ACS Publications. Most Trusted. Most Cited. Most Read
A Selective and Cell-Permeable Mitochondrial Calcium Uniporter (MCU) Inhibitor Preserves Mitochondrial Bioenergetics after Hypoxia/Reoxygenation Injury
My Activity
  • Open Access
Research Article

A Selective and Cell-Permeable Mitochondrial Calcium Uniporter (MCU) Inhibitor Preserves Mitochondrial Bioenergetics after Hypoxia/Reoxygenation Injury
Click to copy article linkArticle link copied!

  • Joshua J. Woods
    Joshua J. Woods
    Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
    Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
  • Neeharika Nemani
    Neeharika Nemani
    Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
    Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
  • Santhanam Shanmughapriya
    Santhanam Shanmughapriya
    Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
    Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
  • Akshay Kumar
    Akshay Kumar
    Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
    Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
    More by Akshay Kumar
  • MengQi Zhang
    MengQi Zhang
    Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5C1, Canada
    More by MengQi Zhang
  • Sarah R. Nathan
    Sarah R. Nathan
    Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
  • Manfred Thomas
    Manfred Thomas
    Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
    Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
  • Edmund Carvalho
    Edmund Carvalho
    Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
    Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
  • Karthik Ramachandran
    Karthik Ramachandran
    Department of Medicine/Nephrology, Institute for Precision Medicine and Health, University of Texas Health San Antonio, San Antonio, Texas 78229, United States
  • Subramanya Srikantan
    Subramanya Srikantan
    Department of Medicine/Nephrology, Institute for Precision Medicine and Health, University of Texas Health San Antonio, San Antonio, Texas 78229, United States
  • Peter B. Stathopulos
    Peter B. Stathopulos
    Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5C1, Canada
  • Justin J. Wilson*
    Justin J. Wilson
    Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
    *E-mail: [email protected]
  • Muniswamy Madesh*
    Muniswamy Madesh
    Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
    Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
    Department of Medicine/Nephrology, Institute for Precision Medicine and Health, University of Texas Health San Antonio, San Antonio, Texas 78229, United States
    *E-mail: [email protected]
Open PDFSupporting Information (2)

ACS Central Science

Cite this: ACS Cent. Sci. 2019, 5, 1, 153–166
Click to copy citationCitation copied!
https://doi.org/10.1021/acscentsci.8b00773
Published January 4, 2019

Copyright © 2019 American Chemical Society. This publication is licensed under these Terms of Use.

Abstract

Click to copy section linkSection link copied!

Mitochondrial Ca2+ (mCa2+) uptake mediated by the mitochondrial calcium uniporter (MCU) plays a critical role in signal transduction, bioenergetics, and cell death, and its dysregulation is linked to several human diseases. In this study, we report a new ruthenium complex Ru265 that is cell-permeable, minimally toxic, and highly potent with respect to MCU inhibition. Cells treated with Ru265 show inhibited MCU activity without any effect on cytosolic Ca2+ dynamics and mitochondrial membrane potential (ΔΨm). Dose-dependent studies reveal that Ru265 is more potent than the currently employed MCU inhibitor Ru360. Site-directed mutagenesis of Cys97 in the N-terminal domain of human MCU ablates the inhibitory activity of Ru265, suggesting that this matrix-residing domain is its target site. Additionally, Ru265 prevented hypoxia/reoxygenation injury and subsequent mitochondrial dysfunction, demonstrating that this new inhibitor is a valuable tool for studying the functional role of the MCU in intact biological models.

Copyright © 2019 American Chemical Society

Synopsis

A new, cell-permeable inhibitor of mitochondrial calcium uptake, called Ru265, is reported, and its application in biological systems is described.

Introduction

Click to copy section linkSection link copied!

Intracellular calcium (Ca2+) ion concentration plays a crucial role in signal transduction and bioenergetics. Plasma membrane depolarization or the stimulation of receptors, such as the inositol triphosphate receptors (InsP3Rs) or ryanodine receptors (RYRs), produces a transient intracellular Ca2+ increase. This Ca2+ increase is achieved by both influx from the extracellular milieu in addition to Ca2+ release from the endoplasmic reticulum (ER) and sarcoplasmic reticulum (SR). (1−4) Under these conditions, the highly selective and inward-rectifying Ca2+ channel, known as the mitochondrial calcium uniporter (MCU), acts to clear excessive cytosolic Ca2+. (5−8) In this capacity, mitochondria act as Ca2+ sinks, shaping cytosolic Ca2+ (cCa2+) transients, while also utilizing these ions for cellular energy production.
The MCU complex comprises multiple functional domains with the MCU as the central pore-forming subunit (Figure 1A). (9−17) The MCU subunit is a 351-amino acid residue long motif with the N- and C-terminal domains both located in the inner mitochondrial matrix (IMM). (18) The transmembrane domains (TM1 and TM2) are connected through the solvent-accessible region with a highly conserved DXXE motif located in the upper helix of TM2. (19−21) The MCU pore is constructed from four of these subunits, giving a tetrameric structure. (20−23) MCU-mediated mitochondrial Ca2+ uptake is regulated by the proteins MCUR1, (16) EMRE, (12) MICU1, (17,24) and MICU2. (14) A 2–3 μM rise in cCa2+ concentration causes MICU1 and MICU2 to dissociate from the MCU, thus opening the pore for Ca2+ uptake (Figure 1B,C). (25) MCUR1, in contrast, acts as a positive regulator for mCa2+ uptake by binding to the coiled-coil region of the N-terminal domain (NTD, residues 72–189) (26,27) within the IMM. (26,28) Like most Ca2+ channels, the MCU is additionally autoregulated by divalent cations such as Mg2+ and Ca2+. Binding of divalent cations to the MCU-regulating acidic patch (MRAP) region in the β-grasp-like fold of the NTD destabilizes and shifts the self-association equilibrium of the MCU pore domain toward monomer formation. This equilibrium shift inhibits MCU function, thus fine-tuning Ca2+ entry into the mitochondria (Figure 1D). (27)

Figure 1

Figure 1. Topology diagram of the MCU. (A) Diagram showing the relevant regulator proteins EMRE, MCUR1, MICU1, and MICU2 and the orientation of the MCU in the IMM. Insets depict (left) the location of Cys97 in the X-ray crystal structure of the MCU-NTD (residues 72–189, PDB 5KUJ) (27) and (right) location of the DXXE motif in the solvent-accessible region of the MCU pore in the cryo-EM structure of the MCU (PDB 6DNF). (20) (B) At low Ca2+ concentration, MICU1 and MICU2 prevent Ca2+ from entering the mitochondria. (C) Elevated Ca2+ concentrations cause MICU1 and MICU2 to dissociate from the MCU, allowing Ca2+ transport across the IMM. (D) Binding of Ca2+ to the MRAP region in the MCU-NTD promotes a change in MCU conformation, preventing Ca2+ uptake.

MCU-mediated Ca2+ uptake into the mitochondria is an electrogenic process that is driven by the highly negative electrochemical gradient across the IMM. (29) The surge of MCU-mediated mitochondrial Ca2+ (mCa2+) uptake allosterically stimulates the mitochondrial matrix pyruvate dehydrogenase complex, α-keto-glutarate dehydrogenase, and isocitrate enzymes to generate reducing equivalents (NADH) and promote ATP production. (30−32) Although MCU-mediated mitochondrial Ca2+ uptake is essential for bioenergetics, Ca2+ overload via this pathway triggers opening of the mitochondrial permeability transition pore (mPTP), which gives rise to mitochondrial swelling and rupture, creating a cellular bioenergetic crisis and activating degradative enzymes under pathological conditions, which leads to irreversible cell damage and death. (33−36) Dysregulation of Ca2+ uptake by the MCU plays a major role in numerous pathological conditions such as ischemic reperfusion injury (37−39) and neurodegenerative disease. (40,41) As such, pharmacological strategies to regulate MCU activity are of great importance and may provide further insight into the role of this channel in mediating human disease.
With the significant recent interest within this field, systematic efforts to find selective and cell-permeable MCU inhibitors have only recently been initiated. However, the structural criteria required for small molecules to be effective inhibitors of the MCU is not well-established. As such, combinatorial screening strategies have recently been employed to discover organic molecules that possess MCU-inhibitory properties. (42,43) Despite the discovery of several organic small-molecule MCU inhibitors, (42−46) these compounds generally have alternative biological activities, which result in undesirable toxicity. For example, mitoxantrone was recently discovered via a combinatorial approach to be a cell-permeable MCU inhibitor. (42) This compound, however, is an established topoisomerase II inhibitor that has been employed as a cytotoxic agent for the treatment of cancer. (47−50) In addition to these secondary biological applications, it also gives rise to cardiotoxicity, (51,52) which could hamper its in vivo applications.
The most commonly used and well-known MCU inhibitor is the inorganic binuclear oxo-bridged ruthenium complex ruthenium 360 (Ru360; Figure 2A), which was named for its strong absorbance at 360 nm. Although Ru360 is a highly potent and selective MCU inhibitor, (53−55) its widespread applicability in biological systems is limited by several factors. For example, in most cell lines, this compound is impermeant to the plasma membrane, hindering its use in intact cellular models. Furthermore, the synthesis of this complex is challenging and low-yielding, (56,57) diminishing its widespread availability. With structural data on the MCU recently becoming available, efforts to understand the mechanism of action of Ru360 have been slowly progressing. For example, site-directed mutagenesis of the S259 residue (located in the solvent exposed region of the MCU near the DXXE motif of human MCU) to an alanine gave rise to a variant of the MCU (MCUS259A) that retained functional activity, but was partially resistant to the inhibitory action of Ru360. (9) This result was taken to imply that Ru360 interacts with the DXXE motif located near the central pore opening of the MCU. Additional molecular dynamics simulations and solution-state NMR studies were consistent with Ru360 interacting with aspartate residues in the DXXE motif to directly block the MCU channel. (58) Despite these initial studies, the features that give Ru360 its potency and selectivity have not been fully elucidated, thereby warranting further investigation of Ru360 and its structural analogues.

Figure 2

Figure 2. (A) Chemical structures of the established and commercially available MCU inhibitor Ru360 (left) and the related analogue C-1. (B) Synthetic scheme for the preparation of C-2 and C-3. Crystal structures of (C) C-2 and (D) C-3. Outer sphere chlorides and solvent are omitted for clarity. Thermal ellipsoids are shown at the 50% probability level. Interatomic distances and angles are given in Tables S1–S3 in the Supporting Information (SI).

In this study, we aimed to circumvent the limitations of Ru360 by introducing structural modifications with the goal of developing synthetically available and highly potent MCU inhibitors. We have fully characterized a new ruthenium-based MCU inhibitor that is cell-permeable and have investigated its biological properties and interactions with the MCU in detail. The results described herein provide guiding principles for the design of new and effective MCU inhibitors as tools for understanding mitochondrial Ca2+ dynamics in intact biological systems in addition to the development of a new class of therapeutic agents.

