Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch ArticleNEXT

Design of Dual-Modified MoS2 with Nanoporous Ni and Graphene as Efficient Catalysts for the Hydrogen Evolution Reaction

  • Li Xin Chen
    Li Xin Chen
    Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, People’s Republic of China
    More by Li Xin Chen
  • Zhi Wen Chen
    Zhi Wen Chen
    Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, People’s Republic of China
    More by Zhi Wen Chen
  • Yu Wang
    Yu Wang
    Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, People’s Republic of China
    More by Yu Wang
  • Chun Cheng Yang*
    Chun Cheng Yang
    Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, People’s Republic of China
    *C.C.Y.: tel, +86-431-85095371; fax, +86-431-85095876; e-mail, [email protected]
  • , and 
  • Qing Jiang*
    Qing Jiang
    Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and School of Materials Science and Engineering, Jilin University, Changchun 130022, People’s Republic of China
    *Q.J.: e-mail, [email protected]
    More by Qing Jiang
Cite this: ACS Catal. 2018, 8, 9, 8107–8114
Publication Date (Web):July 24, 2018
https://doi.org/10.1021/acscatal.8b01164
Copyright © 2018 American Chemical Society

    Article Views

    5797

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Molybdenum disulfide (MoS2), a two-dimensional layered material, has attracted ever-growing interest as one of the most promising non-noble-metal electrocatalysts for the hydrogen evolution reaction (HER). However, its catalytic efficiency is far from that of the best-performing Pt-based catalysts due to insufficient active sites and poor conductivity. Herein, density functional theory (DFT) simulations indicate that the catalytic activity of MoS2 could be improved through synergistic effects between the graphene substrate and Ni atom adsorption. Following this result, we designed and synthesized dual-modified MoS2 nanosheets with nanoporous Ni and reduced graphite oxide, which show a low onset potential (85 mV), a small Tafel slope (71.3 mV dec–1), and a high cycling stability as HER catalysts. Both the DFT and experimental results demonstrate that the above superior performances are derived from a large number of edge active sites and fast electron transport. This study provides a comprehensive understanding of the HER activity of MoS2 and also a new strategy to design high-performance HER catalysts aided by DFT simulations.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.8b01164.

    • Experimental section, computational methods, partial density of states, band structures, geometrical optimization structures, reaction paths, supported physical characterizations by XRD, FESEM, BET, and XPS, additional electrochemical data, and comparisons of HER performance (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 140 publications.

    1. Huimin Hu, Jin-Ho Choi. Synergistic Effects of Carbon Vacancies in Conjunction with Phosphorus Dopant across Bilayer Graphene for the Enhanced Hydrogen Evolution Reaction. ACS Omega 2024, 9 (14) , 16592-16600. https://doi.org/10.1021/acsomega.4c00495
    2. Yuehan Jia, Yuchen Zhang, Hongquan Xu, Jia Li, Ming Gao, Xiaotian Yang. Recent Advances in Doping Strategies to Improve Electrocatalytic Hydrogen Evolution Performance of Molybdenum Disulfide. ACS Catalysis 2024, 14 (7) , 4601-4637. https://doi.org/10.1021/acscatal.3c05053
    3. Kang Peng, Yihan Wang, Fuzhu Liu, Pengfei Wan, Hongjie Wang, Min Niu, Lei Su, Lei Zhuang, Yuanbin Qin. Hierarchical SiC–Graphene Composite Aerogel-Supported Ni–Mo–S Nanosheets for Efficient pH-Universal Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces 2023, 15 (23) , 27928-27940. https://doi.org/10.1021/acsami.3c02802
    4. Hongjiu Zhu, Qiulin Li, Heng Zhang, Jiawang Liu, Juan Li, Zhuo Zou, Tao Hu, Chang Ming Li. Directly Grow Ultrasmall Co2P QDs on MoS2 Nanosheets to Form Heterojunctions Greatly Boosting Electron Transfer toward Hydrogen Evolution. The Journal of Physical Chemistry C 2023, 127 (20) , 9681-9689. https://doi.org/10.1021/acs.jpcc.3c01481
    5. Zixuan Dan, Wanli Liang, Xiyu Gong, Xinyi Lin, Wanqi Zhang, Zhichen Le, Fangyan Xie, Jian Chen, Muzi Yang, Nan Wang, Yanshuo Jin, Hui Meng. Substitutional Doping Engineering toward W2N Nanorod for Hydrogen Evolution Reaction at High Current Density. ACS Materials Letters 2022, 4 (7) , 1374-1380. https://doi.org/10.1021/acsmaterialslett.2c00324
    6. Jian Li, Li Xin Chen, Xiao Xuan Liu, Zi Wen, Chandra Veer Singh, Chun Cheng Yang, Qing Jiang. Eggshell-like MoS2 Nanostructures with Negative Curvature and Stepped Faces for Efficient Hydrogen Evolution Reactions. ACS Applied Nano Materials 2021, 4 (12) , 14086-14093. https://doi.org/10.1021/acsanm.1c03403
    7. Yan Hou, Jianjiao Xin, Carlos J. Gómez-García, Boxin Xiao, Haijun Pang, Huiyuan Ma, Xinming Wang, Lichao Tan. A Facile Strategy to Create Electrocatalysts of Highly Dispersive Ni–Mo Sulfide Nanosheets on Graphene by Derivation of Polyoxometalate Coordination Polymer for Advanced H2 Evolution. ACS Applied Energy Materials 2021, 4 (11) , 13191-13198. https://doi.org/10.1021/acsaem.1c02800
    8. Junyu Zhang, Hongyu Zhou, Yan Liu, Jiupeng Zhang, Yuhuan Cui, Jianchen Li, Jianshe Lian, Guoyong Wang, Qing Jiang. Interface Engineering of CoP3/Ni2P for Boosting the Wide pH Range Water-Splitting Activity. ACS Applied Materials & Interfaces 2021, 13 (44) , 52598-52609. https://doi.org/10.1021/acsami.1c14685
    9. Jiayi Qin, Cong Xi, Rui Zhang, Tao Liu, Peichao Zou, Deyao Wu, Qianjin Guo, Jing Mao, Huolin Xin, Jing Yang. Activating Edge-Mo of 2H-MoS2 via Coordination with Pyridinic N–C for pH-Universal Hydrogen Evolution Electrocatalysis. ACS Catalysis 2021, 11 (8) , 4486-4497. https://doi.org/10.1021/acscatal.0c04415
    10. Ahmet Recep Korkmaz, Emir Çepni̇, Hülya Öztürk Doğan. Electrodeposited Nickel/Chromium(III) Oxide Nanostructure-Modified Pencil Graphite Electrode for Enhanced Electrocatalytic Hydrogen Evolution Reaction Activity. Energy & Fuels 2021, 35 (7) , 6298-6304. https://doi.org/10.1021/acs.energyfuels.0c04413
    11. Xue Zhang, Juan Du, Dongping Wu, Xiaoyi Long, Dan Wang, Jianhua Xiong, Wanming Xiong, Xiaoning Liao. Anchoring Metallic MoS2 Quantum Dots over MWCNTs for Highly Sensitive Detection of Postharvest Fungicide in Traditional Chinese Medicines. ACS Omega 2021, 6 (2) , 1488-1496. https://doi.org/10.1021/acsomega.0c05253
    12. Qiaomei Luo, Chen Wang, Hongqiang Xin, Yuyang Qi, Yiwei Zhao, Jun Sun, Fei Ma. Hollow Sandwiched Structure of Ni-Modified MoS2 Wrapped into Symmetrical N-Doped Carbon toward a Superior Hydrogen Evolution Electrocatalyst. ACS Sustainable Chemistry & Engineering 2021, 9 (2) , 732-742. https://doi.org/10.1021/acssuschemeng.0c06703
    13. Xiaobei Zang, Yijiang Qin, Teng Wang, Fashun Li, Qingguo Shao, Ning Cao. 1T/2H Mixed Phase MoS2 Nanosheets Integrated by a 3D Nitrogen-Doped Graphene Derivative for Enhanced Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces 2020, 12 (50) , 55884-55893. https://doi.org/10.1021/acsami.0c16537
    14. Kang Peng, Jingxuan Zhou, Hongfei Gao, Jianwei Wang, Hongjie Wang, Lei Su, Pengfei Wan. Emerging One-/Two-Dimensional Heteronanostructure Integrating SiC Nanowires with MoS2 Nanosheets for Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces 2020, 12 (17) , 19519-19529. https://doi.org/10.1021/acsami.0c02046
    15. Hongchao Zhang, Chaonan Cui, Zhixun Luo. MoS2-Supported Fe2 Clusters Catalyzing Nitrogen Reduction Reaction to Produce Ammonia. The Journal of Physical Chemistry C 2020, 124 (11) , 6260-6266. https://doi.org/10.1021/acs.jpcc.0c00486
    16. Prabhat Kumar, Megha Singh, G. B. Reddy. Oxidized Core–Shell MoO2–MoS2 Nanostructured Thin Films for Hydrogen Evolution. ACS Applied Nano Materials 2020, 3 (1) , 711-723. https://doi.org/10.1021/acsanm.9b02235
    17. Yanyan Liu, Zhaorui Min, Jianchun Jiang, Kang Sun, Jie Gao, Yuan Shang, Baojun Li. Molybdenum, Cobalt Sulfide-Modified N-, S-Doped Graphene from Low-Temperature Molecular Pyrolysis: Mutual Activation Effect for Hydrogen Evolution. ACS Sustainable Chemistry & Engineering 2019, 7 (24) , 19442-19452. https://doi.org/10.1021/acssuschemeng.9b04219
    18. Yuan Zhao, Wei Ke, Juanjuan Shao, Fangjie Zheng, Han Liu, Lixia Shi. Rational Design of Multisite Trielement Ru–Ni–Fe Alloy Nanocatalysts with Efficient and Durable Catalytic Hydrogenation Performances. ACS Applied Materials & Interfaces 2019, 11 (44) , 41204-41214. https://doi.org/10.1021/acsami.9b10398
    19. Xiao-Li Wang, Chaozhuang Xue, Ningning Kong, Zhou Wu, Jiaxu Zhang, Xiang Wang, Rui Zhou, Haiping Lin, Youyong Li, Dong-Sheng Li, Tao Wu. Molecular Modulation of a Molybdenum–Selenium Cluster by Sulfur Substitution To Enhance the Hydrogen Evolution Reaction. Inorganic Chemistry 2019, 58 (18) , 12415-12421. https://doi.org/10.1021/acs.inorgchem.9b02099
    20. Caixia Zhao, Yuzhe Zhang, Hailun Jiang, Jing Chen, Yang Liu, Qian Liang, Man Zhou, Zhongyu Li, Yingtang Zhou. Combined Effects of Octahedron NH2-UiO-66 and Flowerlike ZnIn2S4 Microspheres for Photocatalytic Dye Degradation and Hydrogen Evolution under Visible Light. The Journal of Physical Chemistry C 2019, 123 (29) , 18037-18049. https://doi.org/10.1021/acs.jpcc.9b03807
    21. Kai Meng, Shuxian Wen, Lujing Liu, Zhijun Jia, Yi Wang, Zhigang Shao, Tao Qi. Vertically Grown MoS2 Nanoplates on VN with an Enlarged Surface Area as an Efficient and Stable Electrocatalyst for HER. ACS Applied Energy Materials 2019, 2 (4) , 2854-2861. https://doi.org/10.1021/acsaem.9b00201
    22. Jiyi Chen, Yuancai Ge, Qianyi Feng, Peiyuan Zhuang, Hang Chu, Yudong Cao, William R. Smith, Pei Dong, Mingxin Ye, Jianfeng Shen. Nesting Co3Mo Binary Alloy Nanoparticles onto Molybdenum Oxide Nanosheet Arrays for Superior Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces 2019, 11 (9) , 9002-9010. https://doi.org/10.1021/acsami.8b19148
    23. Haiyan Yang, Bi Hu, Houxiang Sun, Guangqiang Ma, Shengnan Wang, Yufeng Li, Huabing Zhang, Haijiao Xie, Hongping Quan, Hui Zhang. Stepped fluorinated CdS/MoS2/ZnS nanoparticles constructed on a multifunctional platform with Zn(OH)F nanoflowers for highly active photocatalytic H2 production. Separation and Purification Technology 2024, 347 , 127461. https://doi.org/10.1016/j.seppur.2024.127461
    24. Hang Zhao, Xin He, Zhiming Shi, Shoutai Li. Adsorption and sensing behavior of Cr-doped WS2 monolayer for hazardous gases in agricultural greenhouses: A DFT study. Materials Today Communications 2024, 40 , 109405. https://doi.org/10.1016/j.mtcomm.2024.109405
    25. Shuanghe Fu, Shifa Ullah Khan, Ruoru Yang, Haijun Pang, Chi-Ming Au, Huiyuan Ma, Xinming Wang, Guixin Yang, Wenlong Sun, Wing-Yiu Yu. High-performance heterometallic photocatalysts afforded by polyoxometalate synthons for efficient H2 production. Journal of Colloid and Interface Science 2024, 666 , 496-504. https://doi.org/10.1016/j.jcis.2024.04.057
    26. Ji Hyeon Lim, Kyeonghan Kim, Jong Hun Kang, Ki Chang Kwon, Ho Won Jang. Tailored Two‐Dimensional Transition Metal Dichalcogenides for Water Electrolysis: Doping, Defect, Phase, and Heterostructure. ChemElectroChem 2024, 11 (10) https://doi.org/10.1002/celc.202300614
    27. Fan Yang, Chenying Wang, Qing Ye, Rui Ding, Min Liu, Renzhuo Wan. First principles investigation of non-metallic regulated single-atom Mo/C electrocatalyst: Superior performance for hydrogen evolution reactions. Applied Surface Science 2024, 655 , 159443. https://doi.org/10.1016/j.apsusc.2024.159443
    28. Dong Zhang, Minghui Zhu, Ran Qin, Peixian Chen, Maoye Yin, Dafeng Zhang, Junchang Liu, Hengshuai Li, Xipeng Pu, Peiqing Cai. Rational construction of CuFe2O4@C/Cd0.9Zn0.1S S-scheme heterojunction photocatalyst for extraordinary photothermal-assisted photocatalytic H2 evolution. Journal of Energy Chemistry 2024, 92 , 240-249. https://doi.org/10.1016/j.jechem.2024.01.050
    29. Dafeng Zhang, Dong Zhang, Shikai Wang, Hengshuai Li, Junchang Liu, Xipeng Pu, Peixian Chen, Ran Qin, Haiquan Hu, Peiqing Cai. Synthesize magnetic ZnFe2O4@C/Cd0.9Zn0.1S catalysts with S-scheme heterojunction to achieve extraordinary hydrogen production efficiency. Journal of Colloid and Interface Science 2024, 657 , 672-683. https://doi.org/10.1016/j.jcis.2023.11.159
    30. Ya Liu, Fengting Luo, Xi Jiang, Biao Yuan, Shijian Chen. Heterogeneous bimetallic FeP4/NiP2 nanosheets as efficient electrocatalyst for alkaline oxygen evolution reaction. International Journal of Hydrogen Energy 2024, 52 , 248-256. https://doi.org/10.1016/j.ijhydene.2022.12.074
    31. Xiaoxiao Chen, Xu Cai, Yi Li, Yongfan Zhang, Wei Lin. Effects of potassium ions and platinum cocatalysts on the photocatalytic performance of Poly(Heptazine Imides). Applied Surface Science 2023, 639 , 158275. https://doi.org/10.1016/j.apsusc.2023.158275
    32. Tianyu Gong, Yang Liu, Kai Cui, Jiali Xu, Linrui Hou, Haowen Xu, Ruochen Liu, Jianlin Deng, Changzhou Yuan. Binary molten salt in situ synthesis of sandwich‐structure hybrids of hollow β ‐Mo 2 C nanotubes and N‐doped carbon nanosheets for hydrogen evolution reaction. Carbon Energy 2023, 5 (12) https://doi.org/10.1002/cey2.349
    33. Yuping Lin, Kun Shi, Yang Yang, Zeheng Yang, Weixin Zhang. Polydopamine-engineered design of Nafion-free powder electrode with superhydrophilicity/superaerophobicity and superior adhesive structure for efficient overall water splitting. Chemical Engineering Science 2023, 281 , 119125. https://doi.org/10.1016/j.ces.2023.119125
    34. Kang Peng, Yihan Wang, Jingying Ye, Linjie Zuo, Hongjie Wang, Min Niu, Lei Su, Lei Zhuang, Xiaoyu Li. Triggering the electrocatalytic performance of MoS2 nanosheets via the synergy of doping with W and supporting on montmorillonite. Applied Clay Science 2023, 241 , 106970. https://doi.org/10.1016/j.clay.2023.106970
    35. Huanyu Miao, Qingxiao Zhou, Jie Hou, Xiaoyang Liu, Weiwei Ju, Yongliang Yong, Zenghui Zhao, Yajing Wang. DFT analysis of the sensitivity of graphene/MoS2 heterostructures toward H2CO. Vacuum 2023, 214 , 112182. https://doi.org/10.1016/j.vacuum.2023.112182
    36. Pengfei Tan, Yuan Wang, Lu Yang, Xiaoqing Zhang, Jun Pan. Nitrogen-doped carbon coated Ni3Mo3N porous microrods as efficient electrocatalyst for hydrogen evolution reaction. Diamond and Related Materials 2023, 136 , 109974. https://doi.org/10.1016/j.diamond.2023.109974
    37. Wenqiang Gao, Xiaolei Zhao, Ting Zhang, Xiaowen Yu, Yandong Ma, Egon Campos dos Santos, Jai White, Hong Liu, Yuanhua Sang. Construction of diluted magnetic semiconductor to endow nonmagnetic semiconductor with spin-regulated photocatalytic performance. Nano Energy 2023, 110 , 108381. https://doi.org/10.1016/j.nanoen.2023.108381
    38. Yang Li, Lei Zhao, Xing Du, Weitao Gao, Chuang Zhang, Hui Chen, Xuan He, Cheng Wang, Zongqiang Mao. Cobalt-doped IrRu bifunctional nanocrystals for reversal-tolerant anodes in proton-exchange membrane fuel cells. Chemical Engineering Journal 2023, 461 , 141823. https://doi.org/10.1016/j.cej.2023.141823
    39. Qianqian Xie, Xuxu Wang, Wenqian Chen, Chao Lei, Binbin Huang. Engineering active heterojunction architecture with oxygenated-Co, Mo bimetallic sulfide heteronanosheet and graphene oxide for peroxymonosulfate activation. Journal of Hazardous Materials 2023, 448 , 130852. https://doi.org/10.1016/j.jhazmat.2023.130852
    40. Kang Peng, Jingying Ye, Linjie Zuo, Yihan Wang, Hongjie Wang, Min Niu, Lei Su, Lei Zhuang, Xiaoyu Li. Heteronanostructures constructed from vertical MoS2 nanosheets on sepiolite nanofibers boosting electrocatalytic hydrogen evolution. Applied Clay Science 2023, 233 , 106798. https://doi.org/10.1016/j.clay.2022.106798
    41. Yanxia Wu, Lirong Su, Qingtao Wang, Shufang Ren. In situ preparation of Ni(OH)2/CoNi2S4/NF composite as efficient electrocatalyst for hydrogen evolution reaction. Ionics 2023, 29 (2) , 675-683. https://doi.org/10.1007/s11581-022-04824-9
    42. Yuhua Wei, Haicai Huang, Feng Gao, Gang Jiang. 2D transitional-metal nickel compounds monolayer: Highly efficient multifunctional electrocatalysts for the HER, OER and ORR. International Journal of Hydrogen Energy 2023, 48 (11) , 4242-4252. https://doi.org/10.1016/j.ijhydene.2022.10.250
    43. Xinlong Zheng, Yiming Song, Yuhao Liu, Yuqi Yang, Daoxiong Wu, Yingjie Yang, Suyang Feng, Jing Li, Weifeng Liu, Yijun Shen, Xinlong Tian. ZnIn2S4-based photocatalysts for photocatalytic hydrogen evolution via water splitting. Coordination Chemistry Reviews 2023, 475 , 214898. https://doi.org/10.1016/j.ccr.2022.214898
    44. Xiankun Zhang, Zhuo Kang. VdW Heterostructure Electrochemical Applications. 2022, 261-293. https://doi.org/10.1002/9783527833887.ch9
    45. Tianyue Liang, Haowei Jia, Yingze Zhou, Jiajun Fan, Yeqing Xu, Yifan Hu, Lu Zhou, Caiyun Wang, Fandi Chen, Peiyuan Guan, Mengyao Li, Tao Wan, Michael Ferry, Dewei Chu. A facile approach to enhance the hydrogen evolution reaction of electrodeposited MoS 2 in acidic solutions. New Journal of Chemistry 2022, 46 (48) , 23344-23350. https://doi.org/10.1039/D2NJ04547H
    46. Jun Tang, Jinzhao Huang, Dianjin Ding, Sixuan Zhang, Xiaolong Deng. Research progress of 1T-MoS2 in electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy 2022, 47 (94) , 39771-39795. https://doi.org/10.1016/j.ijhydene.2022.09.162
    47. Boxin Xiao, Haijun Pang, Xiaojing Yu, Yan Hou, Qiong Wu, Huiyuan Ma, Xiaoyong Lai, Xinming Wang, Lichao Tan, Guixin Yang. Directly growth of highly uniform MnS–MoS2 on carbon cloth for advanced H2 evolution electrocatalyst in different pH electrolytes. International Journal of Hydrogen Energy 2022, 47 (97) , 40872-40880. https://doi.org/10.1016/j.ijhydene.2022.09.189
    48. . Simulations for Electrochemical Reactions. 2022, 195-237. https://doi.org/10.1002/9783527832132.ch8
    49. Yanzheng He, Sisi Liu, Mengfan Wang, Haoqing Ji, Lifang Zhang, Qiyang Cheng, Tao Qian, Chenglin Yan. Advancing the Electrochemistry of Gas‐Involved Reactions through Theoretical Calculations and Simulations from Microscopic to Macroscopic. Advanced Functional Materials 2022, 32 (48) https://doi.org/10.1002/adfm.202208474
    50. Li Du, Xiang Yu Gao, Zhu Li, Guo Yong Wang, Zi Wen, Chun Cheng Yang, Qing Jiang. Metal-organic frameworks derived Co/N-doped carbon nanonecklaces as high-efficient oxygen reduction reaction electrocatalysts. International Journal of Hydrogen Energy 2022, 47 (92) , 39133-39145. https://doi.org/10.1016/j.ijhydene.2022.09.090
    51. Qiuyue Chen, Siqi Tian, Xiaonan Liu, Xuguang An, Jingxian Zhang, Longhan Xu, Weitang Yao, Qingquan Kong. Morphology-Controlled Synthesis of V1.11S2 for Electrocatalytic Hydrogen Evolution Reaction in Acid Media. Molecules 2022, 27 (22) , 8019. https://doi.org/10.3390/molecules27228019
    52. Raji Atchudan, Suguna Perumal, Thomas Nesakumar Jebakumar Immanuel Edison, S. Aldawood, Rajangam Vinodh, Ashok K. Sundramoorthy, Gajanan Ghodake, Yong Rok Lee. Facile synthesis of novel molybdenum disulfide decorated banana peel porous carbon electrode for hydrogen evolution reaction. Chemosphere 2022, 307 , 135712. https://doi.org/10.1016/j.chemosphere.2022.135712
    53. Xinyu Che, Qiong Wu, Sumin Hu, Guangning Wang, Haijun Pang, Weize Sun, Huiyuan Ma, Xinming Wang, Lichao Tan, Guixin Yang. Directed synthesis of an unusual uniform trimetallic hydrogen evolution catalyst by a predesigned cobalt-bipy modified bivanadyl capped polymolybdate. Journal of Solid State Chemistry 2022, 314 , 123403. https://doi.org/10.1016/j.jssc.2022.123403
    54. Chun Sun, Longlu Wang, Weiwei Zhao, Lingbin Xie, Jin Wang, Jianmin Li, Bingxiang Li, Shujuan Liu, Zechao Zhuang, Qiang Zhao. Atomic‐Level Design of Active Site on Two‐Dimensional MoS 2 toward Efficient Hydrogen Evolution: Experiment, Theory, and Artificial Intelligence Modelling. Advanced Functional Materials 2022, 32 (38) https://doi.org/10.1002/adfm.202206163
    55. Renzhuo Wan, Chenying Wang, Rong Chen, Min Liu, Fan Yang. Enhanced catalytic activities of Fe anchored on graphene substrates for water splitting and hydrogen evolution. International Journal of Hydrogen Energy 2022, 47 (75) , 32039-32049. https://doi.org/10.1016/j.ijhydene.2022.07.096
    56. Qinglin Han, Yuhong Luo, Guihua Liu, Yanji Wang, Jingde Li, Zhongwei Chen. Comparative study on the distinct activity for NiFe-based phosphide and sulfide pre-electrocatalysts towards hydrogen evolution reaction. Journal of Catalysis 2022, 413 , 425-433. https://doi.org/10.1016/j.jcat.2022.06.039
    57. Qinghua Ji, Xiaojie Yu, Li Chen, Clinton Emeka Okonkwo, Cunshan Zhou. Effect of cobalt doping and sugarcane bagasse carbon on the electrocatalytic performance of MoS2 nanocomposites. Fuel 2022, 324 , 124814. https://doi.org/10.1016/j.fuel.2022.124814
    58. Yan Gao, Siyao Wang, Bin Wang, Zhao Jiang, Tao Fang. Recent Progress in Phase Regulation, Functionalization, and Biosensing Applications of Polyphase MoS 2. Small 2022, 18 (34) https://doi.org/10.1002/smll.202202956
    59. W. Wang, L. Ma, X. Kong, Q. Kang, C. Ding, S. Qin, P. Tang, T. Xu, H. Bi, L. Sun. Gold nanodots-decoration stabilizes and activates metastable metallic phase MoS2 nanosheets for efficient hydrogen evolution reaction. Materials Today Nano 2022, 18 , 100209. https://doi.org/10.1016/j.mtnano.2022.100209
