ACS Publications. Most Trusted. Most Cited. Most Read
Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes
My Activity
  • Open Access
Research Article

Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes
Click to copy article linkArticle link copied!

  • Zeeshan Ahmad
    Zeeshan Ahmad
    Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
  • Tian Xie
    Tian Xie
    Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
    More by Tian Xie
  • Chinmay Maheshwari
    Chinmay Maheshwari
    Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
  • Jeffrey C. Grossman
    Jeffrey C. Grossman
    Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
  • Venkatasubramanian Viswanathan*
    Venkatasubramanian Viswanathan
    Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
    Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
    *E-mail: [email protected]
Open PDFSupporting Information (5)

ACS Central Science

Cite this: ACS Cent. Sci. 2018, 4, 8, 996–1006
Click to copy citationCitation copied!
https://doi.org/10.1021/acscentsci.8b00229
Published August 10, 2018

Copyright © 2018 American Chemical Society. This publication is licensed under these Terms of Use.

Abstract

Click to copy section linkSection link copied!

Next generation batteries based on lithium (Li) metal anodes have been plagued by the dendritic electrodeposition of Li metal on the anode during cycling, resulting in short circuit and capacity loss. Suppression of dendritic growth through the use of solid electrolytes has emerged as one of the most promising strategies for enabling the use of Li metal anodes. We perform a computational screening of over 12 000 inorganic solids based on their ability to suppress dendrite initiation in contact with Li metal anode. Properties for mechanically isotropic and anisotropic interfaces that can be used in stability criteria for determining the propensity of dendrite initiation are usually obtained from computationally expensive first-principles methods. In order to obtain a large data set for screening, we use machine-learning models to predict the mechanical properties of several new solid electrolytes. The machine-learning models are trained on purely structural features of the material, which do not require any first-principles calculations. We train a graph convolutional neural network on the shear and bulk moduli because of the availability of a large training data set with low noise due to low uncertainty in their first-principles-calculated values. We use gradient boosting regressor and kernel ridge regression to train the elastic constants, where the choice of the model depends on the size of the training data and the noise that it can handle. The material stiffness is found to increase with an increase in mass density and ratio of Li and sublattice bond ionicity, and decrease with increase in volume per atom and sublattice electronegativity. Cross-validation/test performance suggests our models generalize well. We predict over 20 mechanically anisotropic interfaces between Li metal and four solid electrolytes which can be used to suppress dendrite growth. Our screened candidates are generally soft and highly anisotropic, and present opportunities for simultaneously obtaining dendrite suppression and high ionic conductivity in solid electrolytes.

Copyright © 2018 American Chemical Society

Synopsis

Driven by machine-learning methods, we perform a large-scale screening of ∼13 000 materials for their use as solid electrolytes in Li metal anode-based batteries.

Introduction

Click to copy section linkSection link copied!

Increased energy densities of Li-ion batteries are crucial for progress toward complete electrification of transportation. (1−3) Among the many possible routes, Li metal anodes have emerged as one of the most likely near-term commercialization options. (4) Coupled with a conventional intercalation cathode, batteries utilizing Li metal anodes could achieve specific energy of >400 W h/kg, much higher than the current state of the art ∼250 W h/kg. (5,6) Unstable and dendritic electrodeposition on Li metal anode coupled with capacity fade due to consumption of electrolyte has been one of the major hurdles in its commercialization. (5,7−12) For large-scale adoption, a stable, smooth and dendrite-free electrodeposition on Li metal is crucial.
Numerous approaches are being actively pursued for suppressing dendrite growth through the design of novel additives in liquid electrolytes, (13−19) surface nanostructuring, (20,21) modified charging protocols, (22,23) artificial solid electrolyte interphase or protective coatings, (24−26) polymers, (27−29) or inorganic solid electrolytes. (30−33) Among these, dramatic improvements in the ionic conductivity of solid electrolytes (34,35) have made them extremely attractive candidates for enabling Li metal anodes.
A comprehensive and precise criterion for dendrite suppression is still elusive. Interfacial effects (36,37) and spatial inhomogeneities within the solid electrolyte like voids, grain boundaries, and impurities (38) make the problem challenging. Monroe and Newman performed a dendrite initiation analysis and showed that solid polymer electrolytes with shear modulus roughly twice that of Li could achieve stable electrodeposition. (39) In an earlier work, we extended this idea and showed that the criteria for the suppression of dendrite growth gets reversed for inorganic crystalline materials due to the difference in molar volume of Li+. A softer solid electrolyte is required for stability in this case. (40) It is worth highlighting that this requirement applies only for dendrite initiation regime, and other suppression approaches may be possible for the propagation regime. However, once initiated, dendrite growth is extremely hard to mitigate as pointed out by several studies. (41−43) Therefore, it is best to prevent dendrites from initiating to ensure smooth electrodeposition throughout cycling of the battery.
In recent years, high-throughput computational materials design has emerged as a major driver of discovery of novel materials for various applications. (44,45) It typically involves a combination of first-principles quantum-mechanical approaches and database construction and mining techniques. Combined with machine-learning methods that bypass the use of expensive quantum-mechanical calculations through the use of structural descriptors, (46−50) one can accelerate the high-throughput screening by several orders of magnitude. (51−53) Previous high-throughput screening studies of solid electrolytes have used ionic conductivity, stability, and electronic conductivity as screening criteria. (51,52) However, dendrite suppression capability of solid electrolytes is an additional requirement that needs to be assessed.
Here, we carry out a large-scale data-driven search for solid electrolytes that might be promising candidates for suppressing dendrite growth during the initiation phase with a Li metal anode. We use machine-learning techniques to train and predict the mechanical properties of inorganic solids which play a major role in stabilizing the interface. These properties are fed into the theoretical framework which uses the stability parameter (40,54) to quantify the dendrite initiation with Li metal anode. At a mechanically isotropic interface, the screening results predict the crucial role of surface tension in stabilizing the interface since most solid electrolytes are not intrinsically stabilized by the stresses generated at the interface. Hence, surface nanostructuring may be essential to prevent initiation of dendrites for isotropic interfaces. We rank the materials based on the amount of nanostructuring (surface roughness wavenumber) required for achieving a stable electrodeposition. We then performed a stability analysis of over 15 000 anisotropic interfaces between the Li metal and solid electrolyte using the Stroh formalism. This is essential to account for the highly anisotropic mechanical properties of Li (55) and texturing of electrodeposited Li at the interface. (56) A full anisotropic treatment of the interface reveals over 20 candidate interfaces that are predicted to suppress dendrite initiation. The materials obtained through screening are generally soft and with highly anisotropic mechanical properties. Since softer materials are generally faster ion conductors than stiffer materials due to availability of more volume per atom, (57) the screened candidates present an opportunity to obtain both desirable mechanical properties and fast ion conduction.

Results and Discussion

Click to copy section linkSection link copied!

We describe the procedure for screening solid electrolytes and discuss the material candidates obtained based on isotropic and anisotropic criteria separately. First, we briefly review the criteria for dendrite suppression at a metal–solid electrolyte interface to determine the desirable properties of solid electrolytes. We then discuss our machine-learning models used for predicting these properties. Finally, we perform material screening based on these properties and discuss the implications.

Isotropic Material Screening

In solid electrolytes, the mechanical properties at the interface provide an additional degree of freedom for tuning the stability of electrodeposition. Previously, we developed a generalized stability diagram for assessing the stability of electrodeposition at a metal–solid electrolyte interface for isotropic mechanical response. (40) In these studies, we used the stability parameter first proposed by Monroe and Newman (43) to characterize the growth/decay of dendrites with time. The sign of the stability parameter, denoted hereafter as χ, determines whether the electrodeposition is stable or unstable. A positive χ implies higher current density at the peaks and lower current density at the valley leading to growth of dendrites while a negative χ leads to stabilization or suppression of dendrites. The stability parameter is related to the change in the electrochemical potential of the electron Δμe at a deformed interface z = f(x) between the metal anode and the electrolyte (Figure S1). It is convenient to compute properties of the interface in Fourier space with f(x) = ∫ dk[f1(k) cos(kx) + f2(k) sin(kx)] and then integrate over the surface roughness wavenumber k to obtain the overall behavior. The stability parameter can be calculated in a closed form at a given k. The change in the electrochemical potential at a given k is given by Δμe(k) = χ(k)[f1(k) cos(kx) + f2(k) sin(kx)]. (54) This serves to define the stability parameter χ(k) as
(1)
Δμe can be obtained by including the effect of mechanical stresses and surface tension on the electrochemical potential of the species at a deformed interface as (43)
(2)
From eq 2, Δμe depends on k through the surface tension γ, curvature κ, the hydrostatic stress Δp, and deviatoric stress τ generated at the interface. e and s in the subscripts refer to the metal electrode (anode) and solid electrolyte, respectively; VM is the molar volume of the metal atom in the anode, v the ratio of molar volume of the metal ion in electrolyte VMz+ to the metal atom in the anode VM, z the valence of the metal, and en the normal to the interface pointing toward the electrolyte. The stability parameter consists of contributions from the surface tension and the stresses developed at the metal–electrolyte interface. For an isotropic metal anode with shear modulus Ge and Poisson’s ratio νe in contact with an isotropic electrolyte with shear modulus Gs and Poisson’s ratio νs, the stability parameter χ(k) can be computed exactly as (40)
(3)
Using the shear modulus, Poisson’s ratio, and molar volume ratio of a solid electrolyte, it is possible to calculate the stability parameter for its interface with Li metal anode and determine stability of electrodeposition. For a complete understanding of the interface growth and stability, it is necessary to determine the sign of stability parameter at all the Fourier components k. Fortunately, as we will see later, a negative stability parameter at a given k guarantees stability at all higher values.
The molar volume ratio v = VMz+/VM influences the range of shear moduli over which the electrodeposition is stable. VMz+ was calculated using the coordination number of Li in the crystal structure and mapping them to ionic radius using the values tabulated by Shannon. (58) The coordination number was calculated by generating polyhedra around a species through Voronoi analysis (59,60) as implemented in pymatgen. (61) A linear interpolation was used for computing ionic radius corresponding to coordination numbers not in the Shannon’s tabulated values. Predictions with VMz+ > VM (true for just one candidate in the screening) were ignored since those correspond to very high Li coordination number where Shannon’s tabulated values cannot be used. The partial molar volume of the metal in the electrolyte VMz+ can be measured directly in an experiment on the difference of potentials between a stressed and unstressed electrolyte as done by Pannikkat and Raj (62) and then using the relationship VMz+ = ∂μMz+/∂p where μMz+ is the electrochemical potential of the metal ion.
Since bulk and shear moduli are related to second derivatives of energy with respect to lattice constants at equilibrium, their calculation by first-principles requires fitting of the energy–strain relationship or the stress–strain relationship. Calculations on several deformed structures are required in order to get an accurate estimate of the fitting parameters. At each deformed state of the structure, the internal coordinates need to be relaxed to calculate the energy or the stress. The materials project database employed 24 relax calculations for a single material to compute the moduli. To perform a large-scale screening over all Li-containing compounds (over 12 000) for use as solid electrolytes, it is necessary to choose a technique that can predict the properties reasonably accurately and without the high computational cost of multiple first-principles simulations. Hence, we used the crystal graph convolutional neural network (CGCNN) framework (63) to predict the shear and bulk moduli of the crystalline solid electrolyte materials. At the core of the CGCNN is the multigraph representation of the crystal structure which encodes the atomic information and bonding interactions between atoms. The CGCNN builds a graph convolutional neural network directly on top of a multigraph that represents the crystal structure of the electrolytes, and predicts the elastic properties by extracting local structural features from the multigraph representation. Note that this method does not depend on any handcrafted geometric or topological features, and all the features are learned by the neural network automatically. This results in a model that is more general than the usual models relying on descriptors but also requires more data to train.
The training data for the mechanical properties required to compute χ through eq 3 was obtained from the materials project database. (64,65) The calculated values in the database are typically within 15% of the experimental values which is sometimes the uncertainty in experimental data. (65) The moduli have been calculated using density functional theory (DFT) with the Perdew, Burke, and Ernzerhof (PBE) generalized gradient approximation (GGA) for the exchange-correlation functional. (66) GGA-level predictions for 104 systems were within 15% of the experimental value for all but 16 systems for the bulk modulus and 15 systems for the shear modulus. (65) Out of the outliers, many had a discrepancy of less than 10 GPa. Experimentally, the shear and bulk moduli can be calculated using the elastic tensor obtained through inelastic neutron scattering or pulse–echo measurements. The experimental measurements typically have a high degree of variability depending on the experimental technique and conditions. We used 2041 crystal structures with shear and bulk moduli, 60% of the entire data set with elastic properties, to train our CGCNN model. We choose to minimize the mean squared errors between the log values of predicted and calculated elastic properties since we aim to minimize the relative prediction errors instead of absolute errors and avoid overweighing stiffer materials. This also enabled us to always obtain positive values of the shear and bulk moduli. We then performed a hyperparameter optimization on 20% validation data via grid search to select the optimum learning rate, weight decay, and number of convolution layers. The best performing hyperparameters are selected, and the resulting model is evaluated on the rest 20% test data. The CGCNN was implemented in PyTorch, (67) and the details of the architecture and optimized hyperparameters can be found in the Supporting Information and ref (63).
Considering the presence of uncertainty in training data set, we developed a framework for obtaining uncertainty estimates on the results. The uncertainty in the model predictions was obtained by generating an ensemble of 100 CGCNNs using a random 60% of the training data for each model. Using each model, we obtained predictions of the shear and bulk modulus. The ensemble of moduli was then used together with eq 3 to obtain an ensemble of stability parameters for each material. The spread in the distribution of the stability parameter was used to quantify the uncertainty. Figures S4 and S5 show the distribution of the shear modulus and stability parameter for the material Li5Sn2 as an example. Using the ensemble of stability parameters, we calculated the probability of stability Ps as the ratio of number of models that predict a negative stability parameter to the total number of models:
(4)
Here, N is the total number of models (100 in our calculations), and the indicator function 1{X} is equal to 1 if the condition X is true and 0 if it is false.
The performance of the CGCNN model was evaluated on 680 test data points. In Figure 1a, we show the comparison between the shear modulus predicted by our model and the DFT-calculated value obtained from the materials project database, and in Table 1, we show the root mean squared error (RMSE) for the shear and bulk moduli predicted by our model. The RMSE obtained using our model is comparable to previous work by de Jong et al. (49) However, it is worth noting that we evaluated our model on test data while de Jong et al. evaluated on the entire data set, indicating that our model does not overfit and has better generalization capability.

Figure 1

Figure 1. Parity plots comparing the elastic properties: (a) shear modulus G, and elastic constants (b) C11, (c) C12, and (d) C44 predicted by the machine-learning models to the DFT-calculated values. The shear modulus is predicted using CGCNN, and the elastic constants C11 and C44 are predicted using gradient boosting regression while C12 is predicted using kernel ridge regression. The parity plot for shear modulus is on 680 test data points while that for the elastic constants contains all available data (170 points) where each prediction is a cross-validated value.

Table 1. Comparison of RMSE in log(GPa) for Shear and Bulk Moduli
methodlog(G) RMSElog(K) RMSE
this work0.12680.1013
de Jong et al. (49)0.13780.0750
The shear modulus, Poisson’s ratio, and molar volume ratio v = VMz+/VM are the parameters determining the stability of electrodeposition at an interface where both materials are isotropic through eq 3. The role of surface tension in stabilizing electrodeposition is well established. (20,43,68) Since the contribution of the surface tension to the stability parameter increases as k2 while that of stress increases linearly with k, the surface tension starts dominating the stability parameter as k is increased. This is elucidated in Figure 2 through the contributions of the different terms to the total stability parameter for a material with G = 3.4 GPa and v = 0.1. The red line shows the fraction of contribution of surface tension to the overall stability parameter. All interfaces become stabilized as the value of k is increased beyond the critical surface roughness wavenumber. This motivates a distinction between two types of solid electrolytes—ones that are stabilized by the stress term alone and those that are stabilized by the surface tension beyond the critical value of k. For materials that are stabilized by stresses, the stability parameter remains negative for all values of surface roughness, and therefore, stability is guaranteed. However, for materials that have an overall destabilizing contribution due to stresses (hydrostatic + deviatoric), the stability parameter changes sign at an intermediate value of k since χ → −∞ as k → ∞. For such materials, the electrodeposition becomes stable at the critical surface wavenumber kcrit = 2π /λcrit (Figure 2). If the surface roughness wavenumber so obtained is possible to achieve by nanostructuring the interface, (20) the electrodeposition might be stabilized.

Figure 2

Figure 2. Contribution of hydrostatic stress, deviatoric stress, and surface tension to the stability parameter as a function of surface roughness wavenumber. The surface tension term starts dominating at high k and ultimately stabilizes the interface after k = kcrit. The contributions are plotted for a material with shear modulus ratio G/GLi = 1 and Poisson’s ratio ν = 0.33 which is not stable (χ > 0) at k = 108 m–1. The red line shows the fraction of surface tension contribution to the stability parameter obtained by dividing the absolute value of its contribution by the sum of absolute values of all components.

We calculated the stability parameter for 12 950 Li-containing compounds out of which the properties of ∼3400 were in training data, and those of the remaining were predicted using CGCNN. In Figure S3, we visualized the latent space representations of randomly selected 500 training and 500 predicted crystals in a two-dimensional plot using t-distributed stochastic neighbor embedding (t-SNE) algorithm. It is clear that training crystals cover the search space of predicted crystals, indicating the reliability of the prediction. The lower part of Figure S3 includes compounds that do not contain Li atoms, which helps improve the prediction even though they are not directly representative of the search space. The ensemble averaged stability parameter χ and the critical surface roughness λcrit for all materials are shown as a histogram in Figure 3. We found that none of the materials have a probability of stability over 5% at surface roughness wavenumber k = 108 m–1. (39) The absence of any materials that can suppress dendrites without assistance from surface tension becomes clear from the isotropic stability diagram shown in Figure 4. All materials have G/GLi ratio higher than the critical value required to stabilize electrodeposition. (40) The highest number of materials are found in the region where G/GLi ∼ 15 and v ∼ 0.1. The critical wavelength of surface roughening was used as the criteria for screening materials since a higher surface roughness is easier to achieve by nanostructuring.

Figure 3

Figure 3. Results of isotropic screening for 12 950 Li-containing compounds. Distribution of ensemble averaged (a) stability parameter for isotropic Li–solid electrolyte interfaces at k = 108 m–1 and (b) critical wavelength of surface roughness required for stability. None of the materials in the database can be stabilized without the aid of surface tension. The required critical surface roughness wavenumber depends on the contribution of the stress term in the stability parameter.

Figure 4

Figure 4. Isotropic stability diagram showing the position of all solid electrolytes involved in the screening. GLi is the shear modulus of Li = 3.4 GPa. The critical G/GLi line separating the stable and unstable regions depends weakly on the Poisson’s ratio, so the lines corresponding to νs = 0.33 and 0.5 are good indicators for assessment of stability. The darker regions indicate more number of materials in the region.

The candidate materials with highest critical wavelength of roughening λcrit are shown in Table 2 along with their stability parameter at different surface roughness wavenumbers and the corresponding probability of stability. While performing screening, we removed all materials which are electronically conducting, i.e., those which have a zero band gap according to the materials project database. However, we retained materials which were thermodynamically metastable (with energy above hull less than 0.1 eV) since many such solid electrolytes like Li10GeP2S12 (34) and Li7P3S11 (69) have been successfully synthesized. We find several candidate electrolytes with probability of stability Ps over 5% at surface roughness wavelength of 1 nm. It is worth noting that our screening identifies sulfide-, borohydride-, and iodide-based solid electrolytes, classes to which many of the current solid electrolytes belong. The uncertainty in stability parameter is much higher at high surface roughness wavenumber.
Table 2. Solid Electrolyte Screening Resultsa for Stable Electrodeposition with Li Metal Anode Together with Their materials project id (MP id) Ranked by Critical Wavelength of Surface Roughening λcrit Required to Stabilize Electrodeposition
   low khigh k 
formulaspace groupMP idχPsχPsλcrit (nm)
Li2WS4P4̅2mmp-8676950.62 –109.26 3.64
Li2WS4I4̅2mmp-7531951.75 –38.54 1.34
LiBH4Pmp-6759261.98 –40.13 1.32
LiAuI4P21/cmp-295202.7 ± 0.9016.1 ± 55.20.431.02 ± 0.40
LiGaI4P21/cmp-5679673.2 ± 1.1048.6 ± 67.00.280.85 ± 0.29
LiWCl6R3mp-5705123.2 ± 0.9051.3 ± 56.60.170.82 ± 0.27
Cs3LiI4P21/mmp-5692383.1 ± 0.7046.9 ± 43.40.150.80 ± 0.17
LiInI4P21/cmp-5410013.5 ± 1.0068.5 ± 62.80.120.74 ± 0.20
Cs2Li3I5C2mp-6083113.6 ± 0.9077.2 ± 59.00.050.71 ± 0.17
Ba19Na29Li35F4̅3mmp-5690254.2 ± 1.30101.9 ± 81.30.080.68 ± 0.19
Ba38Na58Li26NF4̅3mmp-5701854.2 ± 1.30104.5 ± 82.30.080.67 ± 0.20
Li2UI6P3̅1cmp-5708134.2 ± 1.40111.5 ± 86.80.110.66 ± 0.29
a

χ is the stability parameter in kJ/(mol nm) which needs to be negative for stability, and k = 2π/λ is the surface roughness wavenumber. Low k corresponds to k = 108 m–1 while high k corresponds to a wavelength λ = 2π/k = 1 nm. Only materials with probability of stability Ps > 0.05 at high k are shown. Uncertainties in χ and λcrit (standard deviation of their distributions) and Ps are only shown for materials whose properties were predicted using CGCNN and not for those whose properties were available in training data.

Anisotropic Material Screening

The isotropic assumption provides a good starting point for determining the stability of electrodeposition in terms of the mechanical and chemical properties of the solid electrolyte. However, this assumption does not take into account the huge anisotropy of Li metal resulting in an anisotropy index of 8.52. (55) This may also arise when the surface of the solids in contact are single crystalline or dominated by a particular crystallographic orientation as has been seen for Li metal. (56) Therefore, a full anisotropic treatment of the mechanics taking into account the elastic tensor and orientation of Li metal at the interface is essential. Previously, we also observed a large variation in the stability parameter, with the [010] orientation of Li and solid electrolyte at the interface being the most compliant. (54) Here, we analyze the stability of electrodeposition at an anisotropic interface involving crystalline solid electrolyte in contact with crystalline Li metal.
For this analysis, we calculate the stability parameter using the full elastic tensor of the electrode and the electrolyte. A knowledge of surface orientations at the interface is necessary to determine the elastic tensor. Specifically, we considered ⟨1 0 0⟩, ⟨1 1 0⟩, ⟨1 1 1⟩, and ⟨2 1 1⟩ crystallographic directions of Li normal to the interface, in contact with seven low-index facets of the solid electrolyte for the screening procedure. The last three crystallographic directions have been observed through cryo-electron microscopy as the dominant directions for Li dendrite growth in carbonate-based electrolytes. (70) Additionally, X-ray diffraction pole figure analysis has revealed that Li gets electrodeposited along certain preferential crystallographic orientations. (56) The crystallographic orientation provides one more parameter for tuning the mechanical properties at the interface. In an earlier work, we used the Stroh formalism (71,72) to calculate the stresses and deformations at the interface which were used to obtain the stability parameter χ. (54)
We developed a model different from CGCNN for predicting the full elastic tensor of each material since the size of training data is much smaller for the full elastic tensor. Considering the success of atomistic descriptors such as Li neighborhood, anionic framework, (57) bond ionicity, etc. in predicting Li-ion conduction, (52) we developed a regression model for predicting the elastic tensor of all Li-containing compounds using several of these relevant descriptors. A complete list of descriptors can be found in the Supporting Information. All descriptors used in the model are geometric or topological and can be obtained from the structure of the material in CIF format. (73) We further employed the crystal symmetries to reduce the number of parameters in the elastic tensor. This procedure reduces the number of constants in the elastic tensor to train from 21 to 3 in the cubic crystal class, for example, and, by construction, ensures the predicted elastic tensor obeys its crystal symmetry. (74) We trained separate models for each elastic constant, which were used to build the full elastic tensor of the material. We believe the differences in the uncertainty of the different elastic constants (75) result in different amounts of noise in the training data, thereby, justifying the need for separate models.
The training data for the elastic tensor was obtained from the materials project database (64,65) retrieved using pymatgen, (61) with the same level of theory as the isotropic case. We performed a data cleaning step in which all materials which were mechanically unstable (116 in number), i.e., with a nonpositive definite elastic tensor, were removed from training data. Since sufficient data was available only for the cubic crystal class (see Table S2 of the Supporting Information), we developed a regression model for predicting the elastic tensor of only cubic Li-containing compounds. However, our framework is very general and can accommodate more data as it is generated in training set as well as add models for other symmetries once the size of training data is sufficient in the materials project database. For other crystal symmetries besides cubic, we screened over materials with elastic tensor available from first-principles. Our screening process consisting of DFT-calculated data for all symmetries and predicted data for cubic symmetries that covers >15 000 Li metal–solid electrolyte interfaces.
The regression model was chosen on the basis of cross-validation performance (coefficient of determination) on the values of the elastic constants (in GPa). The models tested for performance were Lasso regression, elastic net, kernel ridge regression, Gaussian process regression, gradient boosting regression (76,77) used in an earlier work on predicting mechanical properties of zeolite frameworks, (53) AdaBoost regression, (78,79) support vector regression, (80) random forest regression, Bayesian ridge regression, (81) least angle regression, and automatic relevance determination. All hyperparameters were optimized using grid search with nested 3-fold cross-validation. The optimized hyperparameter values can be found in the Supporting Information. The scikit-learn package, (82) which has implementations of all models listed above, was used for training, hyperparameter optimization, and prediction.
Figure 1b–d shows the comparison of predicted and calculated values of elastic constants C11, C12, and C44. We obtain an overall R2 of 0.93, 0.92, and 0.92 and a cross-validation R2 of 0.60, 0.79, and 0.6 for the elastic constants C11, C12, and C44, respectively. A general idea of the effect of different atomistic features on the elastic constants can be obtained through the coefficients of a linear model fitted to the elastic constants. The dominant atomistic features affecting the elastic tensor based on the coefficients were mass density, volume per atom, sublattice electronegativity, and ratio of bond ionicities. The material stiffness increases with mass density and decreases with volume per atom. The stiffness also increases with ratio of bond ionicity of Li and sublattice and decreases with sublattice electronegativity.
While evaluating the models, the inherent uncertainty in DFT-calculated values due to exchange-correlation functional should be taken into account. (75,83) The uncertainty in DFT-calculated values generates noise in the training data. For example, DFT-calculated C12 generally has high uncertainty (75) which degrades the performance of boosting techniques. We believe the lower uncertainty in the training data for C11 and C44 makes boosting algorithms perform better. These algorithms are sensitive to the presence of outliers since a higher weight will be assigned to them. Further investigation is needed to quantify the effect of DFT uncertainty in training data on the machine-learning model to be used. Overall, our models have satisfactory performance to be used for the next step of prediction and screening. A two-dimensional t-SNE plot of all training and predicted feature data (Figure S6) also shows that out training data covers the feature space of the predicted crystals.
Our anisotropic screening procedure involves the determination of electrodeposition stability for 482 electrolyte materials with DFT-computed elastic tensor from the materials project database and 548 materials with cubic crystal structure whose elastic tensor was predicted using the regression model developed earlier. The total number of Li–solid electrolyte interfaces involved in the screening is over 15 000 (see also Table S2 in the Supporting Information). The best candidate interfaces obtained from the screening procedure are shown in Table 3. It is worth pointing out that all the screened candidates are stabilized by the stress term in the stability parameter and do not depend on surface tension for stability. We observe two major features in the materials obtained through screening: either the material is mechanically soft, i.e., with small eigenvalues of the elastic tensor, or the material has highly anisotropic mechanical properties. The mechanical softness of these materials is particularly attractive since it means the mechanical properties for dendrite suppression and ionic conductivity can be optimized simultaneously through methods like increasing volume per atom. (57) The high anisotropy results in certain weak directions along which the electrolyte may comply with the Li metal anode. This degree of freedom in crystallographic orientation is probably the reason why there are several screened candidates in the anisotropic case compared to the isotropic case. All screened candidates in Table 3 have a universal anisotropy index greater than 10, which is zero for an isotropic material. (84) The highest anisotropy index of 113.29 and 31.30 is found for LiOH and Li2WS4. The mechanically soft nature of these materials is reminiscent of density-driven stability (40) in the isotropic case for materials with v < 1.
Table 3. Screening Results for Anisotropic Interfaces (Top 20) for Stable Electrodeposition with Li Metal Anode with Their materials project id, Interface Normal, and Stability Parameter (Last Column Shows the Universal Anisotropy Index AU Which Is Zero for a Completely Isotropic Material) (84)
   interface normal  
formulaspace groupMP idLielectrolyteχ at k = 108 m–1 (kJ/(mol nm))AU
Li2WS4P4̅2mmp-867695[1 1 1][0 0 1]–1.9231.30
Li2WS4P4̅2mmp-867695[2 1 1][0 0 1]–1.8731.30
Li2WS4P4̅2mmp-867695[0 1 0][0 0 1]–1.6831.30
Li2WS4I4̅2mmp-753195[0 1 0][0 0 1]–1.2312.84
LiBH4Pmp-675926[0 1 0][0 1 0]–1.1213.65
Li2WS4I4̅2mmp-753195[1 1 1][1 0 1]–1.0012.84
LiOHP4/nmmmp-23856[0 1 0][0 0 1]–1.00113.29
Li2WS4I4̅2mmp-753195[1 1 1][0 0 1]–1.0012.84
LiOHP4/nmmmp-23856[2 1 1][0 0 1]–0.99113.29
LiOHP4/nmmmp-23856[1 1 1][0 0 1]–0.98113.29
Li2WS4I4̅2mmp-753195[2 1 1][0 0 1]–0.8912.84
Li2WS4I4̅2mmp-753195[0 1 0][1 0 1]–0.7912.84
LiBH4Pmp-675926[1 1 1][1 1 0]–0.7713.65
LiBH4Pmp-675926[1 1 1][0 1 0]–0.7513.65
Li2WS4I4̅2mmp-753195[0 1 0][0 1 1]–0.4913.84
LiBH4Pmp-675926[0 1 0][1 1 0]–0.4713.65
Li2WS4P4̅2mmp-867695[1 1 0][0 0 1]–0.4031.30
Li2WS4P4̅2mmp-867695[1 1 1][1 0 1]–0.2831.30
Li2WS4P4̅2mmp-867695[0 1 0][1 0 1]–0.1731.30
Li2WS4I4̅2mmp-753195[2 1 1][1 0 1]–0.0713.84

Other Considerations for Screened Electrolytes

Click to copy section linkSection link copied!

Although the literature on the candidates we obtained through screening is rather limited, we do find some similarities with solid electrolyte materials currently being explored. For example, Li borohydrides have been recently explored as fast ion conductors for solid state batteries. (85,86) Their anion substituted analogues also exhibit high conductivities and provide opportunities for tuning other desirable properties such as electrochemical and thermodynamic stability. (86−88) Li2WS4 phases are sulfides with structures similar to the tetragonal phase of LiFePO4. One of the candidates, LiOH, is often found as an electrochemically stable product in the solid electrolyte interphase formed at the anode. (89,90) The candidates we obtained through screening will only be useful if they satisfy several other requirements imposed by solid electrolytes. Here, we focus on the most important ones: ionic conductivity, electronic conductivity, and thermodynamic stability. We develop quantitative metrics for each of them and show them for the screened candidates in Table 4.
Table 4. Quantitative Metricsa for Other Important Requirements of Screened Solid Electrolytes for Their Use in Li-Ion Batteries: Ionic Conductivity, Electronic Conductivity, and Thermodynamic Stability
formulaspace groupMP idPionband gap (eV)energy above hull per atom (eV)
LiOHP4/nmmmp-238560.056.340.000
LiAuI4P21/cmp-295200.941.920.000
LiGaI4P21/cmp-5679670.184.330.000
LiBH4Pmp-6759260.278.570.071
Li2WS4I4̅2mmp-7531950.153.610.032
Li2WS4P4̅2mmp-8676950.233.520.037
Cs3LiI4P21/mmp-5692380.016.070.018
LiInI4P21/cmp-5410010.133.960.000
Cs2Li3I5C2mp-6083110.336.580.000
Ba19Na29Li35F4̅3mmp-5690250.000.940.000
Ba38Na58Li26NF4̅3mmp-5701851.000.960.009
Li2UI6P3̅1cmp-5708130.261.170.000
a

Ionic conductivity is quantified through Pion, the probability of superionic conduction; electronic conductivity through the band gap; and thermodynamic stability through energy per atom above the convex hull.

Ionic Conductivity

We obtained the probability of superionic conduction by using the logistic regression framework proposed by Sendek et al. (52) which relates the atomistic features to conductivity. The probability can be obtained using the features 6, 7, 9, 12, and 14 from the feature list in the Supporting Information. These probabilities are based on atomic structure of the bulk. Of the screened candidates, LiAuI4 and Ba38Na58Li26N are predicted to be superionic conductors. Further enhancement in conductivities may be achieved through doping, defects, and disorder. The high-temperature hexagonal phase of LiBH4 has a Li-ion conductivity as high as 10 mS/cm. (91) The screened triclinic P1̅ phase of LiBH4 is disordered and is expected to have higher Li ionic conductivity than that obtained for bulk atomic structure. It will be worth investigating the possibility of tuning its ionic conduction and mechanical properties through anion substitution similar to its hexagonal analogue which undergoes order of magnitude improvements in ionic conductivity. (87,88) LiOH is known to undergo a solid state transition at ∼415 °C accompanied by a large increase in ionic conductivity. (92) We also expect the high anisotropy in mechanical properties of some electrolytes to affect the activation energy landscape for Li-ion conduction as well, possibly leading to anisotropic conductivities.

Thermodynamic Stability

While screening, we only removed solids with energy greater than 0.1 eV/atom above hull. Besides LiBH4 and Li2WS4, all screened candidates are thermodynamically stable; i.e., energy above the convex hull is 0 eV, or the energy above hull per atom is within thermal fluctuations at room temperature. The two phases of Li2WS4 have energies 31 and 36 meV per atom above hull. The hexagonal phase of LiBH4 has been explored previously as a solid electrolyte with promising performance. (91,93,94) This phase is thermodynamically unstable at room temperature. However, doping with Li halides improved the stability of the hexagonal phase even below room temperature. (93) It is possible that a similar technique might help stabilize the screened triclinic P1̅ phase obtained through our screening as well.

Electronic Conductivity

All the screened solid electrolytes in the list are electronic insulators since we removed those with a zero GGA band gap. Since GGA DFT generally underestimates band gaps, we used an empirical scheme to correct for the band gap (95) (see the Supporting Information). All candidates apart from Ba19Na29Li35 and Ba38Na58Li26N have corrected band gaps greater than 1 eV.
We found several candidates that could enable dendrite suppression through the anisotropic criteria. It is worth highlighting that grain misorientation needs to be avoided for these materials. Textured growth of Li film on Li metal anode has been observed for liquid electrolytes. (56) A similar opportunity for textured growth of Li metal is present with solid electrolytes; however, it would require precise engineering of film growth at the interphase which requires further investigation.
While the candidate list identified is small, we strongly believe that there is a lot of room for further search for candidates. In particular, we find that anisotropy plays a crucial role in determining the stability, and thus, there may be additional noncubic Li-containing compounds that could suppress dendrites at certain crystallographic orientations. Further, the degree of disorder is another important factor, and many glassy or amorphous materials are known to be good solid electrolytes. These avenues will be the subject of our future investigations.

Conclusions

Click to copy section linkSection link copied!

We applied criteria for stable electrodeposition together with machine-learning techniques to computationally screen solid electrolytes for suppressing Li dendrite growth. The machine-learning techniques accelerate the process of screening by predicting the properties of solid electrolytes through the identification of structure–property relationships. We train a graph convolutional neural network on shear and bulk moduli. We employ gradient boosting regression and kernel ridge regression for training the elastic constants of cubic materials. The choice of machine-learning models used was rationalized by the model’s ability to handle noise in the training data. Our approach is readily applicable for screening materials for other properties of interest and can easily accommodate more data as it is generated.
Our predictive models enabled us to screen 12 950 solids using isotropic stability criteria and over 15 000 interfaces using anisotropic stability criteria of electrodeposition on the Li metal anode. In the isotropic case, we found no materials that could be stabilized solely by the stresses generated at the interface; however, a surface tension-mediated stabilization was found to be possible at high surface roughness wavenumbers. In the anisotropic case, the additional degree of freedom related to crystallographic orientation of the solid electrolyte at the interface enabled us to find over 20 interfaces with six solid electrolytes that are predicted to be stable to dendrite initiation. We identify some common features like anisotropy and mechanical softness present in the screened candidates based on which one can simultaneously optimize properties required for dendrite suppression as well as fast ion conduction. We believe that the use of techniques like doping and defect generation will be crucial to ensure simultaneous satisfaction of other solid electrolyte requirements for screened candidates.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscentsci.8b00229.

  • Details of machine-learning models and additional figures including schematics and visualizations, shear modulus values, and stability parameter values (PDF)

  • Anisotropic stability parameter for training data (XLSX)

  • Shear modulus of 60 648 compounds predicted using CGCNN (XLSX)

  • Anisotropic stability parameter for predicted data (XLSX)

  • Bulk modulus of 60 648 compounds predicted using CGCNN (XLSX)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Venkatasubramanian Viswanathan - Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United StatesDepartment of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United StatesOrcidhttp://orcid.org/0000-0003-1060-5495 Email: [email protected]
  • Authors
    • Zeeshan Ahmad - Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United StatesOrcidhttp://orcid.org/0000-0001-9758-8952
    • Tian Xie - Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United StatesOrcidhttp://orcid.org/0000-0002-0987-4666
    • Chinmay Maheshwari - Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
    • Jeffrey C. Grossman - Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

Z.A. thanks A. Sendek for sharing data on features of Li-containing compounds, and S. Shekhar, C. Hwu, L. Kara, J. Montoya, and K. Thomas-Alyea for helpful discussions. Z.A. acknowledges support from the Advanced Research Projects Agency—Energy (ARPA-E) Integration and Optimization of Novel Ion Conducting Solids (IONICS) program under Grant DE-AR0000774. V.V. gratefully acknowledges support from the U.S. Department of Energy, Energy Efficiency and Renewable Energy Vehicle Technologies Office under Award DE-EE0007810. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), (96) which is supported by National Science Foundation Grant OCI-1053575. Specifically, it used Grant MSS170010P on the Bridges system, (97) which is supported by NSF Award ACI-1445606, at the Pittsburgh Supercomputing Center (PSC).

References

Click to copy section linkSection link copied!

This article references 97 other publications.

  1. 1
    Sripad, S.; Viswanathan, V. Evaluation of Current, Future, and Beyond Li-Ion Batteries for the Electrification of Light Commercial Vehicles: Challenges and Opportunities. J. Electrochem. Soc. 2017, 164, E3635E3646,  DOI: 10.1149/2.0671711jes
  2. 2
    Sripad, S.; Viswanathan, V. Performance Metrics Required of Next-Generation Batteries to Make a Practical Electric Semi Truck. ACS Energy Lett. 2017, 2, 16691673,  DOI: 10.1021/acsenergylett.7b00432
  3. 3
    Moore, M. D. Misconceptions of Electric Aircraft and their Emerging Aviation Markets; AIAA SciTech Forum: American Institute of Aeronautics and Astronautics, 2014.
  4. 4
    Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117, 1040310473,  DOI: 10.1021/acs.chemrev.7b00115
  5. 5
    Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194206,  DOI: 10.1038/nnano.2017.16
  6. 6
    Christensen, J.; Albertus, P.; Sanchez-Carrera, R. S.; Lohmann, T.; Kozinsky, B.; Liedtke, R.; Ahmed, J.; Kojic, A. A Critical Review of Li/Air Batteries. J. Electrochem. Soc. 2011, 159, R1R30,  DOI: 10.1149/2.086202jes
  7. 7
    Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513537,  DOI: 10.1039/C3EE40795K
  8. 8
    Tikekar, M. D.; Choudhury, S.; Tu, Z.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114,  DOI: 10.1038/nenergy.2016.114
  9. 9
    Aurbach, D.; Zinigrad, E.; Teller, H.; Dan, P. Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries. J. Electrochem. Soc. 2000, 147, 12741279,  DOI: 10.1149/1.1393349
  10. 10
    Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 2002, 148, 405416,  DOI: 10.1016/S0167-2738(02)00080-2
  11. 11
    Steiger, J.; Kramer, D.; Mönig, R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources 2014, 261, 112119,  DOI: 10.1016/j.jpowsour.2014.03.029
  12. 12
    Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 1621,  DOI: 10.1038/s41560-017-0047-2
  13. 13
    Aurbach, D.; Markovsky, B.; Shechter, A.; Ein-Eli, Y.; Cohen, H. A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate-Dimethyl Carbonate Mixtures. J. Electrochem. Soc. 1996, 143, 38093820,  DOI: 10.1149/1.1837300
  14. 14
    Hirai, T.; Yoshimatsu, I.; Yamaki, J. Effect of Additives on Lithium Cycling Efficiency. J. Electrochem. Soc. 1994, 141, 23002305,  DOI: 10.1149/1.2055116
  15. 15
    Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; Liu, X.; Sushko, P. V.; Liu, J.; Zhang, J.-G. Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. J. Am. Chem. Soc. 2013, 135, 44504456,  DOI: 10.1021/ja312241y
  16. 16
    Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362,  DOI: 10.1038/ncomms7362
  17. 17
    Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481,  DOI: 10.1038/ncomms2513
  18. 18
    Lu, Y.; Tu, Z.; Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 2014, 13, 961,  DOI: 10.1038/nmat4041
  19. 19
    Zhang, X.; Cheng, X.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Adv. Funct. Mater. 2017, 27, 1605989,  DOI: 10.1002/adfm.201605989
  20. 20
    Wang, D.; Zhang, W.; Zheng, W.; Cui, X.; Rojo, T.; Zhang, Q. Towards High-Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy. Adv. Sci. 2017, 4, 1600168,  DOI: 10.1002/advs.201600168
  21. 21
    Zhang, Y.; Qian, J.; Xu, W.; Russell, S. M.; Chen, X.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D.; Cao, R.; Ding, F.; Cresce, A. V.; Xu, K.; Zhang, J.-G. Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure. Nano Lett. 2014, 14, 68896896,  DOI: 10.1021/nl5039117
  22. 22
    Mayers, M. Z.; Kaminski, J. W.; Miller, T. F. Suppression of Dendrite Formation via Pulse Charging in Rechargeable Lithium Metal Batteries. J. Phys. Chem. C 2012, 116, 2621426221,  DOI: 10.1021/jp309321w
  23. 23
    Aryanfar, A.; Brooks, D.; Merinov, B. V.; Goddard, W. A.; Colussi, A. J.; Hoffmann, M. R. Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations. J. Phys. Chem. Lett. 2014, 5, 17211726,  DOI: 10.1021/jz500207a
  24. 24
    Liu, Q.; Xu, J.; Yuan, S.; Chang, Z.; Xu, D.; Yin, Y.; Li, L.; Zhong, H.; Jiang, Y.; Yan, J.; Zhang, X. Artificial Protection Film on Lithium Metal Anode toward Long-Cycle-Life Lithium-Oxygen Batteries. Adv. Mater. 2015, 27, 52415247,  DOI: 10.1002/adma.201501490
  25. 25
    Yan, K.; Lee, H.-W.; Gao, T.; Zheng, G.; Yao, H.; Wang, H.; Lu, Z.; Zhou, Y.; Liang, Z.; Liu, Z.; Chu, S.; Cui, Y. Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode. Nano Lett. 2014, 14, 60166022,  DOI: 10.1021/nl503125u
  26. 26
    Liu, Y.; Lin, D.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes. Adv. Mater. 2017, 29, 1605531,  DOI: 10.1002/adma.201605531
  27. 27
    Khurana, R.; Schaefer, J. L.; Archer, L. A.; Coates, G. W. Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries. J. Am. Chem. Soc. 2014, 136, 73957402,  DOI: 10.1021/ja502133j
  28. 28
    Stone, G. M.; Mullin, S. A.; Teran, A. A.; Hallinan, D. T.; Minor, A. M.; Hexemer, A.; Balsara, N. P. Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries. J. Electrochem. Soc. 2012, 159, A222A227,  DOI: 10.1149/2.030203jes
  29. 29
    Yue, L.; Ma, J.; Zhang, J.; Zhao, J.; Dong, S.; Liu, Z.; Cui, G.; Chen, L. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 2016, 5, 139164,  DOI: 10.1016/j.ensm.2016.07.003
  30. 30
    Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141,  DOI: 10.1038/nenergy.2016.141
  31. 31
    Li, J.; Ma, C.; Chi, M.; Liang, C.; Dudney, N. J. Solid Electrolyte: the Key for High-Voltage Lithium Batteries. Adv. Energy Mater. 2015, 5, 1401408,  DOI: 10.1002/aenm.201401408
  32. 32
    Suzuki, Y.; Kami, K.; Watanabe, K.; Watanabe, A.; Saito, N.; Ohnishi, T.; Takada, K.; Sudo, R.; Imanishi, N. Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12. Solid State Ionics 2015, 278, 172176,  DOI: 10.1016/j.ssi.2015.06.009
  33. 33
    Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103,  DOI: 10.1038/natrevmats.2016.103
  34. 34
    Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A. A lithium superionic conductor. Nat. Mater. 2011, 10, 682686,  DOI: 10.1038/nmat3066
  35. 35
    Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16030,  DOI: 10.1038/nenergy.2016.30
  36. 36
    Kerman, K.; Luntz, A.; Viswanathan, V.; Chiang, Y.-M.; Chen, Z. Review-Practical Challenges Hindering the Development of Solid State Li Ion Batteries. J. Electrochem. Soc. 2017, 164, A1731A1744,  DOI: 10.1149/2.1571707jes
  37. 37
    Sharafi, A.; Yu, S.; Naguib, M.; Lee, M.; Ma, C.; Meyer, H. M.; Nanda, J.; Chi, M.; Siegel, D. J.; Sakamoto, J. Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. J. Mater. Chem. A 2017, 5, 1347513487,  DOI: 10.1039/C7TA03162A
  38. 38
    Sharafi, A.; Haslam, C. G.; Kerns, R. D.; Wolfenstine, J.; Sakamoto, J. Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte. J. Mater. Chem. A 2017, 5, 2149121504,  DOI: 10.1039/C7TA06790A
  39. 39
    Monroe, C.; Newman, J. The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces. J. Electrochem. Soc. 2005, 152, A396A404,  DOI: 10.1149/1.1850854
  40. 40
    Ahmad, Z.; Viswanathan, V. Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes. Phys. Rev. Lett. 2017, 119, 056003,  DOI: 10.1103/PhysRevLett.119.056003
  41. 41
    Diggle, J. W.; Despic, A. R.; Bockris, J. O. The Mechanism of the Dendritic Electrocrystallization of Zinc. J. Electrochem. Soc. 1969, 116, 15031514,  DOI: 10.1149/1.2411588
  42. 42
    Monroe, C.; Newman, J. Dendrite Growth in Lithium/Polymer Systems: A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions. J. Electrochem. Soc. 2003, 150, A1377A1384,  DOI: 10.1149/1.1606686
  43. 43
    Monroe, C.; Newman, J. The Effect of Interfacial Deformation on Electrodeposition Kinetics. J. Electrochem. Soc. 2004, 151, A880A886,  DOI: 10.1149/1.1710893
  44. 44
    Curtarolo, S.; Hart, G. L. W.; Nardelli, M. B.; Mingo, N.; Sanvito, S.; Levy, O. The high-throughput highway to computational materials design. Nat. Mater. 2013, 12, 191,  DOI: 10.1038/nmat3568
  45. 45
    Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM 2013, 65, 15011509,  DOI: 10.1007/s11837-013-0755-4
  46. 46
    Pilania, G.; Wang, C.; Jiang, X.; Rajasekaran, S.; Ramprasad, R. Accelerating materials property predictions using machine learning. Sci. Rep. 2013, 3, 2810,  DOI: 10.1038/srep02810
  47. 47
    Liu, Y.; Zhao, T.; Ju, W.; Shi, S. Materials discovery and design using machine learning. J. Materiomics 2017, 3, 159177,  DOI: 10.1016/j.jmat.2017.08.002
  48. 48
    Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-Lobato, J. M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Cent. Sci. 2018, 4, 268276,  DOI: 10.1021/acscentsci.7b00572
  49. 49
    de Jong, M.; Chen, W.; Notestine, R.; Persson, K.; Ceder, G.; Jain, A.; Asta, M.; Gamst, A. A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-nary Inorganic Polycrystalline Compounds. Sci. Rep. 2016, 6, 34256,  DOI: 10.1038/srep34256
  50. 50
    Isayev, O.; Oses, C.; Toher, C.; Gossett, E.; Curtarolo, S.; Tropsha, A. Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun. 2017, 8, 15679,  DOI: 10.1038/ncomms15679
  51. 51
    Fujimura, K.; Seko, A.; Koyama, Y.; Kuwabara, A.; Kishida, I.; Shitara, K.; Fisher, C. A. J.; Moriwake, H.; Tanaka, I. Accelerated Materials Design of Lithium Superionic Conductors Based on First-Principles Calculations and Machine Learning Algorithms. Adv. Energy Mater. 2013, 3, 980985,  DOI: 10.1002/aenm.201300060
  52. 52
    Sendek, A. D.; Yang, Q.; Cubuk, E. D.; Duerloo, K.-A. N.; Cui, Y.; Reed, E. J. Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials. Energy Environ. Sci. 2017, 10, 306320,  DOI: 10.1039/C6EE02697D
  53. 53
    Evans, J. D.; Coudert, F.-X. Predicting the Mechanical Properties of Zeolite Frameworks by Machine Learning. Chem. Mater. 2017, 29, 78337839,  DOI: 10.1021/acs.chemmater.7b02532
  54. 54
    Ahmad, Z.; Viswanathan, V. Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces. Phys. Rev. Materials 2017, 1, 055403,  DOI: 10.1103/PhysRevMaterials.1.055403
  55. 55
    Xu, C.; Ahmad, Z.; Aryanfar, A.; Viswanathan, V.; Greer, J. R. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 5761,  DOI: 10.1073/pnas.1615733114
  56. 56
    Shi, F.; Pei, A.; Vailionis, A.; Xie, J.; Liu, B.; Zhao, J.; Gong, Y.; Cui, Y. Strong texturing of lithium metal in batteries. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 1213812143,  DOI: 10.1073/pnas.1708224114
  57. 57
    Wang, Y.; Richards, W. D.; Ong, S. P.; Miara, L. J.; Kim, J. C.; Mo, Y.; Ceder, G. Design principles for solid-state lithium superionic conductors. Nat. Mater. 2015, 14, 10261031,  DOI: 10.1038/nmat4369
  58. 58
    Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 751767,  DOI: 10.1107/S0567739476001551
  59. 59
    Gotoh, K.; Finney, J. L. Statistical geometrical approach to random packing density of equal spheres. Nature 1974, 252, 202,  DOI: 10.1038/252202a0
  60. 60
    Stepanyuk, V.; Szasz, A.; Katsnelson, A.; Trushin, O.; Müller, H.; Kirchmayr, H. Microstructure and its relaxation in FeB amorphous system simulated by moleculular dynamics. J. Non-Cryst. Solids 1993, 159, 8087,  DOI: 10.1016/0022-3093(93)91284-A
  61. 61
    Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V. L.; Persson, K. A.; Ceder, G. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 2013, 68, 314319,  DOI: 10.1016/j.commatsci.2012.10.028
  62. 62
    Pannikkat, A.; Raj, R. Measurement of an electrical potential induced by normal stress applied to the interface of an ionic material at elevated temperatures. Acta Mater. 1999, 47, 34233431,  DOI: 10.1016/S1359-6454(99)00206-2
  63. 63
    Xie, T.; Grossman, J. C. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Phys. Rev. Lett. 2018, 120, 145301,  DOI: 10.1103/PhysRevLett.120.145301
  64. 64
    Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002,  DOI: 10.1063/1.4812323
  65. 65
    de Jong, M.; Chen, W.; Angsten, T.; Jain, A.; Notestine, R.; Gamst, A.; Sluiter, M.; Krishna Ande, C.; van der Zwaag, S.; Plata, J. J.; Toher, C.; Curtarolo, S.; Ceder, G.; Persson, K. A.; Asta, M. Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data 2015, 2, 150009,  DOI: 10.1038/sdata.2015.9
  66. 66
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865,  DOI: 10.1103/PhysRevLett.77.3865
  67. 67
    Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in PyTorch , NIPS-W, 2017.
  68. 68
    Tikekar, M. D.; Archer, L. A.; Koch, D. L. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2016, 2, 1600320,  DOI: 10.1126/sciadv.1600320
  69. 69
    Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 2014, 7, 627631,  DOI: 10.1039/C3EE41655K
  70. 70
    Li, Y.; Li, Y.; Pei, A.; Yan, K.; Sun, Y.; Wu, C.-L.; Joubert, L.-M.; Chin, R.; Koh, A. L.; Yu, Y.; Perrino, J.; Butz, B.; Chu, S.; Cui, Y. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 2017, 358, 506510,  DOI: 10.1126/science.aam6014
  71. 71
    Stroh, A. N. Dislocations and Cracks in Anisotropic Elasticity. Philos. Mag. 1958, 3, 625646,  DOI: 10.1080/14786435808565804
  72. 72
    Stroh, A. N. Steady State Problems in Anisotropic Elasticity. J. Math. Phys. 1962, 41, 77103,  DOI: 10.1002/sapm196241177
  73. 73
    Hall, S. R.; Allen, F. H.; Brown, I. D. The crystallographic information file (CIF): a new standard archive file for crystallography. Acta Crystallogr., Sect. A: Found. Crystallogr. 1991, 47, 655685,  DOI: 10.1107/S010876739101067X
  74. 74
    Mouhat, F.; Coudert, F. m. c.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 224104,  DOI: 10.1103/PhysRevB.90.224104
  75. 75
    Ahmad, Z.; Viswanathan, V. Quantification of uncertainty in first-principles predicted mechanical properties of solids: Application to solid ion conductors. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 94, 064105,  DOI: 10.1103/PhysRevB.94.064105
  76. 76
    Friedman, J. H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 11891232,  DOI: 10.1214/aos/1013203451
  77. 77
    Friedman, J. H.; Hastie, T.; Tibshirani, R. The elements of statistical learning; Springer series in statistics: New York, 2001; Vol. 1.
  78. 78
    Freund, Y.; Schapire, R. E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119139,  DOI: 10.1006/jcss.1997.1504
  79. 79
    Drucker, H. Improving Regressors Using Boosting Techniques , Proceedings of the Fourteenth International Conference on Machine Learning, San Francisco, CA, United States, 1997; pp 107115.
  80. 80
    Smola, A. J.; Schülkopf, B. A tutorial on support vector regression. Statistics and Computing 2004, 14, 199222,  DOI: 10.1023/B:STCO.0000035301.49549.88
  81. 81
    MacKay, D. J. C. Bayesian Interpolation. Neural Comput. 1992, 4, 415447,  DOI: 10.1162/neco.1992.4.3.415
  82. 82
    Pedregosa, F. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 28252830
  83. 83
    Deng, Z.; Wang, Z.; Chu, I.-H.; Luo, J.; Ong, S. P. Elastic Properties of Alkali Superionic Conductor Electrolytes from First Principles Calculations. J. Electrochem. Soc. 2016, 163, A67A74,  DOI: 10.1149/2.0061602jes
  84. 84
    Ranganathan, S. I.; Ostoja-Starzewski, M. Universal Elastic Anisotropy Index. Phys. Rev. Lett. 2008, 101, 055504,  DOI: 10.1103/PhysRevLett.101.055504
  85. 85
    Lu, Z.; Ciucci, F. Metal Borohydrides as Electrolytes for Solid-State Li, Na, Mg, and Ca Batteries: A First-Principles Study. Chem. Mater. 2017, 29, 93089319,  DOI: 10.1021/acs.chemmater.7b03284
  86. 86
    Varley, J. B.; Kweon, K.; Mehta, P.; Shea, P.; Heo, T. W.; Udovic, T. J.; Stavila, V.; Wood, B. C. Understanding Ionic Conductivity Trends in Polyborane Solid Electrolytes from Ab Initio Molecular Dynamics. ACS Energy Lett. 2017, 2, 250255,  DOI: 10.1021/acsenergylett.6b00620
  87. 87
    Tang, W. S.; Matsuo, M.; Wu, H.; Stavila, V.; Zhou, W.; Talin, A. A.; Soloninin, A. V.; Skoryunov, R. V.; Babanova, O. A.; Skripov, A. V.; Unemoto, A.; Orimo, S.; Udovic, T. J. Liquid-Like Ionic Conduction in Solid Lithium and Sodium Monocarba-closo-Decaborates Near or at Room Temperature. Adv. Energy Mater. 2016, 6, 1502237,  DOI: 10.1002/aenm.201502237
  88. 88
    Tang, W. S.; Unemoto, A.; Zhou, W.; Stavila, V.; Matsuo, M.; Wu, H.; Orimo, S.-i.; Udovic, T. J. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions. Energy Environ. Sci. 2015, 8, 36373645,  DOI: 10.1039/C5EE02941D
  89. 89
    Malmgren, S.; Ciosek, K.; Lindblad, R.; Plogmaker, S.; Kühn, J.; Rensmo, H.; Edström, K.; Hahlin, M. Consequences of air exposure on the lithiated graphite SEI. Electrochim. Acta 2013, 105, 8391,  DOI: 10.1016/j.electacta.2013.04.118
  90. 90
    Tasaki, K.; Goldberg, A.; Lian, J.-J.; Walker, M.; Timmons, A.; Harris, S. Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents. J. Electrochem. Soc. 2009, 156, A1019A1027,  DOI: 10.1149/1.3239850
  91. 91
    Matsuo, M.; Nakamori, Y.; ichi Orimo, S.; Maekawa, H.; Takamura, H. Lithium superionic conduction in lithium borohydride accompanied by structural transition. Appl. Phys. Lett. 2007, 91, 224103,  DOI: 10.1063/1.2817934
  92. 92
    Johnson, R.; Biefeld, R.; Keck, J. Ionic conductivity in Li5AlO4 and LiOH. Mater. Res. Bull. 1977, 12, 577587,  DOI: 10.1016/0025-5408(77)90066-6
  93. 93
    Maekawa, H.; Matsuo, M.; Takamura, H.; Ando, M.; Noda, Y.; Karahashi, T.; Orimo, S.-i. Halide-Stabilized LiBH4, a Room-Temperature Lithium Fast-Ion Conductor. J. Am. Chem. Soc. 2009, 131, 894895,  DOI: 10.1021/ja807392k
  94. 94
    Das, S.; Ngene, P.; Norby, P.; Vegge, T.; de Jongh, P. E.; Blanchard, D. All-Solid-State Lithium-Sulfur Battery Based on a Nanoconfined LiBH4 Electrolyte. J. Electrochem. Soc. 2016, 163, A2029A2034,  DOI: 10.1149/2.0771609jes
  95. 95
    Morales-García, A.; Valero, R.; Illas, F. An Empirical, yet Practical Way To Predict the Band Gap in Solids by Using Density Functional Band Structure Calculations. J. Phys. Chem. C 2017, 121, 1886218866,  DOI: 10.1021/acs.jpcc.7b07421
  96. 96
    Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazlewood, V.; Lathrop, S.; Lifka, D.; Peterson, G. D.; Roskies, R.; Scott, J. R.; Wilkins-Diehr, N. XSEDE: Accelerating Scientific Discovery. Comput. Sci. Eng. 2014, 16, 6274,  DOI: 10.1109/MCSE.2014.80
  97. 97
    Nystrom, N. A.; Levine, M. J.; Roskies, R. Z.; Scott, J. R. Bridges: A Uniquely Flexible HPC Resource for New Communities and Data Analytics. Proceedings of the 2015 XSEDE Conference: Scientific Achievements Enabled by Enhanced Cyberinfrastructure 2015, 18,  DOI: 10.1145/2792745.2792775

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 207 publications.

  1. Linley Li Lin, Ramon Alvarez-Puebla, Luis M. Liz-Marzán, Matt Trau, Jing Wang, Laura Fabris, Xiang Wang, Guokun Liu, Shuping Xu, Xiao Xia Han, Liangbao Yang, Aiguo Shen, Shikuan Yang, Yikai Xu, Chunchun Li, Jinqing Huang, Shao-Chuang Liu, Jian-An Huang, Indrajit Srivastava, Ming Li, Limei Tian, Lam Bang Thanh Nguyen, Xinyuan Bi, Dana Cialla-May, Pavel Matousek, Nicholas Stone, Randy P. Carney, Wei Ji, Wei Song, Zhou Chen, In Yee Phang, Malou Henriksen-Lacey, Haoran Chen, Zongyu Wu, Heng Guo, Hao Ma, Gennadii Ustinov, Siheng Luo, Sara Mosca, Benjamin Gardner, Yi-Tao Long, Juergen Popp, Bin Ren, Shuming Nie, Bing Zhao, Xing Yi Ling, Jian Ye. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS Applied Materials & Interfaces 2025, 17 (11) , 16287-16379. https://doi.org/10.1021/acsami.4c17502
  2. Souvik Manna, Poulami Paul, Surya Sekhar Manna, Sandeep Das, Biswarup Pathak. Utilizing Machine Learning to Advance Battery Materials Design: Challenges and Prospects. Chemistry of Materials 2025, 37 (5) , 1759-1787. https://doi.org/10.1021/acs.chemmater.4c03486
  3. Aashutosh Mistry, Hans-Georg Steinrück, Michael F. Toney, Nitash P. Balsara, Venkat Srinivasan. Multiple Operando Fields Can Identify a Predictive Mass Transport Theory in Electrolytes. The Journal of Physical Chemistry C 2025, 129 (6) , 2874-2882. https://doi.org/10.1021/acs.jpcc.4c06851
  4. Nicholas S. Grundish, Brandi Ransom, Austin D. Sendek, Lenson A. Pellouchoud, Yutao Li, Evan J. Reed. Predicting Anion Redox in Secondary Battery Cathode Materials with a Data-Driven Model. The Journal of Physical Chemistry C 2024, 128 (40) , 16844-16853. https://doi.org/10.1021/acs.jpcc.4c02079
  5. Stephen R. Xie, Shreyas J. Honrao, John W. Lawson. High-Throughput Screening of Li Solid-State Electrolytes with Bond Valence Methods and Machine Learning. Chemistry of Materials 2024, 36 (19) , 9320-9329. https://doi.org/10.1021/acs.chemmater.3c02841
  6. Eder G. Lomeli, Brandi Ransom, Akash Ramdas, Daniel Jost, Brian Moritz, Austin D. Sendek, Evan J. Reed, Thomas P. Devereaux. Predicting Reactivity and Passivation of Solid-State Battery Interfaces. ACS Applied Materials & Interfaces 2024, 16 (38) , 51584-51594. https://doi.org/10.1021/acsami.4c06095
  7. Md Salman Rabbi Limon, Zeeshan Ahmad. Heterogeneity in Point Defect Distribution and Mobility in Solid Ion Conductors. ACS Applied Materials & Interfaces 2024, 16 (38) , 50948-50960. https://doi.org/10.1021/acsami.4c12128
  8. Sooryadas Sudhakaran, T. K. Bijoy. A Comprehensive Review of Current and Emerging Binder Technologies for Energy Storage Applications. ACS Applied Energy Materials 2023, 6 (23) , 11773-11794. https://doi.org/10.1021/acsaem.3c02218
  9. Randy Jalem, Yoshitaka Tateyama, Kazunori Takada, Seong-Hoon Jang. Multiobjective Solid Electrolyte Design of Tetragonal and Cubic Inverse-Perovskites for All-Solid-State Lithium-Ion Batteries by High-Throughput Density Functional Theory Calculations and AI-Driven Methods. The Journal of Physical Chemistry C 2023, 127 (35) , 17307-17323. https://doi.org/10.1021/acs.jpcc.3c02801
  10. Honghao Chen, Yingzhe Zheng, Jiali Li, Lanyu Li, Xiaonan Wang. AI for Nanomaterials Development in Clean Energy and Carbon Capture, Utilization and Storage (CCUS). ACS Nano 2023, 17 (11) , 9763-9792. https://doi.org/10.1021/acsnano.3c01062
  11. Sheng Gong, Shuo Wang, Tian Xie, Woo Hyun Chae, Runze Liu, Yang Shao-Horn, Jeffrey C. Grossman. Calibrating DFT Formation Enthalpy Calculations by Multifidelity Machine Learning. JACS Au 2022, 2 (9) , 1964-1977. https://doi.org/10.1021/jacsau.2c00235
  12. Sherif Abdulkader Tawfik, Phuoc Nguyen, Truyen Tran, Tiffany R. Walsh, Svetha Venkatesh. Machine Learning-Aided Exploration of Ultrahard Materials. The Journal of Physical Chemistry C 2022, 126 (37) , 15952-15961. https://doi.org/10.1021/acs.jpcc.2c03926
  13. Haoxin Mai, Tu C. Le, Dehong Chen, David A. Winkler, Rachel A. Caruso. Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chemical Reviews 2022, 122 (16) , 13478-13515. https://doi.org/10.1021/acs.chemrev.2c00061
  14. Aashutosh Mistry, Zhou Yu, Brandon L. Peters, Chao Fang, Rui Wang, Larry A. Curtiss, Nitash P. Balsara, Lei Cheng, Venkat Srinivasan. Toward Bottom-Up Understanding of Transport in Concentrated Battery Electrolytes. ACS Central Science 2022, 8 (7) , 880-890. https://doi.org/10.1021/acscentsci.2c00348
  15. Zhuole Lu, Parvin Adeli, Chae-Ho Yim, Ming Jiang, Jacob Rempel, Zhi Wen Chen, Shwetank Yadav, Patrick Mercier, Yaser Abu-Lebdeh, Chandra Veer Singh. Automatically Capturing Key Features for Predicting Superionic Conductivity of Solid-State Electrolytes Using a Neural Network. ACS Applied Energy Materials 2022, 5 (7) , 8042-8048. https://doi.org/10.1021/acsaem.2c00493
  16. Teo Lombardo, Marc Duquesnoy, Hassna El-Bouysidy, Fabian Årén, Alfonso Gallo-Bueno, Peter Bjørn Jørgensen, Arghya Bhowmik, Arnaud Demortière, Elixabete Ayerbe, Francisco Alcaide, Marine Reynaud, Javier Carrasco, Alexis Grimaud, Chao Zhang, Tejs Vegge, Patrik Johansson, Alejandro A. Franco. Artificial Intelligence Applied to Battery Research: Hype or Reality?. Chemical Reviews 2022, 122 (12) , 10899-10969. https://doi.org/10.1021/acs.chemrev.1c00108
  17. Nan Yao, Xiang Chen, Zhong-Heng Fu, Qiang Zhang. Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chemical Reviews 2022, 122 (12) , 10970-11021. https://doi.org/10.1021/acs.chemrev.1c00904
  18. Tong Liu, Xinsheng Wu, Shang Zhu, Francesca Lorandi, Longchang Ni, Sipei Li, Mingkang Sun, Brian P. Bloom, David H. Waldeck, Venkatasubramanian Viswanathan, Jay F. Whitacre, Krzysztof Matyjaszewski. Polymer-Stabilized Liquid Metal Nanoparticles as a Scalable Current Collector Engineering Approach Enabling Lithium Metal Anodes. ACS Applied Energy Materials 2022, 5 (3) , 3615-3625. https://doi.org/10.1021/acsaem.1c04106
  19. Sheng Gong, Shuo Wang, Taishan Zhu, Xi Chen, Zhenze Yang, Markus J. Buehler, Yang Shao-Horn, Jeffrey C. Grossman. Screening and Understanding Li Adsorption on Two-Dimensional Metallic Materials by Learning Physics and Physics-Simplified Learning. JACS Au 2021, 1 (11) , 1904-1914. https://doi.org/10.1021/jacsau.1c00260
  20. Eunseong Choi, Junho Jo, Wonjin Kim, Kyoungmin Min. Searching for Mechanically Superior Solid-State Electrolytes in Li-Ion Batteries via Data-Driven Approaches. ACS Applied Materials & Interfaces 2021, 13 (36) , 42590-42597. https://doi.org/10.1021/acsami.1c07999
  21. Nicole S. Schauser, Gabrielle A. Kliegle, Piper Cooke, Rachel A. Segalman, Ram Seshadri. Database Creation, Visualization, and Statistical Learning for Polymer Li+-Electrolyte Design. Chemistry of Materials 2021, 33 (13) , 4863-4876. https://doi.org/10.1021/acs.chemmater.0c04767
  22. Aashutosh Mistry, Alejandro A. Franco, Samuel J. Cooper, Scott A. Roberts, Venkatasubramanian Viswanathan. How Machine Learning Will Revolutionize Electrochemical Sciences. ACS Energy Letters 2021, 6 (4) , 1422-1431. https://doi.org/10.1021/acsenergylett.1c00194
  23. Hieu A. Doan, Garvit Agarwal, Hai Qian, Michael J. Counihan, Joaquín Rodríguez-López, Jeffrey S. Moore, Rajeev S. Assary. Quantum Chemistry-Informed Active Learning to Accelerate the Design and Discovery of Sustainable Energy Storage Materials. Chemistry of Materials 2020, 32 (15) , 6338-6346. https://doi.org/10.1021/acs.chemmater.0c00768
  24. Anthony Yu-Tung Wang, Ryan J. Murdock, Steven K. Kauwe, Anton O. Oliynyk, Aleksander Gurlo, Jakoah Brgoch, Kristin A. Persson, Taylor D. Sparks. Machine Learning for Materials Scientists: An Introductory Guide toward Best Practices. Chemistry of Materials 2020, 32 (12) , 4954-4965. https://doi.org/10.1021/acs.chemmater.0c01907
  25. Yanming Wang, Tian Xie, Arthur France-Lanord, Arthur Berkley, Jeremiah A. Johnson, Yang Shao-Horn, Jeffrey C. Grossman. Toward Designing Highly Conductive Polymer Electrolytes by Machine Learning Assisted Coarse-Grained Molecular Dynamics. Chemistry of Materials 2020, 32 (10) , 4144-4151. https://doi.org/10.1021/acs.chemmater.9b04830
  26. Austin D. Sendek, Gowoon Cheon, Mauro Pasta, Evan J. Reed. Quantifying the Search for Solid Li-Ion Electrolyte Materials by Anion: A Data-Driven Perspective. The Journal of Physical Chemistry C 2020, 124 (15) , 8067-8079. https://doi.org/10.1021/acs.jpcc.9b10650
  27. He Liu, Xin-Bing Cheng, Jia-Qi Huang, Hong Yuan, Yang Lu, Chong Yan, Gao-Long Zhu, Rui Xu, Chen-Zi Zhao, Li-Peng Hou, Chuanxin He, Stefan Kaskel, Qiang Zhang. Controlling Dendrite Growth in Solid-State Electrolytes. ACS Energy Letters 2020, 5 (3) , 833-843. https://doi.org/10.1021/acsenergylett.9b02660
  28. Andrew Z. Summers, Justin B. Gilmer, Christopher R. Iacovella, Peter T. Cummings, Clare McCabe. MoSDeF, a Python Framework Enabling Large-Scale Computational Screening of Soft Matter: Application to Chemistry-Property Relationships in Lubricating Monolayer Films. Journal of Chemical Theory and Computation 2020, 16 (3) , 1779-1793. https://doi.org/10.1021/acs.jctc.9b01183
  29. Myungjoon Kim, Byung Chul Yeo, Youngtae Park, Hyuck Mo Lee, Sang Soo Han, Donghun Kim. Artificial Intelligence to Accelerate the Discovery of N2 Electroreduction Catalysts. Chemistry of Materials 2020, 32 (2) , 709-720. https://doi.org/10.1021/acs.chemmater.9b03686
  30. Hong-Kang Tian, Zhe Liu, Yanzhou Ji, Long-Qing Chen, Yue Qi. Interfacial Electronic Properties Dictate Li Dendrite Growth in Solid Electrolytes. Chemistry of Materials 2019, 31 (18) , 7351-7359. https://doi.org/10.1021/acs.chemmater.9b01967
  31. Jonathan Lym, Geun Ho Gu, Yousung Jung, Dionisios G. Vlachos. Lattice Convolutional Neural Network Modeling of Adsorbate Coverage Effects. The Journal of Physical Chemistry C 2019, 123 (31) , 18951-18959. https://doi.org/10.1021/acs.jpcc.9b03370
  32. Nicolae C. Iovanac, Brett M. Savoie. Improved Chemical Prediction from Scarce Data Sets via Latent Space Enrichment. The Journal of Physical Chemistry A 2019, 123 (19) , 4295-4302. https://doi.org/10.1021/acs.jpca.9b01398
  33. Dilip Krishnamurthy, Hasso Weiland, Amir Barati Farimani, Erin Antono, Josh Green, Venkatasubramanian Viswanathan. Machine Learning Based Approaches to Accelerate Energy Materials Discovery and Optimization. ACS Energy Letters 2019, 4 (1) , 187-191. https://doi.org/10.1021/acsenergylett.8b02278
  34. Xingyue Shi, Linming Zhou, Yuhui Huang, Chaohui Wu, Yongjun Wu, Juan Li, Zijian Hong. Machine learning assisted screening of binary alloys for metal-based anode materials. Journal of Energy Chemistry 2025, 104 , 62-68. https://doi.org/10.1016/j.jechem.2024.12.036
  35. Rituraj Dubey, Anees A. Ansari, Youngil Lee, Shili Gai, Ruichan Lv, Ziyue Ju, Shafiya Mohammad, Piaoping Yang, Laxman Singh. Molecular dynamics-to-machine learning for deep eutectics in energy storages. Renewable and Sustainable Energy Reviews 2025, 212 , 115358. https://doi.org/10.1016/j.rser.2025.115358
  36. Kexin Si, Zhipeng Sun, Huaxin Song, Xiangfen Jiang, Xuebin Wang. Machine learning-assisted design and prediction of materials for batteries based on alkali metals. Physical Chemistry Chemical Physics 2025, 27 (11) , 5423-5442. https://doi.org/10.1039/D4CP04214J
  37. Ye Min Thant, Taishiro Wakamiya, Methawee Nukunudompanich, Keisuke Kameda, Manabu Ihara, Sergei Manzhos. Kernel regression methods for prediction of materials properties: Recent developments. Chemical Physics Reviews 2025, 6 (1) https://doi.org/10.1063/5.0242118
  38. Bohayra Mortazavi. Recent Advances in Machine Learning‐Assisted Multiscale Design of Energy Materials. Advanced Energy Materials 2025, 15 (9) https://doi.org/10.1002/aenm.202403876
  39. Xueying Yuan, Xiupeng Chen, Yuanxin Zhou, Zhiao Yu, Xian Kong. Design principles of fluoroether solvents for lithium metal battery electrolytes unveiled by extensive molecular simulation and machine learning. Journal of Energy Chemistry 2025, 102 , 52-62. https://doi.org/10.1016/j.jechem.2024.10.021
  40. Rushuai Li, Wanyu Zhao, Ruimin Li, Chaolun Gan, Li Chen, Zhitao Wang, Xiaowei Yang. Leveraging machine learning for accelerated materials innovation in lithium-ion battery: a review. Journal of Energy Chemistry 2025, 59 https://doi.org/10.1016/j.jechem.2025.02.038
  41. Zhaojun Sun, Xin Li, Yiming Wu, Qilin Gu, Shiyou Zheng. Machine Learning‐Assisted Simulations and Predictions for Battery Interfaces. Advanced Intelligent Systems 2025, 27 https://doi.org/10.1002/aisy.202400626
  42. Qingqing Jia, Hongguang Liu, Xueping Wang, Qiantu Tao, Lifeng Zheng, Junjie Li, Wei Wang, Ziteng Liu, Xu Gu, Tianyu Shen, Shaoyi Hou, Zhong Jin, Jing Ma. Machine Learning‐Driven Mass Discovery and High‐Throughput Screening of Fluoroether‐Based Electrolytes for High‐Stability Lithium Metal Batteries. Angewandte Chemie International Edition 2025, https://doi.org/10.1002/anie.202424493
  43. Qingqing Jia, Hongguang Liu, Xueping Wang, Qiantu Tao, Lifeng Zheng, Junjie Li, Wei Wang, Ziteng Liu, Xu Gu, Tianyu Shen, Shaoyi Hou, Zhong Jin, Jing Ma. Machine Learning‐Driven Mass Discovery and High‐Throughput Screening of Fluoroether‐Based Electrolytes for High‐Stability Lithium Metal Batteries. Angewandte Chemie 2025, https://doi.org/10.1002/ange.202424493
  44. Haneen Alzamer, Russlan Jaafreh, Jung-Gu Kim, Kotiba Hamad. Artificial Intelligence and Li Ion Batteries: Basics and Breakthroughs in Electrolyte Materials Discovery. Crystals 2025, 15 (2) , 114. https://doi.org/10.3390/cryst15020114
  45. Yan Yuan, Bin Wang, Jin-Hao Zhang, Bin Zheng, Stanislav S. Fedotov, Hai Lu, Long Kong. Computational understanding and multiscale simulation of secondary batteries. Energy Storage Materials 2025, 75 , 104009. https://doi.org/10.1016/j.ensm.2025.104009
  46. Dawei Li, Chenhao Shen, Yuejiu Zheng, Jun Xu. Electrochemo‐Mechanical Degradation and Failure of Active Particles in High Energy Density Batteries: A Review. Small 2025, 21 (8) https://doi.org/10.1002/smll.202407740
  47. Jun Huang, Chen Li, Dongkai Jiang, Jingyi Gao, Lei Cheng, Guocheng Li, Hang Luo, Zheng‐Long Xu, Dong‐Myeong Shin, Yanming Wang, Yingying Lu, Yoonseob Kim. Solid‐State Electrolytes for Lithium Metal Batteries: State‐of‐the‐Art and Perspectives. Advanced Functional Materials 2025, 35 (1) https://doi.org/10.1002/adfm.202411171
  48. Dan Yang. Cell Components – Separators | Overview. 2025, 512-521. https://doi.org/10.1016/B978-0-323-96022-9.00238-3
  49. Zheng Wan, Zhenying Chen, Hao Chen, Yizhi Jiang, Jinhuan Zhang, Yidong Wang, Jindong Wang, Hao Sun, Zhongjie Zhu, Jinhui Zhu, Linyi Yang, Wei Ye, Shikun Zhang, Xing Xie, Yue Zhang, Xiaodong Zhuang, Xiao He, Jinrong Yang. XRDMatch: a semi-supervised learning framework to efficiently discover room temperature lithium superionic conductors. Energy & Environmental Science 2024, 17 (24) , 9487-9498. https://doi.org/10.1039/D4EE02970D
  50. Jingyuan Zhao, Zhilong Lv, Di Li, Xuning Feng, Zhenghong Wang, Yuyan Wu, Dapai Shi, Michael Fowler, Andrew F. Burke. Battery engineering safety technologies (BEST): M5 framework of mechanisms, modes, metrics, modeling, and mitigation. eTransportation 2024, 22 , 100364. https://doi.org/10.1016/j.etran.2024.100364
  51. Chenfeng Ding, Penghui Ji, Tongtong Li, Ting Guo, Zhong Xu, Taehoon Kim, Hui Zhang, Jiayu Wan, Luis K. Ono, Yabing Qi. Photoemission spectroscopy of battery materials. Applied Physics Reviews 2024, 11 (4) https://doi.org/10.1063/5.0235835
  52. Pengcheng Xue, Rui Qiu, Chuchuan Peng, Zehang Peng, Kui Ding, Rui Long, Liang Ma, Qifeng Zheng. Solutions for Lithium Battery Materials Data Issues in Machine Learning: Overview and Future Outlook. Advanced Science 2024, 11 (48) https://doi.org/10.1002/advs.202410065
  53. Xinyuan Shan, Zhaowei Song, Hang Ding, Lengwan Li, Yuhang Tian, Alexei P. Sokolov, Ming Tian, Kang Xu, Peng-Fei Cao. Polymer electrolytes with high cation transport number for rechargeable Li–metal batteries: current status and future direction. Energy & Environmental Science 2024, 17 (22) , 8457-8481. https://doi.org/10.1039/D4EE03097D
  54. Jiayi Du, Jun Guo, Wei Liu, Ziwei Li, Gang Huang, Xinbo Zhang. A universal strategy of multi-objective active learning to accelerate the discovery of organic electrode molecules. Science China Chemistry 2024, 67 (11) , 3681-3687. https://doi.org/10.1007/s11426-024-2163-1
  55. Yige Xiong, Die Zhang, Xiaorong Ruan, Shanbao Jiang, Xueqin Zou, Wei Yuan, Xiuxue Liu, Yapeng Zhang, Zeqi Nie, Donghai Wei, Yubin Zeng, Peng Cao, Guanhua Zhang. Artificial intelligence in rechargeable battery: Advancements and prospects. Energy Storage Materials 2024, 73 , 103860. https://doi.org/10.1016/j.ensm.2024.103860
  56. Amirreza Sazvar, Masoumeh Hajibandeh, Pariya Vafaei, Elham Hosseinzadeh, Masoud Jabbari. Review of recent progress in sintering of solid-state batteries: Application and modelling. Journal of Energy Storage 2024, 101 , 113863. https://doi.org/10.1016/j.est.2024.113863
  57. Mingchao Wang. Charging dependent electro-chemo-mechanical coupling behavior of polymer electrolytes containing immobilized anions. Mechanics of Materials 2024, 198 , 105143. https://doi.org/10.1016/j.mechmat.2024.105143
  58. Yang Luo, Zhonghao Rao, Xiaofei Yang, Changhong Wang, Xueliang Sun, Xianfeng Li. Safety concerns in solid-state lithium batteries: from materials to devices. Energy & Environmental Science 2024, 17 (20) , 7543-7565. https://doi.org/10.1039/D4EE02358G
  59. Yu Ding, Hui Shang, Changze Yang, Liang Zhao, Aijun Duan. Identifying efficient and inexpensive hydrodesulfurization catalysts through Machine Learning-Assisted analysis of Metal–Sulfur bonds in transition metal sulfides. Chemical Engineering Science 2024, 298 , 120337. https://doi.org/10.1016/j.ces.2024.120337
  60. Xiaoru Wang, Rui Yan, Huizhe Niu, Zemin He, Wanli He, Zongcheng Miao. Applications of liquid crystal in lithium battery electrolytes. Journal of Energy Storage 2024, 100 , 113687. https://doi.org/10.1016/j.est.2024.113687
  61. Qianyu Hu, Kunfeng Chen, Jinyu Li, Tingting Zhao, Feng Liang, Dongfeng Xue. Speeding up the development of solid state electrolyte by machine learning. Next Energy 2024, 5 , 100159. https://doi.org/10.1016/j.nxener.2024.100159
  62. Seongmin Kim, Jiaxin Xu, Wenjie Shang, Zhihao Xu, Eungkyu Lee, Tengfei Luo. A review on machine learning-guided design of energy materials. Progress in Energy 2024, 6 (4) , 042005. https://doi.org/10.1088/2516-1083/ad7220
  63. S. Esmizadeh, L. Cabras, M. Serpelloni, T. Dev, V. Oancea, E. Knobbe, M. Lachner, A. Salvadori. A review on modeling of nucleation and growth of Li dendrites in solid electrolytes. Journal of Energy Storage 2024, 97 , 112897. https://doi.org/10.1016/j.est.2024.112897
  64. Qiangxiang Zhai, Hongmin Jiang, Nengbing Long, Qiaoling Kang, Xianhe Meng, Mingjiong Zhou, Lijing Yan, Tingli Ma. Machine learning for full lifecycle management of lithium-ion batteries. Renewable and Sustainable Energy Reviews 2024, 202 , 114647. https://doi.org/10.1016/j.rser.2024.114647
  65. Alireza Valizadeh, Mohammad Hossein Amirhosseini. Machine Learning in Lithium-Ion Battery: Applications, Challenges, and Future Trends. SN Computer Science 2024, 5 (6) https://doi.org/10.1007/s42979-024-03046-2
  66. Yoonsu Shim, Incheol Jeong, Junpyo Hur, Hyoungjeen Jeen, Seung‐Taek Myung, Kang Taek Lee, Seungbum Hong, Jong Min Yuk, Chan‐Woo Lee. Data‐Driven Design of NASICON‐Type Electrodes Using Graph‐Based Neural Networks. Batteries & Supercaps 2024, 8 https://doi.org/10.1002/batt.202400186
  67. Guochang Huang, Fuqiang Huang, Wujie Dong. Machine learning in energy storage material discovery and performance prediction. Chemical Engineering Journal 2024, 492 , 152294. https://doi.org/10.1016/j.cej.2024.152294
  68. Jieyan Li, Xin Chen, Saz Muhammad, Shubham Roy, Haiyan Huang, Chen Yu, Zia Ullah, Zeru Wang, Yinghe Zhang, Ke Wang, Bing Guo. Development of solid polymer electrolytes for solid-state lithium battery applications. Materials Today Energy 2024, 43 , 101574. https://doi.org/10.1016/j.mtener.2024.101574
  69. Xingyue Shi, Linming Zhou, Yuhui Huang, Yongjun Wu, Zijian Hong. A review on the applications of graph neural networks in materials science at the atomic scale. Materials Genome Engineering Advances 2024, 2 (2) https://doi.org/10.1002/mgea.50
  70. Xinxin Liu, Kexin Fan, Xinmeng Huang, Jiankai Ge, Yujie Liu, Haisu Kang. Recent advances in artificial intelligence boosting materials design for electrochemical energy storage. Chemical Engineering Journal 2024, 490 , 151625. https://doi.org/10.1016/j.cej.2024.151625
  71. Peichen Zhong, Bowen Deng, Tanjin He, Zhengyan Lun, Gerbrand Ceder. Deep learning of experimental electrochemistry for battery cathodes across diverse compositions. Joule 2024, 8 (6) , 1837-1854. https://doi.org/10.1016/j.joule.2024.03.010
  72. Yanbin Ning, Feng Yang, Yan Zhang, Zhuomin Qiang, Geping Yin, Jiajun Wang, Shuaifeng Lou. Bridging multimodal data and battery science with machine learning. Matter 2024, 7 (6) , 2011-2032. https://doi.org/10.1016/j.matt.2024.04.030
  73. Xiaozhao Liu, Volodymyr Koverga, Hoai T. Nguyen, Anh T. Ngo, Tao Li. Exploring solvation structure and transport behavior for rational design of advanced electrolytes for next generation of lithium batteries. Applied Physics Reviews 2024, 11 (2) https://doi.org/10.1063/5.0187154
  74. Chen Liao, Bingning Wang, Hieu Doan, Seoung-Bum Son, Daniel Abraham, Stephen Trask, Andrew Jansen, Kang Xu. Data-driven Design of Electrolyte Additives for High-Performance 5 V LiNi0.5Mn1.5O4 Cathodes. 2024https://doi.org/10.21203/rs.3.rs-4420883/v1
  75. Mingjian Wen, Matthew K. Horton, Jason M. Munro, Patrick Huck, Kristin A. Persson. An equivariant graph neural network for the elasticity tensors of all seven crystal systems. Digital Discovery 2024, 3 (5) , 869-882. https://doi.org/10.1039/D3DD00233K
  76. Jin Li, Meisa Zhou, Hong‐Hui Wu, Lifei Wang, Jian Zhang, Naiteng Wu, Kunming Pan, Guilong Liu, Yinggan Zhang, Jiajia Han, Xianming Liu, Xiang Chen, Jiayu Wan, Qiaobao Zhang. Machine Learning‐Assisted Property Prediction of Solid‐State Electrolyte. Advanced Energy Materials 2024, 14 (20) https://doi.org/10.1002/aenm.202304480
  77. Kaiyi Yang, Lisheng Zhang, Wentao Wang, Chengwu Long, Shichun Yang, Tao Zhu, Xinhua Liu. Multiscale modeling for enhanced battery health analysis: Pathways to longevity. Carbon Neutralization 2024, 3 (3) , 348-385. https://doi.org/10.1002/cnl2.124
  78. Jingyuan Zhao, Xuning Feng, Quanquan Pang, Michael Fowler, Yubo Lian, Minggao Ouyang, Andrew F. Burke. Battery safety: Machine learning-based prognostics. Progress in Energy and Combustion Science 2024, 102 , 101142. https://doi.org/10.1016/j.pecs.2023.101142
  79. Yuyao Zhang, Tingjie Zhan, Yang Sun, Lun Lu, Baoliang Chen. Revolutionizing Solid‐State NASICON Sodium Batteries: Enhanced Ionic Conductivity Estimation through Multivariate Experimental Parameters Leveraging Machine Learning. ChemSusChem 2024, 17 (6) https://doi.org/10.1002/cssc.202301284
  80. Prit Thakkar, Sachi Khatri, Drashti Dobariya, Darpan Patel, Bishwajit Dey, Alok Kumar Singh. Advances in materials and machine learning techniques for energy storage devices: A comprehensive review. Journal of Energy Storage 2024, 81 , 110452. https://doi.org/10.1016/j.est.2024.110452
  81. Yinghe Wang, Shu Li, Shuai Li, Minghua Chen. Prediction, interpretation and extrapolation for shear modulus and bulk modulus of solid-state electrolytes based on machine learning. Materials Today Communications 2024, 38 , 108294. https://doi.org/10.1016/j.mtcomm.2024.108294
  82. Sue Sin Chong, Yi Sheng Ng, Hui-Qiong Wang, Jin-Cheng Zheng. Advances of machine learning in materials science: Ideas and techniques. Frontiers of Physics 2024, 19 (1) https://doi.org/10.1007/s11467-023-1325-z
  83. Sagnik Acharya, P. Viswesh, M.K. Sridhar, Anil D. Pathak, Henu Sharma, Aqsa Nazir, Arvind Kasbe, Kisor K. Sahu. Artificial intelligence and machine learning in battery materials and their applications. 2024, 639-676. https://doi.org/10.1016/B978-0-323-91304-1.00012-5
  84. Prasshanth C.V., Arun Kumar Lakshminarayanan, Brindha Ramasubramanian, Seeram Ramakrishna. Progress of machine learning in materials design for Li-Ion battery. Next Materials 2024, 2 , 100145. https://doi.org/10.1016/j.nxmate.2024.100145
  85. Tian-Xing Yang, Peng Dou. Prediction of Bulk and Shear Moduli of Oxides in Ods Steels by Machine Learning and First-Principles Calculations. 2024https://doi.org/10.2139/ssrn.4863874
  86. Xinhua Liu, Kaiyi Yang, Lisheng Zhang, Wentao Wang, Sida Zhou, Billy Wu, Mengyu Xiong, Shichun Yang, Rui Tan. A Fast Forward Prediction Framework for Energy Materials Design Based on Machine Learning Methods. Energy Material Advances 2024, 5 https://doi.org/10.34133/energymatadv.0131
  87. Varad Mahajani, Nikhil Koratkar. Toward Practical Alloy Anode Based Solid State Batteries. Small 2023, 45 https://doi.org/10.1002/smll.202306388
  88. Shu Zhang, Jun Ma, Shanmu Dong, Guanglei Cui. Designing All-Solid-State Batteries by Theoretical Computation: A Review. Electrochemical Energy Reviews 2023, 6 (1) https://doi.org/10.1007/s41918-022-00143-9
  89. Li Zheng, Shuqing Zhang, Hao Huang, Ruxiang Liu, Mian Cai, Yinghui Bian, Long Chang, Huiping Du. Artificial intelligence-driven rechargeable batteries in multiple fields of development and application towards energy storage. Journal of Energy Storage 2023, 73 , 108926. https://doi.org/10.1016/j.est.2023.108926
  90. Aysegul Kilic, Burcu Oral, Damla Eroglu, Ramazan Yildirim. Machine learning for beyond Li-ion batteries: Powering the research. Journal of Energy Storage 2023, 73 , 109057. https://doi.org/10.1016/j.est.2023.109057
  91. Xiaofei Yang, Qianwen Yin, Changhong Wang, Kieran Doyle-Davis, Xueliang Sun, Xianfeng Li. Towards practically accessible high-voltage solid-state lithium batteries: From fundamental understanding to engineering design. Progress in Materials Science 2023, 140 , 101193. https://doi.org/10.1016/j.pmatsci.2023.101193
  92. Qi ZHANG, Chao PENG, DongFeng XUE. Data-driven approaches enabling the screening and design of promising materials for energy storage batteries. SCIENTIA SINICA Technologica 2023, 140 https://doi.org/10.1360/SST-2023-0157
  93. Yawei Chen, Yue Liu, Zixu He, Liang Xu, Peiping Yu, Qintao Sun, Wanxia Li, Yulin Jie, Ruiguo Cao, Tao Cheng, Shuhong Jiao. Artificial intelligence for the understanding of electrolyte chemistry and electrode interface in lithium battery. National Science Open 2023, 91 , 20230039. https://doi.org/10.1360/nso/20230039
  94. Sheng Gong, Keqiang Yan, Tian Xie, Yang Shao-Horn, Rafael Gomez-Bombarelli, Shuiwang Ji, Jeffrey C. Grossman. Examining graph neural networks for crystal structures: Limitations and opportunities for capturing periodicity. Science Advances 2023, 9 (45) https://doi.org/10.1126/sciadv.adi3245
  95. Cengliang Shan, Yanli Wang, Minhui Liang, Kuan Lu, Chen Xiong, Wei Hu, Baijun Liu. A comprehensive review of single ion-conducting polymer electrolytes as a key component of lithium metal batteries: From structural design to applications. Energy Storage Materials 2023, 63 , 102955. https://doi.org/10.1016/j.ensm.2023.102955
  96. Yang Luo, Xiaofei Yang, Changhong Wang, Adam Fraser, Hongzhang Zhang, Xueliang Sun, Xianfeng Li. Advanced metal anodes and their interface design toward safe metal batteries: A comprehensive review. Progress in Materials Science 2023, 139 , 101171. https://doi.org/10.1016/j.pmatsci.2023.101171
  97. Yong Qiu, Xu Zhang, Yun Tian, Zhen Zhou. Machine learning promotes the development of all-solid-state batteries. Chinese Journal of Structural Chemistry 2023, 42 (9) , 100118. https://doi.org/10.1016/j.cjsc.2023.100118
  98. Tong Jin, Jun Song Chen, Xiao Chun Chen, Nian Wu Li, Le Yu. Artificial interphase layers for Li metal anode, what’s next?. Next Energy 2023, 1 (3) , 100040. https://doi.org/10.1016/j.nxener.2023.100040
  99. Marco Ragone, Reza Shahabazian-Yassar, Farzad Mashayek, Vitaliy Yurkiv. Deep learning modeling in microscopy imaging: A review of materials science applications. Progress in Materials Science 2023, 138 , 101165. https://doi.org/10.1016/j.pmatsci.2023.101165
  100. Trang Thi Vu, Hyeong Jun Cheon, Seo Young Shin, Ganghoon Jeong, Eunsol Wi, Mincheol Chang. Hybrid electrolytes for solid-state lithium batteries: Challenges, progress, and prospects. Energy Storage Materials 2023, 61 , 102876. https://doi.org/10.1016/j.ensm.2023.102876
Load more citations

ACS Central Science

Cite this: ACS Cent. Sci. 2018, 4, 8, 996–1006
Click to copy citationCitation copied!
https://doi.org/10.1021/acscentsci.8b00229
Published August 10, 2018

Copyright © 2018 American Chemical Society. This publication is licensed under these Terms of Use.

Article Views

17k

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Parity plots comparing the elastic properties: (a) shear modulus G, and elastic constants (b) C11, (c) C12, and (d) C44 predicted by the machine-learning models to the DFT-calculated values. The shear modulus is predicted using CGCNN, and the elastic constants C11 and C44 are predicted using gradient boosting regression while C12 is predicted using kernel ridge regression. The parity plot for shear modulus is on 680 test data points while that for the elastic constants contains all available data (170 points) where each prediction is a cross-validated value.

    Figure 2

    Figure 2. Contribution of hydrostatic stress, deviatoric stress, and surface tension to the stability parameter as a function of surface roughness wavenumber. The surface tension term starts dominating at high k and ultimately stabilizes the interface after k = kcrit. The contributions are plotted for a material with shear modulus ratio G/GLi = 1 and Poisson’s ratio ν = 0.33 which is not stable (χ > 0) at k = 108 m–1. The red line shows the fraction of surface tension contribution to the stability parameter obtained by dividing the absolute value of its contribution by the sum of absolute values of all components.

    Figure 3

    Figure 3. Results of isotropic screening for 12 950 Li-containing compounds. Distribution of ensemble averaged (a) stability parameter for isotropic Li–solid electrolyte interfaces at k = 108 m–1 and (b) critical wavelength of surface roughness required for stability. None of the materials in the database can be stabilized without the aid of surface tension. The required critical surface roughness wavenumber depends on the contribution of the stress term in the stability parameter.

    Figure 4

    Figure 4. Isotropic stability diagram showing the position of all solid electrolytes involved in the screening. GLi is the shear modulus of Li = 3.4 GPa. The critical G/GLi line separating the stable and unstable regions depends weakly on the Poisson’s ratio, so the lines corresponding to νs = 0.33 and 0.5 are good indicators for assessment of stability. The darker regions indicate more number of materials in the region.

  • References


    This article references 97 other publications.

    1. 1
      Sripad, S.; Viswanathan, V. Evaluation of Current, Future, and Beyond Li-Ion Batteries for the Electrification of Light Commercial Vehicles: Challenges and Opportunities. J. Electrochem. Soc. 2017, 164, E3635E3646,  DOI: 10.1149/2.0671711jes
    2. 2
      Sripad, S.; Viswanathan, V. Performance Metrics Required of Next-Generation Batteries to Make a Practical Electric Semi Truck. ACS Energy Lett. 2017, 2, 16691673,  DOI: 10.1021/acsenergylett.7b00432
    3. 3
      Moore, M. D. Misconceptions of Electric Aircraft and their Emerging Aviation Markets; AIAA SciTech Forum: American Institute of Aeronautics and Astronautics, 2014.
    4. 4
      Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117, 1040310473,  DOI: 10.1021/acs.chemrev.7b00115
    5. 5
      Lin, D.; Liu, Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194206,  DOI: 10.1038/nnano.2017.16
    6. 6
      Christensen, J.; Albertus, P.; Sanchez-Carrera, R. S.; Lohmann, T.; Kozinsky, B.; Liedtke, R.; Ahmed, J.; Kojic, A. A Critical Review of Li/Air Batteries. J. Electrochem. Soc. 2011, 159, R1R30,  DOI: 10.1149/2.086202jes
    7. 7
      Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513537,  DOI: 10.1039/C3EE40795K
    8. 8
      Tikekar, M. D.; Choudhury, S.; Tu, Z.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114,  DOI: 10.1038/nenergy.2016.114
    9. 9
      Aurbach, D.; Zinigrad, E.; Teller, H.; Dan, P. Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries. J. Electrochem. Soc. 2000, 147, 12741279,  DOI: 10.1149/1.1393349
    10. 10
      Aurbach, D.; Zinigrad, E.; Cohen, Y.; Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 2002, 148, 405416,  DOI: 10.1016/S0167-2738(02)00080-2
    11. 11
      Steiger, J.; Kramer, D.; Mönig, R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources 2014, 261, 112119,  DOI: 10.1016/j.jpowsour.2014.03.029
    12. 12
      Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 1621,  DOI: 10.1038/s41560-017-0047-2
    13. 13
      Aurbach, D.; Markovsky, B.; Shechter, A.; Ein-Eli, Y.; Cohen, H. A Comparative Study of Synthetic Graphite and Li Electrodes in Electrolyte Solutions Based on Ethylene Carbonate-Dimethyl Carbonate Mixtures. J. Electrochem. Soc. 1996, 143, 38093820,  DOI: 10.1149/1.1837300
    14. 14
      Hirai, T.; Yoshimatsu, I.; Yamaki, J. Effect of Additives on Lithium Cycling Efficiency. J. Electrochem. Soc. 1994, 141, 23002305,  DOI: 10.1149/1.2055116
    15. 15
      Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; Liu, X.; Sushko, P. V.; Liu, J.; Zhang, J.-G. Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. J. Am. Chem. Soc. 2013, 135, 44504456,  DOI: 10.1021/ja312241y
    16. 16
      Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362,  DOI: 10.1038/ncomms7362
    17. 17
      Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481,  DOI: 10.1038/ncomms2513
    18. 18
      Lu, Y.; Tu, Z.; Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 2014, 13, 961,  DOI: 10.1038/nmat4041
    19. 19
      Zhang, X.; Cheng, X.; Chen, X.; Yan, C.; Zhang, Q. Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Adv. Funct. Mater. 2017, 27, 1605989,  DOI: 10.1002/adfm.201605989
    20. 20
      Wang, D.; Zhang, W.; Zheng, W.; Cui, X.; Rojo, T.; Zhang, Q. Towards High-Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy. Adv. Sci. 2017, 4, 1600168,  DOI: 10.1002/advs.201600168
    21. 21
      Zhang, Y.; Qian, J.; Xu, W.; Russell, S. M.; Chen, X.; Nasybulin, E.; Bhattacharya, P.; Engelhard, M. H.; Mei, D.; Cao, R.; Ding, F.; Cresce, A. V.; Xu, K.; Zhang, J.-G. Dendrite-Free Lithium Deposition with Self-Aligned Nanorod Structure. Nano Lett. 2014, 14, 68896896,  DOI: 10.1021/nl5039117
    22. 22
      Mayers, M. Z.; Kaminski, J. W.; Miller, T. F. Suppression of Dendrite Formation via Pulse Charging in Rechargeable Lithium Metal Batteries. J. Phys. Chem. C 2012, 116, 2621426221,  DOI: 10.1021/jp309321w
    23. 23
      Aryanfar, A.; Brooks, D.; Merinov, B. V.; Goddard, W. A.; Colussi, A. J.; Hoffmann, M. R. Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations. J. Phys. Chem. Lett. 2014, 5, 17211726,  DOI: 10.1021/jz500207a
    24. 24
      Liu, Q.; Xu, J.; Yuan, S.; Chang, Z.; Xu, D.; Yin, Y.; Li, L.; Zhong, H.; Jiang, Y.; Yan, J.; Zhang, X. Artificial Protection Film on Lithium Metal Anode toward Long-Cycle-Life Lithium-Oxygen Batteries. Adv. Mater. 2015, 27, 52415247,  DOI: 10.1002/adma.201501490
    25. 25
      Yan, K.; Lee, H.-W.; Gao, T.; Zheng, G.; Yao, H.; Wang, H.; Lu, Z.; Zhou, Y.; Liang, Z.; Liu, Z.; Chu, S.; Cui, Y. Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode. Nano Lett. 2014, 14, 60166022,  DOI: 10.1021/nl503125u
    26. 26
      Liu, Y.; Lin, D.; Yuen, P. Y.; Liu, K.; Xie, J.; Dauskardt, R. H.; Cui, Y. An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes. Adv. Mater. 2017, 29, 1605531,  DOI: 10.1002/adma.201605531
    27. 27
      Khurana, R.; Schaefer, J. L.; Archer, L. A.; Coates, G. W. Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries. J. Am. Chem. Soc. 2014, 136, 73957402,  DOI: 10.1021/ja502133j
    28. 28
      Stone, G. M.; Mullin, S. A.; Teran, A. A.; Hallinan, D. T.; Minor, A. M.; Hexemer, A.; Balsara, N. P. Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries. J. Electrochem. Soc. 2012, 159, A222A227,  DOI: 10.1149/2.030203jes
    29. 29
      Yue, L.; Ma, J.; Zhang, J.; Zhao, J.; Dong, S.; Liu, Z.; Cui, G.; Chen, L. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 2016, 5, 139164,  DOI: 10.1016/j.ensm.2016.07.003
    30. 30
      Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141,  DOI: 10.1038/nenergy.2016.141
    31. 31
      Li, J.; Ma, C.; Chi, M.; Liang, C.; Dudney, N. J. Solid Electrolyte: the Key for High-Voltage Lithium Batteries. Adv. Energy Mater. 2015, 5, 1401408,  DOI: 10.1002/aenm.201401408
    32. 32
      Suzuki, Y.; Kami, K.; Watanabe, K.; Watanabe, A.; Saito, N.; Ohnishi, T.; Takada, K.; Sudo, R.; Imanishi, N. Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12. Solid State Ionics 2015, 278, 172176,  DOI: 10.1016/j.ssi.2015.06.009
    33. 33
      Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103,  DOI: 10.1038/natrevmats.2016.103
    34. 34
      Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A. A lithium superionic conductor. Nat. Mater. 2011, 10, 682686,  DOI: 10.1038/nmat3066
    35. 35
      Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 2016, 1, 16030,  DOI: 10.1038/nenergy.2016.30
    36. 36
      Kerman, K.; Luntz, A.; Viswanathan, V.; Chiang, Y.-M.; Chen, Z. Review-Practical Challenges Hindering the Development of Solid State Li Ion Batteries. J. Electrochem. Soc. 2017, 164, A1731A1744,  DOI: 10.1149/2.1571707jes
    37. 37
      Sharafi, A.; Yu, S.; Naguib, M.; Lee, M.; Ma, C.; Meyer, H. M.; Nanda, J.; Chi, M.; Siegel, D. J.; Sakamoto, J. Impact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. J. Mater. Chem. A 2017, 5, 1347513487,  DOI: 10.1039/C7TA03162A
    38. 38
      Sharafi, A.; Haslam, C. G.; Kerns, R. D.; Wolfenstine, J.; Sakamoto, J. Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte. J. Mater. Chem. A 2017, 5, 2149121504,  DOI: 10.1039/C7TA06790A
    39. 39
      Monroe, C.; Newman, J. The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces. J. Electrochem. Soc. 2005, 152, A396A404,  DOI: 10.1149/1.1850854
    40. 40
      Ahmad, Z.; Viswanathan, V. Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes. Phys. Rev. Lett. 2017, 119, 056003,  DOI: 10.1103/PhysRevLett.119.056003
    41. 41
      Diggle, J. W.; Despic, A. R.; Bockris, J. O. The Mechanism of the Dendritic Electrocrystallization of Zinc. J. Electrochem. Soc. 1969, 116, 15031514,  DOI: 10.1149/1.2411588
    42. 42
      Monroe, C.; Newman, J. Dendrite Growth in Lithium/Polymer Systems: A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions. J. Electrochem. Soc. 2003, 150, A1377A1384,  DOI: 10.1149/1.1606686
    43. 43
      Monroe, C.; Newman, J. The Effect of Interfacial Deformation on Electrodeposition Kinetics. J. Electrochem. Soc. 2004, 151, A880A886,  DOI: 10.1149/1.1710893
    44. 44
      Curtarolo, S.; Hart, G. L. W.; Nardelli, M. B.; Mingo, N.; Sanvito, S.; Levy, O. The high-throughput highway to computational materials design. Nat. Mater. 2013, 12, 191,  DOI: 10.1038/nmat3568
    45. 45
      Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). JOM 2013, 65, 15011509,  DOI: 10.1007/s11837-013-0755-4
    46. 46
      Pilania, G.; Wang, C.; Jiang, X.; Rajasekaran, S.; Ramprasad, R. Accelerating materials property predictions using machine learning. Sci. Rep. 2013, 3, 2810,  DOI: 10.1038/srep02810
    47. 47
      Liu, Y.; Zhao, T.; Ju, W.; Shi, S. Materials discovery and design using machine learning. J. Materiomics 2017, 3, 159177,  DOI: 10.1016/j.jmat.2017.08.002
    48. 48
      Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-Lobato, J. M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Cent. Sci. 2018, 4, 268276,  DOI: 10.1021/acscentsci.7b00572
    49. 49
      de Jong, M.; Chen, W.; Notestine, R.; Persson, K.; Ceder, G.; Jain, A.; Asta, M.; Gamst, A. A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-nary Inorganic Polycrystalline Compounds. Sci. Rep. 2016, 6, 34256,  DOI: 10.1038/srep34256
    50. 50
      Isayev, O.; Oses, C.; Toher, C.; Gossett, E.; Curtarolo, S.; Tropsha, A. Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun. 2017, 8, 15679,  DOI: 10.1038/ncomms15679
    51. 51
      Fujimura, K.; Seko, A.; Koyama, Y.; Kuwabara, A.; Kishida, I.; Shitara, K.; Fisher, C. A. J.; Moriwake, H.; Tanaka, I. Accelerated Materials Design of Lithium Superionic Conductors Based on First-Principles Calculations and Machine Learning Algorithms. Adv. Energy Mater. 2013, 3, 980985,  DOI: 10.1002/aenm.201300060
    52. 52
      Sendek, A. D.; Yang, Q.; Cubuk, E. D.; Duerloo, K.-A. N.; Cui, Y.; Reed, E. J. Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials. Energy Environ. Sci. 2017, 10, 306320,  DOI: 10.1039/C6EE02697D
    53. 53
      Evans, J. D.; Coudert, F.-X. Predicting the Mechanical Properties of Zeolite Frameworks by Machine Learning. Chem. Mater. 2017, 29, 78337839,  DOI: 10.1021/acs.chemmater.7b02532
    54. 54
      Ahmad, Z.; Viswanathan, V. Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces. Phys. Rev. Materials 2017, 1, 055403,  DOI: 10.1103/PhysRevMaterials.1.055403
    55. 55
      Xu, C.; Ahmad, Z.; Aryanfar, A.; Viswanathan, V.; Greer, J. R. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 5761,  DOI: 10.1073/pnas.1615733114
    56. 56
      Shi, F.; Pei, A.; Vailionis, A.; Xie, J.; Liu, B.; Zhao, J.; Gong, Y.; Cui, Y. Strong texturing of lithium metal in batteries. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 1213812143,  DOI: 10.1073/pnas.1708224114
    57. 57
      Wang, Y.; Richards, W. D.; Ong, S. P.; Miara, L. J.; Kim, J. C.; Mo, Y.; Ceder, G. Design principles for solid-state lithium superionic conductors. Nat. Mater. 2015, 14, 10261031,  DOI: 10.1038/nmat4369
    58. 58
      Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 1976, 32, 751767,  DOI: 10.1107/S0567739476001551
    59. 59
      Gotoh, K.; Finney, J. L. Statistical geometrical approach to random packing density of equal spheres. Nature 1974, 252, 202,  DOI: 10.1038/252202a0
    60. 60
      Stepanyuk, V.; Szasz, A.; Katsnelson, A.; Trushin, O.; Müller, H.; Kirchmayr, H. Microstructure and its relaxation in FeB amorphous system simulated by moleculular dynamics. J. Non-Cryst. Solids 1993, 159, 8087,  DOI: 10.1016/0022-3093(93)91284-A
    61. 61
      Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V. L.; Persson, K. A.; Ceder, G. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Comput. Mater. Sci. 2013, 68, 314319,  DOI: 10.1016/j.commatsci.2012.10.028
    62. 62
      Pannikkat, A.; Raj, R. Measurement of an electrical potential induced by normal stress applied to the interface of an ionic material at elevated temperatures. Acta Mater. 1999, 47, 34233431,  DOI: 10.1016/S1359-6454(99)00206-2
    63. 63
      Xie, T.; Grossman, J. C. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Phys. Rev. Lett. 2018, 120, 145301,  DOI: 10.1103/PhysRevLett.120.145301
    64. 64
      Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002,  DOI: 10.1063/1.4812323
    65. 65
      de Jong, M.; Chen, W.; Angsten, T.; Jain, A.; Notestine, R.; Gamst, A.; Sluiter, M.; Krishna Ande, C.; van der Zwaag, S.; Plata, J. J.; Toher, C.; Curtarolo, S.; Ceder, G.; Persson, K. A.; Asta, M. Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data 2015, 2, 150009,  DOI: 10.1038/sdata.2015.9
    66. 66
      Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865,  DOI: 10.1103/PhysRevLett.77.3865
    67. 67
      Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in PyTorch , NIPS-W, 2017.
    68. 68
      Tikekar, M. D.; Archer, L. A.; Koch, D. L. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2016, 2, 1600320,  DOI: 10.1126/sciadv.1600320
    69. 69
      Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 2014, 7, 627631,  DOI: 10.1039/C3EE41655K
    70. 70
      Li, Y.; Li, Y.; Pei, A.; Yan, K.; Sun, Y.; Wu, C.-L.; Joubert, L.-M.; Chin, R.; Koh, A. L.; Yu, Y.; Perrino, J.; Butz, B.; Chu, S.; Cui, Y. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 2017, 358, 506510,  DOI: 10.1126/science.aam6014
    71. 71
      Stroh, A. N. Dislocations and Cracks in Anisotropic Elasticity. Philos. Mag. 1958, 3, 625646,  DOI: 10.1080/14786435808565804
    72. 72
      Stroh, A. N. Steady State Problems in Anisotropic Elasticity. J. Math. Phys. 1962, 41, 77103,  DOI: 10.1002/sapm196241177
    73. 73
      Hall, S. R.; Allen, F. H.; Brown, I. D. The crystallographic information file (CIF): a new standard archive file for crystallography. Acta Crystallogr., Sect. A: Found. Crystallogr. 1991, 47, 655685,  DOI: 10.1107/S010876739101067X
    74. 74
      Mouhat, F.; Coudert, F. m. c.-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 90, 224104,  DOI: 10.1103/PhysRevB.90.224104
    75. 75
      Ahmad, Z.; Viswanathan, V. Quantification of uncertainty in first-principles predicted mechanical properties of solids: Application to solid ion conductors. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 94, 064105,  DOI: 10.1103/PhysRevB.94.064105
    76. 76
      Friedman, J. H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 11891232,  DOI: 10.1214/aos/1013203451
    77. 77
      Friedman, J. H.; Hastie, T.; Tibshirani, R. The elements of statistical learning; Springer series in statistics: New York, 2001; Vol. 1.
    78. 78
      Freund, Y.; Schapire, R. E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119139,  DOI: 10.1006/jcss.1997.1504
    79. 79
      Drucker, H. Improving Regressors Using Boosting Techniques , Proceedings of the Fourteenth International Conference on Machine Learning, San Francisco, CA, United States, 1997; pp 107115.
    80. 80
      Smola, A. J.; Schülkopf, B. A tutorial on support vector regression. Statistics and Computing 2004, 14, 199222,  DOI: 10.1023/B:STCO.0000035301.49549.88
    81. 81
      MacKay, D. J. C. Bayesian Interpolation. Neural Comput. 1992, 4, 415447,  DOI: 10.1162/neco.1992.4.3.415
    82. 82
      Pedregosa, F. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 28252830
    83. 83
      Deng, Z.; Wang, Z.; Chu, I.-H.; Luo, J.; Ong, S. P. Elastic Properties of Alkali Superionic Conductor Electrolytes from First Principles Calculations. J. Electrochem. Soc. 2016, 163, A67A74,  DOI: 10.1149/2.0061602jes
    84. 84
      Ranganathan, S. I.; Ostoja-Starzewski, M. Universal Elastic Anisotropy Index. Phys. Rev. Lett. 2008, 101, 055504,  DOI: 10.1103/PhysRevLett.101.055504
    85. 85
      Lu, Z.; Ciucci, F. Metal Borohydrides as Electrolytes for Solid-State Li, Na, Mg, and Ca Batteries: A First-Principles Study. Chem. Mater. 2017, 29, 93089319,  DOI: 10.1021/acs.chemmater.7b03284
    86. 86
      Varley, J. B.; Kweon, K.; Mehta, P.; Shea, P.; Heo, T. W.; Udovic, T. J.; Stavila, V.; Wood, B. C. Understanding Ionic Conductivity Trends in Polyborane Solid Electrolytes from Ab Initio Molecular Dynamics. ACS Energy Lett. 2017, 2, 250255,  DOI: 10.1021/acsenergylett.6b00620
    87. 87
      Tang, W. S.; Matsuo, M.; Wu, H.; Stavila, V.; Zhou, W.; Talin, A. A.; Soloninin, A. V.; Skoryunov, R. V.; Babanova, O. A.; Skripov, A. V.; Unemoto, A.; Orimo, S.; Udovic, T. J. Liquid-Like Ionic Conduction in Solid Lithium and Sodium Monocarba-closo-Decaborates Near or at Room Temperature. Adv. Energy Mater. 2016, 6, 1502237,  DOI: 10.1002/aenm.201502237
    88. 88
      Tang, W. S.; Unemoto, A.; Zhou, W.; Stavila, V.; Matsuo, M.; Wu, H.; Orimo, S.-i.; Udovic, T. J. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions. Energy Environ. Sci. 2015, 8, 36373645,  DOI: 10.1039/C5EE02941D
    89. 89
      Malmgren, S.; Ciosek, K.; Lindblad, R.; Plogmaker, S.; Kühn, J.; Rensmo, H.; Edström, K.; Hahlin, M. Consequences of air exposure on the lithiated graphite SEI. Electrochim. Acta 2013, 105, 8391,  DOI: 10.1016/j.electacta.2013.04.118
    90. 90
      Tasaki, K.; Goldberg, A.; Lian, J.-J.; Walker, M.; Timmons, A.; Harris, S. Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents. J. Electrochem. Soc. 2009, 156, A1019A1027,  DOI: 10.1149/1.3239850
    91. 91
      Matsuo, M.; Nakamori, Y.; ichi Orimo, S.; Maekawa, H.; Takamura, H. Lithium superionic conduction in lithium borohydride accompanied by structural transition. Appl. Phys. Lett. 2007, 91, 224103,  DOI: 10.1063/1.2817934
    92. 92
      Johnson, R.; Biefeld, R.; Keck, J. Ionic conductivity in Li5AlO4 and LiOH. Mater. Res. Bull. 1977, 12, 577587,  DOI: 10.1016/0025-5408(77)90066-6
    93. 93
      Maekawa, H.; Matsuo, M.; Takamura, H.; Ando, M.; Noda, Y.; Karahashi, T.; Orimo, S.-i. Halide-Stabilized LiBH4, a Room-Temperature Lithium Fast-Ion Conductor. J. Am. Chem. Soc. 2009, 131, 894895,  DOI: 10.1021/ja807392k
    94. 94
      Das, S.; Ngene, P.; Norby, P.; Vegge, T.; de Jongh, P. E.; Blanchard, D. All-Solid-State Lithium-Sulfur Battery Based on a Nanoconfined LiBH4 Electrolyte. J. Electrochem. Soc. 2016, 163, A2029A2034,  DOI: 10.1149/2.0771609jes
    95. 95
      Morales-García, A.; Valero, R.; Illas, F. An Empirical, yet Practical Way To Predict the Band Gap in Solids by Using Density Functional Band Structure Calculations. J. Phys. Chem. C 2017, 121, 1886218866,  DOI: 10.1021/acs.jpcc.7b07421
    96. 96
      Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazlewood, V.; Lathrop, S.; Lifka, D.; Peterson, G. D.; Roskies, R.; Scott, J. R.; Wilkins-Diehr, N. XSEDE: Accelerating Scientific Discovery. Comput. Sci. Eng. 2014, 16, 6274,  DOI: 10.1109/MCSE.2014.80
    97. 97
      Nystrom, N. A.; Levine, M. J.; Roskies, R. Z.; Scott, J. R. Bridges: A Uniquely Flexible HPC Resource for New Communities and Data Analytics. Proceedings of the 2015 XSEDE Conference: Scientific Achievements Enabled by Enhanced Cyberinfrastructure 2015, 18,  DOI: 10.1145/2792745.2792775
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscentsci.8b00229.

    • Details of machine-learning models and additional figures including schematics and visualizations, shear modulus values, and stability parameter values (PDF)

    • Anisotropic stability parameter for training data (XLSX)

    • Shear modulus of 60 648 compounds predicted using CGCNN (XLSX)

    • Anisotropic stability parameter for predicted data (XLSX)

    • Bulk modulus of 60 648 compounds predicted using CGCNN (XLSX)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.