ACS Publications. Most Trusted. Most Cited. Most Read
The Role of Ru in Improving the Activity of Pd toward Hydrogen Evolution and Oxidation Reactions in Alkaline Solutions
My Activity
    Research Article

    The Role of Ru in Improving the Activity of Pd toward Hydrogen Evolution and Oxidation Reactions in Alkaline Solutions
    Click to copy article linkArticle link copied!

    • Xueping Qin
      Xueping Qin
      Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
      More by Xueping Qin
    • Lulu Zhang
      Lulu Zhang
      Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
      More by Lulu Zhang
    • Gui-Liang Xu
      Gui-Liang Xu
      Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
      More by Gui-Liang Xu
    • Shangqian Zhu
      Shangqian Zhu
      Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
    • Qi Wang
      Qi Wang
      Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
      More by Qi Wang
    • Meng Gu
      Meng Gu
      Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
      More by Meng Gu
    • Xiaoyi Zhang
      Xiaoyi Zhang
      X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
      More by Xiaoyi Zhang
    • Chengjun Sun
      Chengjun Sun
      X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
      More by Chengjun Sun
    • Perla B. Balbuena
      Perla B. Balbuena
      Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
    • Khalil Amine
      Khalil Amine
      Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
      Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
      IRMC, Imam Abdulrahman Bin Faisal University (IAU), Dammam 34212, Saudi Arabia
      More by Khalil Amine
    • Minhua Shao*
      Minhua Shao
      Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
      *E-mail: [email protected]
      More by Minhua Shao
    Other Access OptionsSupporting Information (1)

    ACS Catalysis

    Cite this: ACS Catal. 2019, 9, 10, 9614–9621
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acscatal.9b01744
    Published September 13, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Improving the reaction kinetics of hydrogen evolution and oxidation reactions (HER/HOR) in alkaline media is critical to promote the development of alkaline fuel cells and electrolyzers. Here, we prepared Pd3Ru alloy nanocatalysts with Ru segregated on the surfaces, forming adatoms and clusters. This structure dramatically lowered the overpotential of Pd toward HER in 1 M KOH by 104 mV at 10 mA cm–2. The HER activity was even higher than that of Pt (6 mV improvement at 10 mA cm–2). Theoretical simulation results revealed that Ru adatoms/clusters on the surface could weaken the hydrogen-binding energy and promote the OH adsorption, consequently lowering the reaction barrier of the rate-determining step in HER. Our findings are of significance for clarifying the role of Ru in bimetallic catalysts and rational design of more active catalysts for HER/HOR.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.9b01744.

    • Polarization curves of Pd3Ru under various temperatures, TEM image of Pd3Ru/C, Pd/C, Pd–Ru/C random alloy, and Ru/C, EDS map, XPS spectrum, cyclic voltammogram of Pd3Ru/C and Pd/C in acidic solutions, HAADF-STEM image and EDS maps of Pd@Ru/C, specific activity measurements, DFT models and tables (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 129 publications.

    1. Xuan Wu, Yubing Jiao, Chao Jia, Liming Sun, Fengbo Yu, Litao Lin, Jie Gao, Tao Teng, Zhelin He, Aodi Li, Shicheng Zhang, Jinguang Yang, Shaobin Wang, Xiangdong Zhu. Joule Heating-Induced Active Mg0 into Nano-Mg Composites for Boosted Oxidation and Antiviral Performance. ACS ES&T Engineering 2024, 4 (6) , 1302-1311. https://doi.org/10.1021/acsestengg.3c00614
    2. Weiwei Zhang, Yongzhi Zhao, Jiali Xu, Baorui Jia, Wujun Zhang, Mingli Qin. Guided Design of Efficient Oxygen Evolution Catalysts Using Patent Analysis. ACS Omega 2024, 9 (16) , 18160-18168. https://doi.org/10.1021/acsomega.3c10195
    3. Su-Hyun Yoo, Leonardo Shoji Aota, Sangyong Shin, Ayman A. El-Zoka, Phil Woong Kang, Yonghyuk Lee, Hyunjoo Lee, Se-Ho Kim, Baptiste Gault. Dopant Evolution in Electrocatalysts after Hydrogen Oxidation Reaction in an Alkaline Environment. ACS Energy Letters 2023, 8 (8) , 3381-3386. https://doi.org/10.1021/acsenergylett.3c00842
    4. Yiwen Li, Ligang Feng. Recent Advances and Perspectives in Ru Hybrid Electrocatalysts for the Hydrogen Evolution Reaction. Energy & Fuels 2023, 37 (12) , 8079-8098. https://doi.org/10.1021/acs.energyfuels.3c00749
    5. Jiayao Fan, Bingxue Liu, Mingyu Chen, Xianzeng Li, Dongdong Xu, Yue Lin, Xiangxing Xu, Naien Shi, Jianchun Bao, Min Han. Ultrasmall PdCuMo Nanoparticle Assemblies for Hydrogen Evolution. ACS Applied Nano Materials 2023, 6 (1) , 305-314. https://doi.org/10.1021/acsanm.2c04413
    6. Xiaoshu Lv, Kanxin Jiang, Hong Wu, Liang Ao, Lin Hu, Xiaoyu Li, Fei Shen, Li Shi, Fan Dong, Guangming Jiang. Defective Layered Double Hydroxide Nanosheet Boosts Electrocatalytic Hydrodechlorination Reaction on Supported Palladium Nanoparticles. ACS ES&T Water 2022, 2 (8) , 1451-1460. https://doi.org/10.1021/acsestwater.2c00205
    7. Pan-Yue Wang, Jia-Feng Zhou, Hui Chen, Bo Peng, Kun Zhang. Activation of H2O Tailored by Interfacial Electronic States at a Nanoscale Interface for Enhanced Electrocatalytic Hydrogen Evolution. JACS Au 2022, 2 (6) , 1457-1471. https://doi.org/10.1021/jacsau.2c00187
    8. Jiafen Zheng, Jiaxi Zhang, Longhai Zhang, Weifeng Zhang, Xiujun Wang, Zhiming Cui, Huiyu Song, Zhenxing Liang, Li Du. Ultrafast Carbothermal Shock Constructing Ni3Fe1–xCrx Intermetallic Integrated Electrodes for Efficient and Durable Overall Water Splitting. ACS Applied Materials & Interfaces 2022, 14 (17) , 19524-19533. https://doi.org/10.1021/acsami.2c02559
    9. Ze-Cheng Yao, Tang Tang, Zhe Jiang, Lu Wang, Jin-Song Hu, Li-Jun Wan. Electrocatalytic Hydrogen Oxidation in Alkaline Media: From Mechanistic Insights to Catalyst Design. ACS Nano 2022, 16 (4) , 5153-5183. https://doi.org/10.1021/acsnano.2c00641
    10. Yao Yang, Cheyenne R. Peltier, Rui Zeng, Roberto Schimmenti, Qihao Li, Xin Huang, Zhifei Yan, Georgia Potsi, Ryan Selhorst, Xinyao Lu, Weixuan Xu, Mariel Tader, Alexander V. Soudackov, Hanguang Zhang, Mihail Krumov, Ellen Murray, Pengtao Xu, Jeremy Hitt, Linxi Xu, Hsin-Yu Ko, Brian G. Ernst, Colin Bundschu, Aileen Luo, Danielle Markovich, Meixue Hu, Cheng He, Hongsen Wang, Jiye Fang, Robert A. DiStasio, Jr., Lena F. Kourkoutis, Andrej Singer, Kevin J. T. Noonan, Li Xiao, Lin Zhuang, Bryan S. Pivovar, Piotr Zelenay, Enrique Herrero, Juan M. Feliu, Jin Suntivich, Emmanuel P. Giannelis, Sharon Hammes-Schiffer, Tomás Arias, Manos Mavrikakis, Thomas E. Mallouk, Joel D. Brock, David A. Muller, Francis J. DiSalvo, Geoffrey W. Coates, Héctor D. Abruña. Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews 2022, 122 (6) , 6117-6321. https://doi.org/10.1021/acs.chemrev.1c00331
    11. Qianqian Zhao, Chao Meng, Deqiang Kong, Yanmin Wang, Han Hu, Xuemin Chen, Ye Han, Xiaodong Chen, Yue Zhou, Mengchang Lin, Mingbo Wu. In Situ Construction of Nickel Sulfide Nano-Heterostructures for Highly Efficient Overall Urea Electrolysis. ACS Sustainable Chemistry & Engineering 2021, 9 (46) , 15582-15590. https://doi.org/10.1021/acssuschemeng.1c05722
    12. Yufei Zhao, Kaixin Zhang, Yongjia Li, Cheng Li, Rui Zhao, Yingjie Ji, Yifan Meng, Tianrui Hu, Hao Wang, Zhiyu Yang, Yi-Ming Yan. Enhanced Electrocatalytic Oxidation of Formate via Introducing Surface Reactive Oxygen Species to a CeO2 Substrate. ACS Applied Materials & Interfaces 2021, 13 (43) , 51643-51651. https://doi.org/10.1021/acsami.1c12637
    13. Yun Qiao, Chaoji Chen, Yang Liu, Yifan Liu, Qi Dong, Yonggang Yao, Xizheng Wang, Yuyan Shao, Chao Wang, Liangbing Hu. Continuous Fly-Through High-Temperature Synthesis of Nanocatalysts. Nano Letters 2021, 21 (11) , 4517-4523. https://doi.org/10.1021/acs.nanolett.0c03620
    14. Jiaxuan Fan, Haoxuan Du, Yin Zhao, Qian Wang, Yanan Liu, Dianqing Li, Junting Feng. Recent Progress on Rational Design of Bimetallic Pd Based Catalysts and Their Advanced Catalysis. ACS Catalysis 2020, 10 (22) , 13560-13583. https://doi.org/10.1021/acscatal.0c03280
    15. Yuanmeng Zhao, Xuewei Wang, Gongzhen Cheng, Wei Luo. Phosphorus-Induced Activation of Ruthenium for Boosting Hydrogen Oxidation and Evolution Electrocatalysis. ACS Catalysis 2020, 10 (20) , 11751-11757. https://doi.org/10.1021/acscatal.0c03148
    16. Ying Feng, Wei An, Fuming Gao, Tongjun Shen, Yizhang Du, Zhaolong Ding, Tuo Yang, Chunxia Wang, Guoyong Huang, Tiantian Cao, Yuanhua Zhang, Shengming Xu. Ru-doped Mo2C grown on coconut shell derived 3D hierarchical carbon as robust electrocatalysts for hydrogen evolution reaction. Fuel 2025, 379 , 133085. https://doi.org/10.1016/j.fuel.2024.133085
    17. Fangxu Lin, Heng Luo, Lu Li, Fan Lv, Yanyan Chen, Qinghua Zhang, Xiaocang Han, Dawei Wang, Menggang Li, Yan Luo, Kai Wang, Lin Gu, Qian Wang, Xiaoxu Zhao, Mingchuan Luo, Shaojun Guo. Synthesis of isolated Ru–O3 sites on hexagonal close-packed intermetallic penta-metallene for hydrogen oxidation electrocatalysis. Nature Synthesis 2024, 11 https://doi.org/10.1038/s44160-024-00685-4
    18. Jian Guo, Rui Ding, Yi Li, Jinmei Xie, Qi Fang, Miao Yan, Yuzhen Zhang, Ziyang Yan, Zhiqiang Chen, Yuming He, Xiujuan Sun, Enhui Liu. Semi‐Ionic F Modified N‐Doped Porous Carbon Implanted with Ruthenium Nanoclusters toward Highly Efficient pH‐Universal Hydrogen Generation. Small 2024, 20 (43) https://doi.org/10.1002/smll.202403151
    19. Liming Li, Peng Kang, Donghui Feng, Yuguang Zhang, Hangxing Ren, Yanchang Liu, Xiaoya Cui. High temperature liquid shock manufacturing of RuNi catalysts for hydrogen evolution reaction. Progress in Natural Science: Materials International 2024, 34 (5) , 985-989. https://doi.org/10.1016/j.pnsc.2024.07.012
    20. Yanran Xun, Hongmei Jin, Yuemeng Li, Shixiang Zhou, Kaixi Zhang, Xi Xu, Win Jonhson, Shuai Chang, Teck Leong Tan, Jun Ding. 3D ‐Printed Monolith Metallic Ni–Mo Electrodes for Ultrahigh Current Hydrogen Evolution. ENERGY & ENVIRONMENTAL MATERIALS 2024, 7 (5) https://doi.org/10.1002/eem2.12714
    21. Dingjie Pan, Qiming Liu, Bingzhe Yu, Davida Briana DuBois, John Tressel, Sarah Yu, Noah Kaleekal, Sophia Trabanino, Yillin Jeon, Frank Bridges, Shaowei Chen. Rapid Synthesis of Ruthenium–Copper Nanocomposites as High‐Performance Bifunctional Electrocatalysts for Electrochemical Water Splitting. Small 2024, 119 https://doi.org/10.1002/smll.202404729
    22. Jing Wang, Yuzhe Cao, Mingyang Wei, Pengbo Xiang, Xiaoqing Ma, Xiaolei Yuan, Yong Xiang, Zhao Cai. Boosting the Hydrogen Evolution Performance of Ultrafine Ruthenium Electrocatalysts by a Hierarchical Phosphide Array Promoter. Catalysts 2024, 14 (8) , 491. https://doi.org/10.3390/catal14080491
    23. Lin Wang, Yue Chen, Yingnan Liu, Qizhou Dai, Zhengfei Chen, Xiaoxuan Yang, Yansong Luo, Zhongjian Li, Bin Yang, Menglian Zheng, Lecheng Lei, Yang Hou. Electron Redistribution of Ru Site on MoO 2 @NiMoO 4 Support for Efficient Ampere‐Level Current Density Electrolysis of Alkaline Seawater. Small 2024, 20 (33) https://doi.org/10.1002/smll.202311477
    24. Yifan Zheng, Yu Wang, Seemal Mansoor, Zixu Hu, Yuxin Zhang, Yongdi Liu, Liang Zhou, Juying Lei, Jinlong Zhang. Tuning Electrons Migration of Dual S Defects Mediated MoS 2‐x/ ZnIn 2 S 4‐x Toward Highly Efficient Photocatalytic Hydrogen Production. Small 2024, 20 (33) https://doi.org/10.1002/smll.202311725
    25. Ranran Tang, Ping Yan, Yitong Zhou, Xin-Yao Yu. Sulfur-regulated metal–support interaction boosting the hydrogen evolution performance of Ru clusters in seawater at industrial current densities. EES Catalysis 2024, 2 (4) , 932-940. https://doi.org/10.1039/D4EY00076E
    26. Shangqian Zhu, Xuezhao Liu, Xuesi Wang, Qinglan Zhao, Minhua Shao. Some remaining puzzles in hydrogen electrocatalysis mechanisms on platinum surfaces. Joule 2024, 8 (7) , 1890-1918. https://doi.org/10.1016/j.joule.2024.06.002
    27. Youze Zeng, Xue Wang, Yang Hu, Wei Qi, Zhuoqi Wang, Meiling Xiao, Changpeng Liu, Wei Xing, Jianbing Zhu. Research progress of electrocatalysts for hydrogen oxidation reaction in alkaline media. Carbon Neutralization 2024, 3 (4) , 710-736. https://doi.org/10.1002/cnl2.152
    28. Yujun Guo, Zhengyang Liu, Dingyang Zhou, Mengyang Zhang, Yue Zhang, Runze Li, Suli Liu, Dingsheng Wang, Zhihui Dai. Competition and synergistic effects of Ru-based single-atom and cluster catalysts in electrocatalytic reactions. Science China Materials 2024, 67 (6) , 1706-1720. https://doi.org/10.1007/s40843-023-2776-5
    29. Muhammad Nazim Lakhan, Abdul Hanan, Altaf Hussain, Irfan Ali Soomro, Yuan Wang, Mukhtiar Ahmed, Umair Aftab, Hongyu Sun, Hamidreza Arandiyan. Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives. Chemical Communications 2024, 60 (39) , 5104-5135. https://doi.org/10.1039/D3CC06015B
    30. Lianming Zhao, Yuchao Zhen, Liwei Zhu, Yanfu Tong, Tao Wang, Meixin Lin, Zhenyu Huang, Wei Xing, Jing Xu. Single-metal-atom-anchored RuN2 monolayers: A high-performance electrocatalyst for alkaline hydrogen oxidation reactions. Applied Surface Science 2024, 654 , 159448. https://doi.org/10.1016/j.apsusc.2024.159448
    31. Shunyi He, Yuanhua Tu, Jiaxi Zhang, Longhai Zhang, Jun Ke, Liming Wang, Li Du, Zhiming Cui, Huiyu Song. Ammonia‐Induced FCC Ru Nanocrystals for Efficient Alkaline Hydrogen Electrocatalysis. Small 2024, 20 (15) https://doi.org/10.1002/smll.202308053
    32. Peng Zhang, Shiyu Xu, Zhengyang Li, Zongfu An, Ho Seok Park, Ji Man Kim, Pil J. Yoo. Enhanced alkaline hydrogen evolution performance through Ru-Incorporated electronic structure Modification: Transitioning from Mo3P to Mo2RuP. Chemical Engineering Journal 2024, 485 , 149486. https://doi.org/10.1016/j.cej.2024.149486
    33. Christian M. Schott, Peter M. Schneider, Kais Sadraoui, Kun‐Ting Song, Batyr Garlyyev, Sebastian A. Watzele, Jan Michalička, Jan M. Macak, Arnaud Viola, Frédéric Maillard, Anatoliy Senyshyn, Johannes A. Fischer, Aliaksandr S. Bandarenka, Elena L. Gubanova. Top‐down Surfactant‐Free Synthesis of Supported Palladium‐Nanostructured Catalysts. Small Science 2024, 4 (3) https://doi.org/10.1002/smsc.202300241
    34. Yuanyuan Cong, Haibin Wang, Mengling Liu, Junying Tian. Latest progresses of Ru-based catalysts for alkaline hydrogen oxidation reaction: From mechanism to application. Applied Catalysis A: General 2024, 6 , 119684. https://doi.org/10.1016/j.apcata.2024.119684
    35. Yun Tong, Pengzuo Chen. Nanostructure engineering of ruthenium-modified electrocatalysts for efficient electrocatalytic water splitting. Journal of Materials Chemistry A 2024, 12 (7) , 3844-3878. https://doi.org/10.1039/D3TA07230D
    36. Youkai Feng, Siguang Lu, Luhong Fu, Fulin Yang, Ligang Feng. Alleviating the competitive adsorption of hydrogen and hydroxyl intermediates on Ru by d–p orbital hybridization for hydrogen electrooxidation. Chemical Science 2024, 15 (6) , 2123-2132. https://doi.org/10.1039/D3SC05387C
    37. Pengyu Han, Xinyi Yang, Liqing Wu, Hongnan Jia, Jingchao Chen, Wenwen Shi, Gongzhen Cheng, Wei Luo. A Highly‐Efficient Boron Interstitially Inserted Ru Anode Catalyst for Anion Exchange Membrane Fuel Cells. Advanced Materials 2024, 36 (5) https://doi.org/10.1002/adma.202304496
    38. Yunyun Ao, Xinyi Ling, Jinyu Zheng, Min Han, Dongdong Xu. Effective PdPtMoCrCoNi alloy nanosheets boost electrocatalytic activity and stability for ethylene glycol oxidation. Surfaces and Interfaces 2024, 45 , 103928. https://doi.org/10.1016/j.surfin.2024.103928
    39. Huafan Li, Weijia Han, Tianli Zhu, Ligong Chen, Luis Ricardez-Sandoval, Guoyi Bai. Fabrication of NiTi-MMO supported on in-situ generated TiO2 for dioctyl phthalate hydrogenation: A strategy for improving the utilization efficiency of Ni. Molecular Catalysis 2024, 554 , 113847. https://doi.org/10.1016/j.mcat.2024.113847
    40. Ranran Tang, Yu Yang, Yitong Zhou, Xin‐Yao Yu. Rational Design of Heterostructured Ru Cluster‐Based Catalyst for pH Universal Hydrogen Evolution Reaction and High‐Performance Zn‐H 2 O Battery. Advanced Functional Materials 2024, 34 (5) https://doi.org/10.1002/adfm.202301925
    41. Jin-Tao Ren, Lei Chen, Hao-Yu Wang, Yi Feng, Zhong-Yong Yuan. Hydrogen oxidation electrocatalysts for anion-exchange membrane fuel cells: activity descriptors, stability regulation, and perspectives. Energy & Environmental Science 2024, 1 https://doi.org/10.1039/D3EE04251K
    42. Sina Hejazi, Sadegh Pour-Ali, Ali Kosari, Nastaran Farahbakhsh, Manuela S. Killian, Shiva Mohajernia. In situ Pt single-atom trapping on TiO 2 nanotubes via ultrasonication: a one-pot approach to produce active electrodes for electrocatalytic H 2 evolution. Sustainable Energy & Fuels 2024, 414 https://doi.org/10.1039/D4SE01214C
    43. Juntao Zhang, Xiaozhi Liu, Yujin Ji, Xuerui Liu, Dong Su, Zhongbin Zhuang, Yu-Chung Chang, Chih-Wen Pao, Qi Shao, Zhiwei Hu, Xiaoqing Huang. Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-37406-y
    44. Junhui Hu, Bai Xu, Jiabin Xu, Shuo Li, Zhonghu Liu, Cheng Lu, Yong Feng, Kun Feng, Jun Zhong. Electrocatalysis induced reconstruction of RuNiPO for highly efficient hydrogen evolution reaction. Journal of Energy Chemistry 2023, 87 , 24-31. https://doi.org/10.1016/j.jechem.2023.08.025
    45. Yasemin Aykut, Ayşe Bayrakçeken Yurtcan. Nanostructured electrocatalysts for low-temperature water splitting: A review. Electrochimica Acta 2023, 471 , 143335. https://doi.org/10.1016/j.electacta.2023.143335
    46. Kefeng Xie, Kai Xu, Mingqiang Liu, Xiaohong Song, Shengyuan Xu, Huayan Si. Catalysts for selective hydrogenation of acetylene: A review. Materials Today Catalysis 2023, 3 , 100029. https://doi.org/10.1016/j.mtcata.2023.100029
    47. Qiqi Mao, Xu Mu, Kai Deng, Hongjie Yu, Ziqiang Wang, You Xu, Xiaonian Li, Liang Wang, Hongjing Wang. Multisite Synergism‐Induced Electron Regulation of High‐Entropy Alloy Metallene for Boosting Alkaline Hydrogen Evolution Reaction. Advanced Functional Materials 2023, 33 (42) https://doi.org/10.1002/adfm.202304963
    48. Lin Wang, Yingnan Liu, Zhengfei Chen, Qizhou Dai, Chung-Li Dong, Bin Yang, Zhongjian Li, Xiaobing Hu, Lecheng Lei, Yang Hou. Theory-guided design of electron-deficient ruthenium cluster for ampere-level current density electrochemical hydrogen evolution. Nano Energy 2023, 115 , 108694. https://doi.org/10.1016/j.nanoen.2023.108694
    49. Hui Li, Zheng Hu, Yu Zhang, Wenbo Zhao, Yuyao Zeng, Wei Zhou, Shi Hu. Temperature-driven phase transformation and element segregation in Pd-Ru immiscible alloy nanoparticles: Spatial resolving of elements and insights for electrocatalysis. Nano Research 2023, 16 (7) , 9968-9976. https://doi.org/10.1007/s12274-023-5484-6
    50. Mingxiu Duan, Tie Shu, Jingwei Li, Daliang Zhang, Li-Yong Gan, Ke Xin Yao, Qiang Yuan. Boosting alkaline hydrogen evolution performance by constructing ultrasmall Ru clusters/Na+, K+-decorated porous carbon composites. Nano Research 2023, 16 (7) , 8836-8844. https://doi.org/10.1007/s12274-023-5558-5
    51. Yuge Cao, Song Liang, Ya Yan, Wujie Dong, Chenlong Dong, Wangshu Zheng, Shuying Nong, Fuqiang Huang. Unique sandwich structure of Ru@TiO 2 : salicylic acid micro-etching from K 2 Ti 2 O 5 and high-performance electrocatalytic hydrogen evolution. Inorganic Chemistry Frontiers 2023, 10 (13) , 3852-3859. https://doi.org/10.1039/D3QI00615H
    52. Xinlai Zhang, Xian He, Cheng Wang, Zeqiang Fan, Bingchen Li, Peng Du, Ruyue Wang, Hujiang Yang, Yonggang Wang, Ruiming Zhang, Kai Huang, Haolin Tang. Facile synthesis of Mn/RuO2 nanosheets for high-performance acidic oxygen evolution reaction. Materials Letters 2023, 340 , 134187. https://doi.org/10.1016/j.matlet.2023.134187
    53. Hee Jin Kim, Eunseo Hong, Yonghoon Hong, Jeonghyeon Kim, Mrinal Kanti Kabiraz, Young-Min Kim, Hangil Lee, Won Seok Seo, Sang-Il Choi. Surface distortion of FeRu nanoparticles improves the hydrogen evolution reaction performance in alkaline media. Nanoscale 2023, 15 (12) , 5816-5824. https://doi.org/10.1039/D2NR05881B
    54. Ricardo Sgarbi, Huong Doan, Vincent Martin, Marian Chatenet. Tailoring the Durability of Carbon-Coated Pd Catalysts Towards Hydrogen Oxidation Reaction (HOR) in Alkaline Media. Electrocatalysis 2023, 14 (2) , 267-278. https://doi.org/10.1007/s12678-022-00794-8
    55. Caroline J. Rupp, Jonas Anversa, Rogério J. Baierle. First principles of Si-doped BC2N single layer for hydrogen evolution reaction (HER). International Journal of Hydrogen Energy 2023, 48 (20) , 7294-7304. https://doi.org/10.1016/j.ijhydene.2022.11.203
    56. Zhandong Ren, Hucheng Jiang, Min Yuan, Zhiqiang Xie, Li Deng, Juanjuan Han, Kangjie Lyu, Yuchan Zhu, Xiao Li, Lin Zhuang. Si regulation of hydrogen adsorption on nanoporous PdSi hybrids towards enhancing electrochemical hydrogen evolution activity. Inorganic Chemistry Frontiers 2023, 10 (4) , 1101-1111. https://doi.org/10.1039/D2QI02182J
    57. Huajie Niu, Qingyan Wang, Chuanxue Huang, Mengyang Zhang, Yu Yan, Tong Liu, Wei Zhou. Noble Metal-Based Heterogeneous Catalysts for Electrochemical Hydrogen Evolution Reaction. Applied Sciences 2023, 13 (4) , 2177. https://doi.org/10.3390/app13042177
    58. Lixin Su, Yiming Jin, Dan Gong, Xin Ge, Wei Zhang, Xinran Fan, Wei Luo. The Role of Discrepant Reactive Intermediates on Ru‐Ru 2 P Heterostructure for pH‐Universal Hydrogen Oxidation Reaction. Angewandte Chemie 2023, 135 (2) https://doi.org/10.1002/ange.202215585
    59. Lixin Su, Yiming Jin, Dan Gong, Xin Ge, Wei Zhang, Xinran Fan, Wei Luo. The Role of Discrepant Reactive Intermediates on Ru‐Ru 2 P Heterostructure for pH‐Universal Hydrogen Oxidation Reaction. Angewandte Chemie International Edition 2023, 62 (2) https://doi.org/10.1002/anie.202215585
    60. Jiexin Chen, Xingxin Luo, Hanwen Zhang, Xianxi Liang, Kang Xiao, Ting Ouyang, Meng Dan, Zhao-Qing Liu. Constructing superhydrophilic CoRu-LDH/PANI nanowires with optimized electronic structure for hydrogen evolution reaction. Electrochimica Acta 2023, 439 , 141711. https://doi.org/10.1016/j.electacta.2022.141711
    61. An Pei, Guang Li, Lihua Zhu, Zinan Huang, Jinyu Ye, Yu‐Chung Chang, Sameh M. Osman, Chih‐Wen Pao, Qingsheng Gao, Bing Hui Chen, Rafael Luque. Nickel Hydroxide‐Supported Ru Single Atoms and Pd Nanoclusters for Enhanced Electrocatalytic Hydrogen Evolution and Ethanol Oxidation. Advanced Functional Materials 2022, 32 (51) https://doi.org/10.1002/adfm.202208587
    62. Si-Yue Ma, Tao Ma, Qi Hu, Heng-Pan Yang, Chuan-Xin He. Ternary PtRuTe alloy nanofibers as an efficient and durable electrocatalyst for hydrogen oxidation reaction in alkaline media. Science China Materials 2022, 65 (12) , 3462-3469. https://doi.org/10.1007/s40843-022-2089-6
    63. Jiadong Chen, Chunhong Chen, Minkai Qin, Ben Li, Binbin Lin, Qing Mao, Hongbin Yang, Bin Liu, Yong Wang. Reversible hydrogen spillover in Ru-WO3-x enhances hydrogen evolution activity in neutral pH water splitting. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-33007-3
    64. Wenhui Luo, Yang Wang, Liuxiong Luo, Shen Gong, Yixuan Li, Xueping Gan. Constructing a bifunctional catalyst with both high entropy alloy nanoparticles and Janus multi-principal alloy nanoparticles for high-performance overall water splitting. Applied Surface Science 2022, 606 , 154808. https://doi.org/10.1016/j.apsusc.2022.154808
    65. Liwen Ni, Zhen Zhang, Zhiliang Zhao, Hui Li. Hierarchical macro-mesoporous electrocatalysts with dual-active sites of Ru single atoms and monodispersed Ru–Mo nanoclusters for efficient hydrogen evolution. Materials Today Chemistry 2022, 26 , 101046. https://doi.org/10.1016/j.mtchem.2022.101046
    66. Yaxiong Yang, Peng Li, Xiaobo Zheng, Wenping Sun, Shi Xue Dou, Tianyi Ma, Hongge Pan. Anion-exchange membrane water electrolyzers and fuel cells. Chemical Society Reviews 2022, 51 (23) , 9620-9693. https://doi.org/10.1039/D2CS00038E
    67. Xiaoyu (Baohua) Zhang, Xuezhang Xiao, Jian Chen, Yongfeng Liu, Hongge Pan, Wenping Sun, Mingxia Gao. Toward the fast and durable alkaline hydrogen oxidation reaction on ruthenium. Energy & Environmental Science 2022, 15 (11) , 4511-4526. https://doi.org/10.1039/D2EE02216H
    68. Xianjun Cao, Juanjuan Huo, Lu Li, Junpeng Qu, Yufei Zhao, Weihua Chen, Chuntai Liu, Hao Liu, Guoxiu Wang. Recent Advances in Engineered Ru‐Based Electrocatalysts for the Hydrogen/Oxygen Conversion Reactions. Advanced Energy Materials 2022, 12 (41) https://doi.org/10.1002/aenm.202202119
    69. Yanjun Chen, Jing Li, Ning Wang, Yanan Zhou, Jian Zheng, Wei Chu. Plasma-assisted highly dispersed Pt single atoms on Ru nanoclusters electrocatalyst for pH-universal hydrogen evolution. Chemical Engineering Journal 2022, 448 , 137611. https://doi.org/10.1016/j.cej.2022.137611
    70. Hojung Ahn, Sanghyuk Cho, Jung Tae Park, Hongje Jang. Sequential galvanic replacement mediated Pd-doped hollow Ru–Te nanorods for enhanced hydrogen evolution reaction mass activity in alkaline media. Nanoscale 2022, 14 (40) , 14913-14920. https://doi.org/10.1039/D2NR04285A
    71. Yueyu Tong, Jiaxin Liu, Liqun Wang, Bing‐Jian Su, Kuang‐Hsu Wu, Jenh‐Yih Juang, Feng Hou, Lichang Yin, Shi Xue Dou, Jian Liu, Ji Liang. Carbon‐Shielded Single‐Atom Alloy Material Family for Multi‐Functional Electrocatalysis. Advanced Functional Materials 2022, 32 (43) https://doi.org/10.1002/adfm.202205654
    72. Zhouxin Luo, Guoqiang Zhao, Hongge Pan, Wenping Sun. Strong Metal–Support Interaction in Heterogeneous Catalysts. Advanced Energy Materials 2022, 12 (37) https://doi.org/10.1002/aenm.202201395
    73. Junlin Huang, Cuicui Du, Qi Dai, Xiaohua Zhang, Jie Tang, Biao Wang, Haihui Zhou, Qinghui Shen, Jinhua Chen. Facile and rapid synthesis of ultrafine RuPd alloy anchored in N-doped porous carbon for superior HER electrocatalysis in both alkaline and acidic media. Journal of Alloys and Compounds 2022, 917 , 165447. https://doi.org/10.1016/j.jallcom.2022.165447
    74. Xueping Qin, Shangqian Zhu, Yian Wang, Ding Pan, Minhua Shao. Full atomistic mechanism study of hydrogen evolution reaction on Pt surfaces at universal pHs: Ab initio simulations at electrochemical interfaces. Electrochimica Acta 2022, 425 , 140709. https://doi.org/10.1016/j.electacta.2022.140709
    75. Ziqiang Wang, Peng Wang, Qiqi Mao, Wenjing Tian, You Xu, Xiaonian Li, Liang Wang, Hongjing Wang. Urchin-like PdOs nanostructure for hydrogen evolution electrocatalysis. Nanotechnology 2022, 33 (32) , 325401. https://doi.org/10.1088/1361-6528/ac6c36
    76. Christian Mark Pelicano, Masaki Saruyama, Ryo Takahata, Ryota Sato, Yasutaka Kitahama, Hiroyuki Matsuzaki, Taro Yamada, Takashi Hisatomi, Kazunari Domen, Toshiharu Teranishi. Bimetallic Synergy in Ultrafine Cocatalyst Alloy Nanoparticles for Efficient Photocatalytic Water Splitting. Advanced Functional Materials 2022, 32 (31) https://doi.org/10.1002/adfm.202202987
    77. Lixin Su, Yuanmeng Zhao, Yiming Jin, Zeyu Liu, Hansong Cui, Wei Luo. Identifying the Role of Hydroxyl Binding Energy in a Non‐Monotonous Behavior of Pd‐Pd 4 S for Hydrogen Oxidation Reaction. Advanced Functional Materials 2022, 32 (27) https://doi.org/10.1002/adfm.202113047
    78. Yuhang Liu, Qilun Wang, Jincheng Zhang, Jie Ding, Yaqi Cheng, Tian Wang, Jing Li, Fangxin Hu, Hong Bin Yang, Bin Liu. Recent Advances in Carbon‐Supported Noble‐Metal Electrocatalysts for Hydrogen Evolution Reaction: Syntheses, Structures, and Properties. Advanced Energy Materials 2022, 12 (28) https://doi.org/10.1002/aenm.202200928
    79. Mengmeng Lao, Peng Li, Yinzhu Jiang, Hongge Pan, Shi Xue Dou, Wenping Sun. From fundamentals and theories to heterostructured electrocatalyst design: An in-depth understanding of alkaline hydrogen evolution reaction. Nano Energy 2022, 98 , 107231. https://doi.org/10.1016/j.nanoen.2022.107231
    80. Haoxuan Liu, Jiantao Fu, Hongyi Li, Jiaqiang Sun, Xijun Liu, Yuan Qiu, Xianyun Peng, Yifan Liu, Haihong Bao, Longchao Zhuo, Rui Cao, Shusheng Zhang, Jun Luo. Single palladium site in ordered porous heteroatom-doped carbon for high-performance alkaline hydrogen oxidation. Applied Catalysis B: Environmental 2022, 306 , 121029. https://doi.org/10.1016/j.apcatb.2021.121029
    81. Qiqi Mao, Kai Deng, Wenxin Wang, Peng Wang, You Xu, Ziqiang Wang, Xiaonian Li, Liang Wang, Hongjing Wang. N-doping induced lattice-strained porous PdIr bimetallene for pH-universal hydrogen evolution electrocatalysis. Journal of Materials Chemistry A 2022, 10 (15) , 8364-8370. https://doi.org/10.1039/D2TA00590E
    82. Yanyan Wang, Zhandong Ren, Ning Cong, Yaping Heng, Ming Wang, Ziqian Wang, Zhiqiang Xie, Ye Liu, Juanjuan Han, Yuchan Zhu. The volcanic relationship between the HER activity and lattice constant of RuCo alloy nanofilms. Chemical Communications 2022, 58 (29) , 4631-4634. https://doi.org/10.1039/D1CC07119J
    83. Yu Jin, Zhe Zhang, Hao Yang, Pengtang Wang, Chenqi Shen, Tao Cheng, Xiaoqing Huang, Qi Shao. Boosting hydrogen production with ultralow working voltage by selenium vacancy‐enhanced ultrafine platinum–nickel nanowires. SmartMat 2022, 3 (1) , 130-141. https://doi.org/10.1002/smm2.1083
    84. Wenqiang Li, Heng Zhang, Manzhou Hong, Lilei Zhang, Xun Feng, Mengfei Shi, Wenxuan Hu, Shichun Mu. Defective RuO2/TiO2 nano-heterostructure advances hydrogen production by electrochemical water splitting. Chemical Engineering Journal 2022, 431 , 134072. https://doi.org/10.1016/j.cej.2021.134072
    85. Li-Hong Zheng, Chou-Kun Tang, Qiu-Feng Lü, Junxiong Wu. MoS2/Mo2TiC2Tx supported Pd nanoparticles as an efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. International Journal of Hydrogen Energy 2022, 47 (23) , 11739-11749. https://doi.org/10.1016/j.ijhydene.2022.01.201
    86. Qiqi Mao, Peng Wang, Ziqiang Wang, You Xu, Xiaonian Li, Liang Wang, Hongjing Wang. PdRh bimetallene for energy-saving hydrogen production via methanol electroreforming. Applied Materials Today 2022, 26 , 101400. https://doi.org/10.1016/j.apmt.2022.101400
    87. Alberto Rodríguez-Gómez, Enrico Lepre, Luz Sánchez-Silva, Nieves López-Salas, Ana Raquel de la Osa. PtRu nanoparticles supported on noble carbons for ethanol electrooxidation. Journal of Energy Chemistry 2022, 66 , 168-180. https://doi.org/10.1016/j.jechem.2021.07.004
    88. Lixin Su, Dan Gong, Yiming Jin, Dean Wu, Wei Luo. Recent advances in alkaline hydrogen oxidation reaction. Journal of Energy Chemistry 2022, 66 , 107-122. https://doi.org/10.1016/j.jechem.2021.07.015
    89. Jie Tang, Biao Wang, Yanzheng Zhang, Xiaohua Zhang, Qinghui Shen, Junfeng Qin, Song Xue, Xi Guo, Cuicui Du, Jinhua Chen. One-step integration of amorphous RuB x and crystalline Ru nanoparticles into B/N-doped porous carbon polyhedra for robust electrocatalytic activity towards the HER in both acidic and basic media. Journal of Materials Chemistry A 2022, 10 (8) , 4181-4190. https://doi.org/10.1039/D1TA08512C
    90. Fengyuan Zhu, Jiangyan Xue, Lingjian Zeng, Jingrui Shang, Shuanglong Lu, Xueqin Cao, Brendan F. Abrahams, Hongwei Gu, Jianping Lang. One-pot pyrolysis synthesis of highly active Ru/RuOX nanoclusters for water splitting. Nano Research 2022, 15 (2) , 1020-1026. https://doi.org/10.1007/s12274-021-3590-x
    91. Tang Tang, Liang Ding, Ze‐Cheng Yao, Hai‐Rui Pan, Jin‐Song Hu, Li‐Jun Wan. Synergistic Electrocatalysts for Alkaline Hydrogen Oxidation and Evolution Reactions. Advanced Functional Materials 2022, 32 (2) https://doi.org/10.1002/adfm.202107479
    92. Wei-Hang Li, Zhen Zhang, Zhang-Hong Zhou, Li-Jun Yang, Xiao-Chong Zhao, Wei Cao. Fragment-interconnected nitrogen-doped porous carbon nanosheets loaded with platinum group metals for highly boosted hydrogen evolution reaction in alkaline solution. Journal of Colloid and Interface Science 2022, 605 , 528-536. https://doi.org/10.1016/j.jcis.2021.07.096
    93. Qian Liu, Chengtian Zhang, Pengyan Wang, Ding Chen, Manjie Xiao, Lei Chen, Suli Liu, Jun Yu, Shichun Mu. Nearly hollow Ru–Cu–MoO 2 octahedrons consisting of clusters and nanocrystals for high efficiency hydrogen evolution reaction. Journal of Materials Chemistry A 2022, 44 https://doi.org/10.1039/D2TA01699K
    94. Wen Zhang, Xue Jiang, Zemeng Dong, Jing Wang, Ning Zhang, Jie Liu, Guang‐Rui Xu, Lei Wang. Porous Pd/NiFeO x Nanosheets Enhance the pH‐Universal Overall Water Splitting. Advanced Functional Materials 2021, 31 (51) https://doi.org/10.1002/adfm.202107181
    95. Fei Xiao, Yu‐Cheng Wang, Zhi‐Peng Wu, Guangyu Chen, Fei Yang, Shangqian Zhu, Kumar Siddharth, Zhijie Kong, Aolin Lu, Jin‐Cheng Li, Chuan‐Jian Zhong, Zhi‐You Zhou, Minhua Shao. Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells. Advanced Materials 2021, 33 (50) https://doi.org/10.1002/adma.202006292
    96. Yang Qiu, Xiaohong Xie, Wenzhen Li, Yuyan Shao. Electrocatalysts development for hydrogen oxidation reaction in alkaline media: From mechanism understanding to materials design. Chinese Journal of Catalysis 2021, 42 (12) , 2094-2104. https://doi.org/10.1016/S1872-2067(21)64088-3
    97. Wangjin Ji, Changhong Zhan, Deyu Li, Yong Xu, Ying Zhang, Lu Wang, Liangbin Liu, Yu Wang, Wenxing Chen, Hongbo Geng, Xiaoqing Huang. Phase and interface engineering of nickel carbide nanobranches for efficient hydrogen oxidation catalysis. Journal of Materials Chemistry A 2021, 9 (46) , 26323-26329. https://doi.org/10.1039/D1TA08038E
    98. Ruopeng Zhao, Xin Yue, Qinghua Li, Gengtao Fu, Jong‐Min Lee, Shaoming Huang. Recent Advances in Electrocatalysts for Alkaline Hydrogen Oxidation Reaction. Small 2021, 17 (47) https://doi.org/10.1002/smll.202100391
    99. Bin Zou, Fei Gao, Huaming You, Zhuolin Li, Yangping Zhang, Zhengying Wu, Tongxin Song, Yukou Du. One-pot synthesis of rugged PdRu nanosheets as the efficient catalysts for polyalcohol electrooxidation. Journal of Colloid and Interface Science 2021, 601 , 42-49. https://doi.org/10.1016/j.jcis.2021.05.079
    100. Zixuan Wang, Evan M. Ortiz, Bryan R. Goldsmith, Nirala Singh. Comparing electrocatalytic and thermocatalytic conversion of nitrate on platinum–ruthenium alloys. Catalysis Science & Technology 2021, 11 (21) , 7098-7109. https://doi.org/10.1039/D1CY01075A
    Load all citations

    ACS Catalysis

    Cite this: ACS Catal. 2019, 9, 10, 9614–9621
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acscatal.9b01744
    Published September 13, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    6131

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.