Continuous-Flow Alkane Dehydrogenation by Supported Pincer-Ligated Iridium Catalysts at Elevated TemperaturesClick to copy article linkArticle link copied!
- Boris SheludkoBoris SheludkoDepartment of Chemistry and Chemical Biology and Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United StatesMore by Boris Sheludko
- Molly T. CunninghamMolly T. CunninghamDepartment of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United StatesMore by Molly T. Cunningham
- Alan S. GoldmanAlan S. GoldmanDepartment of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United StatesMore by Alan S. Goldman
- Fuat E. Celik*Fuat E. Celik*F.E.C.: tel, +1 848 445 5558; e-mail, [email protected]Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United StatesMore by Fuat E. Celik
Abstract
Pincer-ligated iridium complexes of the form [Ir(R4PCP)L] (R4PCP = κ3-C6H3-2,6-(XPR2)2; X = CH2, O; R = tBu, iPr) are efficient homogeneous alkane dehydrogenation catalysts that have been reported to be highly active at temperatures of 240 °C or below. In this work, silica-supported [Ir(C2H4)(p-tBu2PO-tBu4POCOP)] (1/SiO2) was used to study a model continuous-flow gas-phase acceptorless alkane dehydrogenation system. This particular supported framework is thermally stable at temperatures up to 340 °C, 100 °C above the highest temperature at which analogous homogeneous complexes have been reported to show stable activity, with observed butane dehydrogenation rates of ca. 80 molbutenes molcat.–1 h–1. Solid-state 31P MAS NMR and ATR IR are used to demonstrate that the backbone pincer ligand remains intact and coordinated at 340 °C. The complex is fully converted to [Ir(CO)(p-tBu2PO-tBu4POCOP)] (3/SiO2) above 300 °C. 3/SiO2 is observed to be catalytically active at the higher temperatures tested, and reaction rates are comparable to those of 1/SiO2. 3/SiO2 and 1/SiO2 act as resting states for the active 14-electron fragment, through dissociation of the CO or olefin ligand, respectively. Given that 3/SiO2 is air resistant at ambient temperature and is structurally stable and catalytically active at elevated temperatures, it is a suitable candidate as a catalyst for the highly endothermic acceptorless dehydrogenation of alkanes.
Cited By
This article is cited by 38 publications.
- Sabrine M. Cypher, Magnus Pauly, Leslie G. Castro, Carrie L. Donley, Paul A. Maggard, Karen I. Goldberg. Ethanol Upgrading to n-Butanol Using Transition-Metal-Incorporated Poly(triazine)imide Frameworks. ACS Applied Materials & Interfaces 2023, 15
(30)
, 36384-36393. https://doi.org/10.1021/acsami.3c07396
- Zoha H. Syed, Mohammad Rasel Mian, Roshan Patel, Haomiao Xie, Zihan Pengmei, Zhihengyu Chen, Florencia A. Son, Timothy A. Goetjen, Alon Chapovetsky, Kira M. Fahy, Fanrui Sha, Xingjie Wang, Selim Alayoglu, David M. Kaphan, Karena W. Chapman, Matthew Neurock, Laura Gagliardi, Massimiliano Delferro, Omar K. Farha. Sulfated Zirconium Metal–Organic Frameworks as Well-Defined Supports for Enhancing Organometallic Catalysis. Journal of the American Chemical Society 2022, 144
(37)
, 16883-16897. https://doi.org/10.1021/jacs.2c05290
- Alice Johnson, Cameron G. Royle, Claire N. Brodie, Antonio J. Martínez-Martínez, Simon B. Duckett, Andrew S. Weller. η2-Alkene Complexes of [Rh(PONOP-iPr)(L)]+ Cations (L = COD, NBD, Ethene). Intramolecular Alkene-Assisted Hydrogenation and Dihydrogen Complex [Rh(PONOP-iPr)(η-H2)]+. Inorganic Chemistry 2021, 60
(18)
, 13903-13912. https://doi.org/10.1021/acs.inorgchem.0c03687
- Alexander J. Bukvic, Arron L. Burnage, Graham J. Tizzard, Antonio J. Martínez-Martínez, Alasdair I. McKay, Nicholas H. Rees, Bengt E. Tegner, Tobias Krämer, Heather Fish, Mark R. Warren, Simon J. Coles, Stuart A. Macgregor, Andrew S. Weller. A Series of Crystallographically Characterized Linear and Branched σ-Alkane Complexes of Rhodium: From Propane to 3-Methylpentane. Journal of the American Chemical Society 2021, 143
(13)
, 5106-5120. https://doi.org/10.1021/jacs.1c00738
- Rachael M. Gitnes, Maggie Wang, Ying Bao, Margaret L. Scheuermann. In Situ Generation of Catalytically Relevant Nanoparticles from a Molecular Pincer Iridium Precatalyst during Polyol Deoxygenation. ACS Catalysis 2021, 11
(2)
, 495-501. https://doi.org/10.1021/acscatal.0c03180
- Boris Sheludko, Cristina F. Castro, Alan S. Goldman, Fuat E. Celik. Poison or Promoter? Investigating the Dual-Role of Carbon Monoxide in Pincer-Iridium-Based Alkane Dehydrogenation Systems via Operando Diffuse Reflectance Infrared Fourier Transform Spectroscopy. ACS Catalysis 2020, 10
(21)
, 12425-12436. https://doi.org/10.1021/acscatal.0c02406
- Alasdair
I. McKay, Alexander J. Bukvic, Bengt E. Tegner, Arron L. Burnage, Antonio J. Martı́nez-Martı́nez, Nicholas H. Rees, Stuart A. Macgregor, Andrew S. Weller. Room Temperature Acceptorless Alkane Dehydrogenation from Molecular σ-Alkane Complexes. Journal of the American Chemical Society 2019, 141
(29)
, 11700-11712. https://doi.org/10.1021/jacs.9b05577
- Zoha H. Syed, David M. Kaphan, Frédéric
A. Perras, Marek Pruski, Magali S. Ferrandon, Evan C. Wegener, Gokhan Celik, Jianguo Wen, Cong Liu, Fulya Dogan, Karen I. Goldberg, Massimiliano Delferro. Electrophilic Organoiridium(III) Pincer Complexes on Sulfated Zirconia for Hydrocarbon Activation and Functionalization. Journal of the American Chemical Society 2019, 141
(15)
, 6325-6337. https://doi.org/10.1021/jacs.9b00896
- Christian Schöttle, Erjia Guan, Alexander Okrut, Nicolás
A. Grosso-Giordano, Andrew Palermo, Andrew Solovyov, Bruce C. Gates, Alexander Katz. Bulky Calixarene Ligands Stabilize Supported Iridium Pair-Site Catalysts. Journal of the American Chemical Society 2019, 141
(9)
, 4010-4015. https://doi.org/10.1021/jacs.8b13013
- Jyothi Jangir, Balaji R. Jagirdar. Bridging Dehydrogenation and Hydrogenation in Heterogeneous Catalysis: A Demonstration of a Unified Catalytic Approach. Chemistry – A European Journal 2024, 30
(47)
https://doi.org/10.1002/chem.202400980
- Ignacio Centeno-Vega, Cristina Megías-Sayago, Svetlana Ivanova. New insights for valorization of polyolefins/light alkanes: catalytic dehydrogenation of
n
-alkanes by immobilized pincer–iridium complexes. Dalton Transactions 2024, 53
(27)
, 11216-11227. https://doi.org/10.1039/D4DT00847B
- Cristina Megías-Sayago, Ignacio Centeno-Vega, Luis F. Bobadilla, Svetlana Ivanova, Nuria Rendón, Andrés Suarez. Alkane metathesis over immobilized pincer-ligated iridium complexes: Effect of support nature. Applied Catalysis B: Environmental 2023, 338 , 123002. https://doi.org/10.1016/j.apcatb.2023.123002
- Xiaowen Chen, Xuetao Qin, Yueyue Jiao, Mi Peng, Jiangyong Diao, Pengju Ren, Chengyu Li, Dequan Xiao, Xiaodong Wen, Zheng Jiang, Ning Wang, Xiangbin Cai, Hongyang Liu, Ding Ma. Structure-dependence and metal-dependence on atomically dispersed Ir catalysts for efficient n-butane dehydrogenation. Nature Communications 2023, 14
(1)
https://doi.org/10.1038/s41467-023-38361-4
- Kaushik Chakrabarti, Alice Spangenberg, Vasudevan Subramaniyan, Andreas Hederstedt, Omar Y. Abdelaziz, Alexey V. Polukeev, Reine Wallenberg, Christian P. Hulteberg, Ola F. Wendt. Acceptorless dehydrogenation of 4-methylpiperidine by supported pincer-ligated iridium catalysts in continuous flow. Catalysis Science & Technology 2023, 13
(17)
, 5113-5119. https://doi.org/10.1039/D3CY00881A
- Frédéric A. Perras, Alejandra Arroyave, Scott A. Southern, Jessica V. Lamb, Yuting Li, Anne LaPointe, Massimiliano Delferro. Double-resonance
17
O NMR experiments reveal unique configurational information for surface organometallic complexes. Chemical Communications 2023, 59
(31)
, 4604-4607. https://doi.org/10.1039/D3CC00899A
- Hongliu Wan, Nengfeng Gong, Lichen Liu. Solid catalysts for the dehydrogenation of long-chain alkanes: lessons from the dehydrogenation of light alkanes and homogeneous molecular catalysis. Science China Chemistry 2022, 65
(11)
, 2163-2176. https://doi.org/10.1007/s11426-022-1415-x
- Michaela König, Michael Traxler, Maik Alexander Rudolph, Johannes Schmidt, Hüseyin Küçükkeçeci, Reinhard Schomäcker, Arne Thomas. Anchoring an Iridium Pincer Complex in a Hydrophobic Microporous Polymer for Application in Continuous‐Flow Alkane Dehydrogenation. ChemCatChem 2022, 14
(18)
https://doi.org/10.1002/cctc.202200811
- Thomas Scattolin, Andreas Simoens, Christian V. Stevens, Steven P. Nolan. Flow chemistry of main group and transition metal complexes. Trends in Chemistry 2022, 4
(7)
, 584-607. https://doi.org/10.1016/j.trechm.2022.04.001
- Karzan Mahmood Ahmed, Kamal Amani. Synthesis, characterization, and reactivity of a novel magnetically recyclable triazine‐based Cu–
NNN
–pincer complex. Applied Organometallic Chemistry 2022, 36
(5)
https://doi.org/10.1002/aoc.6630
- Alexey V. Polukeev, Reine Wallenberg, Jens Uhlig, Christian P. Hulteberg, Ola F. Wendt. Iridium‐Catalyzed Dehydrogenation in a Continuous Flow Reactor for Practical On‐Board Hydrogen Generation From Liquid Organic Hydrogen Carriers. ChemSusChem 2022, 15
(8)
https://doi.org/10.1002/cssc.202200085
- Weiyu Song, Yikun Kang, Min Yang, Zhi Li, Lulu Chen, Zhen Zhao, Jian Liu. Promoting propane dehydrogenation via strain engineering on iridium single-atom catalyst. Fuel 2022, 311 , 122580. https://doi.org/10.1016/j.fuel.2021.122580
- Hugo Valdés, Rebeca Osorio-Yañez, Ernesto Rufino-Felipe, David Morales-Morales. Organometallic Pincer Complexes of Cobalt, Rhodium, and Iridium. 2022, 816-867. https://doi.org/10.1016/B978-0-12-820206-7.00145-1
- Pran Gobinda Nandi, Vinay Arora, Eileen Yasmin, Akshai Kumar. Pincer-group(8) and pincer-group(9) metal complexes for catalytic alkane dehydrogenation reactions. 2022, 69-122. https://doi.org/10.1016/B978-0-12-822091-7.00002-6
- Eileen Yasmin, Vinay Arora, Akshai Kumar. An outlook on the applications of pincer-metal complexes in catalytic dehydrogenation chemistry. 2022, 191-220. https://doi.org/10.1016/B978-0-12-822091-7.00005-1
- Xuemei Zhou, George E. Sterbinsky, Eman Wasim, Linxiao Chen, Steven L. Tait. Tuning Ligand‐Coordinated Single Metal Atoms on TiO
2
and their Dynamic Response during Hydrogenation Catalysis. ChemSusChem 2021, 14
(18)
, 3825-3837. https://doi.org/10.1002/cssc.202100208
- Lichen Liu, Avelino Corma. Isolated metal atoms and clusters for alkane activation: Translating knowledge from enzymatic and homogeneous to heterogeneous systems. Chem 2021, 7
(9)
, 2347-2384. https://doi.org/10.1016/j.chempr.2021.04.001
- Chunyi Li, Guowei Wang. Dehydrogenation of light alkanes to mono-olefins. Chemical Society Reviews 2021, 50
(7)
, 4359-4381. https://doi.org/10.1039/D0CS00983K
- Linxiao Chen, Iyad S. Ali, George E. Sterbinsky, Xuemei Zhou, Eman Wasim, Steven L. Tait. Ligand-coordinated Ir single-atom catalysts stabilized on oxide supports for ethylene hydrogenation and their evolution under a reductive atmosphere. Catalysis Science & Technology 2021, 11
(6)
, 2081-2093. https://doi.org/10.1039/D0CY01132K
- Yingze Li, Jeanette A. Krause, Hairong Guan. POCOP-type cobalt and nickel pincer complexes bearing an appended phosphinite group. Canadian Journal of Chemistry 2021, 99
(2)
, 147-153. https://doi.org/10.1139/cjc-2020-0137
- Boris Sheludko, Cristina F. Castro, Chaitanya A. Khalap, Thomas J. Emge, Alan S. Goldman, Fuat E. Celik. Regioselective Gas‐Phase
n
‐Butane Transfer Dehydrogenation via Silica‐Supported Pincer‐Iridium Complexes. ChemCatChem 2021, 13
(1)
, 407-415. https://doi.org/10.1002/cctc.202001399
- Yingze Li, Joel D. Collett, Hairong Guan. Phosphorus-Based Pincer Ligands. 2021, 505-606. https://doi.org/10.1016/B978-0-08-102688-5.00078-7
- Changho Yoo, Henry M. Dodge, Alexandra H. Farquhar, Kristen E. Gardner, Alexander J. M. Miller. Decarbonylative ether dissection by iridium pincer complexes. Chemical Science 2020, 11
(44)
, 12130-12138. https://doi.org/10.1039/D0SC03736B
- Michaela König, Massimo Rigo, Nicolas Chaoui, Trung Tran Ngoc, Jan Dirk Epping, Johannes Schmidt, Pradip Pachfule, Meng‐Yang Ye, Matthias Trunk, Johannes F. Teichert, Matthias Drieß, Arne Thomas. Immobilization of an Iridium Pincer Complex in a Microporous Polymer for Application in Room‐Temperature Gas Phase Catalysis. Angewandte Chemie 2020, 132
(45)
, 20002-20006. https://doi.org/10.1002/ange.202004092
- Michaela König, Massimo Rigo, Nicolas Chaoui, Trung Tran Ngoc, Jan Dirk Epping, Johannes Schmidt, Pradip Pachfule, Meng‐Yang Ye, Matthias Trunk, Johannes F. Teichert, Matthias Drieß, Arne Thomas. Immobilization of an Iridium Pincer Complex in a Microporous Polymer for Application in Room‐Temperature Gas Phase Catalysis. Angewandte Chemie International Edition 2020, 59
(45)
, 19830-19834. https://doi.org/10.1002/anie.202004092
- Luca Piccirilli, Danielle Lobo Justo Pinheiro, Martin Nielsen. Recent Progress with Pincer Transition Metal Catalysts for Sustainability. Catalysts 2020, 10
(7)
, 773. https://doi.org/10.3390/catal10070773
- Takuya Shimbayashi, Ken-ichi Fujita. Iridium-Catalyzed Dehydrogenative Reactions. 2020, 1-65. https://doi.org/10.1007/3418_2020_56
- Maitham H. Majeed, Payam Shayesteh, Per Tunå, Axel R. Persson, Roman Gritcenko, L. Reine Wallenberg, Lei Ye, Christian Hulteberg, Joachim Schnadt, Ola F. Wendt. Directed C−H Halogenation Reactions Catalysed by Pd
II
Supported on Polymers under Batch and Continuous Flow Conditions. Chemistry – A European Journal 2019, 25
(59)
, 13591-13597. https://doi.org/10.1002/chem.201902949
- Kanu Das, Akshai Kumar. Alkane dehydrogenation reactions catalyzed by pincer-metal complexes. 2019, 1-57. https://doi.org/10.1016/bs.adomc.2019.02.004
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.