    60. Ramaraj Sukanya, Daniele C. da Silva Alves, Carmel B. Breslin. Review—Recent Developments in the Applications of 2D Transition Metal Dichalcogenides as Electrocatalysts in the Generation of Hydrogen for Renewable Energy Conversion. Journal of The Electrochemical Society 2022, 169 (6) , 064504. https://doi.org/10.1149/1945-7111/ac7172
    61. Wei Wang, Yutong Li, Mengjia Li, Hailin Shen, Wei Zhang, Jintao Zhang, Tianyu Liu, Xianqiang Kong, Hengchang Bi. Metallic phase WSe 2 nanoscrolls for the hydrogen evolution reaction. New Journal of Chemistry 2022, 46 (18) , 8381-8384. https://doi.org/10.1039/D2NJ01598F
    62. Rui Sun, Zhifeng Zhao, Zhanhua Su, Tiansheng Li, Jingxiang Zhao, Yongchen Shang. Multi-interface MoS 2 /Ni 3 S 4 /Mo 2 S 3 composite as an efficient electrocatalyst for hydrogen evolution reaction over a wide pH range. Dalton Transactions 2022, 51 (17) , 6825-6831. https://doi.org/10.1039/D2DT00231K
    63. Zhiwen Chen, Chandra V. Singh, Qing Jiang. Supported Double and Triple Metal Atom Catalysts. 2022, 613-643. https://doi.org/10.1002/9783527830169.ch15
    64. Xinxin Gu, Lu Zhang, Xiangyu Ma, Jialing Wang, Xinyue Shang, Zuoxiang Wang, Martha Kandawa-Schulz, Wei Song, Yihong Wang. A simple method for synthesizing Co, P-codoped MoS2 nanoflowers as electrocatalysts to enhance hydrogen evolution reaction. Ionics 2022, 28 (5) , 2337-2347. https://doi.org/10.1007/s11581-022-04506-6
    65. Yalin Yu, Zhihao Dong, Ling Tan, Nannan He, Rong Tang, Fang Jiang, Huan Chen. Enhanced hydrogen evolution reaction in alkaline solution by constructing strong metal-support interaction on Pd-CeO2-x-NC hybrids. Journal of Colloid and Interface Science 2022, 611 , 554-563. https://doi.org/10.1016/j.jcis.2021.12.119
    66. Sundaram Chandrasekaran, Na Li, Yang Zhuang, Lijun Sui, Zhizhong Xiao, Dayong Fan, Vanchiappan Aravindan, Chris Bowen, Huidan Lu, Yongping Liu. Interface charge density modulation of a lamellar-like spatially separated Ni9S8 nanosheet/Nb2O5 nanobelt heterostructure catalyst coupled with nitrogen and metal (M = Co, Fe, or Cu) atoms to accelerate acidic and alkaline hydrogen evolution reactions. Chemical Engineering Journal 2022, 431 , 134073. https://doi.org/10.1016/j.cej.2021.134073
    67. Qi Wang, Ze-Yu Tian, Wen-Jing Cui, Na Hu, Si-Meng Zhang, Yuan-Yuan Ma, Zhan-Gang Han. Hierarchical flower-like CoS2-MoS2 heterostructure spheres as efficient bifunctional electrocatalyst for overall water splitting. International Journal of Hydrogen Energy 2022, 47 (25) , 12629-12641. https://doi.org/10.1016/j.ijhydene.2022.02.024
    68. Min Zhu, Qing Yan, Xiaojing Bai, Hao Cai, Jing Zhao, Yongde Yan, Kai Zhu, Ke Ye, Jun Yan, Dianxue Cao, Guiling Wang. Construction of reduced graphene oxide coupled with CoSe2-MoSe2 heterostructure for enhanced electrocatalytic hydrogen production. Journal of Colloid and Interface Science 2022, 608 , 922-930. https://doi.org/10.1016/j.jcis.2021.10.042
    69. Hao Cui, Rui Dong, Jinchan Zhao, Pengfei Tan, Jianping Xie, Jun Pan. Ultralow Ru-incorporated MoS 2 nanosheet arrays for efficient electrocatalytic hydrogen evolution in dual-pH. New Journal of Chemistry 2022, 46 (4) , 1912-1920. https://doi.org/10.1039/D1NJ05434A
    70. Yongzhen Jiang, Wenxu Zou, Yadong Li, Yingxiang Cai. Theoretical insights into TM@PHEs as single-atom catalysts for water splitting based on density functional theory. Physical Chemistry Chemical Physics 2022, 24 (2) , 975-981. https://doi.org/10.1039/D1CP03340A
    71. Van-Toan Nguyen, Gyoung-Ja Lee, Quang-Tung Ngo, Oleksii Omelianovych, Ngoc-Anh Nguyen, Van-Huy Trinh, Ho-Suk Choi, Anush Mnoyan, Kyubock Lee, Liudmila L. Larina, Guangliang Chen. Robust carbon-encapsulated Ni nanoparticles as high-performance electrocatalysts for the hydrogen evolution reaction in highly acidic media. Electrochimica Acta 2021, 398 , 139332. https://doi.org/10.1016/j.electacta.2021.139332
    72. Farhad Keivanimehr, Sajjad Habibzadeh, Alireza Baghban, Amin Esmaeili, Ahmad Mohaddespour, Amin Hamed Mashhadzadeh, Mohammad Reza Ganjali, Mohammad Reza Saeb, Vanessa Fierro, Alain Celzard. Electrocatalytic hydrogen evolution on the noble metal-free MoS2/carbon nanotube heterostructure: a theoretical study. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-83562-w
    73. Yanqin Xue, Xiaojing Bai, Yanyan Xu, Qing Yan, Min Zhu, Kai Zhu, Ke Ye, Jun Yan, Dianxue Cao, Guiling Wang. Vertically oriented Ni-doped MoS2 nanosheets supported on hollow carbon microtubes for enhanced hydrogen evolution reaction and water splitting. Composites Part B: Engineering 2021, 224 , 109229. https://doi.org/10.1016/j.compositesb.2021.109229
    74. Feilong Gong, Yuheng Liu, Wenhao Yu, Zhikun Peng, Peiyuan Xu, Lihua Gong, Yonghui Zhang, Guoqing Wang. Design of ruthenium-doped MoS2 microsphere with optimal electronic structure for enhanced hydrogen evolution. Colloid and Interface Science Communications 2021, 45 , 100527. https://doi.org/10.1016/j.colcom.2021.100527
    75. Shi Feng Zai, Yi Tong Zhou, Chun Cheng Yang, Qing Jiang. Al, Fe-codoped CoP nanoparticles anchored on reduced graphene oxide as bifunctional catalysts to enhance overall water splitting. Chemical Engineering Journal 2021, 421 , 127856. https://doi.org/10.1016/j.cej.2020.127856
    76. Kang Peng, Pengfei Wan, Hongjie Wang, Linjie Zuo, Min Niu, Lei Su, Lei Zhuang, Xiaoyu Li. Unraveling the morphology effect of kandite supporting MoS2 nanosheets for enhancing electrocatalytic hydrogen evolution. Applied Clay Science 2021, 212 , 106211. https://doi.org/10.1016/j.clay.2021.106211
    77. Zhixiao Xu, Song Jin, Min Ho Seo, Xiaolei Wang. Hierarchical Ni-Mo2C/N-doped carbon Mott-Schottky array for water electrolysis. Applied Catalysis B: Environmental 2021, 292 , 120168. https://doi.org/10.1016/j.apcatb.2021.120168
    78. Mengliang Hu, Zhinan Wang, Mingli Li, Kaiming Pan, Liping Li. Nano-pom-pom multiphasic MoS2 grown on carbonized wood as electrode for efficient hydrogen evolution in acidic and alkaline media. International Journal of Hydrogen Energy 2021, 46 (55) , 28087-28097. https://doi.org/10.1016/j.ijhydene.2021.06.081
    79. Liang Li, Xinran Wang, Jinxin Li, Ying Guo, Xiaowei Li, Yongwei Lu. One-pot synthesis of ultrafine Pt-decorated MoS2/N-doped carbon composite with sponge-like morphology for efficient hydrogen evolution reaction. Journal of Alloys and Compounds 2021, 872 , 159562. https://doi.org/10.1016/j.jallcom.2021.159562
    80. Huong Doan, Ian Kendrick, Remi Blanchard, Qingying Jia, Ellie Knecht, Andrew Freeman, Tanner Jankins, Michael K. Bates, Sanjeev Mukerjee. Functionalized Embedded Monometallic Nickel Catalysts for Enhanced Hydrogen Evolution: Performance and Stability. Journal of The Electrochemical Society 2021, 168 (8) , 084501. https://doi.org/10.1149/1945-7111/ac11a1
    81. Jia-feng DU, Jiang-hong ZHAO, Jun REN. Interface effect of C3N4-Ti4O7-MoS2 composite toward enhanced electrocatalytic hydrogen evolution reaction. Journal of Fuel Chemistry and Technology 2021, 49 (7) , 986-996. https://doi.org/10.1016/S1872-5813(21)60109-3
    82. Mengqiu Huang, Yuping Lin, Haijian Huang, Xiaoming Fan, Kun Shi, Zeheng Yang, Weixin Zhang. Nickel nanoparticles modified MnO nanosheet arrays for high-performance supercapacitor with long-lasting and sustainable capacitance increase. Electrochimica Acta 2021, 383 , 138353. https://doi.org/10.1016/j.electacta.2021.138353
    83. Robabeh Bagheri, Noor Hussain, Abdul Ghafar Wattoo, Reza Assefi Pour, Cheng Xu, Zhenlun Song. Introducing a self-improving catalyst for hydrogen evolution and efficient catalyst for oxygen evolution reaction. Journal of Molecular Liquids 2021, 334 , 116511. https://doi.org/10.1016/j.molliq.2021.116511
    84. Min Zhu, Dingfu Zhang, Qi Lu, Yongde Yan, Kai Zhu, Ke Ye, Jun Yan, Dianxue Cao, Qian Wang, Xiaomei Huang, Guiling Wang. Hollow hexagonal NiSe–Ni3Se2 anchored onto reduced graphene oxide as efficient electrocatalysts for hydrogen evolution in wide-pH range. International Journal of Hydrogen Energy 2021, 46 (39) , 20524-20533. https://doi.org/10.1016/j.ijhydene.2021.03.170
    85. Ming Wang, Weinan Tang, Shujie Liu, Xinyue Liu, Xiong Chen, Xiaoying Hu, Liang Qiao, Yongming Sui. Design of earth-abundant ternary Fe1−xCoxS2 on RGO as efficient electrocatalysts for hydrogen evolution reaction. Journal of Alloys and Compounds 2021, 862 , 158610. https://doi.org/10.1016/j.jallcom.2021.158610
    86. Tingxian Tao, Xiaohan Lu, Mingxing Qin, Liru Chen, Wei Gao, Siyu Lu, Zhichuan Wu. Hydrogen evolution of a MoS 2 /AOCF electrocatalyst doped with Ni element. New Journal of Chemistry 2021, 45 (16) , 7377-7381. https://doi.org/10.1039/D0NJ05833E
    87. Sriram Mansingh, Kundan Kumar Das, Kulamani Parida. HERs in an acidic medium over MoS 2 nanosheets: from fundamentals to synthesis and the recent progress. Sustainable Energy & Fuels 2021, 5 (7) , 1952-1987. https://doi.org/10.1039/D0SE01683G
    88. Yingying Xiao, Mingyue Tan, Zongnan Li, Liwen He, Bifen Gao, Yilin Chen, Yun Zheng, Bizhou Lin. Ethylenediamine-assisted phase engineering of 1T/2H–MoS2/graphene for efficient and stable electrocatalytic hydrogen evolution. International Journal of Hydrogen Energy 2021, 46 (21) , 11688-11700. https://doi.org/10.1016/j.ijhydene.2021.01.081
    89. Xiaowei Shi, Ping Yang, Yongyong Cao, Chao Dai, Weiqing Ye, Lingxia Zheng, Zhefei Zhao, Jianguo Wang, Huajun Zheng. Ultrathin 2D flower-like CoP@C with the active (211) facet for efficient electrocatalytic water splitting. CrystEngComm 2021, 23 (8) , 1777-1784. https://doi.org/10.1039/D0CE01757D
    90. Haona Zhang, Wei Wei, Shuhua Wang, Hao Wang, Baibiao Huang, Ying Dai. H4,4,4-graphyne with double Dirac points as high-efficiency bifunctional electrocatalysts for water splitting. Journal of Materials Chemistry A 2021, 9 (7) , 4082-4090. https://doi.org/10.1039/D0TA10767K
    91. Pallavi Thakur, Jamsad Mannuthodikayil, Golap Kalita, Kalyaneswar Mandal, Tharangattu N. Narayanan. In situ surface modification of bulk or nano materials by cytochrome- c for active hydrogen evolution catalysis. Materials Chemistry Frontiers 2021, 5 (3) , 1295-1300. https://doi.org/10.1039/D0QM00627K
    92. Li Xin Chen, Zhi Wen Chen, Ming Jiang, Zhuole Lu, Chan Gao, Guangming Cai, Chandra Veer Singh. Insights on the dual role of two-dimensional materials as catalysts and supports for energy and environmental catalysis. Journal of Materials Chemistry A 2021, 9 (4) , 2018-2042. https://doi.org/10.1039/D0TA08649E
    93. Zhipeng Liu, Jianwu Jiang, Yuhua Liu, Guoqing Huang, Shisheng Yuan, Xiaotian Li, Nan Li. Boosted hydrogen evolution reaction based on synergistic effect of RuO2@MoS2 hybrid electrocatalyst. Applied Surface Science 2021, 538 , 148019. https://doi.org/10.1016/j.apsusc.2020.148019
    94. Zhihua Zhuang, Cheng Du, Ping Li, Ziwei Zhang, Zhongying Fang, Jinhan Guo, Wei Chen. Pt21(C4O4SH5)21 clusters: atomically precise synthesis and enhanced electrocatalytic activity for hydrogen generation. Electrochimica Acta 2021, 368 , 137608. https://doi.org/10.1016/j.electacta.2020.137608
    95. Yeqing Xu, Xingxing Jiang, Gonglei Shao, Haiyan Xiang, Sisi Si, Xing Li, Travis Shihao Hu, Guo Hong, Shengyi Dong, Huimin Li, Yexin Feng, Song Liu. Interface Effect of Ru‐MoS 2 Nanoflowers on Lignin Substrate for Enhanced Hydrogen Evolution Activity. ENERGY & ENVIRONMENTAL MATERIALS 2021, 4 (1) , 117-125. https://doi.org/10.1002/eem2.12104
    96. Dachang Chen, Zhiwen Chen, Xiaoxing Zhang, Zhuole Lu, Song Xiao, Beibei Xiao, Chandra Veer Singh. Exploring single atom catalysts of transition-metal doped phosphorus carbide monolayer for HER: A first-principles study. Journal of Energy Chemistry 2021, 52 , 155-162. https://doi.org/10.1016/j.jechem.2020.03.061
    97. Huan Lou, Tong Yu, Jiani Ma, Shoutao Zhang, Aitor Bergara, Guochun Yang. Achieving high hydrogen evolution reaction activity of a Mo 2 C monolayer. Physical Chemistry Chemical Physics 2020, 22 (45) , 26189-26199. https://doi.org/10.1039/D0CP05053A
    98. Junfeng Xie, Jindi Qi, Fengcai Lei, Yi Xie. Modulation of electronic structures in two-dimensional electrocatalysts for the hydrogen evolution reaction. Chemical Communications 2020, 56 (80) , 11910-11930. https://doi.org/10.1039/D0CC05272H
    99. Abdillah Sani Bin Mohd Najib, Muhammad Iqbal, Mohamed Barakat Zakaria, Shusaku Shoji, Yohei Cho, Xiaobo Peng, Shigenori Ueda, Ayako Hashimoto, Takeshi Fujita, Masahiro Miyauchi, Yusuke Yamauchi, Hideki Abe. Active faceted nanoporous ruthenium for electrocatalytic hydrogen evolution. Journal of Materials Chemistry A 2020, 8 (38) , 19788-19792. https://doi.org/10.1039/D0TA04223D
    100. Yan Hou, Haijun Pang, Jianjiao Xin, Huiyuan Ma, Bonan Li, Xinming Wang, Lichao Tan. Multi‐Interface‐Modulated CoS 2 @MoS 2 Nanoarrays Derived by Predesigned Germanomolybdate Polymer Showing Ultrahighly Electrocatalytic Activity for Hydrogen Evolution Reaction in Wide pH Range. Advanced Materials Interfaces 2020, 7 (19) https://doi.org/10.1002/admi.202000780
    Load all citations