ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Synthesis and Catalytic Properties of Sulfur-Chelated Ruthenium Benzylidenes Bearing a Cyclic (Alkyl)(amino)carbene Ligand

Cite this: ACS Catal. 2018, 8, 9, 8182–8191
Publication Date (Web):August 6, 2018
https://doi.org/10.1021/acscatal.8b02122
Copyright © 2018 American Chemical Society

    Article Views

    2118

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (5)»

    Abstract

    Abstract Image

    Sulfur-chelated ruthenium olefin metathesis precatalysts that possess cyclic (alkyl)(amino)carbenes (CAAC) can benefit from the synergetic effect of both ligands. Changing the steric bulk of the CAAC ligand by using different substitution patterns was shown to affect the geometry of the complexes produced and determined whether the complexes could be catalytically dormant. The cis-dichloro latent catalysts could be activated both by heat or light, even in the visible region, for representative acyclic diene metathesis and ring-opening metathesis polymerization reactions, olefin cross-metathesis, and ring-closing metathesis without isomerization byproducts. Thus, these complexes were shown to combine the uniqueness of CAAC-containing Ru olefin metathesis catalysts with the advantage of the thermal and photolatency imposed by sulfur chelation of the benzylidene.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.8b02122.

    • Synthetic procedures for complexes and their characterization (1H-, 13C-, and 19F-NMR, mass and UV–vis spectra), crystallographic data summary for complexes, NMR spectra of thermal and photoactivated isomerization of complexes, DFT computational data, polymerization procedures and GPC chromatograms, methyl oleate self-metathesis and GC-MS analyses of products, NMR spectra and synthetic procedures of RCM products (PDF)

    • X-ray crystallographic data for 10a (CIF)

    • X-ray crystallographic data for 10b (CIF)

    • X-ray crystallographic data for cis-13a (CIF)

    • X-ray crystallographic data for cis-13b (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 30 publications.

    1. Rafał Gawin, Andrzej Tracz, Patryk Krajczy, Anna Kozakiewicz-Piekarz, Juan Pablo Martínez, Bartosz Trzaskowski. Inhibition of the Decomposition Pathways of Ruthenium Olefin Metathesis Catalysts: Development of Highly Efficient Catalysts for Ethenolysis. Journal of the American Chemical Society 2023, 145 (45) , 25010-25021. https://doi.org/10.1021/jacs.3c10635
    2. Janis V. Musso, Paul Gebel, Vincent Gramm, Wolfgang Frey, Michael R. Buchmeiser. Tungsten Oxo and Tungsten Imido Alkylidene N-Heterocyclic Carbene Complexes for the Visible-Light-Induced Ring-Opening Metathesis Polymerization of Dicyclopentadiene. Macromolecules 2023, 56 (7) , 2878-2888. https://doi.org/10.1021/acs.macromol.3c00128
    3. Pavel A. Kumandin, Alexandra S. Antonova, Roman A. Novikov, Kirill A. Vasilyev, Marina A. Vinokurova, Mikhail S. Grigoriev, Anton P. Novikov, Daria K. Polianskaia, Kirill B. Polyanskii, Fedor I. Zubkov. Properties and Catalytic Activity of Hoveyda–Grubbs-Type Catalysts with an S → Ru Coordination Bond in a Six-Membered Chelate Ring. Organometallics 2023, 42 (3) , 218-234. https://doi.org/10.1021/acs.organomet.2c00556
    4. J. Pablo Martínez, Bartosz Trzaskowski. Olefin Metathesis Catalyzed by a Hoveyda–Grubbs-like Complex Chelated to Bis(2-mercaptoimidazolyl) Methane: A Predictive DFT Study. The Journal of Physical Chemistry A 2022, 126 (5) , 720-732. https://doi.org/10.1021/acs.jpca.1c09336
    5. Louis Monsigny, Joel Cejas Sánchez, Jakub Piątkowski, Anna Kajetanowicz, Karol Grela. Synthesis and Catalytic Properties of a Very Latent Selenium-Chelated Ruthenium Benzylidene Olefin Metathesis Catalyst. Organometallics 2021, 40 (21) , 3608-3616. https://doi.org/10.1021/acs.organomet.1c00484
    6. Dharmalingam Sivanesan, BongKuk Seo, Choong-Sun Lim, HyeJin Kim, Hyeon-Gook Kim. Intramolecular Hydrogen-Bond-Based Latent Initiator for Olefin Metathesis Polymerization. Organometallics 2021, 40 (3) , 314-323. https://doi.org/10.1021/acs.organomet.0c00527
    7. Jennifer Morvan, Marc Mauduit, Guy Bertrand, Rodolphe Jazzar. Cyclic (Alkyl)(amino)carbenes (CAACs) in Ruthenium Olefin Metathesis. ACS Catalysis 2021, 11 (3) , 1714-1748. https://doi.org/10.1021/acscatal.0c05508
    8. Or Eivgi, Anna Vaisman, N. Gabriel Lemcoff. Latent, Yet Highly Active Photoswitchable Olefin Metathesis Precatalysts Bearing Cyclic Alkyl Amino Carbene (CAAC)/Phosphite Ligands. ACS Catalysis 2021, 11 (2) , 703-709. https://doi.org/10.1021/acscatal.0c04909
    9. Or Eivgi, Ravindra S. Phatake, Noy B. Nechmad, N. Gabriel Lemcoff. Light-Activated Olefin Metathesis: Catalyst Development, Synthesis, and Applications. Accounts of Chemical Research 2020, 53 (10) , 2456-2471. https://doi.org/10.1021/acs.accounts.0c00495
    10. Adrian E. Samkian, Yan Xu, Scott C. Virgil, Ki-Young Yoon, Robert H. Grubbs. Synthesis and Activity of Six-Membered Cyclic Alkyl Amino Carbene–Ruthenium Olefin Metathesis Catalysts. Organometallics 2020, 39 (4) , 495-499. https://doi.org/10.1021/acs.organomet.9b00862
    11. Paweł Małecki, Katarzyna Gajda, Roman Gajda, Krzysztof Woźniak, Bartosz Trzaskowski, Anna Kajetanowicz, Karol Grela. Specialized Ruthenium Olefin Metathesis Catalysts Bearing Bulky Unsymmetrical NHC Ligands: Computations, Synthesis, and Application. ACS Catalysis 2019, 9 (1) , 587-598. https://doi.org/10.1021/acscatal.8b04783
    12. Adrian Sytniczuk, Filip Struzik, Karol Grela, Anna Kajetanowicz. A tunable family of CAAC-ruthenium olefin metathesis catalysts modularly derived from a large-scale produced ibuprofen intermediate. Chemical Science 2023, 14 (39) , 10744-10755. https://doi.org/10.1039/D3SC03849A
    13. Adrian Sytniczuk, Anna Kajetanowicz, Karol Grela. “Inverted” cyclic(alkyl)(amino)carbene ligands allow olefin metathesis with ethylene at parts-per-billion catalyst loading. Chem Catalysis 2023, 3 (9) , 100713. https://doi.org/10.1016/j.checat.2023.100713
    14. Artur Brotons-Rufes, Naeimeh Bahri-Laleh, Albert Poater. H-Bonding leading to latent initiators for olefin metathesis polymerization. Faraday Discussions 2023, 244 , 252-268. https://doi.org/10.1039/D2FD00163B
    15. Vajk Farkas, Márton Nagyházi, Paul T. Anastas, Jürgen Klankermayer, Róbert Tuba. Making Persistent Plastics Degradable. ChemSusChem 2023, 16 (15) https://doi.org/10.1002/cssc.202300553
    16. Márton Nagyházi, Ádám Lukács, Gábor Turczel, Jenő Hancsók, József Valyon, Attila Bényei, Sándor Kéki, Róbert Tuba. Catalytic Decomposition of Long‐Chain Olefins to Propylene via Isomerization‐Metathesis Using Latent Bicyclic (Alkyl)(Amino)Carbene‐Ruthenium Olefin Metathesis Catalysts. Angewandte Chemie 2022, 134 (28) https://doi.org/10.1002/ange.202204413
    17. Márton Nagyházi, Ádám Lukács, Gábor Turczel, Jenő Hancsók, József Valyon, Attila Bényei, Sándor Kéki, Róbert Tuba. Catalytic Decomposition of Long‐Chain Olefins to Propylene via Isomerization‐Metathesis Using Latent Bicyclic (Alkyl)(Amino)Carbene‐Ruthenium Olefin Metathesis Catalysts. Angewandte Chemie International Edition 2022, 61 (28) https://doi.org/10.1002/anie.202204413
    18. Rahul Kumar Singh, Tamanna K. Khan, Shilpi Misra, Amrendra K. Singh. CAACs as efficient ancillary ligands for the synthesis of robust catalysts. Journal of Organometallic Chemistry 2021, 956 , 122133. https://doi.org/10.1016/j.jorganchem.2021.122133
    19. Zhenfeng He, Guoqing Wang, Chao Wang, Li Guo, Renbo Wei, Gang Song, Duo Pan, Rajib Das, Nithesh Naik, Zhuolin Hu, Zhanhu Guo. Overview of Anion Exchange Membranes Based on Ring Opening Metathesis Polymerization (ROMP). Polymer Reviews 2021, 61 (4) , 689-713. https://doi.org/10.1080/15583724.2021.1881792
    20. Noy B. Nechmad, Victoria Kobernik, Naziha Tarannam, Ravindra Phatake, Or Eivgi, Sebastian Kozuch, N. Gabriel Lemcoff. Reactivity and Selectivity in Ruthenium Sulfur‐Chelated Diiodo Catalysts. Angewandte Chemie 2021, 133 (12) , 6442-6446. https://doi.org/10.1002/ange.202014929
    21. Noy B. Nechmad, Victoria Kobernik, Naziha Tarannam, Ravindra Phatake, Or Eivgi, Sebastian Kozuch, N. Gabriel Lemcoff. Reactivity and Selectivity in Ruthenium Sulfur‐Chelated Diiodo Catalysts. Angewandte Chemie International Edition 2021, 60 (12) , 6372-6376. https://doi.org/10.1002/anie.202014929
    22. Noy B. Nechmad, N. Gabriel Lemcoff. Sulfur-Chelated Ruthenium Olefin Metathesis Catalysts. Synlett 2021, 32 (03) , 258-266. https://doi.org/10.1055/s-0040-1707231
    23. Wei Wei, Guochen Jia. Metal-Carbon Bonds of Heavier Group 7 and 8 Metals (Tc, Re, Ru, Os): Mononuclear Tc/Re/Ru/Os Complexes With Metal-Carbon Bonds. 2021, 123-439. https://doi.org/10.1016/B978-0-08-102688-5.00049-0
    24. Márton Nagyházi, Gábor Turczel, Áron Balla, Gábor Szálas, Imre Tóth, Gyula Tamás Gál, Bombicz Petra, Paul T. Anastas, Róbert Tuba. Towards Sustainable Catalysis – Highly Efficient Olefin Metathesis in Protic Media Using Phase Labelled Cyclic Alkyl Amino Carbene (CAAC) Ruthenium Catalysts. ChemCatChem 2020, 12 (7) , 1953-1957. https://doi.org/10.1002/cctc.201902258
    25. Noy B. Nechmad, Ravindra Phatake, Elisa Ivry, Albert Poater, N. Gabriel Lemcoff. Unprecedented Selectivity of Ruthenium Iodide Benzylidenes in Olefin Metathesis Reactions. Angewandte Chemie 2020, 132 (9) , 3567-3571. https://doi.org/10.1002/ange.201914667
    26. Noy B. Nechmad, Ravindra Phatake, Elisa Ivry, Albert Poater, N. Gabriel Lemcoff. Unprecedented Selectivity of Ruthenium Iodide Benzylidenes in Olefin Metathesis Reactions. Angewandte Chemie International Edition 2020, 59 (9) , 3539-3543. https://doi.org/10.1002/anie.201914667
    27. Anna Kajetanowicz, Michał Chwalba, Anna Gawin, Andrzej Tracz, Karol Grela. Non‐Glovebox Ethenolysis of Ethyl Oleate and FAME at Larger Scale Utilizing a Cyclic (Alkyl)(Amino)Carbene Ruthenium Catalyst. European Journal of Lipid Science and Technology 2020, 122 (1) https://doi.org/10.1002/ejlt.201900263
    28. James W. Herndon. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coordination Chemistry Reviews 2019, 401 , 213051. https://doi.org/10.1016/j.ccr.2019.213051
    29. Michael Bell, Holley Grace Hester, Alec Nicholas Gallman, Valentina Gomez, Julia Pribyl, Giovanni Rojas, Andreas Riegger, Tanja Weil, Hiro Watanabe, Yoshiki Chujo, Kenneth B. Wagener. Bulk Acyclic Diene Metathesis Polycondensation. Macromolecular Chemistry and Physics 2019, 220 (15) https://doi.org/10.1002/macp.201900223
    30. Lauren E. Lieske, Lucas A. Freeman, Guocang Wang, Diane A. Dickie, Robert J. Gilliard, Charles W. Machan. Metal‐Free Electrochemical Reduction of Carbon Dioxide Mediated by Cyclic(Alkyl)(Amino) Carbenes. Chemistry – A European Journal 2019, 25 (24) , 6098-6101. https://doi.org/10.1002/chem.201900316

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect