Mechanism of O2 Activation and Cysteine Oxidation by the Unusual Mononuclear Cu(I) Active Site of the Formylglycine-Generating EnzymeClick to copy article linkArticle link copied!
- Ioannis KipourosIoannis KipourosDepartment of Chemistry, Stanford University, Stanford, California 94305, United States,More by Ioannis Kipouros
- Hyeongtaek LimHyeongtaek LimDepartment of Chemistry, Stanford University, Stanford, California 94305, United States,More by Hyeongtaek Lim
- Mason J. AppelMason J. AppelDepartment of Chemistry, Stanford University, Stanford, California 94305, United States,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States,More by Mason J. Appel
- Katlyn K. MeierKatlyn K. MeierDepartment of Chemistry, Stanford University, Stanford, California 94305, United States,More by Katlyn K. Meier
- Britt HedmanBritt HedmanStanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States,More by Britt Hedman
- Keith O. HodgsonKeith O. HodgsonDepartment of Chemistry, Stanford University, Stanford, California 94305, United States,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States,More by Keith O. Hodgson
- Carolyn R. Bertozzi*Carolyn R. Bertozzi*Email: [email protected]Department of Chemistry, Stanford University, Stanford, California 94305, United States,Sarafan ChEM-H and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United StatesMore by Carolyn R. Bertozzi
- Edward I. Solomon*Edward I. Solomon*Email: [email protected]Department of Chemistry, Stanford University, Stanford, California 94305, United States,Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States,More by Edward I. Solomon
Abstract
The formylglycine-generating enzyme (FGE) catalyzes the selective oxidation of a peptidyl-cysteine to form formylglycine, a critical cotranslational modification for type I sulfatase activation and a useful bioconjugation handle. Previous studies have shown that the substrate peptidyl-cysteine binds to the linear bis-thiolate Cu(I) site of FGE to form a trigonal planar tris-thiolate Cu(I) structure that activates O2 for the oxidation of the Cβ–H of the cysteine substrate via an unknown mechanism. Here, we employed a combination of stopped-flow kinetic, spectroscopic (UV–vis absorption, XAS, and EPR), and computational (DFT/TD-DFT calculations) methods to observe and characterize the key intermediates in this reaction for FGE from Streptomyces coelicolor. Our results define the reaction coordinate of FGE, which involves H-atom abstraction from the Cβ–H bond of the cysteine substrate by a reactive Cu(II)–O2•– species to form the now experimentally observed Cu(I)–OOH intermediate bound to a peptidyl-thioaldehyde, which proceeds to oxidize one of the protein-derived cysteine residues to a sulfenate that is end-on O-coordinated to Cu(I). These results provide fundamental insights into how the unusual mononuclear Cu(I) site of FGE activates O2 for cysteine oxidation and stores oxidizing equivalents during catalysis by employing a Cu(I)–sulfenate intermediate with an end-on O-coordination that is unprecedented in biology.
This publication is licensed under
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
Synopsis
The mechanism of the formylglycine-generating enzyme (FGE) is described at the molecular level by experimental and computational methods, offering new insights for biotechnological applications.
1. Introduction
Figure 1
Figure 1. Peptidyl cysteine oxidation to fGly by FGE. (A) In its native biological context, FGE catalyzes the selective oxidation of a cysteine residue to fGly, a post-translational modification required for the catalytic function of type I sulfatases (in the gray box). (B) Crystallographic structures of early steps in the FGE mechanism including its Cu(I)-bound state (E, PDB: 6MUJ, S. coelicolor), (14) its substrate-bound complex (ES, PDB: 6S07, T. curvata), (19) and its noncoordinating O2-bound state (ES/O2, PDB: 6XTQ, T. curvata). (15) The FGE protein is shown in green (residue numbers for FGE from S. coelicolor are used), the substrate peptide is shown in purple, the Cu(I) site is shown as a brown sphere, the crystallographic water (w1) is shown as a pink sphere, and the bound O2 cosubstrate is shown in red.
2. Results and Analysis
2.1. Single-Turnover Kinetics for the Reaction of the FGE/Cu(I)/Substrate Complex with O2
Figure 2
Figure 2. Stopped-flow absorption kinetics for the single-turnover reaction of the FGE/Cu(I)/substrate (ES) complex with O2. (A–C) Time-dependent absorption spectra for the reaction of ES (0.1 mM, postmix; FGE from S. coelicolor) with O2 (∼1.1 mM, postmix) in 50 mM Tris buffer (0.5 M NaCl, pH 9.0, 4 °C) show the sequential formation and decay of chromophoric species (isosbestic points indicated with asterisks): (A) 0–0.6 s, (B) 0.6–13 s, and (C) 13–1000 s. (D) The kinetic scheme for the stopped-flow single-turnover FGE reaction (based on observations from panels A–C) used for the kinetic fitting. After reduction with DTT and subsequent addition of substrate (dashed gray line), the final intermediate C reacts again with O2 to generate the same chromophoric intermediates (Figure S2). The reported rate constants are obtained from the SF-Abs experiments shown in panels A–C. (E and F) Dependence of the 425 nm absorbance trace on (E) the O2 concentration and (F) substrate C–H/D isotopic labeling (for Kd1 = 1.5 mM). Data points are shown as circles, and kinetic fits are shown as solid lines (for kinetic fitting details for these plots, see SI Methods 1.7). (G) Early time-course speciation of enzyme intermediates (as % of total enzyme concentration) using the fitted kinetic parameters for the reaction of ES (0.1 mM) with O2 (1.1 mM) reveals that intermediate A accumulates at ∼6% (at 0.6 s) while intermediate B accumulates at ∼100% (6–20 s). The shaded regions indicate the standard deviations for each speciation curve.
2.2. Spectroscopic Definition of Intermediates
Figure 3
Figure 3. Spectroscopic definition of key intermediates in FGE. (A–C) The UV–vis absorption spectra for (A) intermediate A, (B) intermediate B, and (C) intermediate C obtained from SF-Abs kinetics and corrected for background, with Gaussian fits of their absorption bands (dashed curves; see SI Methods 1.8; results from spectral analysis are summarized in Table S1). (D) Normalized Cu K-edge XANES spectra for intermediate B, intermediate C, and intermediate C after the addition of DTT (C+DTT), and (E) the corresponding EXAFS data (inset) and their non-phase-shift-corrected Fourier transforms.
2.3. Correlation of Experimental Results to Electronic Structure Calculations
Figure 4
Figure 4. Composite of previously proposed intermediates of FGE and results from DFT/TDDFT calculations. (A) Proposed intermediates for different reaction coordinates after the HAA step. Note that from the results of the present study, intermediate A is assigned as M2, intermediate B is assigned as M6, and intermediate C is assigned as M7. (B) The TD-DFT calculated spectra (camB3LYP/def2TZVP/ε=4.0) for the DFT-optimized structures of proposed intermediates shown in panel A. The TD-DFT transitions are shown as vertical gray lines based on their fcalc values, and the simulated spectra are shown in black based on their εcalc values (see SI Methods 1.12). See Figures S12–19 for extended TD-DFT analyses. Key bond lengths for the first-coordination sphere of selected DFT-optimized structures are shown (Å) next to their associated spectra. The structures for M1–4 were obtained from a previous computational study, (18) and those for M5–7 were optimized at the B3LYP/def2-SVP/ε=4.0 level of theory (see SI Methods 1.11).
3. Discussion
Figure 5
Figure 5. The experimentally supported mechanism of FGE contains an unprecedented end-on sulfenate (S–O)–Cu(I) coordination. (A) The mechanism of FGE, including the metal loading steps (in gray box, left) and the catalytic cycle for O2 activation and peptidyl-cysteine oxidation (right), supported by this study and previous work. (3,13−15) (B and C) The structurally distinct active sites of (B) the galactose oxidase biogenesis reaction and (C) isopenicillin N synthase exhibit mechanistic parallels with those of FGE. (D) Other known metal–sulfenate centers in biology include (i) the Fe–sulfenate center with an end-on (S)-coordination in the NO-inhibited crystal structure of the nitrile hydratase from Rhodococcus erythropolis (PDB: 2AHJ), (52) (ii) the Co–sulfenate center with an end-on (S)-coordination in the crystal structure of the thiocyanate hydrolase from Thiobacillus thioparus (PDB: 2DXB), (53) (iii) the Fe–sulfenate center with a side-on (SO)-coordination mode in the crystal structure of isopenicillin N-synthase from Aspergillus nidulans in complex with a substrate analogue (PDB: 2VBB), (44) and (iv) the Cu(II)–sulfenate center with side-on (SO)-coordination in azurin M121G, (50) a type I blue copper protein from Pseudomonas aeruginosa.
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscentsci.5c00183.
Detailed methods, supporting figures and analysis, and DFT coordinates (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgments
This research is supported by the U.S. National Institutes of Health (DK31450 to E.I.S. and CA227942 to C.R.B), the Leventis Foundation fellowship (to I.K.), the Abbott Laboratories Stanford Graduate Fellowship (to H.L.), and the Ruth L. Kirschstein National Research Service Award F32GM116240 (to K.K.M.). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (P30GM133894).
Formylglycine-generating enzyme | FGE |
formylglycine | fGly |
lytic polysaccharide monooxygenases | LPMOs |
particulate methane monooxygenase | pMMO |
enzyme–substrate complex | ES |
enzyme–substrate–O2 complex | ESO2 |
kinetic isotope effect | KIE |
H atom abstraction | HAA |
stopped-flow absorption | SF-Abs |
high-performance liquid chromatography | HPLC |
dithiothreitol | DTT |
electron paramagnetic resonance | EPR |
X-ray absorption spectroscopy | XAS |
X-ray absorption near edge structure | XANES |
extended X-ray absorption fine structure | EXAFS |
Fourier transform | FT |
bond valence sum | BVS |
density functional theory | DFT |
time-dependent density functional theory | TD-DFT |
charge transfer | CT |
ligand-to-metal charge transfer | LMCT |
metal-to-ligand charge transfer | MLCT |
ligand-to-ligand charge transfer | LLCT |
isopenicillin N synthase | IPNS, Galactose oxidase, GaOx |
References
This article references 53 other publications.
- 1Appel, M. J.; Bertozzi, C. R. Formylglycine, a Post-Translationally Generated Residue with Unique Catalytic Capabilities and Biotechnology Applications. ACS Chem. Biol. 2015, 10 (1), 72– 84, DOI: 10.1021/cb500897wGoogle ScholarThere is no corresponding record for this reference.
- 2Carrico, I. S.; Carlson, B. L.; Bertozzi, C. R. Introducing Genetically Encoded Aldehydes into Proteins. Nat. Chem. Biol. 2007, 3 (6), 321– 322, DOI: 10.1038/nchembio878Google ScholarThere is no corresponding record for this reference.
- 3Knop, M.; Engi, P.; Lemnaru, R.; Seebeck, F. P. In Vitro Reconstitution of Formylglycine-Generating Enzymes Requires Copper(I). ChemBioChem. 2015, 16 (15), 2147– 2150, DOI: 10.1002/cbic.201500322Google ScholarThere is no corresponding record for this reference.
- 4Holder, P. G.; Jones, L. C.; Drake, P. M.; Barfield, R. M.; Bañas, S.; De Hart, G. W.; Baker, J.; Rabuka, D. Reconstitution of Formylglycine-Generating Enzyme with Copper(II) for Aldehyde Tag Conversion. J. Biol. Chem. 2015, 290 (25), 15730– 15745, DOI: 10.1074/jbc.M115.652669Google ScholarThere is no corresponding record for this reference.
- 5Solomon, E. I.; Heppner, D. E.; Johnston, E. M.; Ginsbach, J. W.; Cirera, J.; Qayyum, M.; Kieber-Emmons, M. T.; Kjaergaard, C. H.; Hadt, R. G.; Tian, L. Copper Active Sites in Biology. Chem. Rev. 2014, 114 (7), 3659– 3853, DOI: 10.1021/cr400327tGoogle ScholarThere is no corresponding record for this reference.
- 6Whittaker, J. W. The Radical Chemistry of Galactose Oxidase. Arch. Biochem. Biophys. 2005, 433 (1), 227– 239, DOI: 10.1016/j.abb.2004.08.034Google ScholarThere is no corresponding record for this reference.
- 7Mure, M.; Mills, S. A.; Klinman, J. P. Catalytic Mechanism of the Topa Quinone Containing Copper Amine Oxidases. Biochemistry 2002, 41 (30), 9269– 9278, DOI: 10.1021/bi020246bGoogle ScholarThere is no corresponding record for this reference.
- 8Bissaro, B.; Røhr, Å. K.; Müller, G.; Chylenski, P.; Skaugen, M.; Forsberg, Z.; Horn, S. J.; Vaaje-Kolstad, G.; Eijsink, V. G. H. Oxidative Cleavage of Polysaccharides by Monocopper Enzymes Depends on H2O2. Nat. Chem. Biol. 2017, 13 (10), 1123– 1128, DOI: 10.1038/nchembio.2470Google ScholarThere is no corresponding record for this reference.
- 9Hangasky, J. A.; Iavarone, A. T.; Marletta, M. A. Reactivity of O2 versus H2O2 with Polysaccharide Monooxygenases. Proc. Natl. Acad. Sci. U.S.A. 2018, 115 (19), 4915– 4920, DOI: 10.1073/pnas.1801153115Google ScholarThere is no corresponding record for this reference.
- 10Jones, S. M.; Transue, W. J.; Meier, K. K.; Kelemen, B.; Solomon, E. I. Kinetic Analysis of Amino Acid Radicals Formed in H2O2 -Driven CuI LPMO Reoxidation Implicates Dominant Homolytic Reactivity. Proc. Natl. Acad. Sci. U.S.A. 2020, 117 (22), 11916– 11922, DOI: 10.1073/pnas.1922499117Google ScholarThere is no corresponding record for this reference.
- 11Koo, C. W.; Tucci, F. J.; He, Y.; Rosenzweig, A. C. Recovery of Particulate Methane Monooxygenase Structure and Activity in a Lipid Bilayer. Science 2022, 375 (6586), 1287– 1291, DOI: 10.1126/science.abm3282Google ScholarThere is no corresponding record for this reference.
- 12Chang, W.-H.; Lin, H.-H.; Tsai, I.-K.; Huang, S.-H.; Chung, S.-C.; Tu, I.-P.; Yu, S. S.-F.; Chan, S. I. Copper Centers in the Cryo-EM Structure of Particulate Methane Monooxygenase Reveal the Catalytic Machinery of Methane Oxidation. J. Am. Chem. Soc. 2021, 143 (26), 9922– 9932, DOI: 10.1021/jacs.1c04082Google ScholarThere is no corresponding record for this reference.
- 13Knop, M.; Dang, T. Q.; Jeschke, G.; Seebeck, F. P. Copper Is a Cofactor of the Formylglycine-Generating Enzyme. ChemBioChem. 2017, 18 (2), 161– 165, DOI: 10.1002/cbic.201600359Google ScholarThere is no corresponding record for this reference.
- 14Appel, M. J.; Meier, K. K.; Lafrance-Vanasse, J.; Lim, H.; Tsai, C.-L.; Hedman, B.; Hodgson, K. O.; Tainer, J. A.; Solomon, E. I.; Bertozzi, C. R. Formylglycine-Generating Enzyme Binds Substrate Directly at a Mononuclear Cu(I) Center to Initiate O2 Activation. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (12), 5370– 5375, DOI: 10.1073/pnas.1818274116Google ScholarThere is no corresponding record for this reference.
- 15Leisinger, F.; Miarzlou, D. A.; Seebeck, F. P. Non-Coordinative Binding of O2 at the Active Center of a Copper-Dependent Enzyme. Angew. Chem. Int. Ed 2021, 60 (11), 6154– 6159, DOI: 10.1002/anie.202014981Google ScholarThere is no corresponding record for this reference.
- 16Rosenzweig, A. C. Copper Delivery by Metallochaperone Proteins. Acc. Chem. Res. 2001, 34 (2), 119– 128, DOI: 10.1021/ar000012pGoogle ScholarThere is no corresponding record for this reference.
- 17Meury, M.; Knop, M.; Seebeck, F. P. Structural Basis for Copper-Oxygen Mediated C-H Bond Activation by the Formylglycine-Generating Enzyme. Angew. Chem. 2017, 129 (28), 8227– 8231, DOI: 10.1002/ange.201702901Google ScholarThere is no corresponding record for this reference.
- 18Wu, Y.; Zhao, C.; Su, Y.; Shaik, S.; Lai, W. Mechanistic Insight into Peptidyl-Cysteine Oxidation by the Copper-Dependent Formylglycine-Generating Enzyme. Angew. Chem. Int. Ed 2023, 62 (7), e202212053 DOI: 10.1002/anie.202212053Google ScholarThere is no corresponding record for this reference.
- 19Miarzlou, D. A.; Leisinger, F.; Joss, D.; Häussinger, D.; Seebeck, F. P. Structure of Formylglycine-Generating Enzyme in Complex with Copper and a Substrate Reveals an Acidic Pocket for Binding and Activation of Molecular Oxygen. Chem. Sci. 2019, 10 (29), 7049– 7058, DOI: 10.1039/C9SC01723BGoogle ScholarThere is no corresponding record for this reference.
- 20Bhadra, M.; Transue, W. J.; Lim, H.; Cowley, R. E.; Lee, J. Y. C.; Siegler, M. A.; Josephs, P.; Henkel, G.; Lerch, M.; Schindler, S.; Neuba, A.; Hodgson, K. O.; Hedman, B.; Solomon, E. I.; Karlin, K. D. A Thioether-Ligated Cupric Superoxide Model with Hydrogen Atom Abstraction Reactivity. J. Am. Chem. Soc. 2021, 143 (10), 3707– 3713, DOI: 10.1021/jacs.1c00260Google ScholarThere is no corresponding record for this reference.
- 21Ginsbach, J. W.; Peterson, R. L.; Cowley, R. E.; Karlin, K. D.; Solomon, E. I. Correlation of the Electronic and Geometric Structures in Mononuclear Copper(II) Superoxide Complexes. Inorg. Chem. 2013, 52 (22), 12872– 12874, DOI: 10.1021/ic402357uGoogle ScholarThere is no corresponding record for this reference.
- 22Peterson, R. L.; Ginsbach, J. W.; Cowley, R. E.; Qayyum, M. F.; Himes, R. A.; Siegler, M. A.; Moore, C. D.; Hedman, B.; Hodgson, K. O.; Fukuzumi, S.; Solomon, E. I.; Karlin, K. D. Stepwise Protonation and Electron-Transfer Reduction of a Primary Copper-Dioxygen Adduct. J. Am. Chem. Soc. 2013, 135 (44), 16454– 16467, DOI: 10.1021/ja4065377Google ScholarThere is no corresponding record for this reference.
- 23Debnath, S.; Laxmi, S.; McCubbin Stepanic, O.; Quek, S. Y.; Van Gastel, M.; DeBeer, S.; Krämer, T.; England, J. A Four-Coordinate End-On Superoxocopper(II) Complex: Probing the Link between Coordination Number and Reactivity. J. Am. Chem. Soc. 2024, 146 (34), 23704– 23716, DOI: 10.1021/jacs.3c12268Google ScholarThere is no corresponding record for this reference.
- 24Quist, D. A.; Diaz, D. E.; Liu, J. J.; Karlin, K. D. Activation of Dioxygen by Copper Metalloproteins and Insights from Model Complexes. J. Biol. Inorg. Chem. 2017, 22 (2–3), 253– 288, DOI: 10.1007/s00775-016-1415-2Google ScholarThere is no corresponding record for this reference.
- 25Cowley, R. E.; Tian, L.; Solomon, E. I. Mechanism of O2 Activation and Substrate Hydroxylation in Noncoupled Binuclear Copper Monooxygenases. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (43), 12035– 12040, DOI: 10.1073/pnas.1614807113Google ScholarThere is no corresponding record for this reference.
- 26Zhu, H.; Sommerhalter, M.; Nguy, A. K. L.; Klinman, J. P. Solvent and Temperature Probes of the Long-Range Electron-Transfer Step in Tyramine β-Monooxygenase: Demonstration of a Long-Range Proton-Coupled Electron-Transfer Mechanism. J. Am. Chem. Soc. 2015, 137 (17), 5720– 5729, DOI: 10.1021/ja512388nGoogle ScholarThere is no corresponding record for this reference.
- 27Kau, L. S.; Spira-Solomon, D. J.; Penner-Hahn, J. E.; Hodgson, K. O.; Solomon, E. I. X-Ray Absorption Edge Determination of the Oxidation State and Coordination Number of Copper. Application to the Type 3 Site in Rhus Vernicifera Laccase and Its Reaction with Oxygen. J. Am. Chem. Soc. 1987, 109 (21), 6433– 6442, DOI: 10.1021/ja00255a032Google ScholarThere is no corresponding record for this reference.
- 28Brown, I. D.; Altermatt, D. Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database. Acta Crystallogr. B Struct Sci. 1985, 41 (4), 244– 247, DOI: 10.1107/S0108768185002063Google ScholarThere is no corresponding record for this reference.
- 29Brese, N. E.; O’Keeffe, M. Bond-Valence Parameters for Solids. Acta Crystallogr. B Struct Sci. 1991, 47 (2), 192– 197, DOI: 10.1107/S0108768190011041Google ScholarThere is no corresponding record for this reference.
- 30Thorp, H. H. Bond Valence Sum Analysis of Metal-Ligand Bond Lengths in Metalloenzymes and Model Complexes. Inorg. Chem. 1992, 31 (9), 1585– 1588, DOI: 10.1021/ic00035a012Google ScholarThere is no corresponding record for this reference.
- 31Liu, W.; Thorp, H. H. Bond Valence Sum Analysis of Metal-Ligand Bond Lengths in Metalloenzymes and Model Complexes. 2. Refined Distances and Other Enzymes. Inorg. Chem. 1993, 32 (19), 4102– 4105, DOI: 10.1021/ic00071a023Google ScholarThere is no corresponding record for this reference.
- 32Dooley, D. M.; Scott, R. A.; Knowles, P. F.; Colangelo, C. M.; McGuirl, M. A.; Brown, D. E. Structures of the Cu(I) and Cu(II) Forms of Amine Oxidases from X-Ray Absorption Spectroscopy. J. Am. Chem. Soc. 1998, 120 (11), 2599– 2605, DOI: 10.1021/ja970312aGoogle ScholarThere is no corresponding record for this reference.
- 33Osborne, J. P.; Cosper, N. J.; Stälhandske, C. M. V.; Scott, R. A.; Alben, J. O.; Gennis, R. B. Cu XAS Shows a Change in the Ligation of CuB upon Reduction of Cytochrome Bo3 from Escherichia Coli. Biochemistry 1999, 38 (14), 4526– 4532, DOI: 10.1021/bi982278yGoogle ScholarThere is no corresponding record for this reference.
- 34Shearer, J.; Szalai, V. A. The Amyloid-β Peptide of Alzheimer’s Disease Binds Cu I in a Linear Bis-His Coordination Environment: Insight into a Possible Neuroprotective Mechanism for the Amyloid-β Peptide. J. Am. Chem. Soc. 2008, 130 (52), 17826– 17835, DOI: 10.1021/ja805940mGoogle ScholarThere is no corresponding record for this reference.
- 35Arcos-López, T.; Qayyum, M.; Rivillas-Acevedo, L.; Miotto, M. C.; Grande-Aztatzi, R.; Fernández, C. O.; Hedman, B.; Hodgson, K. O.; Vela, A.; Solomon, E. I.; Quintanar, L. Spectroscopic and Theoretical Study of CuI Binding to His111 in the Human Prion Protein Fragment 106–115. Inorg. Chem. 2016, 55 (6), 2909– 2922, DOI: 10.1021/acs.inorgchem.5b02794Google ScholarThere is no corresponding record for this reference.
- 36Cowley, R. E.; Cirera, J.; Qayyum, M. F.; Rokhsana, D.; Hedman, B.; Hodgson, K. O.; Dooley, D. M.; Solomon, E. I. Structure of the Reduced Copper Active Site in Preprocessed Galactose Oxidase: Ligand Tuning for One-Electron O2 Activation in Cofactor Biogenesis. J. Am. Chem. Soc. 2016, 138 (40), 13219– 13229, DOI: 10.1021/jacs.6b05792Google ScholarThere is no corresponding record for this reference.
- 37Woertink, J. S.; Tian, L.; Maiti, D.; Lucas, H. R.; Himes, R. A.; Karlin, K. D.; Neese, F.; Würtele, C.; Holthausen, M. C.; Bill, E.; Sundermeyer, J.; Schindler, S.; Solomon, E. I. Spectroscopic and Computational Studies of an End-on Bound Superoxo-Cu(II) Complex: Geometric and Electronic Factors That Determine the Ground State. Inorg. Chem. 2010, 49 (20), 9450– 9459, DOI: 10.1021/ic101138uGoogle ScholarThere is no corresponding record for this reference.
- 38Lanci, M. P.; Smirnov, V. V.; Cramer, C. J.; Gauchenova, E. V.; Sundermeyer, J.; Roth, J. P. Isotopic Probing of Molecular Oxygen Activation at Copper(I) Sites. J. Am. Chem. Soc. 2007, 129 (47), 14697– 14709, DOI: 10.1021/ja074620cGoogle ScholarThere is no corresponding record for this reference.
- 39Dierks, T.; Dickmanns, A.; Preusser-Kunze, A.; Schmidt, B.; Mariappan, M.; Von Figura, K.; Ficner, R.; Rudolph, M. G. Molecular Basis for Multiple Sulfatase Deficiency and Mechanism for Formylglycine Generation of the Human Formylglycine-Generating Enzyme. Cell 2005, 121 (4), 541– 552, DOI: 10.1016/j.cell.2005.03.001Google ScholarThere is no corresponding record for this reference.
- 40Brown, C. D.; Neidig, M. L.; Neibergall, M. B.; Lipscomb, J. D.; Solomon, E. I. VTVH-MCD and DFT Studies of Thiolate Bonding to {FeNO}7/{FeO2}8 Complexes of Isopenicillin N Synthase: Substrate Determination of Oxidase versus Oxygenase Activity in Nonheme Fe Enzymes. J. Am. Chem. Soc. 2007, 129 (23), 7427– 7438, DOI: 10.1021/ja071364vGoogle ScholarThere is no corresponding record for this reference.
- 41Brown-Marshall, C. D.; Diebold, A. R.; Solomon, E. I. Reaction Coordinate of Isopenicillin N Synthase: Oxidase versus Oxygenase Activity. Biochemistry 2010, 49 (6), 1176– 1182, DOI: 10.1021/bi901772wGoogle ScholarThere is no corresponding record for this reference.
- 42Lundberg, M.; Siegbahn, P. E. M.; Morokuma, K. The Mechanism for Isopenicillin N Synthase from Density-Functional Modeling Highlights the Similarities with Other Enzymes in the 2-His-1-Carboxylate Family. Biochemistry 2008, 47 (3), 1031– 1042, DOI: 10.1021/bi701577qGoogle ScholarThere is no corresponding record for this reference.
- 43Tamanaha, E.; Zhang, B.; Guo, Y.; Chang, W.; Barr, E. W.; Xing, G.; St. Clair, J.; Ye, S.; Neese, F.; Bollinger, J. M.; Krebs, C. Spectroscopic Evidence for the Two C-H-Cleaving Intermediates of Aspergillus Nidulans Isopenicillin N Synthase. J. Am. Chem. Soc. 2016, 138 (28), 8862– 8874, DOI: 10.1021/jacs.6b04065Google ScholarThere is no corresponding record for this reference.
- 44Ge, W.; Clifton, I. J.; Stok, J. E.; Adlington, R. M.; Baldwin, J. E.; Rutledge, P. J. Isopenicillin N Synthase Mediates Thiolate Oxidation to Sulfenate in a Depsipeptide Substrate Analogue: Implications for Oxygen Binding and a Link to Nitrile Hydratase?. J. Am. Chem. Soc. 2008, 130 (31), 10096– 10102, DOI: 10.1021/ja8005397Google ScholarThere is no corresponding record for this reference.
- 45Ennemann, E. C.; Radhakrishnan, K.; Mariappan, M.; Wachs, M.; Pringle, T. H.; Schmidt, B.; Dierks, T. Proprotein Convertases Process and Thereby Inactivate Formylglycine-Generating Enzyme*. J. Biol. Chem. 2013, 288 (8), 5828– 5839, DOI: 10.1074/jbc.M112.405159Google ScholarThere is no corresponding record for this reference.
- 46Paulsen, C. E.; Carroll, K. S. Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery. Chem. Rev. 2013, 113 (7), 4633– 4679, DOI: 10.1021/cr300163eGoogle ScholarThere is no corresponding record for this reference.
- 47Michalek, R. D.; Nelson, K. J.; Holbrook, B. C.; Yi, J. S.; Stridiron, D.; Daniel, L. W.; Fetrow, J. S.; King, S. B.; Poole, L. B.; Grayson, J. M. The Requirement of Reversible Cysteine Sulfenic Acid Formation for T Cell Activation and Function. J. Immunol. 2007, 179 (10), 6456– 6467, DOI: 10.4049/jimmunol.179.10.6456Google ScholarThere is no corresponding record for this reference.
- 48Poole, L. B. Formation and Functions of Protein Sulfenic Acids. Curr. Protoc. Toxicol. 2003, 18 (1), 17.1.1– 17.1.15, DOI: 10.1002/0471140856.tx1701s18Google ScholarThere is no corresponding record for this reference.
- 49Paris, J. C.; Hu, S.; Wen, A.; Weitz, A. C.; Cheng, R.; Gee, L. B.; Tang, Y.; Kim, H.; Vegas, A.; Chang, W.; Elliott, S. J.; Liu, P.; Guo, Y. An S = 1 Iron(IV) Intermediate Revealed in a Non-Heme Iron Enzyme-Catalyzed Oxidative C-S Bond Formation. Angew. Chem. Int. Ed 2023, 62 (43), e202309362 DOI: 10.1002/anie.202309362Google ScholarThere is no corresponding record for this reference.
- 50Sieracki, N. A.; Tian, S.; Hadt, R. G.; Zhang, J.-L.; Woertink, J. S.; Nilges, M. J.; Sun, F.; Solomon, E. I.; Lu, Y. Copper-Sulfenate Complex from Oxidation of a Cavity Mutant of Pseudomonas Aeruginosa Azurin. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (3), 924– 929, DOI: 10.1073/pnas.1316483111Google ScholarThere is no corresponding record for this reference.
- 51Murakami, T.; Nojiri, M.; Nakayama, H.; Dohmae, N.; Takio, K.; Odaka, M.; Endo, I.; Nagamune, T.; Yohda, M. Post-translational Modification Is Essential for Catalytic Activity of Nitrile Hydratase. Protein Sci. 2000, 9 (5), 1024– 1030, DOI: 10.1110/ps.9.5.1024Google ScholarThere is no corresponding record for this reference.
- 52Nagashima, S.; Nakasako, M.; Dohmae, N.; Tsujimura, M.; Takio, K.; Odaka, M.; Yohda, M.; Kamiya, N.; Endo, I. Novel Non-Heme Iron Center of Nitrile Hydratase with a Claw Setting of Oxygen Atoms. Nat. Struct Mol. Biol. 1998, 5 (5), 347– 351, DOI: 10.1038/nsb0598-347Google ScholarThere is no corresponding record for this reference.
- 53Arakawa, T.; Kawano, Y.; Katayama, Y.; Nakayama, H.; Dohmae, N.; Yohda, M.; Odaka, M. Structural Basis for Catalytic Activation of Thiocyanate Hydrolase Involving Metal-Ligated Cysteine Modification. J. Am. Chem. Soc. 2009, 131 (41), 14838– 14843, DOI: 10.1021/ja903979sGoogle ScholarThere is no corresponding record for this reference.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 1 publications.
- Marcel Swart, Isaac Garcia-Bosch. Characterization of Three Intermediates in an Unusual Copper-Dependent Enzyme. ACS Central Science 2025, 11
(5)
, 656-658. https://doi.org/10.1021/acscentsci.5c00732
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
Abstract
Figure 1
Figure 1. Peptidyl cysteine oxidation to fGly by FGE. (A) In its native biological context, FGE catalyzes the selective oxidation of a cysteine residue to fGly, a post-translational modification required for the catalytic function of type I sulfatases (in the gray box). (B) Crystallographic structures of early steps in the FGE mechanism including its Cu(I)-bound state (E, PDB: 6MUJ, S. coelicolor), (14) its substrate-bound complex (ES, PDB: 6S07, T. curvata), (19) and its noncoordinating O2-bound state (ES/O2, PDB: 6XTQ, T. curvata). (15) The FGE protein is shown in green (residue numbers for FGE from S. coelicolor are used), the substrate peptide is shown in purple, the Cu(I) site is shown as a brown sphere, the crystallographic water (w1) is shown as a pink sphere, and the bound O2 cosubstrate is shown in red.
Figure 2
Figure 2. Stopped-flow absorption kinetics for the single-turnover reaction of the FGE/Cu(I)/substrate (ES) complex with O2. (A–C) Time-dependent absorption spectra for the reaction of ES (0.1 mM, postmix; FGE from S. coelicolor) with O2 (∼1.1 mM, postmix) in 50 mM Tris buffer (0.5 M NaCl, pH 9.0, 4 °C) show the sequential formation and decay of chromophoric species (isosbestic points indicated with asterisks): (A) 0–0.6 s, (B) 0.6–13 s, and (C) 13–1000 s. (D) The kinetic scheme for the stopped-flow single-turnover FGE reaction (based on observations from panels A–C) used for the kinetic fitting. After reduction with DTT and subsequent addition of substrate (dashed gray line), the final intermediate C reacts again with O2 to generate the same chromophoric intermediates (Figure S2). The reported rate constants are obtained from the SF-Abs experiments shown in panels A–C. (E and F) Dependence of the 425 nm absorbance trace on (E) the O2 concentration and (F) substrate C–H/D isotopic labeling (for Kd1 = 1.5 mM). Data points are shown as circles, and kinetic fits are shown as solid lines (for kinetic fitting details for these plots, see SI Methods 1.7). (G) Early time-course speciation of enzyme intermediates (as % of total enzyme concentration) using the fitted kinetic parameters for the reaction of ES (0.1 mM) with O2 (1.1 mM) reveals that intermediate A accumulates at ∼6% (at 0.6 s) while intermediate B accumulates at ∼100% (6–20 s). The shaded regions indicate the standard deviations for each speciation curve.
Figure 3
Figure 3. Spectroscopic definition of key intermediates in FGE. (A–C) The UV–vis absorption spectra for (A) intermediate A, (B) intermediate B, and (C) intermediate C obtained from SF-Abs kinetics and corrected for background, with Gaussian fits of their absorption bands (dashed curves; see SI Methods 1.8; results from spectral analysis are summarized in Table S1). (D) Normalized Cu K-edge XANES spectra for intermediate B, intermediate C, and intermediate C after the addition of DTT (C+DTT), and (E) the corresponding EXAFS data (inset) and their non-phase-shift-corrected Fourier transforms.
Figure 4
Figure 4. Composite of previously proposed intermediates of FGE and results from DFT/TDDFT calculations. (A) Proposed intermediates for different reaction coordinates after the HAA step. Note that from the results of the present study, intermediate A is assigned as M2, intermediate B is assigned as M6, and intermediate C is assigned as M7. (B) The TD-DFT calculated spectra (camB3LYP/def2TZVP/ε=4.0) for the DFT-optimized structures of proposed intermediates shown in panel A. The TD-DFT transitions are shown as vertical gray lines based on their fcalc values, and the simulated spectra are shown in black based on their εcalc values (see SI Methods 1.12). See Figures S12–19 for extended TD-DFT analyses. Key bond lengths for the first-coordination sphere of selected DFT-optimized structures are shown (Å) next to their associated spectra. The structures for M1–4 were obtained from a previous computational study, (18) and those for M5–7 were optimized at the B3LYP/def2-SVP/ε=4.0 level of theory (see SI Methods 1.11).
Figure 5
Figure 5. The experimentally supported mechanism of FGE contains an unprecedented end-on sulfenate (S–O)–Cu(I) coordination. (A) The mechanism of FGE, including the metal loading steps (in gray box, left) and the catalytic cycle for O2 activation and peptidyl-cysteine oxidation (right), supported by this study and previous work. (3,13−15) (B and C) The structurally distinct active sites of (B) the galactose oxidase biogenesis reaction and (C) isopenicillin N synthase exhibit mechanistic parallels with those of FGE. (D) Other known metal–sulfenate centers in biology include (i) the Fe–sulfenate center with an end-on (S)-coordination in the NO-inhibited crystal structure of the nitrile hydratase from Rhodococcus erythropolis (PDB: 2AHJ), (52) (ii) the Co–sulfenate center with an end-on (S)-coordination in the crystal structure of the thiocyanate hydrolase from Thiobacillus thioparus (PDB: 2DXB), (53) (iii) the Fe–sulfenate center with a side-on (SO)-coordination mode in the crystal structure of isopenicillin N-synthase from Aspergillus nidulans in complex with a substrate analogue (PDB: 2VBB), (44) and (iv) the Cu(II)–sulfenate center with side-on (SO)-coordination in azurin M121G, (50) a type I blue copper protein from Pseudomonas aeruginosa.
References
This article references 53 other publications.
- 1Appel, M. J.; Bertozzi, C. R. Formylglycine, a Post-Translationally Generated Residue with Unique Catalytic Capabilities and Biotechnology Applications. ACS Chem. Biol. 2015, 10 (1), 72– 84, DOI: 10.1021/cb500897wThere is no corresponding record for this reference.
- 2Carrico, I. S.; Carlson, B. L.; Bertozzi, C. R. Introducing Genetically Encoded Aldehydes into Proteins. Nat. Chem. Biol. 2007, 3 (6), 321– 322, DOI: 10.1038/nchembio878There is no corresponding record for this reference.
- 3Knop, M.; Engi, P.; Lemnaru, R.; Seebeck, F. P. In Vitro Reconstitution of Formylglycine-Generating Enzymes Requires Copper(I). ChemBioChem. 2015, 16 (15), 2147– 2150, DOI: 10.1002/cbic.201500322There is no corresponding record for this reference.
- 4Holder, P. G.; Jones, L. C.; Drake, P. M.; Barfield, R. M.; Bañas, S.; De Hart, G. W.; Baker, J.; Rabuka, D. Reconstitution of Formylglycine-Generating Enzyme with Copper(II) for Aldehyde Tag Conversion. J. Biol. Chem. 2015, 290 (25), 15730– 15745, DOI: 10.1074/jbc.M115.652669There is no corresponding record for this reference.
- 5Solomon, E. I.; Heppner, D. E.; Johnston, E. M.; Ginsbach, J. W.; Cirera, J.; Qayyum, M.; Kieber-Emmons, M. T.; Kjaergaard, C. H.; Hadt, R. G.; Tian, L. Copper Active Sites in Biology. Chem. Rev. 2014, 114 (7), 3659– 3853, DOI: 10.1021/cr400327tThere is no corresponding record for this reference.
- 6Whittaker, J. W. The Radical Chemistry of Galactose Oxidase. Arch. Biochem. Biophys. 2005, 433 (1), 227– 239, DOI: 10.1016/j.abb.2004.08.034There is no corresponding record for this reference.
- 7Mure, M.; Mills, S. A.; Klinman, J. P. Catalytic Mechanism of the Topa Quinone Containing Copper Amine Oxidases. Biochemistry 2002, 41 (30), 9269– 9278, DOI: 10.1021/bi020246bThere is no corresponding record for this reference.
- 8Bissaro, B.; Røhr, Å. K.; Müller, G.; Chylenski, P.; Skaugen, M.; Forsberg, Z.; Horn, S. J.; Vaaje-Kolstad, G.; Eijsink, V. G. H. Oxidative Cleavage of Polysaccharides by Monocopper Enzymes Depends on H2O2. Nat. Chem. Biol. 2017, 13 (10), 1123– 1128, DOI: 10.1038/nchembio.2470There is no corresponding record for this reference.
- 9Hangasky, J. A.; Iavarone, A. T.; Marletta, M. A. Reactivity of O2 versus H2O2 with Polysaccharide Monooxygenases. Proc. Natl. Acad. Sci. U.S.A. 2018, 115 (19), 4915– 4920, DOI: 10.1073/pnas.1801153115There is no corresponding record for this reference.
- 10Jones, S. M.; Transue, W. J.; Meier, K. K.; Kelemen, B.; Solomon, E. I. Kinetic Analysis of Amino Acid Radicals Formed in H2O2 -Driven CuI LPMO Reoxidation Implicates Dominant Homolytic Reactivity. Proc. Natl. Acad. Sci. U.S.A. 2020, 117 (22), 11916– 11922, DOI: 10.1073/pnas.1922499117There is no corresponding record for this reference.
- 11Koo, C. W.; Tucci, F. J.; He, Y.; Rosenzweig, A. C. Recovery of Particulate Methane Monooxygenase Structure and Activity in a Lipid Bilayer. Science 2022, 375 (6586), 1287– 1291, DOI: 10.1126/science.abm3282There is no corresponding record for this reference.
- 12Chang, W.-H.; Lin, H.-H.; Tsai, I.-K.; Huang, S.-H.; Chung, S.-C.; Tu, I.-P.; Yu, S. S.-F.; Chan, S. I. Copper Centers in the Cryo-EM Structure of Particulate Methane Monooxygenase Reveal the Catalytic Machinery of Methane Oxidation. J. Am. Chem. Soc. 2021, 143 (26), 9922– 9932, DOI: 10.1021/jacs.1c04082There is no corresponding record for this reference.
- 13Knop, M.; Dang, T. Q.; Jeschke, G.; Seebeck, F. P. Copper Is a Cofactor of the Formylglycine-Generating Enzyme. ChemBioChem. 2017, 18 (2), 161– 165, DOI: 10.1002/cbic.201600359There is no corresponding record for this reference.
- 14Appel, M. J.; Meier, K. K.; Lafrance-Vanasse, J.; Lim, H.; Tsai, C.-L.; Hedman, B.; Hodgson, K. O.; Tainer, J. A.; Solomon, E. I.; Bertozzi, C. R. Formylglycine-Generating Enzyme Binds Substrate Directly at a Mononuclear Cu(I) Center to Initiate O2 Activation. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (12), 5370– 5375, DOI: 10.1073/pnas.1818274116There is no corresponding record for this reference.
- 15Leisinger, F.; Miarzlou, D. A.; Seebeck, F. P. Non-Coordinative Binding of O2 at the Active Center of a Copper-Dependent Enzyme. Angew. Chem. Int. Ed 2021, 60 (11), 6154– 6159, DOI: 10.1002/anie.202014981There is no corresponding record for this reference.
- 16Rosenzweig, A. C. Copper Delivery by Metallochaperone Proteins. Acc. Chem. Res. 2001, 34 (2), 119– 128, DOI: 10.1021/ar000012pThere is no corresponding record for this reference.
- 17Meury, M.; Knop, M.; Seebeck, F. P. Structural Basis for Copper-Oxygen Mediated C-H Bond Activation by the Formylglycine-Generating Enzyme. Angew. Chem. 2017, 129 (28), 8227– 8231, DOI: 10.1002/ange.201702901There is no corresponding record for this reference.
- 18Wu, Y.; Zhao, C.; Su, Y.; Shaik, S.; Lai, W. Mechanistic Insight into Peptidyl-Cysteine Oxidation by the Copper-Dependent Formylglycine-Generating Enzyme. Angew. Chem. Int. Ed 2023, 62 (7), e202212053 DOI: 10.1002/anie.202212053There is no corresponding record for this reference.
- 19Miarzlou, D. A.; Leisinger, F.; Joss, D.; Häussinger, D.; Seebeck, F. P. Structure of Formylglycine-Generating Enzyme in Complex with Copper and a Substrate Reveals an Acidic Pocket for Binding and Activation of Molecular Oxygen. Chem. Sci. 2019, 10 (29), 7049– 7058, DOI: 10.1039/C9SC01723BThere is no corresponding record for this reference.
- 20Bhadra, M.; Transue, W. J.; Lim, H.; Cowley, R. E.; Lee, J. Y. C.; Siegler, M. A.; Josephs, P.; Henkel, G.; Lerch, M.; Schindler, S.; Neuba, A.; Hodgson, K. O.; Hedman, B.; Solomon, E. I.; Karlin, K. D. A Thioether-Ligated Cupric Superoxide Model with Hydrogen Atom Abstraction Reactivity. J. Am. Chem. Soc. 2021, 143 (10), 3707– 3713, DOI: 10.1021/jacs.1c00260There is no corresponding record for this reference.
- 21Ginsbach, J. W.; Peterson, R. L.; Cowley, R. E.; Karlin, K. D.; Solomon, E. I. Correlation of the Electronic and Geometric Structures in Mononuclear Copper(II) Superoxide Complexes. Inorg. Chem. 2013, 52 (22), 12872– 12874, DOI: 10.1021/ic402357uThere is no corresponding record for this reference.
- 22Peterson, R. L.; Ginsbach, J. W.; Cowley, R. E.; Qayyum, M. F.; Himes, R. A.; Siegler, M. A.; Moore, C. D.; Hedman, B.; Hodgson, K. O.; Fukuzumi, S.; Solomon, E. I.; Karlin, K. D. Stepwise Protonation and Electron-Transfer Reduction of a Primary Copper-Dioxygen Adduct. J. Am. Chem. Soc. 2013, 135 (44), 16454– 16467, DOI: 10.1021/ja4065377There is no corresponding record for this reference.
- 23Debnath, S.; Laxmi, S.; McCubbin Stepanic, O.; Quek, S. Y.; Van Gastel, M.; DeBeer, S.; Krämer, T.; England, J. A Four-Coordinate End-On Superoxocopper(II) Complex: Probing the Link between Coordination Number and Reactivity. J. Am. Chem. Soc. 2024, 146 (34), 23704– 23716, DOI: 10.1021/jacs.3c12268There is no corresponding record for this reference.
- 24Quist, D. A.; Diaz, D. E.; Liu, J. J.; Karlin, K. D. Activation of Dioxygen by Copper Metalloproteins and Insights from Model Complexes. J. Biol. Inorg. Chem. 2017, 22 (2–3), 253– 288, DOI: 10.1007/s00775-016-1415-2There is no corresponding record for this reference.
- 25Cowley, R. E.; Tian, L.; Solomon, E. I. Mechanism of O2 Activation and Substrate Hydroxylation in Noncoupled Binuclear Copper Monooxygenases. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (43), 12035– 12040, DOI: 10.1073/pnas.1614807113There is no corresponding record for this reference.
- 26Zhu, H.; Sommerhalter, M.; Nguy, A. K. L.; Klinman, J. P. Solvent and Temperature Probes of the Long-Range Electron-Transfer Step in Tyramine β-Monooxygenase: Demonstration of a Long-Range Proton-Coupled Electron-Transfer Mechanism. J. Am. Chem. Soc. 2015, 137 (17), 5720– 5729, DOI: 10.1021/ja512388nThere is no corresponding record for this reference.
- 27Kau, L. S.; Spira-Solomon, D. J.; Penner-Hahn, J. E.; Hodgson, K. O.; Solomon, E. I. X-Ray Absorption Edge Determination of the Oxidation State and Coordination Number of Copper. Application to the Type 3 Site in Rhus Vernicifera Laccase and Its Reaction with Oxygen. J. Am. Chem. Soc. 1987, 109 (21), 6433– 6442, DOI: 10.1021/ja00255a032There is no corresponding record for this reference.
- 28Brown, I. D.; Altermatt, D. Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database. Acta Crystallogr. B Struct Sci. 1985, 41 (4), 244– 247, DOI: 10.1107/S0108768185002063There is no corresponding record for this reference.
- 29Brese, N. E.; O’Keeffe, M. Bond-Valence Parameters for Solids. Acta Crystallogr. B Struct Sci. 1991, 47 (2), 192– 197, DOI: 10.1107/S0108768190011041There is no corresponding record for this reference.
- 30Thorp, H. H. Bond Valence Sum Analysis of Metal-Ligand Bond Lengths in Metalloenzymes and Model Complexes. Inorg. Chem. 1992, 31 (9), 1585– 1588, DOI: 10.1021/ic00035a012There is no corresponding record for this reference.
- 31Liu, W.; Thorp, H. H. Bond Valence Sum Analysis of Metal-Ligand Bond Lengths in Metalloenzymes and Model Complexes. 2. Refined Distances and Other Enzymes. Inorg. Chem. 1993, 32 (19), 4102– 4105, DOI: 10.1021/ic00071a023There is no corresponding record for this reference.
- 32Dooley, D. M.; Scott, R. A.; Knowles, P. F.; Colangelo, C. M.; McGuirl, M. A.; Brown, D. E. Structures of the Cu(I) and Cu(II) Forms of Amine Oxidases from X-Ray Absorption Spectroscopy. J. Am. Chem. Soc. 1998, 120 (11), 2599– 2605, DOI: 10.1021/ja970312aThere is no corresponding record for this reference.
- 33Osborne, J. P.; Cosper, N. J.; Stälhandske, C. M. V.; Scott, R. A.; Alben, J. O.; Gennis, R. B. Cu XAS Shows a Change in the Ligation of CuB upon Reduction of Cytochrome Bo3 from Escherichia Coli. Biochemistry 1999, 38 (14), 4526– 4532, DOI: 10.1021/bi982278yThere is no corresponding record for this reference.
- 34Shearer, J.; Szalai, V. A. The Amyloid-β Peptide of Alzheimer’s Disease Binds Cu I in a Linear Bis-His Coordination Environment: Insight into a Possible Neuroprotective Mechanism for the Amyloid-β Peptide. J. Am. Chem. Soc. 2008, 130 (52), 17826– 17835, DOI: 10.1021/ja805940mThere is no corresponding record for this reference.
- 35Arcos-López, T.; Qayyum, M.; Rivillas-Acevedo, L.; Miotto, M. C.; Grande-Aztatzi, R.; Fernández, C. O.; Hedman, B.; Hodgson, K. O.; Vela, A.; Solomon, E. I.; Quintanar, L. Spectroscopic and Theoretical Study of CuI Binding to His111 in the Human Prion Protein Fragment 106–115. Inorg. Chem. 2016, 55 (6), 2909– 2922, DOI: 10.1021/acs.inorgchem.5b02794There is no corresponding record for this reference.
- 36Cowley, R. E.; Cirera, J.; Qayyum, M. F.; Rokhsana, D.; Hedman, B.; Hodgson, K. O.; Dooley, D. M.; Solomon, E. I. Structure of the Reduced Copper Active Site in Preprocessed Galactose Oxidase: Ligand Tuning for One-Electron O2 Activation in Cofactor Biogenesis. J. Am. Chem. Soc. 2016, 138 (40), 13219– 13229, DOI: 10.1021/jacs.6b05792There is no corresponding record for this reference.
- 37Woertink, J. S.; Tian, L.; Maiti, D.; Lucas, H. R.; Himes, R. A.; Karlin, K. D.; Neese, F.; Würtele, C.; Holthausen, M. C.; Bill, E.; Sundermeyer, J.; Schindler, S.; Solomon, E. I. Spectroscopic and Computational Studies of an End-on Bound Superoxo-Cu(II) Complex: Geometric and Electronic Factors That Determine the Ground State. Inorg. Chem. 2010, 49 (20), 9450– 9459, DOI: 10.1021/ic101138uThere is no corresponding record for this reference.
- 38Lanci, M. P.; Smirnov, V. V.; Cramer, C. J.; Gauchenova, E. V.; Sundermeyer, J.; Roth, J. P. Isotopic Probing of Molecular Oxygen Activation at Copper(I) Sites. J. Am. Chem. Soc. 2007, 129 (47), 14697– 14709, DOI: 10.1021/ja074620cThere is no corresponding record for this reference.
- 39Dierks, T.; Dickmanns, A.; Preusser-Kunze, A.; Schmidt, B.; Mariappan, M.; Von Figura, K.; Ficner, R.; Rudolph, M. G. Molecular Basis for Multiple Sulfatase Deficiency and Mechanism for Formylglycine Generation of the Human Formylglycine-Generating Enzyme. Cell 2005, 121 (4), 541– 552, DOI: 10.1016/j.cell.2005.03.001There is no corresponding record for this reference.
- 40Brown, C. D.; Neidig, M. L.; Neibergall, M. B.; Lipscomb, J. D.; Solomon, E. I. VTVH-MCD and DFT Studies of Thiolate Bonding to {FeNO}7/{FeO2}8 Complexes of Isopenicillin N Synthase: Substrate Determination of Oxidase versus Oxygenase Activity in Nonheme Fe Enzymes. J. Am. Chem. Soc. 2007, 129 (23), 7427– 7438, DOI: 10.1021/ja071364vThere is no corresponding record for this reference.
- 41Brown-Marshall, C. D.; Diebold, A. R.; Solomon, E. I. Reaction Coordinate of Isopenicillin N Synthase: Oxidase versus Oxygenase Activity. Biochemistry 2010, 49 (6), 1176– 1182, DOI: 10.1021/bi901772wThere is no corresponding record for this reference.
- 42Lundberg, M.; Siegbahn, P. E. M.; Morokuma, K. The Mechanism for Isopenicillin N Synthase from Density-Functional Modeling Highlights the Similarities with Other Enzymes in the 2-His-1-Carboxylate Family. Biochemistry 2008, 47 (3), 1031– 1042, DOI: 10.1021/bi701577qThere is no corresponding record for this reference.
- 43Tamanaha, E.; Zhang, B.; Guo, Y.; Chang, W.; Barr, E. W.; Xing, G.; St. Clair, J.; Ye, S.; Neese, F.; Bollinger, J. M.; Krebs, C. Spectroscopic Evidence for the Two C-H-Cleaving Intermediates of Aspergillus Nidulans Isopenicillin N Synthase. J. Am. Chem. Soc. 2016, 138 (28), 8862– 8874, DOI: 10.1021/jacs.6b04065There is no corresponding record for this reference.
- 44Ge, W.; Clifton, I. J.; Stok, J. E.; Adlington, R. M.; Baldwin, J. E.; Rutledge, P. J. Isopenicillin N Synthase Mediates Thiolate Oxidation to Sulfenate in a Depsipeptide Substrate Analogue: Implications for Oxygen Binding and a Link to Nitrile Hydratase?. J. Am. Chem. Soc. 2008, 130 (31), 10096– 10102, DOI: 10.1021/ja8005397There is no corresponding record for this reference.
- 45Ennemann, E. C.; Radhakrishnan, K.; Mariappan, M.; Wachs, M.; Pringle, T. H.; Schmidt, B.; Dierks, T. Proprotein Convertases Process and Thereby Inactivate Formylglycine-Generating Enzyme*. J. Biol. Chem. 2013, 288 (8), 5828– 5839, DOI: 10.1074/jbc.M112.405159There is no corresponding record for this reference.
- 46Paulsen, C. E.; Carroll, K. S. Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery. Chem. Rev. 2013, 113 (7), 4633– 4679, DOI: 10.1021/cr300163eThere is no corresponding record for this reference.
- 47Michalek, R. D.; Nelson, K. J.; Holbrook, B. C.; Yi, J. S.; Stridiron, D.; Daniel, L. W.; Fetrow, J. S.; King, S. B.; Poole, L. B.; Grayson, J. M. The Requirement of Reversible Cysteine Sulfenic Acid Formation for T Cell Activation and Function. J. Immunol. 2007, 179 (10), 6456– 6467, DOI: 10.4049/jimmunol.179.10.6456There is no corresponding record for this reference.
- 48Poole, L. B. Formation and Functions of Protein Sulfenic Acids. Curr. Protoc. Toxicol. 2003, 18 (1), 17.1.1– 17.1.15, DOI: 10.1002/0471140856.tx1701s18There is no corresponding record for this reference.
- 49Paris, J. C.; Hu, S.; Wen, A.; Weitz, A. C.; Cheng, R.; Gee, L. B.; Tang, Y.; Kim, H.; Vegas, A.; Chang, W.; Elliott, S. J.; Liu, P.; Guo, Y. An S = 1 Iron(IV) Intermediate Revealed in a Non-Heme Iron Enzyme-Catalyzed Oxidative C-S Bond Formation. Angew. Chem. Int. Ed 2023, 62 (43), e202309362 DOI: 10.1002/anie.202309362There is no corresponding record for this reference.
- 50Sieracki, N. A.; Tian, S.; Hadt, R. G.; Zhang, J.-L.; Woertink, J. S.; Nilges, M. J.; Sun, F.; Solomon, E. I.; Lu, Y. Copper-Sulfenate Complex from Oxidation of a Cavity Mutant of Pseudomonas Aeruginosa Azurin. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (3), 924– 929, DOI: 10.1073/pnas.1316483111There is no corresponding record for this reference.
- 51Murakami, T.; Nojiri, M.; Nakayama, H.; Dohmae, N.; Takio, K.; Odaka, M.; Endo, I.; Nagamune, T.; Yohda, M. Post-translational Modification Is Essential for Catalytic Activity of Nitrile Hydratase. Protein Sci. 2000, 9 (5), 1024– 1030, DOI: 10.1110/ps.9.5.1024There is no corresponding record for this reference.
- 52Nagashima, S.; Nakasako, M.; Dohmae, N.; Tsujimura, M.; Takio, K.; Odaka, M.; Yohda, M.; Kamiya, N.; Endo, I. Novel Non-Heme Iron Center of Nitrile Hydratase with a Claw Setting of Oxygen Atoms. Nat. Struct Mol. Biol. 1998, 5 (5), 347– 351, DOI: 10.1038/nsb0598-347There is no corresponding record for this reference.
- 53Arakawa, T.; Kawano, Y.; Katayama, Y.; Nakayama, H.; Dohmae, N.; Yohda, M.; Odaka, M. Structural Basis for Catalytic Activation of Thiocyanate Hydrolase Involving Metal-Ligated Cysteine Modification. J. Am. Chem. Soc. 2009, 131 (41), 14838– 14843, DOI: 10.1021/ja903979sThere is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acscentsci.5c00183.
Detailed methods, supporting figures and analysis, and DFT coordinates (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.