ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch ArticleNEXT

Effects of Zr Doping into Ceria for the Dry Reforming of Methane over Ni/CeZrO2 Catalysts: In Situ Studies with XRD, XAFS, and AP-XPS

  • Feng Zhang
    Feng Zhang
    Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, New York 11794, United States
    More by Feng Zhang
  • Zongyuan Liu
    Zongyuan Liu
    Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
    More by Zongyuan Liu
  • Xiaobo Chen
    Xiaobo Chen
    Program of Materials Science and Engineering, Department of Mechanical Engineering, State University of New York, Binghamton, New York 13902, United States
    More by Xiaobo Chen
  • Ning Rui
    Ning Rui
    Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
    More by Ning Rui
  • Luis E. Betancourt
    Luis E. Betancourt
    Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
  • Lili Lin
    Lili Lin
    Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
    More by Lili Lin
  • Wenqian Xu
    Wenqian Xu
    X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
    More by Wenqian Xu
  • Cheng-jun Sun
    Cheng-jun Sun
    X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
  • A. M. Milinda Abeykoon
    A. M. Milinda Abeykoon
    Photon Science Division, National Synchrotron Light Source II, Upton, New York 11973, United States
  • José A. Rodriguez
    José A. Rodriguez
    Materials Science and Chemical Engineering Department, Stony Brook University, Stony Brook, New York 11794, United States
    Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
  • Janvit Teržan
    Janvit Teržan
    Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
  • Kristijan Lorber
    Kristijan Lorber
    Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
  • Petar Djinović*
    Petar Djinović
    Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
    *E-mail: [email protected] (P.D.).
  • , and 
  • Sanjaya D. Senanayake*
    Sanjaya D. Senanayake
    Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
    *E-mail: [email protected] (S.D.S.).
Cite this: ACS Catal. 2020, 10, 5, 3274–3284
Publication Date (Web):January 6, 2020
https://doi.org/10.1021/acscatal.9b04451
Copyright © 2020 American Chemical Society

    Article Views

    7156

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The methane activation and methane dry reforming reactions were studied and compared over 4 wt % Ni/CeO2 and 4 wt % Ni/CeZrO2 (containing 20 wt % Zr) catalysts. Upon the incorporation of Zr into the ceria support, the catalyst exhibited a significantly improved activity and H2 selectivity. To understand the effects of the Zr dopant on Ni and CeO2 during the dry reforming of methane (DRM) reaction and to probe the structure–reactivity relationship underlying the enhanced catalytic performance of the mixed-oxide system, in situ time-resolved X-ray diffraction (TR-XRD), X-ray absorption fine structure (XAFS), and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) were employed to characterize the catalysts under reaction conditions. TR-XRD and AP-XPS indicate that ceria–zirconia supported Ni (Ni/CeZrO2) is of higher reducibility than the pure ceria supported Ni (Ni/CeO2) upon the reaction with pure CH4 or for the methane dry reforming reaction. The active state of Ni/CeZrO2 under optimum DRM conditions (700 °C) was identified as Ni0, Ce3+/Ce4+, and Zr4+. The particle size of both nickel and the ceria support under reaction conditions was analyzed by Rietveld refinement and extended XAFS fitting. Zr in the ceria support prevents particle sintering and maintains small particle sizes for both metallic nickel and the partially reduced ceria support under reaction conditions through a stronger metal–support interaction. Additionally, Zr prevents Ni migration from the surface into ceria forming a Ce1–xNixO2–y solid solution, which is seen in Ni/CeO2, thus helping to preserve the active Ni0 on the Ni/CeZrO2 surface.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscatal.9b04451.

    • Calculations of the conversions, reaction rates, and selectivity; PDF spectra of Ni/CeZrO2 and Ni/CeO2 samples with ZrO2 and CeO2 PDF profiles as references; TEM images of the Ni/CeO2 sample after the DRM reaction at 700 °C for 1 h; RGA spectra of Ni/CeZrO2 and Ni/CeO2 under the DRM reaction; H2-TPR of Ni/CeO2 and 4 Ni/CeZrO2 catalysts; fitted Ni 2p AP-XPS spectra of Ni/CeZrO2 and Ni/CeO2 samples under the CH4 atmosphere with elevated temperatures and the fitting results; AP-XPS results of Zr 3d spectra during CH4-TPR and the DRM reaction process; Fourier-transformed R-space EXAFS spectra and Ni K-edge EXAFS fitting results of Ni/CeO2 and Ni/CeZrO2 samples after H2 pretreatment and under the DRM reaction at 700 °C; fitted Ce 3d AP-XPS spectra of Ni/CeZrO2 and Ni/CeO2 samples under the DRM reaction condition; and fitting results and details (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 105 publications.

    1. Zhiqiang Rao, Kaiwen Wang, Yuehan Cao, Yibo Feng, Zeai Huang, Yaolin Chen, Shiqian Wei, Luyu Liu, Zhongmiao Gong, Yi Cui, Lina Li, Xin Tu, Ding Ma, Ying Zhou. Light-Reinforced Key Intermediate for Anticoking To Boost Highly Durable Methane Dry Reforming over Single Atom Ni Active Sites on CeO2. Journal of the American Chemical Society 2023, 145 (45) , 24625-24635. https://doi.org/10.1021/jacs.3c07077
    2. Huiquan Yan, Renhong Dong, Xin Wang, Lingting Ye, Kui Xie. Enhanced Electrochemical Reduction of CO2 with Exsolved Metal–Oxide Interfaces in Solid Oxide Electrolysis Cells. Energy & Fuels 2023, 37 (19) , 15067-15075. https://doi.org/10.1021/acs.energyfuels.3c02519
    3. Qun He, Beibei Sheng, Kefu Zhu, Yuzhu Zhou, Sicong Qiao, Zhouxin Wang, Li Song. Phase Engineering and Synchrotron-Based Study on Two-Dimensional Energy Nanomaterials. Chemical Reviews 2023, 123 (17) , 10750-10807. https://doi.org/10.1021/acs.chemrev.3c00389
    4. Zongpeng Zou, Tao Zhang, Li Lv, Wenxiang Tang, Guoquan Zhang, Raju Kumar Gupta, Yan Wang, Shengwei Tang. Preparing a Zr-Doped CeO2 Nanorod to Improve the Catalytic Performance of the Ni-Based Catalyst for Dry Reforming of Methane by Enhancing Oxygen Supply. ACS Sustainable Chemistry & Engineering 2023, 11 (19) , 7443-7453. https://doi.org/10.1021/acssuschemeng.3c00419
    5. Kristijan Lorber, Janez Zavašnik, Iztok Arčon, Matej Huš, Janvit Teržan, Blaž Likozar, Petar Djinović. CO2 Activation over Nanoshaped CeO2 Decorated with Nickel for Low-Temperature Methane Dry Reforming. ACS Applied Materials & Interfaces 2022, 14 (28) , 31862-31878. https://doi.org/10.1021/acsami.2c05221
    6. José A. Rodriguez, Ning Rui, Feng Zhang, Sanjaya D. Senanayake. In Situ Studies of Methane Activation Using Synchrotron-Based Techniques: Guiding the Conversion of C–H Bonds. ACS Catalysis 2022, 12 (9) , 5470-5488. https://doi.org/10.1021/acscatal.2c00941
    7. Yujia Han, Ming Tian, Chaojie Wang, Yu Kang, Leilei Kang, Yang Su, Chuande Huang, Teng Zong, Jian Lin, Baolin Hou, Xiaoli Pan, Xiaodong Wang. Highly Active and Anticoke Ni/CeO2 with Ultralow Ni Loading in Chemical Looping Dry Reforming via the Strong Metal–Support Interaction. ACS Sustainable Chemistry & Engineering 2021, 9 (51) , 17276-17288. https://doi.org/10.1021/acssuschemeng.1c06079
    8. Zhourong Xiao, Fang Hou, Junjie Zhang, Qiancheng Zheng, Jisheng Xu, Lun Pan, Li Wang, Jijun Zou, Xiangwen Zhang, Guozhu Li. Methane Dry Reforming by Ni–Cu Nanoalloys Anchored on Periclase-Phase MgAlOx Nanosheets for Enhanced Syngas Production. ACS Applied Materials & Interfaces 2021, 13 (41) , 48838-48854. https://doi.org/10.1021/acsami.1c14918
    9. Yongdi Zhang, Shaowen Wu, Yuanzhi Li, An Zhang, Qianqian Hu, Jichun Wu, Xin Tan. Quasi-Monolayer Rh Nanoclusters Stabilized on Spinel MgAl2O4 Nanosheets for Catalytic CO2 Reforming of Methane. ACS Applied Nano Materials 2021, 4 (9) , 9866-9875. https://doi.org/10.1021/acsanm.1c02327
    10. Feng Zhang, Ramón A. Gutiérrez, Pablo G. Lustemberg, Zongyuan Liu, Ning Rui, Tianpin Wu, Pedro J. Ramírez, Wenqian Xu, Hicham Idriss, M. Verónica Ganduglia-Pirovano, Sanjaya D. Senanayake, José A. Rodriguez. Metal–Support Interactions and C1 Chemistry: Transforming Pt-CeO2 into a Highly Active and Stable Catalyst for the Conversion of Carbon Dioxide and Methane. ACS Catalysis 2021, 11 (3) , 1613-1623. https://doi.org/10.1021/acscatal.0c04694
    11. Yimeng Lyu, Jennifer Jocz, Rui Xu, Eli Stavitski, Carsten Sievers. Nickel Speciation and Methane Dry Reforming Performance of Ni/CexZr1–xO2 Prepared by Different Synthesis Methods. ACS Catalysis 2020, 10 (19) , 11235-11252. https://doi.org/10.1021/acscatal.0c02426
    12. Jing Yan, Huili Chen. Power generation via solid oxide fuel cell using ex-reformed oxygen-containing low-concentration methane. Materials Chemistry and Physics 2024, 313 , 128736. https://doi.org/10.1016/j.matchemphys.2023.128736
    13. Duy Ha Le Phuong, Mabkhoot Alsaiari, Cham Q. Pham, Nguyen Huu Hieu, Thuy-Phuong T․ Pham, Natarajan Rajamohan, Duong Dinh Pham, Dai-Viet N. Vo, Thanh H. Trinh, H.D. Setiabudi, Dang Le Tri Nguyen, Tung M. Nguyen. Carbon dioxide reforming of methane over modified iron-cobalt alumina catalyst: Role of promoter. Journal of the Taiwan Institute of Chemical Engineers 2024, 155 , 105253. https://doi.org/10.1016/j.jtice.2023.105253
    14. Menghan Feng, Mengmeng Li, Changbin Guo, Mingyao Yuan, Lisheng Zhang, Shangkai Qiu, Weilin Fu, Keqiang Zhang, Haixin Guo, Feng Wang. Green synthesis of CaxLa1-xMnO3 with modulation of mesoporous and vacancies for efficient low concentration phosphate adsorption. Journal of Environmental Management 2024, 351 , 119837. https://doi.org/10.1016/j.jenvman.2023.119837
    15. Ravindra Kumar, Anil Kumar. Recent advances of biogas reforming for hydrogen production: Methods, purification, utility and techno-economics analysis. International Journal of Hydrogen Energy 2024, 46 https://doi.org/10.1016/j.ijhydene.2024.02.143
    16. Rubina Khatun, Rohan Singh Pal, Mohammad Ahmad Shoeb, Deepak Khurana, Shubham Singhl, Nazia Siddiqui, Mukesh Kumar Poddar, Tuhin Suvra Khan, Rajaram Bal. Generation of active oxygen species by CO2 dissociation over defect-rich Ni-Pt/CeO2 catalyst for boosting methane activation in low-temperature dry reforming: Experimental and theoretical study. Applied Catalysis B: Environmental 2024, 340 , 123243. https://doi.org/10.1016/j.apcatb.2023.123243
    17. Mingyan Wang, Sang Yoon Kim, Azam Jamsaz, Nhiem Pham-Ngoc, Yong Men, Dong Hwi Jeong, Eun Woo Shin. Metal–support interactions over Ni/CeO2–ZrO2 catalysts for ethanol steam reforming and their effects on the coke gasification. Catalysis Today 2024, 425 , 114341. https://doi.org/10.1016/j.cattod.2023.114341
    18. Zahra Taherian, Vahid Shahed Gharahshiran, Xiaoxuan Wei, Alireza Khataee, Yeojoon Yoon, Yasin Orooji. Revisiting the mitigation of coke formation: Synergism between support & promoters' role toward robust yield in the CO2 reformation of methane. Nano Materials Science 2024, 10 https://doi.org/10.1016/j.nanoms.2023.10.005
    19. Hifza Rouf, Anita Ramli, Nur Akila Syakida Idayu Khairul Anuar, Normawati Mohamad Yunus. Ce–Zr-based mixed oxide catalyst for oxidative depolymerization of kenaf stalk (biomass) into vanillin. Bioresources and Bioprocessing 2023, 10 (1) https://doi.org/10.1186/s40643-023-00698-5
    20. Shujuan Liu, Teng Li, Feng Shi, Haiying Ma, Bin Wang, Xingchao Dai, Xinjiang Cui. Constructing multiple active sites in iron oxide catalysts for improving carbonylation reactions. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40640-z
    21. NingTao Luo, Lei Fan, YunQiang Chen, WeiGuang Lan. Construction of Oxygen Vacancies of Zr-Doped CeO2 with Enhanced Dye Adsorption Performance. Crystals 2023, 13 (12) , 1641. https://doi.org/10.3390/cryst13121641
    22. Orrakanya Phichairatanaphong, Waleeporn Donphai. Role of Cerium–Zirconium Ratio and Chemical Surface Property of CeO2–ZrO2 Supported Nickel-Based Catalysts in Dry Reforming Reaction. Topics in Catalysis 2023, 66 (19-20) , 1569-1580. https://doi.org/10.1007/s11244-023-01834-3
    23. Yuan Tian, Zoe Benedict, Fanxing Li, Yingchao Yang, Debtanu Maiti, Yixiao Wang, Rebecca Fushimi. Carbon-Assisted, Continuous Syngas Production in a Chemical Looping Scheme. Topics in Catalysis 2023, 66 (19-20) , 1581-1593. https://doi.org/10.1007/s11244-023-01840-5
    24. Olga A. Bulavchenko, Zakhar S. Vinokurov. In Situ X-ray Diffraction as a Basic Tool to Study Oxide and Metal Oxide Catalysts. Catalysts 2023, 13 (11) , 1421. https://doi.org/10.3390/catal13111421
    25. Changjian Zhou, Jiahao Zhang, Yuqing Fu, Hui Dai. Recent Advances in the Reverse Water–Gas Conversion Reaction. Molecules 2023, 28 (22) , 7657. https://doi.org/10.3390/molecules28227657
    26. Chongchong Chen, Jiaojiao Wei, Yao Lu, Melis Seher Duyar, Yuanyuan Huang, Ling Lin, Runping Ye. Confinement effects over Ni-based catalysts for methane dry reforming. Catalysis Science & Technology 2023, 13 (21) , 6089-6101. https://doi.org/10.1039/D3CY00845B
    27. Oualid Alioui, Michael Badawi, Alessandro Erto, Mohammed A. Amin, Vineet Tirth, Byong-Hun Jeon, Saiful Islam, Marco Balsamo, Mirella Virginie, Barbara Ernst, Yacine Benguerba. Contribution of DFT to the optimization of Ni-based catalysts for dry reforming of methane: a review. Catalysis Reviews 2023, 65 (4) , 1468-1520. https://doi.org/10.1080/01614940.2021.2020518
    28. Aliyu Musa Alhassan, Ijaz Hussain, Omer Ahmed Taialla, Mohammed Mosaad Awad, Abdulkadir Tanimu, Khalid Alhooshani, Saheed A. Ganiyu. Advances in catalytic dry reforming of methane (DRM): Emerging trends, current challenges, and future perspectives. Journal of Cleaner Production 2023, 423 , 138638. https://doi.org/10.1016/j.jclepro.2023.138638
    29. Qunwei Guo, Jiaqi Geng, Jiawen Pan, Lu Zou, Yunfeng Tian, Bo Chi, Jian Pu. Brief review of hydrocarbon-reforming catalysts map for hydrogen production. Energy Reviews 2023, 2 (3) , 100037. https://doi.org/10.1016/j.enrev.2023.100037
    30. Johanna van Gent, Anna Roig. Ce 1− x Zr x O 2 nanoparticles in bacterial cellulose, bio-based composites with self-regenerating antioxidant capabilities. Nanoscale 2023, 15 (31) , 13018-13024. https://doi.org/10.1039/D3NR02872K
    31. Qiangqiang Xue, Binhang Yan, Yujun Wang, Guangsheng Luo. Unveiling the role of mixing in oxygen vacancy formation and metal dispersion during co-precipitation synthesis of catalysts in microreactor. Chemical Engineering Science 2023, 278 , 118942. https://doi.org/10.1016/j.ces.2023.118942
    32. Rui Zhao, Xudong Du, Kun Cao, Miao Gong, Yicheng Li, Jianping Ai, Rongli Ye, Rong Chen, Bin Shan. Highly dispersed Fe-decorated Ni nanoparticles prepared by atomic layer deposition for dry reforming of methane. International Journal of Hydrogen Energy 2023, 48 (74) , 28780-28791. https://doi.org/10.1016/j.ijhydene.2023.03.470
    33. Lu Chen, Xinping Wu, Xueqing Gong. A comparative DFT+U study of CO oxidation on Pd- and Zr-doped ceria. Journal of Rare Earths 2023, 41 (7) , 1042-1048. https://doi.org/10.1016/j.jre.2022.05.010
    34. Zhoujie Liang, Yu Zhang, Guojie Zhang, Jun Liu, Yajing Cai, Ying Wang, Yuqiong Zhao, Guoqiang Li, Kunlun Bei. Promotion effect of different lanthanide doping on Co/Al2O3 catalyst for dry reforming of methane. International Journal of Hydrogen Energy 2023, 48 (49) , 18644-18656. https://doi.org/10.1016/j.ijhydene.2023.01.301
    35. Ahmed Umar, Musthafa Ottakam Thotyl. Perovskite modified catalysts with improved coke resistance for steam reforming of glycerol to renewable hydrogen fuel. GCB Bioenergy 2023, 15 (6) , 791-804. https://doi.org/10.1111/gcbb.13050
    36. Ekaterina Smal, Yulia Bespalko, Marina Arapova, Valeria Fedorova, Konstantin Valeev, Nikita Eremeev, Ekaterina Sadovskaya, Tamara Krieger, Tatiana Glazneva, Vladislav Sadykov, Mikhail Simonov. Dry Reforming of Methane over 5%Ni/Ce1-xTixO2 Catalysts Obtained via Synthesis in Supercritical Isopropanol. International Journal of Molecular Sciences 2023, 24 (11) , 9680. https://doi.org/10.3390/ijms24119680
    37. Jakapob Noppakhun, Meena Rittiruam, Tinnakorn Saelee, Jasmin Shamshoddin Shaikh, Patcharaporn Khajondetchairit, Supareak Praserthdam, Piyasan Praserthdam. On‐line Optimization of Integrated Carbon Capture and Conversion Process via the Ratings Concept: A Combined DFT and Microkinetic Modeling Approach. ChemCatChem 2023, 15 (10) https://doi.org/10.1002/cctc.202201607
    38. M.A. Vasiliades, C.M. Damaskinos, P. Djinović, A. Pintar, A.M. Efstathiou. A transient isotopic study for investigating important design parameters of NiCo/Ce0.75Zr0.25O2-δ catalyst for the dry reforming of methane. Catalysis Communications 2023, 178 , 106674. https://doi.org/10.1016/j.catcom.2023.106674
    39. Meng Zhang, Xiaotian Zhou, Chao Li, Wenjing Yi, Qiliang Gao, Junfeng Zhang, Qingde Zhang, Yizhuo Han. Ni/Y2O3-ZrO2 catalysts for dry reforming of methane: Increased Y content boosted the performance via enhancing metal-support interaction and surface oxygen species. Fuel 2023, 340 , 127543. https://doi.org/10.1016/j.fuel.2023.127543
    40. Anil Kumar Seriyala, Ankit Rao, Corey Leclerc, Srinivas Appari, Banasri Roy. Effects of metal loading and support modification on the low-temperature steam reforming of ethanol (LTSRE) over the Ni–Sn/CeO2 catalysts. International Journal of Hydrogen Energy 2023, 48 (41) , 15533-15554. https://doi.org/10.1016/j.ijhydene.2023.01.039
    41. Zhenping Cai, Yanru Wang, Yanning Cao, Panjie Yu, Yongxin Ding, Yongde Ma, Ying Zheng, Kuan Huang, Lilong Jiang. Direct production of isomerized biodiesel over MoS2/ZrPOx under solvent-free conditions. Fuel 2023, 337 , 127175. https://doi.org/10.1016/j.fuel.2022.127175
    42. Qian Zhang, Mohcin Akri, Yiwen Yang, Botao Qiao. Atomically dispersed metals as potential coke-resistant catalysts for dry reforming of methane. Cell Reports Physical Science 2023, 4 (3) , 101310. https://doi.org/10.1016/j.xcrp.2023.101310
    43. Zichen Du, Fuping Pan, Xiaokun Yang, Lingzhe Fang, Yang Gang, Siyuan Fang, Tao Li, Yun Hang Hu, Ying Li. Efficient photothermochemical dry reforming of methane over Ni supported on ZrO2 with CeO2 incorporation. Catalysis Today 2023, 409 , 31-41. https://doi.org/10.1016/j.cattod.2022.05.014
    44. Hang Zhang, Yushuai Jia, Yuan Li, Lei Wang, Chuying Ouyang, Shengliang Zhong. Ni/Ce co-doping δ-MnO2 nanosheets with oxygen vacancy for enhanced electrocatalytic oxygen evolution reaction. International Journal of Hydrogen Energy 2023, 48 (7) , 2652-2662. https://doi.org/10.1016/j.ijhydene.2022.10.124
    45. Kourosh Razmgar, Toyin Shittu, Ibukun Oluwoye, Abbas Khaleel, Gamini Senanayake, Mohammednoor Altarawneh. Thermochemical activation of CO2 into syngas over ceria-supported niobium oxide catalyst: An integrated experimental-DFT study. Journal of CO2 Utilization 2023, 67 , 102339. https://doi.org/10.1016/j.jcou.2022.102339
    46. Dong-Jie Xu, Juan Wu, Zheng Liu, Lu-Yang Qiao, Shan-Shan Zong, Zhang-Feng Zhou, Yuan-Gen Yao. Doping low amount of Zirconium in Rh-LTO to prepare durable catalysts for dry reforming of methane. Molecular Catalysis 2023, 535 , 112822. https://doi.org/10.1016/j.mcat.2022.112822
    47. Qiangqiang Xue, Zhengwen Li, Binhang Yan, Yujun Wang, Guangsheng Luo. Inhibition of sintering and coking by post-coating group IIA metal oxides on trace-Rh-promoted Ni-based catalysts for high-temperature steam reforming. Journal of Catalysis 2023, 417 , 164-177. https://doi.org/10.1016/j.jcat.2022.12.005
    48. Nongfeng Huang, Tongming Su, Zuzeng Qin, Hongbing Ji. Nickel Supported on Multilayer Vanadium Carbide for Dry Reforming of Methane. ChemistrySelect 2022, 7 (47) https://doi.org/10.1002/slct.202203873
    49. P.H. Tu, M. Sakamoto, K. Sasaki, Y. Shiratori. Synthesis of flowerlike ceria–zirconia solid solution for promoting dry reforming of methane. International Journal of Hydrogen Energy 2022, 47 (100) , 42171-42184. https://doi.org/10.1016/j.ijhydene.2021.09.025
    50. Shankar Dhanraj Birajdar, Atul R. Saraf, Aruna P. Maharolkar, Ketan P. Gattu, Nilesh G. Patil, Rushikesh B. Chavan, Mangesh V. Jamkar, Yuvraj S. Mundhe, Ravindra N. Kambale, Ravindra C. Alange, Shivam P. Yadav. Intrinsic defect-induced magnetism and enhanced photocatalytic activity in Zn1−xZrxO (0.0 ≤ x ≤ 0.07) nanoparticles for spintronic device and photocatalytic application. Journal of Alloys and Compounds 2022, 929 , 167272. https://doi.org/10.1016/j.jallcom.2022.167272
    51. Cham Q. Pham, Anh Ngoc T. Cao, Pham T.T. Phuong, Le Kim Hoang Pham, Thi Tuong Vi Tran, Thanh H. Trinh, Dai-Viet N. Vo, Thi Phuong Thuy Bui, Tung M. Nguyen. Enhancement of syngas production from dry reforming of methane over Co/Al2O3 catalyst: Insight into the promotional effects of europium and neodymium. Journal of the Energy Institute 2022, 105 , 314-322. https://doi.org/10.1016/j.joei.2022.10.004
    52. Ekaterina Matus, Olga Sukhova, Mikhail Kerzhentsev, Ilyas Ismagilov, Svetlana Yashnik, Vladimir Ushakov, Olga Stonkus, Evgeny Gerasimov, Andrey Nikitin, Pankaj Bharali, Zinfer Ismagilov. Hydrogen Production through Bi-Reforming of Methane: Improving Ni Catalyst Performance via an Exsolution Approach. Catalysts 2022, 12 (12) , 1493. https://doi.org/10.3390/catal12121493
    53. André L. A. Marinho, Raimundo C. Rabelo-Neto, Florence Epron, Fabio S. Toniolo, Fabio B. Noronha, Nicolas Bion. Effect of Metal Dopant on the Performance of Ni@CeMeO2 Embedded Catalysts (Me = Gd, Sm and Zr) for Dry Reforming of Methane. Methane 2022, 1 (4) , 300-319. https://doi.org/10.3390/methane1040023
    54. Marco Pizzolato, Giulia Da Pian, Elena Ghedini, Alessandro Di Michele, Federica Menegazzo, Giuseppe Cruciani, Michela Signoretto. Study of the Synthetic Approach Influence in Ni/CeO2-Based Catalysts for Methane Dry Reforming. Reactions 2022, 3 (4) , 634-647. https://doi.org/10.3390/reactions3040043
    55. Yuxi Xu, Huijiang Huang, Lingxin Kong, Xinbin Ma. Effect of calcination temperature on the Cu–ZrO 2 interfacial structure and its catalytic behavior in the hydrogenation of dimethyl oxalate. Catalysis Science & Technology 2022, 12 (22) , 6782-6794. https://doi.org/10.1039/D2CY01210C
    56. Othman Hakami. Thermocatalytic and solar thermochemical carbon dioxide utilization to solar fuels and chemicals: A review. International Journal of Energy Research 2022, 46 (14) , 19929-19960. https://doi.org/10.1002/er.8702
    57. Ramakrishna Chava, Bhaskar Anurag Varma D, Banasri Roy, Srinivas Appari. Recent advances and perspectives of perovskite-derived Ni-based catalysts for CO2 reforming of biogas. Journal of CO2 Utilization 2022, 65 , 102206. https://doi.org/10.1016/j.jcou.2022.102206
    58. Cao-Minh Vo, Anh Ngoc T. Cao, Amjad Saleh Qazaq, Cham Q. Pham, Dang Le Tri Nguyen, Mabkhoot Alsaiari, Tuan V. Vu, Ajit Sharma, Pham T.T. Phuong, Thuan Tran Van, Moustafa A. Rizk, Tung M. Nguyen, Dai-Viet N. Vo. Toward syngas production from simulated biogas dry reforming: Promotional effect of calcium on cobalt-based catalysts performance. Fuel 2022, 326 , 125106. https://doi.org/10.1016/j.fuel.2022.125106
    59. Ekaterina Smal, Yulia Bespalko, Marina Arapova, Valeria Fedorova, Konstantin Valeev, Nikita Eremeev, Ekaterina Sadovskaya, Tamara Krieger, Tatiana Glazneva, Vladislav Sadykov, Mikhail Simonov. Carbon Formation during Methane Dry Reforming over Ni-Containing Ceria-Zirconia Catalysts. Nanomaterials 2022, 12 (20) , 3676. https://doi.org/10.3390/nano12203676
    60. Yetunde Oluwatosin Sokefun, James Trottier, Matthew M. Yung, Babu Joseph, John N. Kuhn. Low temperature dry reforming of methane using Ru-Ni-Mg/ceria-zirconia catalysts: Effect of Ru loading and reduction temperature. Applied Catalysis A: General 2022, 645 , 118842. https://doi.org/10.1016/j.apcata.2022.118842
    61. Lingting Ye, Zhibo Shang, Kui Xie. Selective Oxidative Coupling of Methane to Ethylene in a Solid Oxide Electrolyser Based on Porous Single‐Crystalline CeO 2 Monoliths. Angewandte Chemie 2022, 134 (32) https://doi.org/10.1002/ange.202207211
    62. Lingting Ye, Zhibo Shang, Kui Xie. Selective Oxidative Coupling of Methane to Ethylene in a Solid Oxide Electrolyser Based on Porous Single‐Crystalline CeO 2 Monoliths. Angewandte Chemie International Edition 2022, 61 (32) https://doi.org/10.1002/anie.202207211
    63. Defang Liang, Yishuang Wang, Mingqiang Chen, Xuanlan Xie, Chang Li, Jun Wang, Liang Yuan. Dry reforming of methane over Mn-Ni/attapulgite: Effect of Mn content on the active site distribution and catalytic performance. Fuel 2022, 321 , 124032. https://doi.org/10.1016/j.fuel.2022.124032
    64. Lidan Deng, Jiawei Wang, Zaikun Wu, Chenhong Liu, Ling Qing, Xiaowei Liu, Jie Xu, Zijian Zhou, Minghou Xu. Effects of second metals (M = Fe, Cu, Ga, In, Sn) on the geometric and electronic properties of platinum for the direct dehydrogenation of propane. Journal of Alloys and Compounds 2022, 909 , 164820. https://doi.org/10.1016/j.jallcom.2022.164820
    65. Yadong Wang, Qing Hu, Ximing Wang, Yanpeng Huang, Yuanhao Wang, Fenghuan Wang. Ni/CeO2 Catalyst Prepared via Microimpinging Stream Reactor with High Catalytic Performance for CO2 Dry Reforming Methane. Catalysts 2022, 12 (6) , 606. https://doi.org/10.3390/catal12060606
    66. Zhen-Hong He, Bao-Ting Wu, Yu Xia, Shao-Yan Yang, Zhong-Yu Wang, Kuan Wang, Weitao Wang, Yang Yang, Zhao-Tie Liu. CO2 oxidative dehydrogenation of n-butane to butadiene over CrOx supported on CeZr solid solution. Molecular Catalysis 2022, 524 , 112262. https://doi.org/10.1016/j.mcat.2022.112262
    67. Wan Nabilah Manan, Wan Nor Roslam Wan Isahak, Zahira Yaakob. CeO2-Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A Short Review. Catalysts 2022, 12 (5) , 452. https://doi.org/10.3390/catal12050452
    68. Intan Clarissa Sophiana, Ferry Iskandar, Hary Devianto, Norikazu Nishiyama, Yogi Wibisono Budhi. Coke-Resistant Ni/CeZrO2 Catalysts for Dry Reforming of Methane to Produce Hydrogen-Rich Syngas. Nanomaterials 2022, 12 (9) , 1556. https://doi.org/10.3390/nano12091556
    69. Kristijan Lorber, Petar Djinović. Accelerating photo-thermal CO2 reduction to CO, CH4 or methanol over metal/oxide semiconductor catalysts. iScience 2022, 25 (4) , 104107. https://doi.org/10.1016/j.isci.2022.104107
    70. Seung Bo Kim, Ahmed Al-Shahat Eissa, Min-Jae Kim, Emad S. Goda, Jae-Rang Youn, Kyubock Lee. Sustainable Synthesis of a Highly Stable and Coke-Free Ni@CeO2 Catalyst for the Efficient Carbon Dioxide Reforming of Methane. Catalysts 2022, 12 (4) , 423. https://doi.org/10.3390/catal12040423
    71. S Kurajica, I K Ivković, G Dražić, V Shvalya, M Duplančić, G Matijašić, U Cvelbar, K Mužina. Phase composition, morphology, properties and improved catalytic activity of hydrothermally-derived manganese-doped ceria nanoparticles. Nanotechnology 2022, 33 (13) , 135709. https://doi.org/10.1088/1361-6528/ac44ed
    72. Renata O. da Fonseca, Antonella R. Ponseggi, Raimundo C. Rabelo-Neto, Rita C.C. Simões, Lisiane V. Mattos, Fabio B. Noronha. Controlling carbon formation over Ni/CeO2 catalyst for dry reforming of CH4 by tuning Ni crystallite size and oxygen vacancies of the support. Journal of CO2 Utilization 2022, 57 , 101880. https://doi.org/10.1016/j.jcou.2021.101880
    73. Yeol-Lim Lee, Beom-Jun Kim, Ho-Ryong Park, Seon-Yong Ahn, Kyoung-Jin Kim, Hyun-Seog Roh. Improving the catalytic activity in dry reforming reaction by enhancing the oxygen storage capacity of Ce0.8Zr0.2O2 support through hydrogen heat-treatment. Journal of CO2 Utilization 2022, 57 , 101903. https://doi.org/10.1016/j.jcou.2022.101903
    74. Kristijan Lorber, Janez Zavašnik, Jordi Sancho-Parramon, Matej Bubaš, Matjaž Mazaj, Petar Djinović. On the mechanism of visible-light accelerated methane dry reforming reaction over Ni/CeO2−x catalysts. Applied Catalysis B: Environmental 2022, 301 , 120745. https://doi.org/10.1016/j.apcatb.2021.120745
    75. Jinshan Song, Nengwei Ma, Wenqing Chen, Jianmeng Chen, Qizhou Dai. Insights into mechanism of catalytic ozonation of cinnamyl alcohol over core–shell Fe3O4@SiO2@La2O3 catalyst. Separation and Purification Technology 2022, 282 , 119969. https://doi.org/10.1016/j.seppur.2021.119969
    76. Yongchun Xiao, Kui Xie. Active Exsolved Metal–Oxide Interfaces in Porous Single‐Crystalline Ceria Monoliths for Efficient and Durable CH 4 /CO 2 Reforming. Angewandte Chemie 2022, 134 (1) https://doi.org/10.1002/ange.202113079
    77. Yongchun Xiao, Kui Xie. Active Exsolved Metal–Oxide Interfaces in Porous Single‐Crystalline Ceria Monoliths for Efficient and Durable CH 4 /CO 2 Reforming. Angewandte Chemie International Edition 2022, 61 (1) https://doi.org/10.1002/anie.202113079
    78. Manohar Prasad, Koustuv Ray, Apurba Sinhamahapatra, Siddhartha Sengupta. Ni/CexZr1-xO2 catalyst prepared via one-step co-precipitation for CO2 reforming of CH4 to produce syngas: role of oxygen storage capacity (OSC) and oxygen vacancy formation energy (OVFE). Journal of Materials Science 2022, 57 (4) , 2839-2856. https://doi.org/10.1007/s10853-021-06720-5
    79. Hyung-Ki Min, Young Woo Kim, Chansong Kim, Ismail A.M. Ibrahim, Jeong Woo Han, Young-Woong Suh, Kwang-Deog Jung, Min Bum Park, Chae-Ho Shin. Phase transformation of ZrO2 by Si incorporation and catalytic activity for isopropyl alcohol dehydration and dehydrogenation. Chemical Engineering Journal 2022, 428 , 131766. https://doi.org/10.1016/j.cej.2021.131766
    80. M.A. Salaev, L.F. Liotta, O.V. Vodyankina. Lanthanoid-containing Ni-based catalysts for dry reforming of methane: A review. International Journal of Hydrogen Energy 2022, 47 (7) , 4489-4535. https://doi.org/10.1016/j.ijhydene.2021.11.086
    81. Jingxia Yang, Nevzat Yigit, Jury Möller, Günther Rupprechter. Co 3 O 4 −CeO 2 Nanocomposites for Low‐Temperature CO Oxidation. Chemistry – A European Journal 2021, 27 (68) , 16947-16955. https://doi.org/10.1002/chem.202100927
    82. Jie Ren, Chalachew Mebrahtu, Luke van Koppen, Ferenc Martinovic, Jan P. Hofmann, Emiel J.M. Hensen, Regina Palkovits. Enhanced CO2 methanation activity over La2-xCexNiO4 perovskite-derived catalysts: Understanding the structure-performance relationships. Chemical Engineering Journal 2021, 426 , 131760. https://doi.org/10.1016/j.cej.2021.131760
    83. Wei Tan, Shaohua Xie, Xin Wang, Chunying Wang, Yaobin Li, Thomas E. Shaw, Lu Ma, Steven N. Ehrlich, Annai Liu, Jiawei Ji, Fei Gao, Lin Dong, Fudong Liu. Highly efficient Pt catalyst on newly designed CeO2-ZrO2-Al2O3 support for catalytic removal of pollutants from vehicle exhaust. Chemical Engineering Journal 2021, 426 , 131855. https://doi.org/10.1016/j.cej.2021.131855
    84. Francisco Zaera. In-situ and operando spectroscopies for the characterization of catalysts and of mechanisms of catalytic reactions. Journal of Catalysis 2021, 404 , 900-910. https://doi.org/10.1016/j.jcat.2021.08.013
    85. Yimeng Lyu, Rui Xu, Olivia Williams, Ziyuan Wang, Carsten Sievers. Reaction paths of methane activation and oxidation of surface intermediates over NiO on Ceria-Zirconia catalysts studied by In-situ FTIR spectroscopy. Journal of Catalysis 2021, 404 , 334-347. https://doi.org/10.1016/j.jcat.2021.10.004
    86. Christian Nwosu, Olumide Ayodele, Hussameldin Ibrahim. Optimization of hydrogen production via catalytic autothermal reforming of crude glycerol using response surface methodology and artificial neural network. International Journal of Energy Research 2021, 45 (13) , 18999-19013. https://doi.org/10.1002/er.7120
    87. Yuxiao Dai, Rui Zou, Teer Ba, Jie Zhang, Chang-jun Liu. Highly active and coke resistant Ni/CeZrO2 catalyst prepared by cold plasma decomposition for CO2 reforming of methane. Journal of CO2 Utilization 2021, 51 , 101647. https://doi.org/10.1016/j.jcou.2021.101647
    88. Junpo Guo, Dongqi Dong, Jun Wang, Dan Liu, Xueqing Yu, Yun Zheng, Zhaorui Wen, Wen Lei, Yonghong Deng, Jie Wang, Guo Hong, Huaiyu Shao. Silicon‐Based Lithium Ion Battery Systems: State‐of‐the‐Art from Half and Full Cell Viewpoint. Advanced Functional Materials 2021, 31 (34) https://doi.org/10.1002/adfm.202102546
    89. Yutong Zhao, Zichun Wang, Wenjie Yang, Shengshen Gu, Xiaoxia Yang, Amanj Kheradmand, Xingmo Zhang, Yongming Luo, Jun Huang, Yijiao Jiang. Promotional Effect of Ni−Sn Interaction over Ni Supported on Sn‐incorporated MCM‐41 Catalysts for CO 2 Reforming of CH 4. ChemNanoMat 2021, 7 (8) , 927-934. https://doi.org/10.1002/cnma.202100104
    90. Sonali Das, Ashok Jangam, Shanmukapriya Jayaprakash, Shibo Xi, Kus Hidajat, Keiichi Tomishige, Sibudjing Kawi. Role of lattice oxygen in methane activation on Ni-phyllosilicate@Ce1-xZrxO2 core-shell catalyst for methane dry reforming: Zr doping effect, mechanism, and kinetic study. Applied Catalysis B: Environmental 2021, 290 , 119998. https://doi.org/10.1016/j.apcatb.2021.119998
    91. Yang Zhang, Shuna Zhao, Jing Feng, Shuyan Song, Weidong Shi, Dan Wang, Hongjie Zhang. Unraveling the physical chemistry and materials science of CeO2-based nanostructures. Chem 2021, 7 (8) , 2022-2059. https://doi.org/10.1016/j.chempr.2021.02.015
    92. Pengfei Cao, Haitao Zhao, Stephen Adegbite, Bolun Yang, Edward Lester, Tao Wu. Stabilized CO2 reforming of CH4 on modified Ni/Al2O3 catalysts via in-situ K2CO3-enabled dynamic coke elimination reaction. Fuel 2021, 298 , 120599. https://doi.org/10.1016/j.fuel.2021.120599
    93. Guixian Deng, Guifang Zhang, Xing Zhu, Qingjie Guo, Xiangbiao Liao, Xi Chen, Kongzhai Li. Optimized Ni-based catalysts for methane reforming with O2-containing CO2. Applied Catalysis B: Environmental 2021, 289 , 120033. https://doi.org/10.1016/j.apcatb.2021.120033
    94. Zhourong Xiao, Chan Wu, Li Wang, Jisheng Xu, Qiancheng Zheng, Lun Pan, Jijun Zou, Xiangwen Zhang, Guozhu Li. Boosting hydrogen production from steam reforming of ethanol on nickel by lanthanum doped ceria. Applied Catalysis B: Environmental 2021, 286 , 119884. https://doi.org/10.1016/j.apcatb.2021.119884
    95. Filip Strniša, Vikram Tatiparthi Sagar, Petar Djinović, Albin Pintar, Igor Plazl. Ni-containing CeO2 rods for dry reforming of methane: Activity tests and a multiscale lattice Boltzmann model analysis in two model geometries. Chemical Engineering Journal 2021, 413 , 127498. https://doi.org/10.1016/j.cej.2020.127498
    96. Chaojun Cui, Ye Wang, Xiangze Du, Li Li, Mouxiao Song, Wenqing Zeng, Guiying Li, Changwei Hu. Carbon resistance of xNi/HTASAO5 catalyst for the production of H2 via CO2 reforming of methane. International Journal of Hydrogen Energy 2021, 46 (40) , 20835-20847. https://doi.org/10.1016/j.ijhydene.2021.03.190
    97. Meijia Li, Zhuxing Sun, Yun Hang Hu. Catalysts for CO 2 reforming of CH 4 : a review. Journal of Materials Chemistry A 2021, 9 (21) , 12495-12520. https://doi.org/10.1039/D1TA00440A
    98. Paulina Jagódka, Krzysztof Matus, Michał Sobota, Agata Łamacz. Dry Reforming of Methane over Carbon Fibre-Supported CeZrO2, Ni-CeZrO2, Pt-CeZrO2 and Pt-Ni-CeZrO2 Catalysts. Catalysts 2021, 11 (5) , 563. https://doi.org/10.3390/catal11050563
    99. Van Thuan Le, Elena-Niculina Dragoi, Fares Almomani, Yasser Vasseghian. Artificial Neural Networks for Predicting Hydrogen Production in Catalytic Dry Reforming: A Systematic Review. Energies 2021, 14 (10) , 2894. https://doi.org/10.3390/en14102894
    100. Ahmed S. Al-Fatesh, Yasir Arafat, Samsudeen O. Kasim, Ahmed A. Ibrahim, Ahmed E. Abasaeed, Anis H. Fakeeha. In situ auto-gasification of coke deposits over a novel Ni-Ce/W-Zr catalyst by sequential generation of oxygen vacancies for remarkably stable syngas production via CO2-reforming of methane. Applied Catalysis B: Environmental 2021, 280 , 119445. https://doi.org/10.1016/j.apcatb.2020.119445
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect