible amino acid building blocks to be obtained regio- and enantioselectively on preparative scale.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.8b00496.

    • Experimental methods, compound characterization data, supporting figures and tables (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 31 publications.

    1. Bo-Feng Zhu, Yan Liu, Xiao-Qiong Pei, Zhong-Liu Wu. Characterization of Phenylalanine Ammonia Lyases from Lettuce (Lactuca sativa L.) as Robust Biocatalysts for the Production of d- and l-Amino Acids. Journal of Agricultural and Food Chemistry 2023, 71 (6) , 2935-2942. https://doi.org/10.1021/acs.jafc.2c07890
    2. Souad Diana Tork, Emma Zsófia Aletta Nagy, Raluca Bianca Tomoiagă, László Csaba Bencze. Engineered, Scalable Production of Optically Pure l-Phenylalanines Using Phenylalanine Ammonia-Lyase from Arabidopsis thaliana. The Journal of Organic Chemistry 2023, 88 (2) , 852-862. https://doi.org/10.1021/acs.joc.2c02106
    3. Emily E. Kempa, James L. Galman, Fabio Parmeggiani, James R. Marshall, Julien Malassis, Clement Q. Fontenelle, Jean-Baptiste Vendeville, Bruno Linclau, Simon J. Charnock, Sabine L. Flitsch, Nicholas J. Turner, Perdita E. Barran. Rapid Screening of Diverse Biotransformations for Enzyme Evolution. JACS Au 2021, 1 (4) , 508-516. https://doi.org/10.1021/jacsau.1c00027
    4. Leo A. Hardegger, Pascal Beney, Dominique Bixel, Christian Fleury, Feng Gao, Alexandre Grand-Guillaume Perrenoud, Xingxian Gu, Julien Haber, Tao Hong, Roger Humair, Andreas Kaegi, Michael Kibiger, Florian Kleinbeck, Van Tong Luu, Lukas Padeste, Florian A. Rampf, Thomas Ruch, Thierry Schlama, Eric Sidler, Anikó Udvarhelyi, Bernhard Wietfeld, Yao Yang. Toward a Scalable Synthesis and Process for EMA401, Part III: Using an Engineered Phenylalanine Ammonia Lyase Enzyme to Synthesize a Non-natural Phenylalanine Derivative. Organic Process Research & Development 2020, 24 (9) , 1763-1771. https://doi.org/10.1021/acs.oprd.0c00217
    5. Bernhard Hauer. Embracing Nature’s Catalysts: A Viewpoint on the Future of Biocatalysis. ACS Catalysis 2020, 10 (15) , 8418-8427. https://doi.org/10.1021/acscatal.0c01708
    6. Emma Z. A. Nagy, Souad D. Tork, Pauline A. Lang, Alina Filip, Florin D. Irimie, László Poppe, Monica I. Toşa, Christopher J. Schofield, Jürgen Brem, Csaba Paizs, László C. Bencze. Mapping the Hydrophobic Substrate Binding Site of Phenylalanine Ammonia-Lyase from Petroselinum crispum. ACS Catalysis 2019, 9 (9) , 8825-8834. https://doi.org/10.1021/acscatal.9b02108
    7. Yuyan Bao, Yuanyuan Xu, Xiaoqiang Huang. Focused rational iterative site-specific mutagenesis (FRISM): A powerful method for enzyme engineering. Molecular Catalysis 2024, 553 , 113755. https://doi.org/10.1016/j.mcat.2023.113755
    8. David Roura Padrosa, Hansjoerg Lehmann, Radka Snajdrova, Francesca Paradisi. Sustainable synthesis of L-phenylalanine derivatives in continuous flow by immobilized phenylalanine ammonia lyase. Frontiers in Catalysis 2023, 3 https://doi.org/10.3389/fctls.2023.1147205
    9. Souad Diana Tork, Mădălina Elena Moisă, Lilla Cserepes, Alina Filip, Levente Csaba Nagy, Florin Dan Irimie, László Csaba Bencze. Towards a general approach for tailoring the hydrophobic binding site of phenylalanine ammonia-lyases. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-14585-0
    10. Aisaraphon Phintha, Pimchai Chaiyen. Rational and mechanistic approaches for improving biocatalyst performance. Chem Catalysis 2022, 2 (10) , 2614-2643. https://doi.org/10.1016/j.checat.2022.09.026
    11. James L. Galman, Fabio Parmeggiani, Lisa Seibt, William R. Birmingham, Nicholas J. Turner. One‐Pot Biocatalytic In Vivo Methylation‐Hydroamination of Bioderived Lignin Monomers to Generate a Key Precursor to L‐DOPA. Angewandte Chemie 2022, 134 (8) https://doi.org/10.1002/ange.202112855
    12. James L. Galman, Fabio Parmeggiani, Lisa Seibt, William R. Birmingham, Nicholas J. Turner. One‐Pot Biocatalytic In Vivo Methylation‐Hydroamination of Bioderived Lignin Monomers to Generate a Key Precursor to L‐DOPA. Angewandte Chemie International Edition 2022, 61 (8) https://doi.org/10.1002/anie.202112855
    13. Eman Abdelraheem, Matteo Damian, Francesco G. Mutti. Biocatalytic Amine Synthesis. 2022https://doi.org/10.1016/B978-0-32-390644-9.00086-X
    14. Juan Mangas‐Sanchez, Sebastian C. Cosgrove, Nicholas J. Turner. Application of Engineered Biocatalysts for the Synthesis of Active Pharmaceutical Ingredients ( APIs ). 2021, 265-294. https://doi.org/10.1002/9783527815128.ch11
    15. Krisztina Boros, Mădălina Elena Moisă, Csaba Levente Nagy, Csaba Paizs, Monica Ioana Toşa, László Csaba Bencze. Robust, site-specifically immobilized phenylalanine ammonia-lyases for the enantioselective ammonia addition of cinnamic acids. Catalysis Science & Technology 2021, 11 (16) , 5553-5563. https://doi.org/10.1039/D1CY00195G
    16. Yanjun Li, Shichao Li, Yan Kong. Hydroxylation of benzene to phenol over heteropoly acid H 5 PMo 10 V 2 O 40 supported on amine-functionalized MCM-41. RSC Advances 2021, 11 (43) , 26571-26580. https://doi.org/10.1039/D1RA04269F
    17. Yinglu Cui, Yinghui Wang, Wenya Tian, Yifan Bu, Tao Li, Xuexian Cui, Tong Zhu, Ruifeng Li, Bian Wu. Development of a versatile and efficient C–N lyase platform for asymmetric hydroamination via computational enzyme redesign. Nature Catalysis 2021, 4 (5) , 364-373. https://doi.org/10.1038/s41929-021-00604-2
    18. Francesco G. Mutti, Tanja Knaus. Enzymes Applied to the Synthesis of Amines. 2021, 143-180. https://doi.org/10.1002/9783527824465.ch6
    19. Jiao Li, Ge Qu, Na Shang, Peng Chen, Yan Men, Weidong Liu, Zelong Mei, Yuanxia Sun, Zhoutong Sun. Near-perfect control of the regioselective glucosylation enabled by rational design of glycosyltransferases. Green Synthesis and Catalysis 2021, 2 (1) , 45-53. https://doi.org/10.1016/j.gresc.2021.01.005
    20. Mădălina E. Moisă, Diana A. Amariei, Emma Z. A. Nagy, Nóra Szarvas, Monica I. Toșa, Csaba Paizs, László C. Bencze. Fluorescent enzyme-coupled activity assay for phenylalanine ammonia-lyases. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-75474-y
    21. Shogo Nakano, Kohei Kozuka, Yuki Minamino, Hiroka Karasuda, Fumihito Hasebe, Sohei Ito. Ancestral L-amino acid oxidases for deracemization and stereoinversion of amino acids. Communications Chemistry 2020, 3 (1) https://doi.org/10.1038/s42004-020-00432-8
    22. Jielin Zhang, Mohammad Z. Abidin, Thangavelu Saravanan, Gerrit J. Poelarends. Recent Applications of Carbon‐Nitrogen Lyases in Asymmetric Synthesis of Noncanonical Amino Acids and Heterocyclic Compounds. ChemBioChem 2020, 21 (19) , 2733-2742. https://doi.org/10.1002/cbic.202000214
    23. Anubhuti Kawatra, Rakhi Dhankhar, Aparajita Mohanty, Pooja Gulati. Biomedical applications of microbial phenylalanine ammonia lyase: Current status and future prospects. Biochimie 2020, 177 , 142-152. https://doi.org/10.1016/j.biochi.2020.08.009
    24. Ge Qu, Aitao Li, Carlos G. Acevedo‐Rocha, Zhoutong Sun, Manfred T. Reetz. Die zentrale Rolle der Methodenentwicklung in der gerichteten Evolution selektiver Enzyme. Angewandte Chemie 2020, 132 (32) , 13304-13333. https://doi.org/10.1002/ange.201901491
    25. Ge Qu, Aitao Li, Carlos G. Acevedo‐Rocha, Zhoutong Sun, Manfred T. Reetz. The Crucial Role of Methodology Development in Directed Evolution of Selective Enzymes. Angewandte Chemie International Edition 2020, 59 (32) , 13204-13231. https://doi.org/10.1002/anie.201901491
    26. Raluca Bianca Tomoiagă, Souad Diana Tork, Ilka Horváth, Alina Filip, Levente Csaba Nagy, László Csaba Bencze. Saturation Mutagenesis for Phenylalanine Ammonia Lyases of Enhanced Catalytic Properties. Biomolecules 2020, 10 (6) , 838. https://doi.org/10.3390/biom10060838
    27. Kajal S. Jaiswal, Virendra K. Rathod. Bioenzyme-assisted green organic synthesis. 2020, 303-349. https://doi.org/10.1016/B978-0-12-819539-0.00013-0
    28. Francisco G. Cirujano. Engineered MOFs and Enzymes for the Synthesis of Active Pharmaceutical Ingredients. ChemCatChem 2019, 11 (23) , 5671-5685. https://doi.org/10.1002/cctc.201900131
    29. Souad Diana Tork, Emma Zsófia Aletta Nagy, Lilla Cserepes, Diana Monica Bordea, Botond Nagy, Monica Ioana Toşa, Csaba Paizs, László Csaba Bencze. The production of l- and d-phenylalanines using engineered phenylalanine ammonia lyases from Petroselinum crispum. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-56554-0
    30. Fabio Parmeggiani, Arnau Rué Casamajo, Danilo Colombo, Maria Chiara Ghezzi, James L. Galman, Roberto A. Chica, Elisabetta Brenna, Nicholas J. Turner. Biocatalytic retrosynthesis approaches to d -(2,4,5-trifluorophenyl)alanine, key precursor of the antidiabetic sitagliptin. Green Chemistry 2019, 21 (16) , 4368-4379. https://doi.org/10.1039/C9GC01902B
    31. Shuke Wu, Yi Zhou, Zhi Li. Biocatalytic selective functionalisation of alkenes via single-step and one-pot multi-step reactions. Chemical Communications 2019, 55 (7) , 883-896. https://doi.org/10.1039/C8CC07828A

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect