Extracting Knowledge from Data through Catalysis InformaticsClick to copy article linkArticle link copied!
- Andrew J. Medford*Andrew J. Medford*E-mail: [email protected]School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318 United StatesMore by Andrew J. Medford
- M. Ross KunzM. Ross KunzBiological and Chemical Processing Department, Energy and Environmental Science and Technology, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415, United StatesMore by M. Ross Kunz
- Sarah M. EwingSarah M. EwingBiological and Chemical Processing Department, Energy and Environmental Science and Technology, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415, United StatesMore by Sarah M. Ewing
- Tammie BordersTammie BordersBiological and Chemical Processing Department, Energy and Environmental Science and Technology, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415, United StatesMore by Tammie Borders
- Rebecca Fushimi*Rebecca Fushimi*E-mail: [email protected]Biological and Chemical Processing Department, Energy and Environmental Science and Technology, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho 83415, United StatesCenter for Advanced Energy Studies, 995 University Boulevard, Idaho Falls, Idaho 83401, United StatesMore by Rebecca Fushimi
Abstract

Catalysis informatics is a distinct subfield that lies at the intersection of cheminformatics and materials informatics but with distinctive challenges arising from the dynamic, surface-sensitive, and multiscale nature of heterogeneous catalysis. The ideas behind catalysis informatics can be traced back decades, but the field is only recently emerging due to advances in data infrastructure, statistics, machine learning, and computational methods. In this work, we review the field from early works on expert systems and knowledge engines to more recent approaches utilizing machine-learning and uncertainty quantification. The data–information–knowledge hierarchy is introduced and used to classify various developments. The chemical master equation and microkinetic models are proposed as a quantitative representation of catalysis knowledge, which can be used to generate explanative and predictive hypotheses for the understanding and discovery of catalytic materials. We discuss future prospects for the field, including improved quantitative coupling of experiment/theory, advanced microkinetic models, and the development of open-source software tools. Ultimately, integration of existing chemical and physical models with emerging statistical and computational tools presents a promising route toward the automated design, discovery, and optimization of heterogeneous catalytic processes.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 198 publications.
- Ran Wang, Zayne Weber, Michael J. Janik, Robert M. Rioux, Antonios Armaou. Identifying Elementary Reaction Kinetics of Heterogeneous Catalytic Mechanisms Using Pseudorandom Binary Sequence-Induced Transients. ACS Catalysis 2025, 15
(3)
, 2677-2689. https://doi.org/10.1021/acscatal.4c05157
- Siddharth Prabhu, Nick Kosir, Mayuresh V. Kothare, Srinivas Rangarajan. Derivative-Free Domain-Informed Data-Driven Discovery of Sparse Kinetic Models. Industrial & Engineering Chemistry Research 2025, 64
(5)
, 2601-2615. https://doi.org/10.1021/acs.iecr.4c02981
- Gazali Tanimu, Nurudeen A. Adegoke, Jimoh Olawale Ajadi, Yussif Yahaya, Hassan Alasiri. Ensemble Model Approach for Predicting the Yield of Dehydrogenation Products during the Oxidative Dehydrogenation of n-Butane. ACS Omega 2025, 10
(1)
, 1198-1206. https://doi.org/10.1021/acsomega.4c08763
- Sean M. Treacy, Andrew L. Smith, Robert G. Bergman, Kenneth N. Raymond, F. Dean Toste. Supramolecular Catalyzed Cascade Reduction of Azaarenes Interrogated via Data Science. Journal of the American Chemical Society 2024, 146
(43)
, 29792-29800. https://doi.org/10.1021/jacs.4c11482
- Jorge Benavides-Hernández, Franck Dumeignil. From Characterization to Discovery: Artificial Intelligence, Machine Learning and High-Throughput Experiments for Heterogeneous Catalyst Design. ACS Catalysis 2024, 14
(15)
, 11749-11779. https://doi.org/10.1021/acscatal.3c06293
- Yi Dong, Mingchu Ran, Xiao Zhang, Saisai Lin, Haitao Zhao, Yang Yang, Shaojun Liu, Chenghang Zheng, Xiang Gao. Machine Learning-Accelerated Disentanglement of Activity–Selectivity Trade-off of Multielement Oxide Denitration Catalysts. ACS ES&T Engineering 2024, 4
(6)
, 1312-1320. https://doi.org/10.1021/acsestengg.3c00617
- Ece Tezsezen, Defne Yigci, Abdollah Ahmadpour, Savas Tasoglu. AI-Based Metamaterial Design. ACS Applied Materials & Interfaces 2024, 16
(23)
, 29547-29569. https://doi.org/10.1021/acsami.4c04486
- Difan Zhang, Brett Smith, Haiyi Wu, Manh-Thuong Nguyen, Roger Rousseau, Vassiliki-Alexandra Glezakou. Data Analytics for Catalysis Predictions: Are We Ready Yet?. ACS Catalysis 2024, 14
(10)
, 8073-8086. https://doi.org/10.1021/acscatal.3c05285
- Adam Yonge, Gabriel S. Gusmão, Rebecca Fushimi, Andrew J. Medford. Model-Based Design of Experiments for Temporal Analysis of Products (TAP): A Simulated Case Study in Oxidative Propane Dehydrogenation. Industrial & Engineering Chemistry Research 2024, 63
(11)
, 4756-4770. https://doi.org/10.1021/acs.iecr.3c03418
- Kirill Motaev, Maxim Molokeev, Bulat Sultanov, Vladimir Kharitontsev, Alexey Matigorov, Mikhail Palianov, Nikita Azarapin, Andrey Elyshev. Application of Machine Learning to Fischer–Tropsch Synthesis for Cobalt Catalysts. Industrial & Engineering Chemistry Research 2023, 62
(48)
, 20658-20666. https://doi.org/10.1021/acs.iecr.3c03147
- Farshud Sorourifar, You Peng, Ivan Castillo, Linh Bui, Juan Venegas, Joel A. Paulson. Physics-Enhanced Neural Ordinary Differential Equations: Application to Industrial Chemical Reaction Systems. Industrial & Engineering Chemistry Research 2023, 62
(38)
, 15563-15577. https://doi.org/10.1021/acs.iecr.3c01471
- Yegor M. Kedalo, Andrey A. Knizhnik, Boris V. Potapkin. Applicability of the Fridman–Macheret α-Model to Heterogeneous Processes in the Case of Dissociative Adsorption of N2 on the Ru Surface. The Journal of Physical Chemistry C 2023, 127
(24)
, 11536-11541. https://doi.org/10.1021/acs.jpcc.3c01967
- Armin Shayesteh Zadeh, Salman A. Khan, Craig Vandervelden, Baron Peters. Site-Averaged Ab Initio Kinetics: Importance Learning for Multistep Reactions on Amorphous Supports. Journal of Chemical Theory and Computation 2023, 19
(10)
, 2873-2886. https://doi.org/10.1021/acs.jctc.3c00160
- Muhammad Ashraf, Nisar Ullah, Ibrahim Khan, Wolfgang Tremel, Shahzada Ahmad, Muhammad Nawaz Tahir. Photoreforming of Waste Polymers for Sustainable Hydrogen Fuel and Chemicals Feedstock: Waste to Energy. Chemical Reviews 2023, 123
(8)
, 4443-4509. https://doi.org/10.1021/acs.chemrev.2c00602
- Lichen Liu, Avelino Corma. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chemical Reviews 2023, 123
(8)
, 4855-4933. https://doi.org/10.1021/acs.chemrev.2c00733
- Fernando Garcia-Escobar, Shun Nishimura, Keisuke Takahashi. Data-Driven Design and Understanding of Noble Metal-Based Water–Gas Shift Catalysts from Literature Data. The Journal of Physical Chemistry C 2023, 127
(13)
, 6152-6166. https://doi.org/10.1021/acs.jpcc.2c09132
- Richard Tran, Janice Lan, Muhammed Shuaibi, Brandon M. Wood, Siddharth Goyal, Abhishek Das, Javier Heras-Domingo, Adeesh Kolluru, Ammar Rizvi, Nima Shoghi, Anuroop Sriram, Félix Therrien, Jehad Abed, Oleksandr Voznyy, Edward H. Sargent, Zachary Ulissi, C. Lawrence Zitnick. The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts. ACS Catalysis 2023, 13
(5)
, 3066-3084. https://doi.org/10.1021/acscatal.2c05426
- Lucas Foppa, Frederik Rüther, Michael Geske, Gregor Koch, Frank Girgsdies, Pierre Kube, Spencer J. Carey, Michael Hävecker, Olaf Timpe, Andrey V. Tarasov, Matthias Scheffler, Frank Rosowski, Robert Schlögl, Annette Trunschke. Data-Centric Heterogeneous Catalysis: Identifying Rules and Materials Genes of Alkane Selective Oxidation. Journal of the American Chemical Society 2023, 145
(6)
, 3427-3442. https://doi.org/10.1021/jacs.2c11117
- Ruo Xi Yang, Caitlin A. McCandler, Oxana Andriuc, Martin Siron, Rachel Woods-Robinson, Matthew K. Horton, Kristin A. Persson. Big Data in a Nano World: A Review on Computational, Data-Driven Design of Nanomaterials Structures, Properties, and Synthesis. ACS Nano 2022, 16
(12)
, 19873-19891. https://doi.org/10.1021/acsnano.2c08411
- Bjarne Kreitz, Patrick Lott, Jongyoon Bae, Katrín Blöndal, Sofia Angeli, Zachary W. Ulissi, Felix Studt, C. Franklin Goldsmith, Olaf Deutschmann. Detailed Microkinetics for the Oxidation of Exhaust Gas Emissions through Automated Mechanism Generation. ACS Catalysis 2022, 12
(18)
, 11137-11151. https://doi.org/10.1021/acscatal.2c03378
- Keisuke Takahashi, Lauren Takahashi, Son Dinh Le, Takaaki Kinoshita, Shun Nishimura, Junya Ohyama. Synthesis of Heterogeneous Catalysts in Catalyst Informatics to Bridge Experiment and High-Throughput Calculation. Journal of the American Chemical Society 2022, 144
(34)
, 15735-15744. https://doi.org/10.1021/jacs.2c06143
- Haoxin Mai, Tu C. Le, Dehong Chen, David A. Winkler, Rachel A. Caruso. Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chemical Reviews 2022, 122
(16)
, 13478-13515. https://doi.org/10.1021/acs.chemrev.2c00061
- Baron Peters. Simple Model and Spectral Analysis for a Fluxional Catalyst: Intermediate Abundances, Pathway Fluxes, Rates, and Transients. ACS Catalysis 2022, 12
(13)
, 8038-8047. https://doi.org/10.1021/acscatal.2c01875
- Keisuke Takahashi Lauren Takahashi . Data in Materials and Catalysts Informatics. , 239-246. https://doi.org/10.1021/bk-2022-1416.ch010
- Xiangcheng Shi, Xiaoyun Lin, Ran Luo, Shican Wu, Lulu Li, Zhi-Jian Zhao, Jinlong Gong. Dynamics of Heterogeneous Catalytic Processes at Operando Conditions. JACS Au 2021, 1
(12)
, 2100-2120. https://doi.org/10.1021/jacsau.1c00355
- Vincent F. Scalfani. Using NCBI Entrez Direct (EDirect) for Small Molecule Chemical Information Searching in a Unix Terminal. Journal of Chemical Education 2021, 98
(12)
, 3904-3914. https://doi.org/10.1021/acs.jchemed.1c00904
- John A. Keith, Valentin Vassilev-Galindo, Bingqing Cheng, Stefan Chmiela, Michael Gastegger, Klaus-Robert Müller, Alexandre Tkatchenko. Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems. Chemical Reviews 2021, 121
(16)
, 9816-9872. https://doi.org/10.1021/acs.chemrev.1c00107
- Zheng Chen, Zhangyun Liu, Xin Xu. Coverage-Dependent Microkinetics in Heterogeneous Catalysis Powered by the Maximum Rate Analysis. ACS Catalysis 2021, 11
(15)
, 9333-9344. https://doi.org/10.1021/acscatal.1c01997
- Keisuke Takahashi, Jun Fujima, Itsuki Miyazato, Sunao Nakanowatari, Aya Fujiwara, Thanh Nhat Nguyen, Toshiaki Taniike, Lauren Takahashi. Catalysis Gene Expression Profiling: Sequencing and Designing Catalysts. The Journal of Physical Chemistry Letters 2021, 12
(30)
, 7335-7341. https://doi.org/10.1021/acs.jpclett.1c02111
- Mie Andersen, Karsten Reuter. Adsorption Enthalpies for Catalysis Modeling through Machine-Learned Descriptors. Accounts of Chemical Research 2021, 54
(12)
, 2741-2749. https://doi.org/10.1021/acs.accounts.1c00153
- Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Morgane Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Aini Palizhati, Anuroop Sriram, Brandon Wood, Junwoong Yoon, Devi Parikh, C. Lawrence Zitnick, Zachary Ulissi. Open Catalyst 2020 (OC20) Dataset and Community Challenges. ACS Catalysis 2021, 11
(10)
, 6059-6072. https://doi.org/10.1021/acscatal.0c04525
- Kevin C. Leonard, (Early Career Board)Faruque Hasan, (Early Career Board)Helen F. Sneddon, (Editorial Advisory Board)Fengqi You (Editorial Advisory Board). Can Artificial Intelligence and Machine Learning Be Used to Accelerate Sustainable Chemistry and Engineering?. ACS Sustainable Chemistry & Engineering 2021, 9
(18)
, 6126-6129. https://doi.org/10.1021/acssuschemeng.1c02741
- Thanh Nhat Nguyen, Sunao Nakanowatari, Thuy Phuong Nhat Tran, Ashutosh Thakur, Lauren Takahashi, Keisuke Takahashi, Toshiaki Taniike. Learning Catalyst Design Based on Bias-Free Data Set for Oxidative Coupling of Methane. ACS Catalysis 2021, 11
(3)
, 1797-1809. https://doi.org/10.1021/acscatal.0c04629
- Lauren Takahashi, Junya Ohyama, Shun Nishimura, Keisuke Takahashi. Representing the Methane Oxidation Reaction via Linking First-Principles Calculations and Experiment with Graph Theory. The Journal of Physical Chemistry Letters 2021, 12
(1)
, 558-568. https://doi.org/10.1021/acs.jpclett.0c03347
- Martin Deimel, Karsten Reuter, Mie Andersen. Active Site Representation in First-Principles Microkinetic Models: Data-Enhanced Computational Screening for Improved Methanation Catalysts. ACS Catalysis 2020, 10
(22)
, 13729-13736. https://doi.org/10.1021/acscatal.0c04045
- Keisuke Takahashi, Lauren Takahashi, Thanh Nhat Nguyen, Ashutosh Thakur, Toshiaki Taniike. Multidimensional Classification of Catalysts in Oxidative Coupling of Methane through Machine Learning and High-Throughput Data. The Journal of Physical Chemistry Letters 2020, 11
(16)
, 6819-6826. https://doi.org/10.1021/acs.jpclett.0c01926
- Eric A. Walker, Mohammad Moein Mohammadi, Mark T. Swihart. Graph Theory Model of Dry Reforming of Methane Using Rh(111). The Journal of Physical Chemistry Letters 2020, 11
(12)
, 4917-4922. https://doi.org/10.1021/acs.jpclett.0c01038
- Balaranjan Selvaratnam, Ranjit T. Koodali, Pere Miró. Application of Symmetry Functions to Large Chemical Spaces Using a Convolutional Neural Network. Journal of Chemical Information and Modeling 2020, 60
(4)
, 1928-1935. https://doi.org/10.1021/acs.jcim.9b00835
- Fernando Alvarez-Ramírez, Yosadara Ruiz-Morales. Database of Nuclear Independent Chemical Shifts (NICS) versus NICSZZ of Polycyclic Aromatic Hydrocarbons (PAHs). Journal of Chemical Information and Modeling 2020, 60
(2)
, 611-620. https://doi.org/10.1021/acs.jcim.9b00909
- Takashi Toyao, Zen Maeno, Satoru Takakusagi, Takashi Kamachi, Ichigaku Takigawa, Ken-ichi Shimizu. Machine Learning for Catalysis Informatics: Recent Applications and Prospects. ACS Catalysis 2020, 10
(3)
, 2260-2297. https://doi.org/10.1021/acscatal.9b04186
- Travis Williams, Katherine McCullough, Jochen A. Lauterbach. Enabling Catalyst Discovery through Machine Learning and High-Throughput Experimentation. Chemistry of Materials 2020, 32
(1)
, 157-165. https://doi.org/10.1021/acs.chemmater.9b03043
- Xinyu Li, Raymond Chiong, Zhongyi Hu, David Cornforth, Alister J. Page. Improved Representations of Heterogeneous Carbon Reforming Catalysis Using Machine Learning. Journal of Chemical Theory and Computation 2019, 15
(12)
, 6882-6894. https://doi.org/10.1021/acs.jctc.9b00420
- Hassan Masood, Cui Ying Toe, Wey Yang Teoh, Vidhyasaharan Sethu, Rose Amal. Machine Learning for Accelerated Discovery of Solar Photocatalysts. ACS Catalysis 2019, 9
(12)
, 11774-11787. https://doi.org/10.1021/acscatal.9b02531
- Aini Palizhati, Wen Zhong, Kevin Tran, Seoin Back, Zachary W. Ulissi. Toward Predicting Intermetallics Surface Properties with High-Throughput DFT and Convolutional Neural Networks. Journal of Chemical Information and Modeling 2019, 59
(11)
, 4742-4749. https://doi.org/10.1021/acs.jcim.9b00550
- Janis Timoshenko, Anatoly I. Frenkel. “Inverting” X-ray Absorption Spectra of Catalysts by Machine Learning in Search for Activity Descriptors. ACS Catalysis 2019, 9
(11)
, 10192-10211. https://doi.org/10.1021/acscatal.9b03599
- Huijie Tian, Srinivas Rangarajan. Predicting Adsorption Energies Using Multifidelity Data. Journal of Chemical Theory and Computation 2019, 15
(10)
, 5588-5600. https://doi.org/10.1021/acs.jctc.9b00336
- Katrin Blondal, Jelena Jelic, Emily Mazeau, Felix Studt, Richard H. West, C. Franklin Goldsmith. Computer-Generated Kinetics for Coupled Heterogeneous/Homogeneous Systems: A Case Study in Catalytic Combustion of Methane on Platinum. Industrial & Engineering Chemistry Research 2019, 58
(38)
, 17682-17691. https://doi.org/10.1021/acs.iecr.9b01464
- Sebastian Matera, William F. Schneider, Andreas Heyden, Aditya Savara. Progress in Accurate Chemical Kinetic Modeling, Simulations, and Parameter Estimation for Heterogeneous Catalysis. ACS Catalysis 2019, 9
(8)
, 6624-6647. https://doi.org/10.1021/acscatal.9b01234
- Kaushik Sivaramakrishnan, Anjana Puliyanda, Dereje Tamiru Tefera, Ajay Ganesh, Sushmitha Thirumalaivasan, Vinay Prasad. A Perspective on the Impact of Process Systems Engineering on Reaction Engineering. Industrial & Engineering Chemistry Research 2019, 58
(26)
, 11149-11163. https://doi.org/10.1021/acs.iecr.9b00280
- Susannah
L. Scott (Associate Editor). The Burden of Disproof. ACS Catalysis 2019, 9
(5)
, 4706-4708. https://doi.org/10.1021/acscatal.9b01623
- Igor A. Pašti, Edvin Fako, Ana S. Dobrota, Núria López, Natalia V. Skorodumova, Slavko V. Mentus. Atomically Thin Metal Films on Foreign Substrates: From Lattice Mismatch to Electrocatalytic Activity. ACS Catalysis 2019, 9
(4)
, 3467-3481. https://doi.org/10.1021/acscatal.8b04236
- Gentoku Takasao, Toru Wada, Ashutosh Thakur, Patchanee Chammingkwan, Minoru Terano, Toshiaki Taniike. Machine Learning-Aided Structure Determination for TiCl4–Capped MgCl2 Nanoplate of Heterogeneous Ziegler–Natta Catalyst. ACS Catalysis 2019, 9
(3)
, 2599-2609. https://doi.org/10.1021/acscatal.8b05080
- Firdaus Parveen, Anna G. Slater. Digitalisation of catalytic processes for sustainable production of biobased chemicals and exploration of wider chemical space. Catalysis Science & Technology 2025, 15
(6)
, 1689-1701. https://doi.org/10.1039/D4CY01525H
- Xin Zhou, Honghua Qin, Zhibo Zhang, Mengzhen Zhu, Hao Yan, Xiang Feng, Lianying Wu, Chaohe Yang, De Chen. Machine learning knowledge‐driven Pt‐based catalyst design library development for selective oxidation of polyalcohol. AIChE Journal 2025, https://doi.org/10.1002/aic.18793
- Iradat Hussain Mafat, Sumeet K. Sharma, Dadi Venkata Surya, Chinta Sankar Rao, Uttam Maity, Ashok Barupal, Rakshvir Jasra. Development of machine learning model for the prediction of selectivity to light olefins from catalytic cracking of hydrocarbons. Fuel 2025, 381 , 133682. https://doi.org/10.1016/j.fuel.2024.133682
- Atharva S. Burte, Advaith Nair, Lars C. Grabow, Paul J. Dauenhauer, Susannah L. Scott, Omar A. Abdelrahman. CatTestHub: A benchmarking database of experimental heterogeneous catalysis for evaluating advanced materials. Journal of Catalysis 2025, 442 , 115902. https://doi.org/10.1016/j.jcat.2024.115902
- Bjarne Kreitz, Gabriel S. Gusmão, Dingqi Nai, Sushree Jagriti Sahoo, Andrew A. Peterson, David H. Bross, C. Franklin Goldsmith, Andrew J. Medford. Unifying thermochemistry concepts in computational heterogeneous catalysis. Chemical Society Reviews 2025, 54
(2)
, 560-589. https://doi.org/10.1039/D4CS00768A
- Yoshiki Hasukawa, Mikael Kuwahara, Lauren Takahashi, Keisuke Takahashi. Development of graphical user interface for design of experiments via Gaussian process regression and its case study. Science and Technology of Advanced Materials: Methods 2024, 4
(1)
https://doi.org/10.1080/27660400.2023.2300252
- Lei Wang, Xuyan Zhou, Zihan Luo, Sida Liu, Shengying Yue, Yan Chen, Yilun Liu. Review of External Field Effects on Electrocatalysis: Machine Learning Guided Design. Advanced Functional Materials 2024, 34
(49)
https://doi.org/10.1002/adfm.202408870
- Alexander Korobov. A possibility to infer frustrations of supported catalytic clusters from macro-scale observations. Scientific Reports 2024, 14
(1)
https://doi.org/10.1038/s41598-024-54485-z
- Dingqi Nai, Gabriel S. Gusmão, Zachary A. Kilwein, Fani Boukouvala, Andrew J. Medford. Micro-kinetic modeling of temporal analysis of products data using kinetics-informed neural networks. Digital Discovery 2024, 3
(11)
, 2327-2340. https://doi.org/10.1039/D4DD00163J
- Abdulrhman Moshantaf, Michael Wesemann, Simeon Beinlich, Heinz Junkes, Julia Schumann, Baris Alkan, Pierre Kube, Clara Patricia Marshall, Nils Pfister, Annette Trunschke. Advancing catalysis research through FAIR data principles implemented in a local data infrastructure – a case study of an automated test reactor. Catalysis Science & Technology 2024, 14
(21)
, 6186-6197. https://doi.org/10.1039/D4CY00693C
- Kareem Abdelmaqsoud, Muhammed Shuaibi, Adeesh Kolluru, Raffaele Cheula, John R. Kitchin. Investigating the error imbalance of large-scale machine learning potentials in catalysis. Catalysis Science & Technology 2024, 14
(20)
, 5899-5908. https://doi.org/10.1039/D4CY00615A
- V. A. Koveza, A. S. Giliazutdinova, O. V. Potapenko. A Novel Approach to the Extraction of Clusters from ZSM-5 Zeolite for Quantum-Chemical Search for Zn2+ Cation-Exchange Sites. Petroleum Chemistry 2024, 64
(9)
, 1085-1095. https://doi.org/10.1134/S0965544124080012
- Lauren Takahashi, Taku Yamada, Hidekazu Okamoto, Keisuke Takahashi. Unveiling the relation between multiple chemical products and process conditions for trichloroethylene and perchloroethylene production
via
catalysis network analysis. Catalysis Science & Technology 2024, 14
(17)
, 4927-4938. https://doi.org/10.1039/D4CY00573B
- Yuming Su, Xue Wang, Yuanxiang Ye, Yibo Xie, Yujing Xu, Yibin Jiang, Cheng Wang. Automation and machine learning augmented by large language models in a catalysis study. Chemical Science 2024, 15
(31)
, 12200-12233. https://doi.org/10.1039/D3SC07012C
- Xinyan Liu, Hong-Jie Peng. Toward Next-Generation Heterogeneous Catalysts: Empowering Surface Reactivity Prediction with Machine Learning. Engineering 2024, 39 , 25-44. https://doi.org/10.1016/j.eng.2023.07.021
- Manu Suvarna, Javier Pérez-Ramírez. Embracing data science in catalysis research. Nature Catalysis 2024, 7
(6)
, 624-635. https://doi.org/10.1038/s41929-024-01150-3
- Cody J. Wrasman, Alexis T. Bell, Bert D. Chandler, James W. Harris, Stephanie Kwon, Madelyn R. Ball, Siddarth H. Krishna, Sheima J. Khatib, Praveen Bollini, Yuriy Román-Leshkov, Andrew “Bean” Getsoian, Robert S. Weber, Johannes A. Lercher, Dongxia Liu, Daniel E. Resasco, Jason S. Bates, Jacklyn N. Hall, Edgard A. Lebrón-Rodríguez, Laura Paz Herrera, Justin M. Notestein, Joshua A. Schaidle. Recommendations for improving rigor and reproducibility in site specific characterization. Journal of Catalysis 2024, 433 , 115451. https://doi.org/10.1016/j.jcat.2024.115451
- Defne Yigci, Abdollah Ahmadpour, Savas Tasoglu. AI‐Based Metamaterial Design for Wearables. Advanced Sensor Research 2024, 3
(3)
https://doi.org/10.1002/adsr.202300109
- Jing Hu, Yixao Wang, Xiyue Zhang, Yunshan Wang, Gang Yang, Lufang Shi, Yong Sun. Parametric analysis of CO2 hydrogenation via Fischer-Tropsch synthesis: A review based on machine learning for quantitative assessment. International Journal of Hydrogen Energy 2024, 59 , 1023-1041. https://doi.org/10.1016/j.ijhydene.2024.02.055
- Xiangyu Wang, Taiyu Ban, Lyuzhou Chen, Xingyu Wu, Derui Lyu, Huanhuan Chen. Knowledge Verification From Data. IEEE Transactions on Neural Networks and Learning Systems 2024, 35
(3)
, 4324-4338. https://doi.org/10.1109/TNNLS.2022.3202244
- Wuwei Mo, Joel Jie Foo, Wee‐Jun Ong. Allying interfacial engineering of 2D carbon nanosheet‐, graphene‐, and graphdiyne‐based heterostructured electrocatalysts toward hydrogen evolution and overall water splitting. Electron 2024, 2
(1)
https://doi.org/10.1002/elt2.20
- Jing Li, Xinyan Liu, Hong Wang, Yanjuan Sun, Fan Dong. Prediction and interpretation of photocatalytic NO removal on g-C3N4-based catalysts using machine learning. Chinese Chemical Letters 2024, 35
(2)
, 108596. https://doi.org/10.1016/j.cclet.2023.108596
- Amanda S. Barnard. Insights into Nanodiamond from Machine Learning. 2024, 5-45. https://doi.org/10.1007/978-3-031-47556-6_2
- Srinivas Rangarajan. Artificial intelligence in catalysis. 2024, 167-204. https://doi.org/10.1016/B978-0-323-99135-3.00002-6
- Ali Behrad Vakylabad. Kinetic study and reaction mechanisms in homogeneous catalysis. 2024, 1-36. https://doi.org/10.1016/B978-0-443-15181-1.00010-9
- Mehmet Ali Balcı, Ömer Akgüller, Larissa M. Batrancea, Anca Nichita. The Impact of Turkish Economic News on the Fractality of Borsa Istanbul: A Multidisciplinary Approach. Fractal and Fractional 2024, 8
(1)
, 32. https://doi.org/10.3390/fractalfract8010032
- Ganesan Elumalai, Satoshi Tominaka. Universal metrics for predicting the activity of a wide range of fuel-cell catalysts. Science and Technology of Advanced Materials: Methods 2023, 3
(1)
https://doi.org/10.1080/27660400.2023.2278319
- Ziqiu Chen, Emmanuel Ejiogu, Baron Peters. Quantifying synergy for mixed end-scission and random-scission catalysts in polymer upcycling. Reaction Chemistry & Engineering 2023, 9
(1)
, 139-147. https://doi.org/10.1039/D3RE00390F
- Md Hosne Mobarak, Mariam Akter Mimona, Md. Aminul Islam, Nayem Hossain, Fatema Tuz Zohura, Ibnul Imtiaz, Md Israfil Hossain Rimon. Scope of machine learning in materials research—A review. Applied Surface Science Advances 2023, 18 , 100523. https://doi.org/10.1016/j.apsadv.2023.100523
- Jiahua Zhou, Piaoping Yang, Pavel A. Kots, Maximilian Cohen, Ying Chen, Caitlin M. Quinn, Matheus Dorneles de Mello, J. Anibal Boscoboinik, Wendy J. Shaw, Stavros Caratzoulas, Weiqing Zheng, Dionisios G. Vlachos. Tuning the reactivity of carbon surfaces with oxygen-containing functional groups. Nature Communications 2023, 14
(1)
https://doi.org/10.1038/s41467-023-37962-3
- Linkai Han, Zhonghua Xiang. Intelligent design and synthesis of energy catalytic materials. Fundamental Research 2023, 51 https://doi.org/10.1016/j.fmre.2023.10.012
- Kexin Bi, Tujie Chen, Tong Qiu, Xu Ji, Yiyang Dai. Reaction network simplification and key routes extraction for steam cracking process. Fuel 2023, 352 , 129030. https://doi.org/10.1016/j.fuel.2023.129030
- Quan Zou, Akiyoshi Kuzume, Masataka Yoshida, Takane Imaoka, Kimihisa Yamamoto. Machine Learning Accelerated Discovery of Subnanoparticles for Electrocatalytic Hydrogen Evolution. Chemistry Letters 2023, 52
(10)
, 828-831. https://doi.org/10.1246/cl.230310
- Bo Liang, Xiang-Yu Xiao, Zong-Yin Song, Yong-Yu Li, Xin Cai, Rui-Ze Xia, Shi-Hua Chen, Meng Yang, Pei-Hua Li, Chu-Hong Lin, Xing-Jiu Huang. Revealing the solid-solution interface interference behaviors between Cu2+ and As(III) via partial peak area analysis of simulations and experiments. Analytica Chimica Acta 2023, 1277 , 341676. https://doi.org/10.1016/j.aca.2023.341676
- Hossein Mashhadimoslem, Mobin Safarzadeh Khosrowshahi, Mostafa Delpisheh, Caillean Convery, Mashallah Rezakazemi, Tejraj M. Aminabhavi, Milad Kamkar, Ali Elkamel. Green ammonia to Hydrogen: Reduction and oxidation catalytic processes. Chemical Engineering Journal 2023, 474 , 145661. https://doi.org/10.1016/j.cej.2023.145661
- Gazali Tanimu, Jimoh Olawale Ajadi, Yussif Yahaya, Hassan Alasiri, Nurudeen A. Adegoke. Developing Machine Learning Models for Catalysts in Oxidative Dehydrogenation of n‐butane. ChemCatChem 2023, 15
(17)
https://doi.org/10.1002/cctc.202300598
- Keerthana Vellayappan, Yifei Yue, Kang Hui Lim, Keyu Cao, Ji Yang Tan, Shuwen Cheng, Tianchang Wang, Terry Z.H. Gani, Iftekhar A. Karimi, Sibudjing Kawi. Impacts of catalyst and process parameters on Ni-catalyzed methane dry reforming via interpretable machine learning. Applied Catalysis B: Environmental 2023, 330 , 122593. https://doi.org/10.1016/j.apcatb.2023.122593
- Clara Patricia Marshall, Julia Schumann, Annette Trunschke. Achieving Digital Catalysis: Strategies for Data Acquisition, Storage and Use. Angewandte Chemie 2023, 135
(30)
https://doi.org/10.1002/ange.202302971
- Clara Patricia Marshall, Julia Schumann, Annette Trunschke. Achieving Digital Catalysis: Strategies for Data Acquisition, Storage and Use. Angewandte Chemie International Edition 2023, 62
(30)
https://doi.org/10.1002/anie.202302971
- Antoine Bonnefont. Deciphering the effect of pH on electrocatalytic reactions with kinetic modeling. Current Opinion in Electrochemistry 2023, 39 , 101294. https://doi.org/10.1016/j.coelec.2023.101294
- Jaehyun Kim, Ho Won Jang. Can Artificial Intelligence Boost Developing Electrocatalysts for Efficient Water Splitting to Produce Green Hydrogen?. Korean Journal of Materials Research 2023, 33
(5)
, 175-188. https://doi.org/10.3740/MRSK.2023.33.5.175
- Gabriel S. Gusmão, Adhika P. Retnanto, Shashwati C. da Cunha, Andrew J. Medford. Kinetics-informed neural networks. Catalysis Today 2023, 417 , 113701. https://doi.org/10.1016/j.cattod.2022.04.002
- Evgeniy A. Redekop, Gregory S. Yablonsky, John T. Gleaves. Truth is, we all are transients: A perspective on the time-dependent nature of reactions and those who study them. Catalysis Today 2023, 417 , 113761. https://doi.org/10.1016/j.cattod.2022.05.026
- Keisuke Takahashi, Junya Ohyama, Shun Nishimura, Jun Fujima, Lauren Takahashi, Takeaki Uno, Toshiaki Taniike. Catalysts informatics: paradigm shift towards data-driven catalyst design. Chemical Communications 2023, 59
(16)
, 2222-2238. https://doi.org/10.1039/D2CC05938J
- Haobo Li, Yan Jiao, Kenneth Davey, Shi‐Zhang Qiao. Data‐Driven Machine Learning for Understanding Surface Structures of Heterogeneous Catalysts. Angewandte Chemie 2023, 135
(9)
https://doi.org/10.1002/ange.202216383
- Haobo Li, Yan Jiao, Kenneth Davey, Shi‐Zhang Qiao. Data‐Driven Machine Learning for Understanding Surface Structures of Heterogeneous Catalysts. Angewandte Chemie International Edition 2023, 62
(9)
https://doi.org/10.1002/anie.202216383
- Tianyou Mou, Hemanth Somarajan Pillai, Siwen Wang, Mingyu Wan, Xue Han, Neil M. Schweitzer, Fanglin Che, Hongliang Xin. Bridging the complexity gap in computational heterogeneous catalysis with machine learning. Nature Catalysis 2023, 6
(2)
, 122-136. https://doi.org/10.1038/s41929-023-00911-w
- Tulsi Satyavir Dabodiya, Jayant Kumar, Arumugam Vadivel Murugan. Contemplation of Photocatalysis Through Machine Learning. 2023, 221-232. https://doi.org/10.1007/978-981-99-0393-1_10
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.