ACS Publications. Most Trusted. Most Cited. Most Read
Development of an Improved System for the Carboxylation of Aryl Halides through Mechanistic Studies
My Activity
    Research Article

    Development of an Improved System for the Carboxylation of Aryl Halides through Mechanistic Studies
    Click to copy article linkArticle link copied!

    • David J. Charboneau
      David J. Charboneau
      Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
    • Gary W. Brudvig
      Gary W. Brudvig
      Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
    • Nilay Hazari*
      Nilay Hazari
      Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
      *E-mail: [email protected]
      More by Nilay Hazari
    • Hannah M. C. Lant
      Hannah M. C. Lant
      Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
    • Andrew K. Saydjari
      Andrew K. Saydjari
      Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
    Other Access OptionsSupporting Information (2)

    ACS Catalysis

    Cite this: ACS Catal. 2019, 9, 4, 3228–3241
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acscatal.9b00566
    Published March 14, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The nickel-catalyzed carboxylation of organic halides or pseudohalides using carbon dioxide is an emerging method to prepare synthetically valuable carboxylic acids. Here, we report a detailed mechanistic investigation of these reactions using the carboxylation of aryl halides with (PPh3)2NiIICl2 as a model reaction. Our studies allow us to understand several general features of nickel-catalyzed carboxylation reactions. For example, we demonstrate that both a Lewis acid and halide source are beneficial for catalysis. To this end, we establish that heterogeneous Mn(0) and Zn(0) reductants are multifaceted reagents that generate noninnocent Mn(II) or Zn(II) Lewis acids upon oxidation. In a key result, a rare example of a well-defined nickel(I) aryl complex is isolated, and it is demonstrated that its reaction with carbon dioxide results in the formation of a carboxylic acid in high yield (after workup). The carbon dioxide insertion product undergoes rapid decomposition, which can be circumvented by a ligand metathesis reaction with a halide source. Our studies have led to both a revised mechanism and the development of a broadly applicable strategy to improve reductive carboxylation reactions. A critical component of this strategy is that we have replaced the heterogeneous Mn(0) reductant typically used in catalysis with a well-defined homogeneous organic reductant. Through its use, we have increased the range of ancillary ligands, additives, and substrates that are compatible with the reaction. This has enabled us to perform reductive carboxylations at low catalyst loadings. Additionally, we demonstrate that reductive carboxylations of organic (pseudo)halides can be achieved in high yields in more practically useful, non-amide solvents. Our results describe a mechanistically guided strategy to improve reductive carboxylations through the use of a homogeneous organic reductant, which may be broadly translatable to a wide range of cross-electrophile coupling reactions.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.9b00566.

    • Full characterization data, experimental procedures, and details about EPR spectra (PDF)

    • X-ray data for NiIAryl complex (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 86 publications.

    1. Julien R. Lyonnet, Álvaro Velasco-Rubio, Roman Abrams, Ha Phan, Kim Mühlfenzl, Xuemeng Chen, Alessandro Cerveri, José Tiago M. Correia, Márcio W. Paixão, Charles S. Elmore, Ruben Martin. Photocatalytic Multicomponent Carboxylation of Olefins and Sulfinate Salts with 13CO2. ACS Catalysis 2024, Article ASAP.
    2. Mengxin Zhao, Wenqiang Xu, Yun-Dong Wu, Xiuying Yang, Jianchun Wang, Jianrong Steve Zhou. Cobalt-Catalyzed Enantioselective Reductive Arylation, Heteroarylation, and Alkenylation of Michael Acceptors via an Elementary Mechanism of 1,4-Addition. Journal of the American Chemical Society 2024, 146 (29) , 20477-20493. https://doi.org/10.1021/jacs.4c06735
    3. Ji Hwan Jeon, Gun Ha Kim, Ho Seung Lee, Da Hye Kim, Soochan Lee, Wonyoung Choe, Byunghyuck Jung, Jan-Uwe Rohde, Sung You Hong. Chemo- and Regioselective Nickel-Catalyzed Reductive 1,4-Alkylarylation of 1,3-Enynes through an L2NiAr Intermediate. ACS Catalysis 2024, 14 (11) , 8996-9007. https://doi.org/10.1021/acscatal.4c01189
    4. Mengxin Zhao, Luoqiang Zhang, Jianrong Steve Zhou. Enantioselective Reductive Conjugate Alkenylation of α,β-Unsaturated Ketones and Amides via Nickel Catalysis. ACS Catalysis 2024, 14 (8) , 6228-6235. https://doi.org/10.1021/acscatal.4c01263
    5. Chun-Fu Meng, Bei-Bei Zhang, Qiang Liu, Kun-Quan Chen, Zhi-Xiang Wang, Xiang-Yu Chen. Achieving Nickel-Catalyzed Reductive C(sp2)–B Coupling of Bromoboranes via Reversing the Activation Sequence. Journal of the American Chemical Society 2024, 146 (11) , 7210-7215. https://doi.org/10.1021/jacs.4c01450
    6. Jacob Davies, Julien R. Lyonnet, Bjørn Carvalho, Basudev Sahoo, Craig S. Day, Francisco Juliá-Hernández, Yaya Duan, Álvaro Velasco-Rubio, Marc Obst, Per-Ola Norrby, Kathrin H. Hopmann, Ruben Martin. Kinetically-Controlled Ni-Catalyzed Direct Carboxylation of Unactivated Secondary Alkyl Bromides without Chain Walking. Journal of the American Chemical Society 2024, 146 (3) , 1753-1759. https://doi.org/10.1021/jacs.3c11205
    7. Patrick Müller, Patrick Finkelstein, Nils Trapp, Alessandro Bismuto, Gunnar Jeschke, Bill Morandi. Nickel(I)–Phenolate Complexes: The Key to Well-Defined Ni(I) Species. Inorganic Chemistry 2023, 62 (41) , 16661-16668. https://doi.org/10.1021/acs.inorgchem.3c01559
    8. Samuel H. Newman-Stonebraker, T. Judah Raab, Hootan Roshandel, Abigail G. Doyle. Synthesis of Nickel(I)–Bromide Complexes via Oxidation and Ligand Displacement: Evaluation of Ligand Effects on Speciation and Reactivity. Journal of the American Chemical Society 2023, 145 (35) , 19368-19377. https://doi.org/10.1021/jacs.3c06233
    9. Ethan M. DeCicco, Simon Berritt, Thomas Knauber, Steven B. Coffey, Jie Hou, Matthew S. Dowling. Decarboxylative Cross-Electrophile Coupling of (Hetero)Aromatic Bromides and NHP Esters. The Journal of Organic Chemistry 2023, 88 (17) , 12329-12340. https://doi.org/10.1021/acs.joc.3c01072
    10. Zhaoming Ma, Wenqiang Xu, Yun-Dong Wu, Jianrong Steve Zhou. Cobalt-Catalyzed Enantioselective Cross-Electrophile Couplings: Stereoselective Syntheses of 5–7-Membered Azacycles. Journal of the American Chemical Society 2023, 145 (30) , 16464-16473. https://doi.org/10.1021/jacs.3c02829
    11. Prabha Vadivelu, Krithika Ganesan. Density Functional Theory Study on [Ni0(1,10-Phenanthroline)]-Catalyzed Reductive Carboxylation of Alkyl and Aryl Halides with CO2: Effect of the Lewis Acid and β-H Elimination Side Reaction in the Crucial CO2 Insertion Step. Inorganic Chemistry 2022, 61 (48) , 19463-19474. https://doi.org/10.1021/acs.inorgchem.2c03340
    12. Abing Duan, Yali Yu, Fengqin Wang, Xueqiang Wang, Dongbo Wang. Mechanism and Origin of Stereoselectivity of Ni-Catalyzed Cyclization/Carboxylation of Bromoalkynes with CO2. The Journal of Organic Chemistry 2022, 87 (13) , 8342-8350. https://doi.org/10.1021/acs.joc.2c00161
    13. David J. Charboneau, Nilay Hazari, Haotian Huang, Mycah R. Uehling, Susan L. Zultanski. Homogeneous Organic Electron Donors in Nickel-Catalyzed Reductive Transformations. The Journal of Organic Chemistry 2022, 87 (12) , 7589-7609. https://doi.org/10.1021/acs.joc.2c00462
    14. David J. Charboneau, Haotian Huang, Emily L. Barth, Cameron C. Germe, Nilay Hazari, Brandon Q. Mercado, Mycah R. Uehling, Susan L. Zultanski. Tunable and Practical Homogeneous Organic Reductants for Cross-Electrophile Coupling. Journal of the American Chemical Society 2021, 143 (49) , 21024-21036. https://doi.org/10.1021/jacs.1c10932
    15. Andreu Tortajada, Marino Börjesson, Ruben Martin. Nickel-Catalyzed Reductive Carboxylation and Amidation Reactions. Accounts of Chemical Research 2021, 54 (20) , 3941-3952. https://doi.org/10.1021/acs.accounts.1c00480
    16. Gregory L. Beutner, Eric M. Simmons, Sloan Ayers, Christopher Y. Bemis, Matthew J. Goldfogel, Candice L. Joe, Jonathan Marshall, Steven R. Wisniewski. A Process Chemistry Benchmark for sp2–sp3 Cross Couplings. The Journal of Organic Chemistry 2021, 86 (15) , 10380-10396. https://doi.org/10.1021/acs.joc.1c01073
    17. Jacob Davies, Daniel Janssen-Müller, Dmitry P. Zimin, Craig S. Day, Tomoyuki Yanagi, Jonas Elfert, Ruben Martin. Ni-Catalyzed Carboxylation of Aziridines en Route to β-Amino Acids. Journal of the American Chemical Society 2021, 143 (13) , 4949-4954. https://doi.org/10.1021/jacs.1c01916
    18. Beibei Zhang, Suyu Yang, Deqing Li, Mingtian Hao, Bo-Zhen Chen, Zengxi Li. Insights into the Regioselective Hydrocarboxylation of Styrenes with CO2 Controlled by the Ligand of Nickel Catalysts. ACS Sustainable Chemistry & Engineering 2021, 9 (11) , 4091-4101. https://doi.org/10.1021/acssuschemeng.0c08845
    19. Notashia N. Baughman, Novruz G. Akhmedov, Jeffrey L. Petersen, Brian V. Popp. Experimental and Computational Analysis of CO2 Addition Reactions Relevant to Copper-Catalyzed Boracarboxylation of Vinyl Arenes: Evidence for a Phosphine-Promoted Mechanism. Organometallics 2021, 40 (1) , 23-37. https://doi.org/10.1021/acs.organomet.0c00488
    20. David J. Charboneau, Emily L. Barth, Nilay Hazari, Mycah R. Uehling, Susan L. Zultanski. A Widely Applicable Dual Catalytic System for Cross-Electrophile Coupling Enabled by Mechanistic Studies. ACS Catalysis 2020, 10 (21) , 12642-12656. https://doi.org/10.1021/acscatal.0c03237
    21. Zhen Zhang, Jian-Heng Ye, Tao Ju, Li-Li Liao, He Huang, Yong-Yuan Gui, Wen-Jun Zhou, Da-Gang Yu. Visible-Light-Driven Catalytic Reductive Carboxylation with CO2. ACS Catalysis 2020, 10 (19) , 10871-10885. https://doi.org/10.1021/acscatal.0c03127
    22. Chunzhe Pei, Jiarui Zong, Shanglin Han, Bin Li, Baiquan Wang. Ni-Catalyzed Direct Carboxylation of an Unactivated C–H Bond with CO2. Organic Letters 2020, 22 (17) , 6897-6902. https://doi.org/10.1021/acs.orglett.0c02429
    23. Rosie J. Somerville, Carlota Odena, Marc F. Obst, Nilay Hazari, Kathrin H. Hopmann, Ruben Martin. Ni(I)–Alkyl Complexes Bearing Phenanthroline Ligands: Experimental Evidence for CO2 Insertion at Ni(I) Centers. Journal of the American Chemical Society 2020, 142 (25) , 10936-10941. https://doi.org/10.1021/jacs.0c04695
    24. Seoyoung Kim, Matthew J. Goldfogel, Michael M. Gilbert, Daniel J. Weix. Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Chlorides with Primary Alkyl Chlorides. Journal of the American Chemical Society 2020, 142 (22) , 9902-9907. https://doi.org/10.1021/jacs.0c02673
    25. Wei Hang, Yaping Yi, Chanjuan Xi. Cp2TiCl2-Catalyzed Carboxylation of Aryl Chlorides with Carbon Dioxide in the Presence of n-BuMgCl. Organometallics 2020, 39 (9) , 1476-1479. https://doi.org/10.1021/acs.organomet.9b00712
    26. Justin Diccianni, Qiao Lin, Tianning Diao. Mechanisms of Nickel-Catalyzed Coupling Reactions and Applications in Alkene Functionalization. Accounts of Chemical Research 2020, 53 (4) , 906-919. https://doi.org/10.1021/acs.accounts.0c00032
    27. Ian R. Duffy, Neil Vasdev, Kenneth Dahl. Copper(I)-Mediated 11C-Carboxylation of (Hetero)arylstannanes. ACS Omega 2020, 5 (14) , 8242-8250. https://doi.org/10.1021/acsomega.0c00524
    28. Tomoyuki Yanagi, Rosie J. Somerville, Keisuke Nogi, Ruben Martin, Hideki Yorimitsu. Ni-Catalyzed Carboxylation of C(sp2)–S Bonds with CO2: Evidence for the Multifaceted Role of Zn. ACS Catalysis 2020, 10 (3) , 2117-2123. https://doi.org/10.1021/acscatal.9b05141
    29. Naoki Ishida, Yusuke Masuda, Yuuya Imamura, Katsushi Yamazaki, Masahiro Murakami. Carboxylation of Benzylic and Aliphatic C–H Bonds with CO2 Induced by Light/Ketone/Nickel. Journal of the American Chemical Society 2019, 141 (50) , 19611-19615. https://doi.org/10.1021/jacs.9b12529
    30. Qiao Lin, Tianning Diao. Mechanism of Ni-Catalyzed Reductive 1,2-Dicarbofunctionalization of Alkenes. Journal of the American Chemical Society 2019, 141 (44) , 17937-17948. https://doi.org/10.1021/jacs.9b10026
    31. Michael D. Burkart, Nilay Hazari, Cathy L. Tway, Elizabeth L. Zeitler. Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization. ACS Catalysis 2019, 9 (9) , 7937-7956. https://doi.org/10.1021/acscatal.9b02113
    32. Benjamin R. Walker, Christo S. Sevov. An Electrochemically Promoted, Nickel-Catalyzed Mizoroki–Heck Reaction. ACS Catalysis 2019, 9 (8) , 7197-7203. https://doi.org/10.1021/acscatal.9b02230
    33. Qing-Yuan Meng, Tobias E. Schirmer, Anna Lucia Berger, Karsten Donabauer, Burkhard König. Photocarboxylation of Benzylic C–H Bonds. Journal of the American Chemical Society 2019, 141 (29) , 11393-11397. https://doi.org/10.1021/jacs.9b05360
    34. Liangbin Huang, Laura K. G. Ackerman, Kai Kang, Astrid M. Parsons, Daniel J. Weix. LiCl-Accelerated Multimetallic Cross-Coupling of Aryl Chlorides with Aryl Triflates. Journal of the American Chemical Society 2019, 141 (28) , 10978-10983. https://doi.org/10.1021/jacs.9b05461
    35. Andreu Tortajada, Yaya Duan, Basudev Sahoo, Fei Cong, Georgios Toupalas, Antoine Sallustrau, Olivier Loreau, Davide Audisio, Ruben Martin. Catalytic Decarboxylation/Carboxylation Platform for Accessing Isotopically Labeled Carboxylic Acids. ACS Catalysis 2019, 9 (7) , 5897-5901. https://doi.org/10.1021/acscatal.9b01921
    36. Katsuya Shimomaki, Tomoya Nakajima, Joaquim Caner, Naoyuki Toriumi, Nobuharu Iwasawa. Palladium-Catalyzed Visible-Light-Driven Carboxylation of Aryl and Alkenyl Triflates by Using Photoredox Catalysts. Organic Letters 2019, 21 (12) , 4486-4489. https://doi.org/10.1021/acs.orglett.9b01340
    37. Gabriel M. F. Batista, Ruth Ebenbauer, Craig Day, Jonas Bergare, Karoline T. Neumann, Kathrin H. Hopmann, Charles S. Elmore, Alonso Rosas-Hernández, Troels Skrydstrup. Efficient palladium-catalyzed electrocarboxylation enables late-stage carbon isotope labelling. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-46820-9
    38. Chandani Singh, Jae Young Kim, No-Joong Park, Rajesh Kumar Yadav, Jin-Ook Baeg. Highly effective solar CO 2 fixation via photocatalytic carboxylation of aromatic amines with carbon dioxide over a covalent organic framework (COF) as a photocatalyst. Catalysis Science & Technology 2024, 14 (22) , 6670-6677. https://doi.org/10.1039/D4CY00949E
    39. Maolin Yang, Yukun Liu, Xin Qi, Yanhua Zhao, Xiao-Feng Wu. Carbonylative transformation of aryl halides and strong bonds via cheap metal catalysts and sustainable technologies. Green Synthesis and Catalysis 2024, 5 (4) , 211-269. https://doi.org/10.1016/j.gresc.2024.04.008
    40. Ljiljana Pavlovic, Bjørn Carvalho, Kathrin H. Hopmann. Revisiting the Mechanism of Asymmetric Ni‐Catalyzed Reductive Carbo‐Carboxylation with CO 2 : The Additives Affect the Product Selectivity. Chemistry – A European Journal 2024, 30 (49) https://doi.org/10.1002/chem.202401631
    41. David J. Charboneau, Haotian Huang, Emily L. Barth, Anthony P. Deziel, Cameron C. Germe, Nilay Hazari, Xiaofan Jia, Seoyeon Kim, Sheikh Nahiyan, Leonardo Birriel–Rodriguez, Mycah R. Uehling. Homogeneous organic reductant based on 4,4′- Bu2-2,2′-bipyridine for cross-electrophile coupling. Tetrahedron Letters 2024, 145 , 155159. https://doi.org/10.1016/j.tetlet.2024.155159
    42. Tim Bruckhoff, Joachim Ballmann, Lutz H. Gade. Radicalizing CO by Mononuclear Palladium(I). Angewandte Chemie International Edition 2024, 63 (19) https://doi.org/10.1002/anie.202320064
    43. Tim Bruckhoff, Joachim Ballmann, Lutz H. Gade. Radikalisierung von CO durch einkerniges Palladium(I). Angewandte Chemie 2024, 136 (19) https://doi.org/10.1002/ange.202320064
    44. Craig S. Day. Advances in understanding comproportionation and disproportionation in nickel catalysis. Pure and Applied Chemistry 2024, 96 (3) , 437-446. https://doi.org/10.1515/pac-2024-0106
    45. Dale J. Wilger, Lydia P. Moore, Molly M. Lockart. Ni(I) complexes relevant to synthetic organic catalysis. 2024, 1-69. https://doi.org/10.1016/bs.adomc.2024.06.002
    46. Zhengning Fan, Yaping Yi, Chanjuan Xi. Photoredox/HAT dual-catalyzed carboxylation of benzyl chlorides with CO2 using thiophenolate and formate as reductants. Tetrahedron Green Chem 2023, 2 , 100028. https://doi.org/10.1016/j.tgchem.2023.100028
    47. Craig S. Day, Ruben Martin. Comproportionation and disproportionation in nickel and copper complexes. Chemical Society Reviews 2023, 52 (19) , 6601-6616. https://doi.org/10.1039/D2CS00494A
    48. Sweety Verma, Anshu Sharma, Suman Gahlyan, Manju Rani, Sanjeev Maken. Thermodynamic properties of binary mixtures of 2-chlorotoluene + alkanol at T = 298.15 K to 318.15 K. Journal of Molecular Liquids 2023, 387 , 122709. https://doi.org/10.1016/j.molliq.2023.122709
    49. Haoying Mao, Hongwei Qian, Zhichang He, Zhiguo Zhang, Hongwei Jin, Yunkui Liu, Bingwei Zhou. Nickel-catalyzed divergent formylation and carboxylation of aryl halides with isocyanides. Organic & Biomolecular Chemistry 2023, 21 (16) , 3360-3364. https://doi.org/10.1039/D3OB00327B
    50. Yu‐Ru Ou, Qi Ye, Wei Deng, Zheng‐Yang Xu. Mechanism and Origin of CuH‐Catalyzed Regio‐ and Enantioselective Hydrocarboxylation of Allenes. European Journal of Organic Chemistry 2023, 26 (11) https://doi.org/10.1002/ejoc.202201422
    51. T. Fujihara. 1.9 Base-Metal-Catalyzed Carboxylation Using Carbon Dioxide. 2023https://doi.org/10.1055/sos-SD-238-00166
    52. Linghua Wang, Tao Li, Saima Perveen, Shuai Zhang, Xicheng Wang, Yizhao Ouyang, Pengfei Li. Nickel‐Catalyzed Enantioconvergent Carboxylation Enabled by a Chiral 2,2′‐Bipyridine Ligand. Angewandte Chemie 2022, 134 (51) https://doi.org/10.1002/ange.202213943
    53. Linghua Wang, Tao Li, Saima Perveen, Shuai Zhang, Xicheng Wang, Yizhao Ouyang, Pengfei Li. Nickel‐Catalyzed Enantioconvergent Carboxylation Enabled by a Chiral 2,2′‐Bipyridine Ligand. Angewandte Chemie International Edition 2022, 61 (51) https://doi.org/10.1002/anie.202213943
    54. Tetsuaki Fujihara. Carboxylation with CO2. 2022, 19-61. https://doi.org/10.1039/9781839167645-00019
    55. Abing Duan, Fengjiao Xiao, Yu Lan, Linbin Niu. Mechanistic views and computational studies on transition-metal-catalyzed reductive coupling reactions. Chemical Society Reviews 2022, 51 (24) , 9986-10015. https://doi.org/10.1039/D2CS00371F
    56. Robin Cauwenbergh, Vishakha Goyal, Rakesh Maiti, Kishore Natte, Shoubhik Das. Challenges and recent advancements in the transformation of CO 2 into carboxylic acids: straightforward assembly with homogeneous 3d metals. Chemical Society Reviews 2022, 51 (22) , 9371-9423. https://doi.org/10.1039/D1CS00921D
    57. Ramadevi Pilli, Bincy Chindan, Ramesh Rasappan. Unravelling the Mechanism of Nickel Mediated Cross‐Electrophile‐ Electrophile Coupling Between Katritzky Salts and Acid Chlorides. European Journal of Organic Chemistry 2022, 2022 (42) https://doi.org/10.1002/ejoc.202200985
    58. Shantanu Nandi, Ranjan Jana. Toward Sustainable Photo‐/Electrocatalytic Carboxylation of Organic Substrates with CO 2. Asian Journal of Organic Chemistry 2022, 11 (11) https://doi.org/10.1002/ajoc.202200356
    59. Yanwei Wang, Zhiwei Zhao, Deng Pan, Siyi Wang, Kangping Jia, Dengke Ma, Guoqing Yang, Xiao‐Song Xue, Youai Qiu. Metal‐Free Electrochemical Carboxylation of Organic Halides in the Presence of Catalytic Amounts of an Organomediator. Angewandte Chemie 2022, 134 (41) https://doi.org/10.1002/ange.202210201
    60. Yanwei Wang, Zhiwei Zhao, Deng Pan, Siyi Wang, Kangping Jia, Dengke Ma, Guoqing Yang, Xiao‐Song Xue, Youai Qiu. Metal‐Free Electrochemical Carboxylation of Organic Halides in the Presence of Catalytic Amounts of an Organomediator. Angewandte Chemie International Edition 2022, 61 (41) https://doi.org/10.1002/anie.202210201
    61. Wei Huang, Junyue Lin, Fei Deng, Hong Zhong. Photocatalytic Carboxylation with CO 2 : A Review of Recent Studies. Asian Journal of Organic Chemistry 2022, 11 (7) https://doi.org/10.1002/ajoc.202200220
    62. Tetsuaki Fujihara. Carboxylation with Carbon Dioxide as a C 1 Source via Carbon–Carbon Bond Forming Reactions. 2022, 909-971. https://doi.org/10.1002/9783527831883.ch21
    63. Lorenzo Lombardi, Alessandro Cerveri, Leonardo Ceccon, Riccardo Pedrazzani, Magda Monari, Giulio Bertuzzi, Marco Bandini. Merging C–C σ-bond activation of cyclobutanones with CO 2 fixation via Ni-catalysis. Chemical Communications 2022, 58 (25) , 4071-4074. https://doi.org/10.1039/D2CC00149G
    64. Anthony P. Deziel, Matthew R. Espinosa, Ljiljana Pavlovic, David J. Charboneau, Nilay Hazari, Kathrin H. Hopmann, Brandon Q. Mercado. Ligand and solvent effects on CO 2 insertion into group 10 metal alkyl bonds. Chemical Science 2022, 13 (8) , 2391-2404. https://doi.org/10.1039/D1SC06346D
    65. Clifton L. Wagner, Tianning Diao. Nickel-Carbon σ-Bonded Complexes. 2022, 271-356. https://doi.org/10.1016/B978-0-12-820206-7.00141-4
    66. K. Matsubara. Monovalent Group 10 Organometallic Complexes. 2022, 733-782. https://doi.org/10.1016/B978-0-12-820206-7.00146-3
    67. Hong Zhao, Wei Wang, Hai-Peng Zhang, Yi He, Si-Shun Yan, Da-Gang Yu. Photocatalytic carboxylation with CO2. 2022, 95-150. https://doi.org/10.1016/bs.acat.2022.06.003
    68. Kouki Matsubara. Well‐Defined NHC−Ni Complexes as Catalysts: Preparation, Structures and Mechanistic Studies in Cross‐Coupling Reactions. The Chemical Record 2021, 21 (12) , 3925-3942. https://doi.org/10.1002/tcr.202100204
    69. Yifan Shao, Wan Nie, Chengyu Yao, Lina Ye, Haizhu Yu. DFT insights into the Ni-catalyzed regioselective hydrocarboxylation of unsaturated alkenes with CO 2. Dalton Transactions 2021, 50 (42) , 15084-15093. https://doi.org/10.1039/D1DT02486H
    70. Jacob Davies, Julien R. Lyonnet, Dmitry P. Zimin, Ruben Martin. The road to industrialization of fine chemical carboxylation reactions. Chem 2021, 7 (11) , 2927-2942. https://doi.org/10.1016/j.chempr.2021.10.016
    71. Nathan Corbin, Deng-Tao Yang, Nikifar Lazouski, Katherine Steinberg, Karthish Manthiram. Suppressing carboxylate nucleophilicity with inorganic salts enables selective electrocarboxylation without sacrificial anodes. Chemical Science 2021, 12 (37) , 12365-12376. https://doi.org/10.1039/D1SC02413B
    72. Suman Pradhan, Sourav Roy, Basudev Sahoo, Indranil Chatterjee. Utilization of CO 2 Feedstock for Organic Synthesis by Visible‐Light Photoredox Catalysis. Chemistry – A European Journal 2021, 27 (7) , 2254-2269. https://doi.org/10.1002/chem.202003685
    73. Cong Liu. Theoretical research on the direct carboxylation of benzene with CO 2 catalyzed by different carbene‐CuOH compounds. Journal of Physical Organic Chemistry 2021, 34 (2) https://doi.org/10.1002/poc.4137
    74. Péter Pál Fehér, Ferenc Joó, Gábor Papp, Mihály Purgel. Hydrogenation of Cinnamaldehyde by Water‐Soluble Ruthenium(II) Phosphine Complexes: A DFT Study on the Selectivity and Viability of trans ‐Dihydride Pathways. European Journal of Inorganic Chemistry 2021, 2021 (3) , 236-242. https://doi.org/10.1002/ejic.202000933
    75. Yanan Dong, Peiju Yang, Shizhen Zhao, Yuehui Li. Reductive cyanation of organic chlorides using CO2 and NH3 via Triphos–Ni(I) species. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-17939-2
    76. Yanwei Wang, Xiaomei Jiang, Baiquan Wang. Cobalt-catalyzed carboxylation of aryl and vinyl chlorides with CO 2. Chemical Communications 2020, 56 (92) , 14416-14419. https://doi.org/10.1039/D0CC06451C
    77. Xiao-Tong Gao, Zheng Zhang, Xin Wang, Jun-Song Tian, Shi-Liang Xie, Feng Zhou, Jian Zhou. Direct electrochemical defluorinative carboxylation of α-CF 3 alkenes with carbon dioxide. Chemical Science 2020, 11 (38) , 10414-10420. https://doi.org/10.1039/D0SC04091F
    78. Bangaru Bhaskararao, Dong Yeon Kim, Jenica Marie L. Madridejos, Cheol-Min Park, Kwang S. Kim. Rational design of metal–ligands for the conversion of CH 4 and CO 2 to acetates: role of acids and Lewis acids. Journal of Materials Chemistry A 2020, 8 (29) , 14671-14679. https://doi.org/10.1039/D0TA04002A
    79. Aske S. Donslund, Simon S. Pedersen, Cecilie Gaardbo, Karoline T. Neumann, Lee Kingston, Charles S. Elmore, Troels Skrydstrup. Direct Access to Isotopically Labeled Aliphatic Ketones Mediated by Nickel(I) Activation. Angewandte Chemie 2020, 132 (21) , 8176-8180. https://doi.org/10.1002/ange.201916391
    80. Aske S. Donslund, Simon S. Pedersen, Cecilie Gaardbo, Karoline T. Neumann, Lee Kingston, Charles S. Elmore, Troels Skrydstrup. Direct Access to Isotopically Labeled Aliphatic Ketones Mediated by Nickel(I) Activation. Angewandte Chemie International Edition 2020, 59 (21) , 8099-8103. https://doi.org/10.1002/anie.201916391
    81. Xiangying Lv, Xiaotian Zhang, Rongjian Sa, Fang Huang, Gang Lu. Computational exploration of substrate and ligand effects in nickel-catalyzed C–Si bond carboxylation with CO 2. Organic Chemistry Frontiers 2019, 6 (21) , 3629-3635. https://doi.org/10.1039/C9QO00854C
    82. Justin B. Diccianni, Chunhua T. Hu, Tianning Diao. Insertion of CO 2 Mediated by a (Xantphos)Ni I –Alkyl Species. Angewandte Chemie 2019, 131 (39) , 14003-14006. https://doi.org/10.1002/ange.201906005
    83. Justin B. Diccianni, Chunhua T. Hu, Tianning Diao. Insertion of CO 2 Mediated by a (Xantphos)Ni I –Alkyl Species. Angewandte Chemie International Edition 2019, 58 (39) , 13865-13868. https://doi.org/10.1002/anie.201906005
    84. Tapan Sahoo, Chiranjit Sen, Harshvardhan Singh, E. Suresh, Subhash Chandra Ghosh. Copper‐Catalyzed C‐4 Carboxylation of 1‐Naphthylamide Derivatives with CBr 4 /MeOH. Advanced Synthesis & Catalysis 2019, 361 (17) , 3950-3957. https://doi.org/10.1002/adsc.201900482
    85. Kouki Matsubara, Takahiro Fujii, Rion Hosokawa, Takahiro Inatomi, Yuji Yamada, Yuji Koga. Fluorine-Substituted Arylphosphine for an NHC-Ni(I) System, Air-Stable in a Solid State but Catalytically Active in Solution. Molecules 2019, 24 (18) , 3222. https://doi.org/10.3390/molecules24183222
    86. Basudev Sahoo, Peter Bellotti, Francisco Juliá‐Hernández, Qing‐Yuan Meng, Stefano Crespi, Burkhard König, Ruben Martin. Site‐Selective, Remote sp 3 C−H Carboxylation Enabled by the Merger of Photoredox and Nickel Catalysis. Chemistry – A European Journal 2019, 25 (38) , 9001-9005. https://doi.org/10.1002/chem.201902095

    ACS Catalysis

    Cite this: ACS Catal. 2019, 9, 4, 3228–3241
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acscatal.9b00566
    Published March 14, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    7541

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.