ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch ArticleNEXT

Continuous-Flow Alkane Dehydrogenation by Supported Pincer-Ligated Iridium Catalysts at Elevated Temperatures

  • Boris Sheludko
    Boris Sheludko
    Department of Chemistry and Chemical Biology  and  Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
  • Molly T. Cunningham
    Molly T. Cunningham
    Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
  • Alan S. Goldman
    Alan S. Goldman
    Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
  • , and 
  • Fuat E. Celik*
    Fuat E. Celik
    Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
    *F.E.C.: tel, +1 848 445 5558; e-mail, [email protected]
Cite this: ACS Catal. 2018, 8, 9, 7828–7841
Publication Date (Web):July 16, 2018
https://doi.org/10.1021/acscatal.8b01497
Copyright © 2018 American Chemical Society

    Article Views

    3069

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Pincer-ligated iridium complexes of the form [Ir(R4PCP)L] (R4PCP = κ3-C6H3-2,6-(XPR2)2; X = CH2, O; R = tBu, iPr) are efficient homogeneous alkane dehydrogenation catalysts that have been reported to be highly active at temperatures of 240 °C or below. In this work, silica-supported [Ir(C2H4)(p-tBu2PO-tBu4POCOP)] (1/SiO2) was used to study a model continuous-flow gas-phase acceptorless alkane dehydrogenation system. This particular supported framework is thermally stable at temperatures up to 340 °C, 100 °C above the highest temperature at which analogous homogeneous complexes have been reported to show stable activity, with observed butane dehydrogenation rates of ca. 80 molbutenes molcat.–1 h–1. Solid-state 31P MAS NMR and ATR IR are used to demonstrate that the backbone pincer ligand remains intact and coordinated at 340 °C. The complex is fully converted to [Ir(CO)(p-tBu2PO-tBu4POCOP)] (3/SiO2) above 300 °C. 3/SiO2 is observed to be catalytically active at the higher temperatures tested, and reaction rates are comparable to those of 1/SiO2. 3/SiO2 and 1/SiO2 act as resting states for the active 14-electron fragment, through dissociation of the CO or olefin ligand, respectively. Given that 3/SiO2 is air resistant at ambient temperature and is structurally stable and catalytically active at elevated temperatures, it is a suitable candidate as a catalyst for the highly endothermic acceptorless dehydrogenation of alkanes.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.8b01497.

    • 31P NMR of 3 in C6D6, 1H NMR of 3 in C6D6, 31P NMR of dihydride (4) and tetrahydride mixture in d8-toluene, 1H NMR of 4 in d8-toluene, color and appearance of catalyst, 31P MAS NMR of 4/SiO2, selectivity between butene isomers as a function of residence time and reaction temperature, and comparison of continuous-flow alkane dehydrogenation over 1/SiO2 and 2/SiO2 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 36 publications.

    1. Sabrine M. Cypher, Magnus Pauly, Leslie G. Castro, Carrie L. Donley, Paul A. Maggard, Karen I. Goldberg. Ethanol Upgrading to n-Butanol Using Transition-Metal-Incorporated Poly(triazine)imide Frameworks. ACS Applied Materials & Interfaces 2023, 15 (30) , 36384-36393. https://doi.org/10.1021/acsami.3c07396
    2. Zoha H. Syed, Mohammad Rasel Mian, Roshan Patel, Haomiao Xie, Zihan Pengmei, Zhihengyu Chen, Florencia A. Son, Timothy A. Goetjen, Alon Chapovetsky, Kira M. Fahy, Fanrui Sha, Xingjie Wang, Selim Alayoglu, David M. Kaphan, Karena W. Chapman, Matthew Neurock, Laura Gagliardi, Massimiliano Delferro, Omar K. Farha. Sulfated Zirconium Metal–Organic Frameworks as Well-Defined Supports for Enhancing Organometallic Catalysis. Journal of the American Chemical Society 2022, 144 (37) , 16883-16897. https://doi.org/10.1021/jacs.2c05290
    3. Alice Johnson, Cameron G. Royle, Claire N. Brodie, Antonio J. Martínez-Martínez, Simon B. Duckett, Andrew S. Weller. η2-Alkene Complexes of [Rh(PONOP-iPr)(L)]+ Cations (L = COD, NBD, Ethene). Intramolecular Alkene-Assisted Hydrogenation and Dihydrogen Complex [Rh(PONOP-iPr)(η-H2)]+. Inorganic Chemistry 2021, 60 (18) , 13903-13912. https://doi.org/10.1021/acs.inorgchem.0c03687
    4. Alexander J. Bukvic, Arron L. Burnage, Graham J. Tizzard, Antonio J. Martínez-Martínez, Alasdair I. McKay, Nicholas H. Rees, Bengt E. Tegner, Tobias Krämer, Heather Fish, Mark R. Warren, Simon J. Coles, Stuart A. Macgregor, Andrew S. Weller. A Series of Crystallographically Characterized Linear and Branched σ-Alkane Complexes of Rhodium: From Propane to 3-Methylpentane. Journal of the American Chemical Society 2021, 143 (13) , 5106-5120. https://doi.org/10.1021/jacs.1c00738
    5. Rachael M. Gitnes, Maggie Wang, Ying Bao, Margaret L. Scheuermann. In Situ Generation of Catalytically Relevant Nanoparticles from a Molecular Pincer Iridium Precatalyst during Polyol Deoxygenation. ACS Catalysis 2021, 11 (2) , 495-501. https://doi.org/10.1021/acscatal.0c03180
    6. Boris Sheludko, Cristina F. Castro, Alan S. Goldman, Fuat E. Celik. Poison or Promoter? Investigating the Dual-Role of Carbon Monoxide in Pincer-Iridium-Based Alkane Dehydrogenation Systems via Operando Diffuse Reflectance Infrared Fourier Transform Spectroscopy. ACS Catalysis 2020, 10 (21) , 12425-12436. https://doi.org/10.1021/acscatal.0c02406
    7. Alasdair I. McKay, Alexander J. Bukvic, Bengt E. Tegner, Arron L. Burnage, Antonio J. Martı́nez-Martı́nez, Nicholas H. Rees, Stuart A. Macgregor, Andrew S. Weller. Room Temperature Acceptorless Alkane Dehydrogenation from Molecular σ-Alkane Complexes. Journal of the American Chemical Society 2019, 141 (29) , 11700-11712. https://doi.org/10.1021/jacs.9b05577
    8. Zoha H. Syed, David M. Kaphan, Frédéric A. Perras, Marek Pruski, Magali S. Ferrandon, Evan C. Wegener, Gokhan Celik, Jianguo Wen, Cong Liu, Fulya Dogan, Karen I. Goldberg, Massimiliano Delferro. Electrophilic Organoiridium(III) Pincer Complexes on Sulfated Zirconia for Hydrocarbon Activation and Functionalization. Journal of the American Chemical Society 2019, 141 (15) , 6325-6337. https://doi.org/10.1021/jacs.9b00896
    9. Christian Schöttle, Erjia Guan, Alexander Okrut, Nicolás A. Grosso-Giordano, Andrew Palermo, Andrew Solovyov, Bruce C. Gates, Alexander Katz. Bulky Calixarene Ligands Stabilize Supported Iridium Pair-Site Catalysts. Journal of the American Chemical Society 2019, 141 (9) , 4010-4015. https://doi.org/10.1021/jacs.8b13013
    10. Cristina Megías-Sayago, Ignacio Centeno-Vega, Luis F. Bobadilla, Svetlana Ivanova, Nuria Rendón, Andrés Suarez. Alkane metathesis over immobilized pincer-ligated iridium complexes: Effect of support nature. Applied Catalysis B: Environmental 2023, 338 , 123002. https://doi.org/10.1016/j.apcatb.2023.123002
    11. Xiaowen Chen, Xuetao Qin, Yueyue Jiao, Mi Peng, Jiangyong Diao, Pengju Ren, Chengyu Li, Dequan Xiao, Xiaodong Wen, Zheng Jiang, Ning Wang, Xiangbin Cai, Hongyang Liu, Ding Ma. Structure-dependence and metal-dependence on atomically dispersed Ir catalysts for efficient n-butane dehydrogenation. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-38361-4
    12. Kaushik Chakrabarti, Alice Spangenberg, Vasudevan Subramaniyan, Andreas Hederstedt, Omar Y. Abdelaziz, Alexey V. Polukeev, Reine Wallenberg, Christian P. Hulteberg, Ola F. Wendt. Acceptorless dehydrogenation of 4-methylpiperidine by supported pincer-ligated iridium catalysts in continuous flow. Catalysis Science & Technology 2023, 13 (17) , 5113-5119. https://doi.org/10.1039/D3CY00881A
    13. Frédéric A. Perras, Alejandra Arroyave, Scott A. Southern, Jessica V. Lamb, Yuting Li, Anne LaPointe, Massimiliano Delferro. Double-resonance 17 O NMR experiments reveal unique configurational information for surface organometallic complexes. Chemical Communications 2023, 59 (31) , 4604-4607. https://doi.org/10.1039/D3CC00899A
    14. Hongliu Wan, Nengfeng Gong, Lichen Liu. Solid catalysts for the dehydrogenation of long-chain alkanes: lessons from the dehydrogenation of light alkanes and homogeneous molecular catalysis. Science China Chemistry 2022, 65 (11) , 2163-2176. https://doi.org/10.1007/s11426-022-1415-x
    15. Michaela König, Michael Traxler, Maik Alexander Rudolph, Johannes Schmidt, Hüseyin Küçükkeçeci, Reinhard Schomäcker, Arne Thomas. Anchoring an Iridium Pincer Complex in a Hydrophobic Microporous Polymer for Application in Continuous‐Flow Alkane Dehydrogenation. ChemCatChem 2022, 14 (18) https://doi.org/10.1002/cctc.202200811
    16. Thomas Scattolin, Andreas Simoens, Christian V. Stevens, Steven P. Nolan. Flow chemistry of main group and transition metal complexes. Trends in Chemistry 2022, 4 (7) , 584-607. https://doi.org/10.1016/j.trechm.2022.04.001
    17. Karzan Mahmood Ahmed, Kamal Amani. Synthesis, characterization, and reactivity of a novel magnetically recyclable triazine‐based Cu– NNN –pincer complex. Applied Organometallic Chemistry 2022, 36 (5) https://doi.org/10.1002/aoc.6630
    18. Alexey V. Polukeev, Reine Wallenberg, Jens Uhlig, Christian P. Hulteberg, Ola F. Wendt. Iridium‐Catalyzed Dehydrogenation in a Continuous Flow Reactor for Practical On‐Board Hydrogen Generation From Liquid Organic Hydrogen Carriers. ChemSusChem 2022, 15 (8) https://doi.org/10.1002/cssc.202200085
    19. Weiyu Song, Yikun Kang, Min Yang, Zhi Li, Lulu Chen, Zhen Zhao, Jian Liu. Promoting propane dehydrogenation via strain engineering on iridium single-atom catalyst. Fuel 2022, 311 , 122580. https://doi.org/10.1016/j.fuel.2021.122580
    20. Hugo Valdés, Rebeca Osorio-Yañez, Ernesto Rufino-Felipe, David Morales-Morales. Organometallic Pincer Complexes of Cobalt, Rhodium, and Iridium. 2022, 816-867. https://doi.org/10.1016/B978-0-12-820206-7.00145-1
    21. Pran Gobinda Nandi, Vinay Arora, Eileen Yasmin, Akshai Kumar. Pincer-group(8) and pincer-group(9) metal complexes for catalytic alkane dehydrogenation reactions. 2022, 69-122. https://doi.org/10.1016/B978-0-12-822091-7.00002-6
    22. Eileen Yasmin, Vinay Arora, Akshai Kumar. An outlook on the applications of pincer-metal complexes in catalytic dehydrogenation chemistry. 2022, 191-220. https://doi.org/10.1016/B978-0-12-822091-7.00005-1
    23. Xuemei Zhou, George E. Sterbinsky, Eman Wasim, Linxiao Chen, Steven L. Tait. Tuning Ligand‐Coordinated Single Metal Atoms on TiO 2 and their Dynamic Response during Hydrogenation Catalysis. ChemSusChem 2021, 14 (18) , 3825-3837. https://doi.org/10.1002/cssc.202100208
    24. Lichen Liu, Avelino Corma. Isolated metal atoms and clusters for alkane activation: Translating knowledge from enzymatic and homogeneous to heterogeneous systems. Chem 2021, 7 (9) , 2347-2384. https://doi.org/10.1016/j.chempr.2021.04.001
    25. Chunyi Li, Guowei Wang. Dehydrogenation of light alkanes to mono-olefins. Chemical Society Reviews 2021, 50 (7) , 4359-4381. https://doi.org/10.1039/D0CS00983K
    26. Linxiao Chen, Iyad S. Ali, George E. Sterbinsky, Xuemei Zhou, Eman Wasim, Steven L. Tait. Ligand-coordinated Ir single-atom catalysts stabilized on oxide supports for ethylene hydrogenation and their evolution under a reductive atmosphere. Catalysis Science & Technology 2021, 11 (6) , 2081-2093. https://doi.org/10.1039/D0CY01132K
    27. Yingze Li, Jeanette A. Krause, Hairong Guan. POCOP-type cobalt and nickel pincer complexes bearing an appended phosphinite group. Canadian Journal of Chemistry 2021, 99 (2) , 147-153. https://doi.org/10.1139/cjc-2020-0137
    28. Boris Sheludko, Cristina F. Castro, Chaitanya A. Khalap, Thomas J. Emge, Alan S. Goldman, Fuat E. Celik. Regioselective Gas‐Phase n ‐Butane Transfer Dehydrogenation via Silica‐Supported Pincer‐Iridium Complexes. ChemCatChem 2021, 13 (1) , 407-415. https://doi.org/10.1002/cctc.202001399
    29. Yingze Li, Joel D. Collett, Hairong Guan. Phosphorus-Based Pincer Ligands. 2021, 505-606. https://doi.org/10.1016/B978-0-08-102688-5.00078-7
    30. Changho Yoo, Henry M. Dodge, Alexandra H. Farquhar, Kristen E. Gardner, Alexander J. M. Miller. Decarbonylative ether dissection by iridium pincer complexes. Chemical Science 2020, 11 (44) , 12130-12138. https://doi.org/10.1039/D0SC03736B
    31. Michaela König, Massimo Rigo, Nicolas Chaoui, Trung Tran Ngoc, Jan Dirk Epping, Johannes Schmidt, Pradip Pachfule, Meng‐Yang Ye, Matthias Trunk, Johannes F. Teichert, Matthias Drieß, Arne Thomas. Immobilization of an Iridium Pincer Complex in a Microporous Polymer for Application in Room‐Temperature Gas Phase Catalysis. Angewandte Chemie 2020, 132 (45) , 20002-20006. https://doi.org/10.1002/ange.202004092
    32. Michaela König, Massimo Rigo, Nicolas Chaoui, Trung Tran Ngoc, Jan Dirk Epping, Johannes Schmidt, Pradip Pachfule, Meng‐Yang Ye, Matthias Trunk, Johannes F. Teichert, Matthias Drieß, Arne Thomas. Immobilization of an Iridium Pincer Complex in a Microporous Polymer for Application in Room‐Temperature Gas Phase Catalysis. Angewandte Chemie International Edition 2020, 59 (45) , 19830-19834. https://doi.org/10.1002/anie.202004092
    33. Luca Piccirilli, Danielle Lobo Justo Pinheiro, Martin Nielsen. Recent Progress with Pincer Transition Metal Catalysts for Sustainability. Catalysts 2020, 10 (7) , 773. https://doi.org/10.3390/catal10070773
    34. Takuya Shimbayashi, Ken-ichi Fujita. Iridium-Catalyzed Dehydrogenative Reactions. 2020, 1-65. https://doi.org/10.1007/3418_2020_56
    35. Maitham H. Majeed, Payam Shayesteh, Per Tunå, Axel R. Persson, Roman Gritcenko, L. Reine Wallenberg, Lei Ye, Christian Hulteberg, Joachim Schnadt, Ola F. Wendt. Directed C−H Halogenation Reactions Catalysed by Pd II Supported on Polymers under Batch and Continuous Flow Conditions. Chemistry – A European Journal 2019, 25 (59) , 13591-13597. https://doi.org/10.1002/chem.201902949
    36. Kanu Das, Akshai Kumar. Alkane dehydrogenation reactions catalyzed by pincer-metal complexes. 2019, 1-57. https://doi.org/10.1016/bs.adomc.2019.02.004

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect