ACS Publications. Most Trusted. Most Cited. Most Read
Understanding the Role of the Acid Sites in 5-Hydroxymethylfurfural Oxidation to 2,5-Furandicarboxylic Acid Reaction over Gold Catalysts: Surface Investigation on CexZr1–xO2 Compounds
My Activity
    Research Article

    Understanding the Role of the Acid Sites in 5-Hydroxymethylfurfural Oxidation to 2,5-Furandicarboxylic Acid Reaction over Gold Catalysts: Surface Investigation on CexZr1–xO2 Compounds
    Click to copy article linkArticle link copied!

    • Cristina Megías-Sayago*
      Cristina Megías-Sayago
      Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Seville, Spain
      *E-mail: [email protected]
    • Kristina Chakarova
      Kristina Chakarova
      Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
    • Anna Penkova*
      Anna Penkova
      Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Seville, Spain
      *E-mail: [email protected]
      More by Anna Penkova
    • Alice Lolli
      Alice Lolli
      Dip. di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
      More by Alice Lolli
    • Svetlana Ivanova
      Svetlana Ivanova
      Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Seville, Spain
    • Stefania Albonetti
      Stefania Albonetti
      Dip. di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
    • Fabrizio Cavani
      Fabrizio Cavani
      Dip. di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
    • José Antonio Odriozola
      José Antonio Odriozola
      Departamento de Química Inorgánica e Instituto de Ciencia de Materiales de Sevilla, Universidad de Sevilla-CSIC, Américo Vespucio 49, 41092 Seville, Spain
    Other Access OptionsSupporting Information (1)

    ACS Catalysis

    Cite this: ACS Catal. 2018, 8, 12, 11154–11164
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acscatal.8b02522
    Published October 22, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A series of CexZr1–xO2 supports with different Ce/Zr molar ratios were utilized for the preparation of gold catalyst used in the selective oxidation of 5-hydroxymethyl-2-furfural to 2,5-furandicarboxylic acid. The used method of gold deposition allows the preparation of gold particles with homogeneous size and shape distribution, a formulation very useful for studies dedicated to revealing the support participation in the reaction. The supports are characterized by Fourier transform infrared spectroscopy using CO as probe molecule, and the sample catalytic activity is thereafter correlated to the support acid site distribution. The possible participation of its Lewis/Brønsted acidity in the reaction mechanism is also proposed.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.8b02522.

    • TEM images and particle size distribution of the studied samples (Figure S1) and the XPS results obtained with the AuCe25Zr sample (used for an additional verification of the obtained by IR spectroscopy oxidation states of the metal cations; Figures S3–S4) (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 67 publications.

    1. Tommaso Tabanelli, Rita Mazzoni, Nikolaos Dimitratos, José M. López Nieto, Jean-Marc M. Millet, Lorenzo Grazia, Carlotta Cortelli, Jan Schütz, Werner Bonrath, Stefania Albonetti, Ferruccio Trifirò. A Career in Catalysis: Fabrizio Cavani. ACS Catalysis 2023, 13 (21) , 14131-14154. https://doi.org/10.1021/acscatal.3c03982
    2. Yao Chen, Lu Sun, Yiwang Li, Yu Cao, Wen Guan, Jianming Pan, Zehui Zhang, Yunlei Zhang. Oxygen Vacancy-Induced Metal–Support Interactions in AuPd/ZrO2 Catalysts for Boosting 5-Hydroxymethylfurfural Oxidation. Inorganic Chemistry 2023, 62 (37) , 15277-15292. https://doi.org/10.1021/acs.inorgchem.3c02473
    3. Jinling Wang, Dang-guo Cheng, Fengqiu Chen, Xiaoli Zhan. Chlorine-Decorated Ceria Nanocubes for Facilitating Low-Temperature Cyclohexane Oxidative Dehydrogenation: Unveiling the Decisive Role of Surface Species and Acid Properties. ACS Catalysis 2022, 12 (8) , 4501-4516. https://doi.org/10.1021/acscatal.1c05788
    4. Tanya Tsoncheva, Consolato Rosmini, Mihail Mihaylov, Jiří Henych, Kristina Chakarova, Nikolay Velinov, Daniela Kovacheva, Zuzana Němečková, Martin Kormunda, Radostina Ivanova, Ivanka Spassova, Konstantin Hadjiivanov. Nickel-Decorated Mesoporous Iron–Cerium Mixed Oxides: Microstructure and Catalytic Activity in Methanol Decomposition. ACS Applied Materials & Interfaces 2022, 14 (1) , 873-890. https://doi.org/10.1021/acsami.1c19584
    5. Xiubing Huang, Kaiyue Zhang, Baoxiang Peng, Ge Wang, Martin Muhler, Feng Wang. Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catalysis 2021, 11 (15) , 9618-9678. https://doi.org/10.1021/acscatal.1c02443
    6. Yan Wan, Jong-Min Lee. Toward Value-Added Dicarboxylic Acids from Biomass Derivatives via Thermocatalytic Conversion. ACS Catalysis 2021, 11 (5) , 2524-2560. https://doi.org/10.1021/acscatal.0c05419
    7. Lijun Lei, Yehong Wang, Zhixin Zhang, Jinghua An, Feng Wang. Transformations of Biomass, Its Derivatives, and Downstream Chemicals over Ceria Catalysts. ACS Catalysis 2020, 10 (15) , 8788-8814. https://doi.org/10.1021/acscatal.0c01900
    8. Ji Yang, Lorenz J. Falling, Siyang Yan, Biluan Zhang, Pragya Verma, Luke Daemen, Yongqiang Cheng, Xiao Zhao, Shuchen Zhang, Jeng-Lung Chen, Bingqing Yao, Shengdong Tan, Sudong Chae, Qian He, Slavomir Nemsak, Zili Wu, David Prendergast, Yanbing Guo, Jiaxu Liu, Miquel Salmeron, Ji Su. Formation of hydrided Pt-Ce-H sites in efficient, selective oxidation catalysts. Science 2025, 77 https://doi.org/10.1126/science.adv0735
    9. Haonan Chen, Baolong Qin, Qi Zhang, Xiaohong Hu, Longlong Ma, Xinghua Zhang, Zhiyuan Tang, Lungang Chen. Enhancement of Selective Catalytic Oxidation of Lignin β‐O‐4 Bond via Orbital Modulation and Surface Lattice Reconstruction. ChemSusChem 2025, 18 (7) https://doi.org/10.1002/cssc.202402194
    10. Kristina K. Chakarova, Bayan S. Karapenchev, Nikola L. Drenchev, Elena Z. Ivanova, Hristiyan A. Aleksandrov, Dimitar A. Panayotov, Mihail Y. Mihaylov, Georgi N. Vayssilov, Konstantin I. Hadjiivanov. FTIR study of low-temperature CO adsorption on reduced ceria nanoparticles with different morphology: A comparison with oxidized samples. Journal of Catalysis 2025, 443 , 115986. https://doi.org/10.1016/j.jcat.2025.115986
    11. Yanxing Wang, Lian Xiong, Xuefang Chen, Hailong Li, Hairong Zhang, Fen Peng, Xinde Chen. Research Progress on Supported Metal Catalysts for Thermal Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furan Dicarboxylic Acid. Korean Journal of Chemical Engineering 2025, 36 https://doi.org/10.1007/s11814-025-00411-6
    12. Arindam Modak. Lignocellulosic Biomass-Feedstocks: Pre-treatment and Catalytic Applications to Important Chemicals. 2025, 373-402. https://doi.org/10.1007/978-981-97-8205-5_13
    13. Ming-Kun Ke, Yuan Min, Shu-Chuan Mei, Hou-Wei Zeng, Zhao-Hua Wang, Tian-Wei Hua, Jie-Jie Chen, Gui-Xiang Huang, Han-Qing Yu. Highly selective oxidation of 5-HMF to HMFCA via a facile Pt-Ag co-catalytic strategy. Applied Catalysis B: Environment and Energy 2024, 358 , 124431. https://doi.org/10.1016/j.apcatb.2024.124431
    14. Wei Huang, Xinghai Li, Wei Liu, Benjing Li, Yumeng Zhou, Yuchao Wang, Shengyang Tao. Synergistic enhancement of nickel-cobalt nano-catalysts for 5-hydroxymethylfurfural conversion via electronic structure engineering and solar intensification. Chemical Engineering Journal 2024, 501 , 157642. https://doi.org/10.1016/j.cej.2024.157642
    15. Ziqin Gong, Zengyong Li, Xu Zeng, Fengxia Yue, Wu Lan, Chuanfu Liu. Efficient oxidation of monosaccharides to sugar acids under neutral condition in flow reactors with gold-supported activated carbon catalysts. Frontiers of Chemical Science and Engineering 2024, 18 (9) https://doi.org/10.1007/s11705-024-2457-6
    16. Theerada Seehamongkol, Bunyarat Rungtaweevoranit, Pongkarn Chakthranont, Teera Butburee, Weerawan Nimsaila, Kajornsak Faungnawakij. Roles of Metal‐Organic Framework Supports in Base‐Free Oxidation of 5‐Hydroxymethylfurfural to Furan‐2,5‐Dicarboxylic Acid over Pt‐Based Catalysts. ChemNanoMat 2024, 10 (8) https://doi.org/10.1002/cnma.202400037
    17. Débora Álvarez‐Hernández, Cristina Megías‐Sayago, Anna Penkova, Miguel Ángel Centeno, Svetlana Ivanova. Highly Effective Non‐Noble MnO 2 Catalysts for 5‐Hydroxymethylfurfural Oxidation to 2,5‐Furandicarboxylic Acid. ChemSusChem 2024, 17 (14) https://doi.org/10.1002/cssc.202400115
    18. Zijun Yang, Qingfeng Ge, Xinli Zhu. Heteroatom Lewis acid zeolites: synthesis, characterization and application in the conversion of biomass-derived oxygenates. Green Chemistry 2024, 26 (14) , 8068-8099. https://doi.org/10.1039/D4GC00985A
    19. Chaoqi Chen, Satoru Ikemoto, Gen-ichi Yokota, Kimitaka Higuchi, Satoshi Muratsugu, Mizuki Tada. Low-temperature redox activity and alcohol ammoxidation performance on Cu- and Ru-incorporated ceria catalysts. Physical Chemistry Chemical Physics 2024, 26 (26) , 17979-17990. https://doi.org/10.1039/D4CP01432D
    20. Sohaib Hameed, Wengang Liu, Zhounan Yu, Jifeng Pang, Wenhao Luo, Aiqin Wang. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over a Fe single-atom catalyst. Green Chemistry 2024, 26 (13) , 7806-7817. https://doi.org/10.1039/D4GC01777C
    21. Kristina K. Chakarova, Videlina R. Zdravkova, Bayan S. Karapenchev, Diana D. Nihtianova, Elena Z. Ivanova, Hristiyan A. Aleksandrov, Iskra Z. Koleva, Dimitar A. Panayotov, Mihail Y. Mihaylov, Georgi N. Vayssilov, Konstantin I. Hadjiivanov. Evolution of Ce4+ Lewis acidity during dehydroxylation of ceria nanoparticles with different morphology: An integrated FTIR, DFT and HRTEM study. Journal of Catalysis 2024, 433 , 115463. https://doi.org/10.1016/j.jcat.2024.115463
    22. Hanieh Moradi, Sergei A. Kulinich, Wilfried Wunderlich, Mehran Ghiaci. Ce‐Modified MgFe−LDH Supported Au Particles: An Efficient Catalyst for Base‐Free Selective Oxidation of 5‐Hydroxymethylfurfural to 2,5‐Furandicarboxylic Acid. ChemistrySelect 2024, 9 (4) https://doi.org/10.1002/slct.202303246
    23. Ming Zhan, Yue Wang, Huai Liu, Rui Zhang, Lincai Peng, Junhua Zhang. Visible-light-driven efficient photocatalytic oxidation of 5-hydroxymethylfurfural over a metal-free recyclable anthraquinone derivative. Molecular Catalysis 2024, 553 , 113788. https://doi.org/10.1016/j.mcat.2023.113788
    24. Cristina Megías-Sayago, Ignacio Centeno-Vega, Luis F. Bobadilla, Svetlana Ivanova, Nuria Rendón, Andrés Suarez. Alkane metathesis over immobilized pincer-ligated iridium complexes: Effect of support nature. Applied Catalysis B: Environmental 2023, 338 , 123002. https://doi.org/10.1016/j.apcatb.2023.123002
    25. Zengyong Li, Di Li, Linxin Zhong, Xuehui Li, Chuanfu Liu, Xinwen Peng. Base-free selective oxidation of monosaccharide into sugar acid by surface-functionalized carbon nanotube composites. Chinese Chemical Letters 2023, 34 (11) , 108370. https://doi.org/10.1016/j.cclet.2023.108370
    26. Qinghua Deng, Yong Yang, Kai Yin, Jiachen Yi, Yuming Zhou, Yiwei Zhang. Boosting Active Species Ru‐O‐Zr/Ce Construction at the Interface of Phase‐Transformed Zirconia‐Ceria Isomerism toward Advanced Catalytic Cathodes for Li‐CO 2 Batteries. Advanced Energy Materials 2023, 13 (40) https://doi.org/10.1002/aenm.202302398
    27. Priya Lokhande, Kalyani Sonone, Paresh L. Dhepe. Industry-oriented method for the aqueous phase oxidation of crude 5-hydroxymethyl furfural (HMF) to 2,5-furandicarboxylic acid (FDCA). New Journal of Chemistry 2023, 47 (32) , 15325-15335. https://doi.org/10.1039/D3NJ01834B
    28. Amir Al Ghatta, Jason P. Hallett. Bioderived furanic compounds as replacements for BTX in chemical intermediate applications. RSC Sustainability 2023, 1 (4) , 698-745. https://doi.org/10.1039/D3SU00038A
    29. Weiyao Yang, Mengchen Fu, Chenyu Yang, Yiwen Zhang, Chun Shen. Au−–Ov–Ti3+: Active site of MO -Au/TiO2 catalysts for the aerobic oxidation of 5-hydroxymethylfurfural. Green Energy & Environment 2023, 8 (3) , 785-797. https://doi.org/10.1016/j.gee.2021.09.006
    30. Xue Wang, Xinyuan Guo, Xinmei Wang, Chi Li, Shanjun Wang, Han Li, Yan’an Gao, Yiying Li, Jinhui Wang, Huanjun Xu. Conversion of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid by a simple and metal-free catalytic system. RSC Advances 2023, 13 (20) , 13819-13823. https://doi.org/10.1039/D3RA01104F
    31. Fang Wang, Changhao Yan, Rui Jiang, Yao Chen, Yanan Wei, Yu Cao, Wen Guan, Pengwei Huo, Yunlei Zhang. Highly efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over halloysite nanotubes-templated nitrogen-doped carbon supported bimetallic AuPd catalyst. Applied Clay Science 2023, 235 , 106872. https://doi.org/10.1016/j.clay.2023.106872
    32. Yunlei Zhang, Yu Cao, Changhao Yan, Wenyun Liu, Yao Chen, Wen Guan, Fang Wang, Yiran Liu, Pengwei Huo. Rationally designed Au-ZrOx interaction for boosting 5-hydroxymethylfurfural oxidation. Chemical Engineering Journal 2023, 459 , 141644. https://doi.org/10.1016/j.cej.2023.141644
    33. Yiran Liu, Yao Chen, Wen Guan, Yu Cao, Fang Wang, Yunlei Zhang. Mechanistic Studies into the Selective Production of 2,5-furandicarboxylic Acid from 2,5-bis(hydroxymethyl)furan Using Au-Pd Bimetallic Catalyst Supported on Nitrated Carbon Material. Catalysts 2023, 13 (2) , 435. https://doi.org/10.3390/catal13020435
    34. Weiping Liao, Haoyi Lin, Jiaxing Zhang, Jiaqi Wang, Kaixuan Yang, Ting Su, Hongying Lü, Zhiguo Zhu. Au/Sn-Beta catalyst with metal-Lewis acid cooperative sites steers aerobic oxidation of 5-hydroxymethylfurfural. Applied Surface Science 2023, 608 , 155154. https://doi.org/10.1016/j.apsusc.2022.155154
    35. Lei Wang, Yusen Yang, Yawen Shi, Wei Liu, Zhaowei Tian, Xin Zhang, Lirong Zheng, Song Hong, Min Wei. Single-atom catalysts with metal-acid synergistic effect toward hydrodeoxygenation tandem reactions. Chem Catalysis 2023, 3 (1) , 100483. https://doi.org/10.1016/j.checat.2022.11.022
    36. Luyao Yu, Zhen Ren, Yusen Yang, Min Wei. Directed Preparation of Biomass-based Polyester Monomers by Catalytic Conversion. Acta Chimica Sinica 2023, 81 (2) , 175. https://doi.org/10.6023/A22110459
    37. Huai Liu, Xing Tang, Xianhai Zeng, Yong Sun, Xixian Ke, Tianyuan Li, Jiaren Zhang, Lu Lin. Catalyst design strategy toward the efficient heterogeneously-catalyzed selective oxidation of 5-hydroxymethylfurfural. Green Energy & Environment 2022, 7 (5) , 900-932. https://doi.org/10.1016/j.gee.2021.10.004
    38. Atif Emre Demet, Olinda Gimello, Rossella Arletti, Nathalie Tanchoux, Moulay Tahar Sougrati, Lorenzo Stievano, Françoise Quignard, Gabriele Centi, Siglinda Perathoner, Francesco Di Renzo. 5-Hydroxymethylfurfural Oxidation to 2,5-Furandicarboxylic Acid on Noble Metal-Free Nanocrystalline Mixed Oxide Catalysts. Catalysts 2022, 12 (8) , 814. https://doi.org/10.3390/catal12080814
    39. Alessandro Messori, Andrea Fasolini, Rita Mazzoni. Advances in Catalytic Routes for the Homogeneous Green Conversion of the Bio‐Based Platform 5‐Hydroxymethylfurfural. ChemSusChem 2022, 15 (13) https://doi.org/10.1002/cssc.202200228
    40. Haocheng Xu, Xiaoyun Li, Wenxuan Hu, Zhihao Yu, Huanran Zhou, Yameng Zhu, Lefu Lu, Chuanling Si. Research Progress of Highly Efficient Noble Metal Catalysts for the Oxidation of 5‐Hydroxymethylfurfural. ChemSusChem 2022, 15 (13) https://doi.org/10.1002/cssc.202200352
    41. Grazia Totaro, Laura Sisti, Paola Marchese, Martino Colonna, Angela Romano, Claudio Gioia, Micaela Vannini, Annamaria Celli. Current Advances in the Sustainable Conversion of 5‐Hydroxymethylfurfural into 2,5‐Furandicarboxylic Acid. ChemSusChem 2022, 15 (13) https://doi.org/10.1002/cssc.202200501
    42. Asma T. Biradar Tamboli, Swapnali P. Kirdant, Vrushali H. Jadhav. Metal-free approach towards efficient synthesis of FDCA using a p -toluene sulfonic acid ( p -TSA)-derived heterogeneous solid acid catalyst and oxone over two steps from HMF, fructose and glucose. New Journal of Chemistry 2022, 46 (21) , 10272-10279. https://doi.org/10.1039/D2NJ01207C
    43. Xiaoyang Huang, Ouardia Akdim, Mark Douthwaite, Kai Wang, Liang Zhao, Richard J. Lewis, Samuel Pattisson, Isaac T. Daniel, Peter J. Miedziak, Greg Shaw, David J. Morgan, Sultan M. Althahban, Thomas E. Davies, Qian He, Fei Wang, Jile Fu, Donald Bethell, Steven McIntosh, Christopher J. Kiely, Graham J. Hutchings. Au–Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature 2022, 603 (7900) , 271-275. https://doi.org/10.1038/s41586-022-04397-7
    44. Christian A. Celaya, Rachid Oukhrib, Mustapha Ait El Had, Youness Abdellaoui, Hicham Abou Oualid, Hassane Bourzi, Rachid Chahboun, Deyang Zhao, Sameh M. Osman, Virinder S. Parmar, Christophe Len. Density functional theory study of the selective oxidation of 5-Hydroxymethylfurfural (HMF) to 5-Hydroxymethyl-2-furancarboxylic acid (HMFCA) on the Silver oxide surface (001). Molecular Catalysis 2022, 519 , 112117. https://doi.org/10.1016/j.mcat.2022.112117
    45. Xiaomeng Cheng, Shaopeng Li, Shulin Liu, Yu Xin, Junjuan Yang, Bingfeng Chen, Huizhen Liu. Highly efficient catalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using bimetallic Pt–Cu alloy nanoparticles as catalysts. Chemical Communications 2022, 58 (8) , 1183-1186. https://doi.org/10.1039/D1CC05757J
    46. Zhiguo Zhu, Xiongjie Gao, Xiuming Wang, Mengdie Yin, Qingyao Wang, Wanzhong Ren, Bo Wang, Hongying Lü, Weiping Liao. Rational construction of metal–base synergetic sites on Au/Mg-beta catalyst for selective aerobic oxidation of 5-hydroxymethylfurfural. Journal of Energy Chemistry 2021, 62 , 599-609. https://doi.org/10.1016/j.jechem.2021.04.022
    47. Dongdong Wang, Wanbing Gong, Jifang Zhang, Guozhong Wang, Haimin Zhang, Huijun Zhao. In situ growth of MOFs on Ni(OH) 2 for efficient electrocatalytic oxidation of 5-hydroxymethylfurfural. Chemical Communications 2021, 57 (86) , 11358-11361. https://doi.org/10.1039/D1CC04680B
    48. Georgios Uzunidis, Oliver Schade, Dieter Schild, Jan‐Dierk Grunwaldt, Silke Behrens. Design of bimetallic Au/Cu nanoparticles in ionic liquids: Synthesis and catalytic properties in 5‐(hydroxymethyl)furfural oxidation. ChemNanoMat 2021, 7 (10) , 1108-1116. https://doi.org/10.1002/cnma.202100258
    49. Zengyong Li, Di Li, Wu Lan, Xuehui Li, Xiaofang Wan, Runcang Sun, Chuanfu Liu, Xinwen Peng. Highly selective oxidation of monosaccharides to sugar acids at room temperature over palladium supported on surface functionalized carbon nanotubes. Green Chemistry 2021, 23 (18) , 7084-7092. https://doi.org/10.1039/D1GC02419A
    50. Honglei Wang, Chong Li, Jintao An, Yuan Zhuang, Shengyang Tao. Surface reconstruction of NiCoP for enhanced biomass upgrading. Journal of Materials Chemistry A 2021, 9 (34) , 18421-18430. https://doi.org/10.1039/D1TA05425B
    51. Kang Hu, Man Zhang, Biying Liu, Zhiyu Yang, Ruiqi Li, Kai Yan. Efficient electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using the facilely synthesized 3D porous WO3/Ni electrode. Molecular Catalysis 2021, 504 , 111459. https://doi.org/10.1016/j.mcat.2021.111459
    52. Qidong Hou, Xinhua Qi, Meinan Zhen, Hengli Qian, Yifan Nie, Chuanyunlong Bai, Shiqiu Zhang, Xinyu Bai, Meiting Ju. Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural. Green Chemistry 2021, 23 (1) , 119-231. https://doi.org/10.1039/D0GC02770G
    53. Ting Su, Deyang Zhao, Yantao Wang, Hongying Lü, Rajender S. Varma, Christophe Len. Innovative Protocols in the Catalytic Oxidation of 5‐Hydroxymethylfurfural. ChemSusChem 2021, 14 (1) , 266-280. https://doi.org/10.1002/cssc.202002232
    54. Deyang Zhao, Ting Su, Yantao Wang, Rajender S. Varma, Christophe Len. Recent advances in catalytic oxidation of 5-hydroxymethylfurfural. Molecular Catalysis 2020, 495 , 111133. https://doi.org/10.1016/j.mcat.2020.111133
    55. Oliver R. Schade, Abhijeet Gaur, Anna Zimina, Erisa Saraçi, Jan-Dierk Grunwaldt. Mechanistic insights into the selective oxidation of 5-(hydroxymethyl)furfural over silver-based catalysts. Catalysis Science & Technology 2020, 10 (15) , 5036-5047. https://doi.org/10.1039/D0CY00878H
    56. Wenxia Zhuang, Xiaoling Liu, Lei Chen, Peiwen Liu, Haimeng Wen, Yu Zhou, Jun Wang. One-pot hydrothermal synthesis of ultrafine Pd clusters within Beta zeolite for selective oxidation of alcohols. Green Chemistry 2020, 22 (13) , 4199-4209. https://doi.org/10.1039/C9GC03834E
    57. Cristina Megías-Sayago, Danilo Bonincontro, Alice Lolli, Svetlana Ivanova, Stefania Albonetti, Fabrizio Cavani, José A. Odriozola. 5-Hydroxymethyl-2-Furfural Oxidation Over Au/CexZr1-xO2 Catalysts. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00461
    58. Komal Kumar, Vikas Khatri, Firdaus Parveen, Hemant K. Kashyap, Sreedevi Upadhyayula. Synthesis of an oxygenated fuel additive from a waste biomass derived aldehyde using a green catalyst: an experimental and DFT study. Sustainable Energy & Fuels 2020, 4 (6) , 2924-2936. https://doi.org/10.1039/D0SE00100G
    59. Sara Andreoli, Claudio Oldani, Valentina Fiorini, Stefano Stagni, Giuseppe Fornasari, Stefania Albonetti. Superacid Aquivion® PFSA as an efficient catalyst for the gas phase dehydration of ethanol to ethylene in mild conditions. Applied Catalysis A: General 2020, 597 , 117544. https://doi.org/10.1016/j.apcata.2020.117544
    60. Nghia Huu Le, Samar Hajjar-Garreau, Magali Bonne, Cristina Megías-Sayago, Benoît Louis, Bénédicte Lebeau, Lavinia Balan. Photo-induced generation of size controlled Au nanoparticles on pure siliceous ordered mesoporous silica for catalytic applications. Microporous and Mesoporous Materials 2020, 295 , 109952. https://doi.org/10.1016/j.micromeso.2019.109952
    61. Oliver Schade, Paolo Dolcet, Alexei Nefedov, Xiaohui Huang, Erisa Saraçi, Christof Wöll, Jan-Dierk Grunwaldt. The Influence of the Gold Particle Size on the Catalytic Oxidation of 5-(Hydroxymethyl)furfural. Catalysts 2020, 10 (3) , 342. https://doi.org/10.3390/catal10030342
    62. M.P. Yeste, P.A. Primus, R. Alcantara, M.A. Cauqui, J.J. Calvino, J.M. Pintado, G. Blanco. Surface characterization of two Ce0.62Zr0.38O2 mixed oxides with different reducibility. Applied Surface Science 2020, 503 , 144255. https://doi.org/10.1016/j.apsusc.2019.144255
    63. Cristina Megías-Sayago, Sara Navarro-Jaén, Rafael Castillo, Svetlana Ivanova. Recent advances in selective oxidation of biomass-derived platform chemicals over gold catalysts. Current Opinion in Green and Sustainable Chemistry 2020, 21 , 50-55. https://doi.org/10.1016/j.cogsc.2019.12.001
    64. Dimitrios A. Giannakoudakis, Vaishakh Nair, Ayesha Khan, Eleni A. Deliyanni, Juan Carlos Colmenares, Konstantinos S. Triantafyllidis. Additive-free photo-assisted selective partial oxidation at ambient conditions of 5-hydroxymethylfurfural by manganese (IV) oxide nanorods. Applied Catalysis B: Environmental 2019, 256 , 117803. https://doi.org/10.1016/j.apcatb.2019.117803
    65. Yanjun Jia, Hanning Chen. Enhanced Selective Production of Carbonyl Products for Aerobic Oxidation of Benzylic Alcohols over Mesoporous Fe2O3 Supported Gold Nanoparticles. Catalysts 2019, 9 (9) , 754. https://doi.org/10.3390/catal9090754
    66. Baole Sang, Jiang Li, Xiqiang Tian, Fulong Yuan, Yujun Zhu. Selective aerobic oxidation of the 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over gold nanoparticles supported on graphitized carbon: Study on reaction pathways. Molecular Catalysis 2019, 470 , 67-74. https://doi.org/10.1016/j.mcat.2019.03.026
    67. Meriem Chenouf, Cristina Megías-Sayago, Fatima Ammari, Svetlana Ivanova, Miguel Ángel Centeno, José Antonio Odriozola. Montmorillonite-stabilized gold nanoparticles for nitrophenol reduction. Comptes Rendus. Chimie 2019, 22 (9-10) , 621-627. https://doi.org/10.1016/j.crci.2019.07.005

    ACS Catalysis

    Cite this: ACS Catal. 2018, 8, 12, 11154–11164
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acscatal.8b02522
    Published October 22, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    1932

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.