Results

Click to copy section linkSection link copied!

Synthesis and Characterization

A key structural feature of Ru360 is its linear Ru–O–Ru functionality. We hypothesized that this Ru–O–Ru motif, a feature that is relatively unique to Ru360, is an important factor that contributes to this molecule’s MCU-inhibitory activity. For example, we have previously reported on the synthesis and characterization of a very close structural analogue of Ru360 containing this motif, C-1 (Figure 2A), which is a more potent MCU inhibitor than its parent complex Ru360. (56,57) The syntheses of linear oxo-bridged transition metal complexes is not always straightforward, making it challenging to develop rational synthetic strategies. (59) Therefore, we targeted an analogous structural motif that would allow for rational synthetic strategies and facile development of new complexes.
Nitrido-bridged ruthenium complexes, which bear a structurally similar linear Ru–N–Ru core, can be readily accessed via ligand substitution reactions with the precursor complex K3[Ru2(μ-N)Cl8(OH2)2]. (60) Accordingly, the reaction of this complex anion with either aqueous ammonium hydroxide or ethylenediamine (en) afforded the expected compounds [Ru2(μ-N)(NH3)8Cl2]Cl3 (Ru265; referred to herein as C-2) and [Ru2(μ-N)(en)4Cl2]Cl3 (C-3) (Figure 2B). In contrast to the low-yielding synthesis of Ru360 and related analogues, the syntheses of these compounds proceed in moderate yield and require no tedious chromatographic purification. These compounds were fully characterized by NMR, IR, UV–vis spectroscopy, and single-crystal X-ray diffraction (Figure 2, and Figure S1, Supporting Information, SI). UV–vis spectra reveal strong charge transfer bands at 265 nm (ε = 34 000 ± 2000 M–1 cm–1) and 273 nm (ε = 29 000 ± 4000 M–1 cm–1) for C-2 and C-3, respectively, with a lower energy shoulder observed near 325 nm for both complexes. IR spectroscopy reveals distinct bands near 1050 cm–1 corresponding to the asymmetric Ru–N–Ru vibrational mode. Furthermore, 1H and 13C{1H} NMR spectroscopy showed relatively sharp signals for the NH3 and ethylenediamine ligands, confirming the diamagnetic character of the RuIV/RuIV system. (61,62)
Single-crystal X-ray crystallography was employed to fully elucidate the three-dimensional structures of C-2 and C-3 (Figure 2C,D). X-ray diffraction quality crystals of C-2 and C-3 were grown by vapor diffusion of dioxane into water and vapor diffusion of ethanol into dilute hydrochloric acid, respectively. These structures verify the presence of both the linear Ru–N–Ru motif (C-2Ru–N–Ru = 180°; C-3Ru–N–Ru = 176.3°) and the chlorido axial ligands. Relevant interatomic distances and angles as well as details for the crystal structure refinement of C-2 and C-3 are shown in Tables S1–S3 (SI). The Ru–N distances of the nitrido bridge agree well with previously synthesized compounds. (60,63−65) The NH3 ligands of the bridged RuIV centers of C-2 are arranged in an eclipsed configuration, whereas the ethylenediamine ligands of C-3 crystallize in a staggered conformation. This disparity may indicate that the rotation about the Ru–N–Ru axis is facile. With the new ruthenium compounds fully characterized, we proceeded to evaluate their MCU-inhibitory properties.

Mitochondrial Ca2+ Uptake Inhibition and Cell Permeability

With the new nitrido-bridged ruthenium compounds C-2 and C-3 in hand, we sought to evaluate their MCU-inhibitory properties and compare their activity to C-1, the oxo-bridged Ru360 analogue that we have previously reported. (56,57) We first measured the cytotoxicity of the complexes in HEK293 cells using the colorimetric thiazolyl blue tetrazolium bromide (MTT) assay. (66) This assay revealed that C-2 and C-3 are effectively nontoxic, as indicated by their IC50 values of 195 ± 8 and 226 ± 19 μM, respectively (Figure S2, SI). To measure the effect of these compounds on MCU activity, permeabilized HEK293T cells were treated with commercially available Ru360, C-1, C-2, or C-3 (5 μM) 200 s prior to the delivery of a 20 μM bolus of Ca2+ in the presence of 2 mM succinate as an energy source and the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump blocker thapsigargin to prevent ER Ca2+ uptake. (67) As anticipated, extramitochondrial Ca2+ ([Ca2+]out) was rapidly cleared in control cells as Ca2+ ions were sequestered in the mitochondria by the MCU (Figure 3A). In contrast, cells that were treated with C-1, C-2, C-3 (Figure 3A–D), and commercially available Ru360 (Figure S3, SI) showed a significant reduction in MCU-mediated mCa2+ uptake. Additionally, the mitochondrial membrane potential (ΔΨm) was monitored using 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) dye. (68) Cells treated with commercially available Ru360, C-1, C-2, or C-3 showed no transient ΔΨm loss (Figure 3A–C and Figure S3A,C, SI), a phenomenon that occurs when Ca2+ rapidly enters the mitochondria. (11) These results show that commercially available Ru360, C-1, C-2, and C-3 are all capable of inhibiting MCU-mediated mCa2+ uptake in permeabilized cells without negatively affecting the ΔΨm, preserving normal cell function.

Figure 3

Figure 3. (A–C) Changes in ΔΨm (JC-1, top panel) and extramitochondrial Ca2+ ([Ca2+]out) clearance (Fura-2-FF, bottom panel) in digitonin-permeabilized HEK293T cells in response to 20 μM of Ca2+ after treatment with 5 μM of C-1, C-2, and C-3. The transient drop in ΔΨm in control cells upon Ca2+ addition indicates accumulation of Ca2+ in the mitochondrial matrix. (D) Quantification of the rate of [Ca2+]m uptake as a function of decrease in [Ca2+]out after 20 μM Ca2+pulse. Data are represented as mean ± standard error of measurement (SEM); ***p < 0.001; n = 3–6.

We next investigated the cell permeability of the compounds and their ability to inhibit MCU activity in intact cells. The cellular uptake of C-1, C-2, and C-3 was quantified as previously described. (69,70) HEK293 or HeLa cells were incubated with the complexes (50 μM) in culture media for 24 h before the cells were harvested and lysed. The amount of ruthenium in the cell lysate was determined using graphite furnace absorption spectroscopy (GFAAS) and was normalized to the protein content of each sample. We observed that C-2 is taken up 10 times more effectively than C-1 and over twice as effectively as C-3 in HEK293 cells and twice as effectively as C-1 and C-3 in HeLa cells (Figure S4, SI). To determine the abilities of the complexes to accumulate in the mitochondria, we treated HeLa cells with C-1, C-2, or C-3 (50 μM) in culture media for 24 h, and the mitochondria were isolated following modified literature procedures. (71−73) Both the mitochondrial and extramitochondrial fractions were analyzed for ruthenium content. Cells treated with C-1, C-2, or C-3 show 2–4 times greater uptake of ruthenium into the mitochondria compared to the rest of the cell, demonstrating the high selectivity of these compounds for the mitochondria (Figure S4, SI). Consistent with the cellular uptake studies, greater than 3-fold higher concentrations of C-2 are found in the mitochondria, compared to C-1 and C-3.
Encouraged by the high cell permeability and mitochondrial selectivity of C-2, we investigated the capability of this complex to inhibit MCU-mediated mCa2+ uptake in intact, nonpermeabilized cells. Briefly, HeLa cells were loaded with the cytosolic calcium concentration ([Ca2+]c) indicator Fluo-4 AM and the mitochondrial calcium concentration ([Ca2+]m) indicator Rhod-2 AM in the presence or absence of C-1, C-2, and C-3 (50 μM). Cells were stimulated with the GPCR agonist histamine (100 μM) to rapidly elevate cCa2+ levels to induce mCa2+ uptake. (74) Cells treated with C-2 showed significant inhibition of MCU-mediated mCa2+ uptake compared to untreated cells (Figure 4A,B). These results were further confirmed using genetically encoded cytosolic (RGECO) and mitochondrial (GCamP6-mt) Ca2+ sensors (Figure 4C,D). (75,76) In contrast, intact cells treated with C-1 or C-3 did not show appreciable inhibition of mCa2+ uptake. These results are consistent with our cell uptake and MCU Ca2+ uptake experiments, suggesting that C-2 is capable of inhibiting mCa2+ uptake in intact cells as a result of its enhanced permeability compared to C-1 and C-3.

Figure 4

Figure 4. (A, B) Cytosolic ([Ca2+]c, Fluo-4 AM) and mitochondrial ([Ca2+]m, Rhod-2 AM) calcium transients in HeLa cells after treatment with histamine (100 μM) that were pretreated with or without C-1, C-2, or C-3 (50 μM) for 30 min. (C, D) Cytosolic ([Ca2+]c, R-GECO) and mitochondrial ([Ca2+]m, GCamP6-mt) calcium transients in HeLa cells after treatment with histamine (100 μM) that were pretreated with or without C-1, C-2, or C-3 (50 μM) for 30 min. HeLa cells were cotransfected with R-GECO1 and GCamP6-mt and analyzed 48 h post-transfection. Data are represented as mean ± SEM; *p < 0.05; n = 3–6.

Having identified C-2 as a cell-permeable MCU inhibitor, we performed a dose–response analysis to determine the potency of this compound toward mCa2+ uptake inhibition in a permeabilized cell system. Permeabilized HEK293T cells were treated with C-2 (1 nM to 1 μM). A 20 μM Ca2+ bolus was added after baseline recording, and the extramitochondrial calcium cleared was used as an indicator for MCU-mediated mCa2+ uptake using Fura-2-FF (Figure 5A–C). (16) We found the 50% maximal inhibitory concentration (IC50) for mCa2+ uptake in permeabilized cells to be 2.6 nM for C-2, which is an order of magnitude more effective than commercially available Ru360 (IC50 = 30 nM) (Figure 5C). Furthermore, we observed complete inhibition of mCa2+ uptake when cells were dosed with 10 nM C-2 while 500 nM of Ru360 was required for the same response (Figure 5A,B, and Figure S5, SI).

Figure 5

Figure 5. (A) Representative traces of [Ca2+]out clearance in permeabilized HEK293T cells challenged with a range of C-2 concentrations (1, 2, 3, 5, and 10 nM). (B) Comparison of MCU-inhibitory effect by Ru360 (30 nM) and C-2 (3 and 10 nM) at lower concentrations. (C) Calculation of dose-dependent inhibition by C-2 and Ru360. (D) Assessment of mitochondrial Ca2+ influx and efflux rates. Permeabilized HEK293T cells pulsed with 20 μM Ca2+ at 350 s to measure mitochondrial Ca2+ uptake, followed by the addition of the 1 μM C-2 or Ru360 at 550 s, 10 μM CGP37157 at 600 s, and 6 μM CCCP at 750 s. Representative trace depicts the comparison of C-2 and Ru360. (E) Quantification of Ca2+ influx rate. (F) Quantification of Ca2+ efflux rate after addition of C-2 or Ru360. (G) Quantification of CCCP-induced release of accumulated mitochondrial Ca2+. Data represent mean ± SEM; n.s., not significant n = 3–6.

For C-2 to be an effective mCa2+ uptake inhibitor, C-2 should selectively inhibit MCU-mediated Ca2+ uptake and not interact with other cellular ion channels. Despite showing greatly reduced mCa2+ uptake, intact cells treated with C-2 showed normal cytosolic calcium dynamics when stimulated with histamine (Figure 5D,F). To further confirm the selectivity of C-2 for the MCU, we measured mCa2+ uptake, mCa2+ efflux rates, and matrix Ca2+ levels in permeabilized HEK293T cells before and after treatment with C-2 using the fluorescent Ca2+ indicator Fura-2-FF. (16) As expected, untreated cells displayed normal [Ca2+]out clearance rates (Figure 5D). We next added Ru360 or C-2 to inhibit MCU-mediated Ca2+ uptake and subsequently visualized [Ca2+]m efflux (Figure 5D). [Ca2+]m efflux rates were similar between both inhibitors suggesting that Ru360 and C-2 selectively inhibit the MCU and do not affect mCa2+ efflux channels (Figure 5E–G). To further confirm that C-2 did not affect mitochondrial calcium efflux, cells were treated with the sodium calcium exchanger (NCLX) inhibitor CGP-37157. (77) We observed no change in C-2 activity upon treatment with CGP-37157 and CCCP (Figure 5E–G). These results suggest that Ru360 and C-2 do not interact with other mitochondrial calcium transport proteins and selectively interact with the MCU.

Exploring the Mechanism of MCU Inhibition

Having observed the high potency of C-2 compared to Ru360, we next investigated its mechanism of action. Site-directed mutagenesis revealed that the serine residue S259 of the human MCU is required for maximum activity of Ru360. Mutating this serine residue to an alanine (S259A) renders partial resistance to Ru360-mediated MCU inhibition. (9) First, we tested if interaction with the S259 residue on the MCU is necessary for C-2 to be effective. HEK293T cells stably expressing Flag-tagged full-length human wild-type MCU (MCUWT) or the mutant S259A (MCUS259A) were permeabilized, and mCa2+ uptake was measured as above. Cells expressing the MCUS259A mutation displayed partial resistance to Ru360 inhibition of the MCU compared to MCUWT cells (Figure 6B). In contrast, cells expressing the MCUS259A mutation showed almost no change in the inhibitory activity of C-2 compared to the MCUWT cells (Figure 6A). These results suggest that C-2 could inhibit the MCU in a manner distinct from Ru360.

Figure 6

Figure 6. Representative traces of [Ca2+]out clearance and ΔΨm in permeabilized HEK293T cells stably expressing Flag-tagged MCUWT and MCUS259A mutant challenged with either (A) C-2 (10 nM) or (B) Ru360 (500 nM). Bar graphs represent the quantification of the rate of [Ca2+]m uptake. Representative traces of [Ca2+]out clearance and ΔΨm in HEK293T cells stably expressing Flag-tagged MCUWT and MCUC97A mutant challenged with either (C) C-2 (10 nM) or (D) Ru360 (500 nM). Bar graphs represent the quantification of the rate of [Ca2+]m uptake. Compound MCU-inhibitory effect was compared with cells reconstituted with appropriate mutants alone. Data represent mean ± SEM; ***p < 0.001; n = 3–6.; n = 4.

A recent report revealed that the conserved human MCU cysteine residue C97 located in the MCU-NTD (residues 72–189) (26,27) in the mitochondrial matrix senses mitochondrial levels of reactive oxygen species and induces higher order oligomerization to regulate MCU channel activity (Figure 1). (74) Additionally, recent structural and biochemical studies have demonstrated the importance of the NTD in MCU oligomerization and activity. (20,21,27,74) To determine if C-2 interacts with the NTD, HEK293T cells stably expressing Flag-tagged full-length wild-type MCU (MCUWT) and the mutant C97A (MCUC97A) were permeabilized, and mCa2+ uptake was measured as above. Upon MCUC97A mutation, cells treated with C-2 showed significantly reduced MCU-inhibitory activity compared to MCUWT cells (Figure 6C). In contrast, the MCUC97A mutation had almost no effect on the activity of Ru360 (Figure 6D). Taken together, these studies suggest that C-2 and Ru360 may act on different regions of the MCU to inhibit mitochondrial calcium uptake.
To further elucidate the potential interaction of C-2 with the MCU-NTD, we investigated the interaction between C-2 and the uniformly 15N-labeled recombinant human MCU-NTD (residues 72–189) (27) using solution nuclear magnetic resonance (NMR) spectroscopy. The 1H–15N-heteronuclear single quantum coherence (HSQC) spectrum of the MCU-NTD in the absence of C-2 showed well-dispersed amide H(N) cross-peaks with homogeneous peak intensities, consistent with the well-folded and soluble domain (Figure 7A). Remarkably, upon addition of a 3-fold molar excess of C-2, the NMR sample showed a rapid formation of insoluble precipitate. A similar addition of C-2 to sample buffer alone showed neither precipitate formation nor a change in pH, suggesting that the insoluble aggregate contained MCU-NTD. Consistent with precipitation of the protein, the 1H–15N-HSQC spectrum of the 1:3 MCU-NTD:C-2 sample mixture showed a drastic loss in most H(N) cross-peak intensities (Figure 7A). It is noteworthy that some of the remaining H(N) peaks of the protein also exhibited small chemical shift perturbations.

Figure 7

Figure 7. (A) 1H–15N-heteronuclear single quantum coherence (HSQC) spectra of uniformly 15N-labeled human MCU N-terminal domain (residues 72–189; MCU72–189) in the absence (blue cross-peaks) and presence (magenta cross-peaks) of C-2. A large amount of the protein immediately precipitated out of solution with the addition of 3 molar excess C-2 to the sample with no detectable change in solvent pH or ionic strength. Consequently, most amide H(N) cross-peaks show a drastic loss in intensity compared to cross-peaks in the control spectrum. (B) Coomassie blue-stained 15% (w/v) SDS-PAGE gel visualizing the insoluble precipitate formed after mixing 125 μM MCU72–189 with 375 μM C-2 (Insol. + C-2) and 375 μM Ru360 (Insol. + Ru360) compared to untreated MCU72–189 protein (Sol.). (C) Cross-peak broadening map on the MCU72–189 high-resolution crystal structure (PDB 5KUJ). (27) Tentatively assigned residues which exhibited a ≥40% reduction in peak intensity are highlighted in red on the backbone ribbon view of MCU72–189 (top dashed box). The surface representation of the same view (bottom dashed box) shows that the most affected H(N) cross-peaks primarily cluster on one face of the domain.

To determine if the MCU-NTD remained intact upon treatment with C-2, we resuspended the insoluble aggregate (Insol. + C-2) in loading dye and compared the migration of the protein to untreated, soluble MCU-NTD (Sol.) by SDS-PAGE analysis (Figure 7B). After Coomassie blue staining, the untreated MCU-NTD control showed clear bands indicating the presence of the monomer (∼13.9 kDa) in addition to low levels of the dimer and tetramer oligomers which is characteristic of the native MCU-NTD conformation. The protein precipitate that formed upon treatment with C-2 showed a distinct and systematic laddering corresponding to the presence of monomer, dimer, trimer, tetramer, and higher aggregate formation. The appearance of the trimer and higher order aggregates upon treatment with C-2 may suggest that the MCU-NTD conformation induced by C-2 is different from that of the native conformation. Similar MCU-NTD aggregation was observed when the MCU-NTD was treated with lower molar ratios (i.e., 1:2 and 1:1) of C-2.
To distinguish whether C-2 induced a global or more local structural effect on the MCU-NTD, peaks exhibiting an intensity reduction of ≥40% were mapped (see the SI for details) onto the crystal structure of the domain (PDB 5KUJ). (27) Remarkably, these most severely affected H(N) cross-peaks were found to cluster close together on the two β-sheets of the β-grasp-like fold despite the long distance between these residues in sequence space (Figure 7C). The clustering of these perturbations could be a result of (i) direct binding with the compound, (ii) indirect effects of the lower soluble protein concentration shifting the self-association equilibrium, or (iii) C-2-mediated modifications to the protein. Nevertheless, these data collectively suggest that C-2 interacts with the MCU-NTD to induce aggregation of the protein and inhibit Ca2+ uptake through the MCU channel. (20−23,26,27) Notably, we have found that commercially available Ru360 also interacts with the purified MCU-NTD in a cell-free system, giving rise to precipitation and systematic laddering (Insol. + Ru360; Figure 7B). Given the structural similarity of Ru360 and C-2, it is not surprising that these compounds induce analogous conformational perturbations in the NTD of the MCU in solution. However, site-mutagenesis studies with MCUC97A and MCUS259A (Figure 6) clearly show that the inhibitory activity of C-2 is dependent on the mutation-status of the NTD, whereas the inhibitory activity of Ru360 is not. Thus, we hypothesize that the NTD is a potent target for MCU inhibition that is only accessible to C-2 because of its enhanced membrane permeability compared to Ru360.

Protection from Ca2+-Induced PTP Opening and Hypoxia/Reoxygenation Injury

Given the Ca2+ uptake inhibiting properties and low toxicity of C-2, we hypothesized that C-2 could be used to protect cardiomyocytes from the mCa2+ overload that occurs during hypoxia/reoxygenation (H/R) injury and prevent mPTP opening and mitochondrial swelling. (34,37,78) Freshly isolated neonatal rat ventricular myocytes (NRVMs) treated with C-2 (50 μM) were subjected to 16 h of hypoxia (1% O2–5% CO2), followed by 8 h of reoxygenation (21% O2–5% CO2). Untreated NRVMs served as controls. After H/R injury, NRVMs were permeabilized and loaded with the JC-1 and Fura-FF to simultaneously measure ΔΨm and mCa2+ uptake. (16) Cells treated with C-2 maintained mitochondrial integrity with no loss of ΔΨm after H/R injury (Figure 8B, top panel; and Figure 8D). Additionally, treatment with C-2 resulted in complete ablation of mCa2+ uptake after H/R injury (Figure 8B, bottom panel; and 8E). On the contrary, untreated cells subjected to identical conditions showed no preservation of ΔΨm and did not show normal mCa2+ uptake (Figure 8A, top panel; and Figure 8D−E). In contrast to C-2, pretreatment with Ru360 did not prevent H/R-mediated ΔΨm dissipation (Figure 8C–E). Additionally, we monitored the swelling of mitochondria isolated from NRVMs subjected to H/R injury in the absence (Figure 8F; black trace) or presence (Figure 8F; blue trace) of C-2 or Ru360 (Figure 8F; red trace). After baseline measurement of the absorbance at 600 nm, a single bolus of Ca2+ (250 μM) was added to induce mPTP opening. The decrease in mitochondrial absorbance indicates mitochondrial swelling and subsequent mPTP opening. (34) When cells were treated with C-2 or Ru360, we observed no decrease in absorbance after Ca2+ addition, indicating a lack of mitochondrial swelling (Figure 8F). These results demonstrate that inhibition of MCU-mediated mCa2+ uptake by C-2 effectively prevents mPTP opening in response to H/R injury and when challenged with high Ca2+ concentrations.

Figure 8

Figure 8. Measurement of ΔΨm (top panels) and MCU-mediated Ca2+ uptake (bottom panels) in (A) control, (B) C-2, and (C) Ru360 treated NRVMs exposed to normoxia (black) and H/R (red). (D) Quantification of basal ΔΨm from parts A–C under normoxia and H/R before the addition of extramitochondrial Ca2+ pulses. (E) Quantification of the rate of MCU-mediated Ca2+ uptake from parts A–C as a function of decrease in bath Ca2+ fluorescence. (F) Swelling of isolated NRVM mitochondria subjected to H/R injury in the absence (black trace) or presence (blue trace) of C-2 or Ru360 (red trace). Data represent mean ± SEM; ***p < 0.001; n = 3–6.

Discussion

Click to copy section linkSection link copied!

Given the importance of mCa2+ in mitochondrial bioenergetics, damage, and cell death, identification of effective MCU-mediated mCa2+ uptake inhibitors has attracted considerable interest. (41,79−81) In this report, we describe the synthesis, characterization, and biological activity of a cell-permeable, highly potent, and selective MCU inhibitor. Identifying potent and selective MCU inhibitors has proven to be challenging, with reported potential inhibitors generally exhibiting low permeability or poor selectivity and mitochondrial targeting. (42) Given high potency and selectivity of Ru360, we focused our design on structurally related compounds. The syntheses of the oxo-bridged complexes Ru360 and C-1 are low-yielding and require tedious chromatographic purification. (56,57) In contrast, C-2, which we name Ru265, and C-3 can be prepared in moderate yields without the need for extensive purification. Additionally, the nitrido-bridged complexes can be accessed through the common starting material, K3[Ru2(μ-N)Cl8(OH2)2]. This synthetic route allows for facile design of related analogues of Ru265 and C-3 through ligand substitution reactions. This straightforward chemical reaction is advantageous for studying structure–activity relationships to probe the biological activity of these complexes, which will be the focus of a future report.
Among the compounds studied, Ru265 showed the most effective MCU inhibition in nonpermeabilized cells. Furthermore, this compound is highly water-soluble (1 mg/mL) and exhibits low toxicity to human cells. The low toxicity of these complexes is significant because of the large number of known cytotoxic ruthenium compounds. (82−91) The minimal toxicity of Ru265 in contrast to many other ruthenium compounds highlights the importance of molecular structure and coordination geometry in the biological activity of metal-based compounds. (92−94) In our intact cellular models, Ru265 consistently inhibited MCU-mediated mCa2+ uptake without any effect on intracellular Ca2+ dynamics.
A series of recent reports have definitively elucidated the structure of the full-length MCU through cryo-EM and X-ray crystallographic techniques. (20−23) Most notably, these reports highlight the assembly of the NTD directly under the channel pore in the mitochondrial matrix. Our binding studies suggest that Ru265 interacts with the MCU-NTD and may perturb the assembly of NTD through aggregation, inhibiting normal channel function (Figure 7). Based on these data, it is tempting to speculate that the Ru265-dependent aggregation of the NTD could inhibit the dynamics of the NTD and immediately adjacent coiled–coiled domains required to regulate pore opening and closing. Our speculation is supported by the lack of rapid MCU Ca2+ uptake inhibition at lower Ru265 concentrations (Figure 5). It remains to be definitively determined whether Ru265-induced NTD aggregation regulates the Ca2+ binding and release mechanism; this study will be detailed in a future report. Alternatively, binding of Ru265 to the NTD could modulate MCU channel activity by promoting conformations which constrict the pore.
We have previously shown that human MCU-NTD contains a contiguous electronegative surface patch which can bind divalent cations and inhibit the MCU channel function via a shift of the self-association equilibrium of the domain toward monomer formation. (27) Given the charge, symmetry, and size of Ru265, it is possible that Ru265 also interacts with the MRAP of the MCU-NTD, with the ability to bridge MCU-NTD subunits. Using Ru265, we observed a robust inhibition of the MCU channel, which may be a consequence of the higher order oligomerization of the MCU-NTD that it induces. In the context of the full-length MCU, the bridging of dimers could prevent MCU-NTD dimer dynamics proposed to be involved in MCU gating by locking the domains in an assembly pattern, promoting a closed pore and inhibited Ca2+ uptake. Future high-resolution structural investigations using the full-length human protein are required to determine the precise structural mechanism by which Ru265 causes MCU inhibition.
In summary, the current study presents a ruthenium-based complex that not only inhibits the MCU selectively in vitro but also efficiently inhibits MCU activity and prevents mitochondrial membrane potential dissipation, mitochondrial swelling, and mPTP opening in cells exposed to simulated ischemic reperfusion injury. We show that Ru265 is over 10 times more effective at inhibiting mCa2+ uptake than Ru360, and potentially interacts with the matrix side of the MCU rather than the intermembrane Ca2+ binding sites. Furthermore, Ru265 inhibits MCU activity without disrupting normal cellular Ca2+ dynamics. This work presents a new class of compounds that have important implications in drug development strategies for diseases that are intimately associated with mitochondrial dysfunction.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscentsci.8b00773.

  • Experimental details, complex characterization data, cell viability curves, cell uptake, UV–vis spectra, and dose–response data for Ca2+ uptake inhibition (PDF)

  • X-ray crystal data for C-2 and C-3 (CIF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
    • Justin J. Wilson - Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United StatesOrcidhttp://orcid.org/0000-0002-4086-7982 Email: [email protected]
    • Muniswamy Madesh - Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United StatesCenter for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United StatesDepartment of Medicine/Nephrology, Institute for Precision Medicine and Health, University of Texas Health San Antonio, San Antonio, Texas 78229, United States Email: [email protected]
  • Authors
    • Joshua J. Woods - Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United StatesDepartment of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United StatesOrcidhttp://orcid.org/0000-0002-6213-4093
    • Neeharika Nemani - Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United StatesCenter for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
    • Santhanam Shanmughapriya - Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United StatesCenter for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
    • Akshay Kumar - Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United StatesCenter for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
    • MengQi Zhang - Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5C1, Canada
    • Sarah R. Nathan - Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
    • Manfred Thomas - Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United StatesCenter for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
    • Edmund Carvalho - Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United StatesCenter for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania 19140, United States
    • Karthik Ramachandran - Department of Medicine/Nephrology, Institute for Precision Medicine and Health, University of Texas Health San Antonio, San Antonio, Texas 78229, United States
    • Subramanya Srikantan - Department of Medicine/Nephrology, Institute for Precision Medicine and Health, University of Texas Health San Antonio, San Antonio, Texas 78229, United States
    • Peter B. Stathopulos - Department of Physiology and Pharmacology, Western University, London, Ontario N6A 5C1, Canada
  • Author Contributions

    J. J. Woods and N. Nemani contributed equally. J. J. Woods, N. Nemani, S. Shanmughapriya, A. Kumar, S. R. Nathan, M. Zhang, M. Thomas, E. Carvalho, P. B. Stathopulos, J. J. Wilson, and M. Madesh performed and analyzed experiments involving chemical synthesis, biochemical, mitochondrial bioenergetics, and molecular and cellular experiments. J. J. Wilson, P. B. Stathopulos, and M. Madesh conceived, designed, analyzed, and interpreted experimental data. J. J. Woods, N. Nemani, P. B. Stathopulos, J. J. Wilson, and M. Madesh wrote the manuscript with contributions from S. Shanmughapriya and A. Kumar.

  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

This research in the laboratory of M. Madesh was funded by the National Institutes of Health (R01GM109882, R01HL086699, R01HL142673, R01HL119306). Research in the laboratory of J. J. Wilson was supported by the National Science Foundation (NSF) (CHE-1750295). S. Shanmughapriya is supported by the NIH K99/R00 grant (1 K99 HL138268-01). E. Carvalho and N. Nemani are supported by the AHA fellowships (18POST33990217 and 17PRE33660720). J. J. Woods is supported by the NSF-GRFP (DGE-1650441). This work made use of the Cornell NMR facility, which is funded in part by the NSF (CHE-1531632). We thank Reggie Jacob for helpful comments on the manuscript and Samantha Davalos for assistance in preparing the artwork associated with this manuscript.

References

Click to copy section linkSection link copied!

This article references 94 other publications.

  1. 1
    Berridge, M. J.; Bootman, M. D.; Roderick, H. L. Calcium Signalling: Dynamics, Homeostasis and Remodelling. Nat. Rev. Mol. Cell Biol. 2003, 4, 517529,  DOI: 10.1038/nrm1155
  2. 2
    Soboloff, J.; Rothberg, B. S.; Madesh, M.; Gill, D. L. STIM Proteins: Dynamic Calcium Signal Transducers. Nat. Rev. Mol. Cell Biol. 2012, 13, 549565,  DOI: 10.1038/nrm3414
  3. 3
    Clapham, D. E. Calcium Signaling. Cell 2007, 131, 10471058,  DOI: 10.1016/j.cell.2007.11.028
  4. 4
    Hogan, P. G.; Lewis, R. S.; Rao, A. Molecular Basis of Calcium Signaling in Lymphocytes: STIM and ORAI. Annu. Rev. Immunol. 2010, 28, 491533,  DOI: 10.1146/annurev.immunol.021908.132550
  5. 5
    Kirichok, Y.; Krapivinsky, G.; Clapham, D. E. The Mitochondrial Calcium Uniporter is a Highly Selective Ion Channel. Nature 2004, 427, 360364,  DOI: 10.1038/nature02246
  6. 6
    Kamer, K. J.; Mootha, V. K. The Molecular Era of the Mitochondrial Calcium Uniporter. Nat. Rev. Mol. Cell Biol. 2015, 16, 545553,  DOI: 10.1038/nrm4039
  7. 7
    Rizzuto, R.; De Stefani, D.; Raffaello, A.; Mammucari, C. Mitochondria as Sensors and Regulators of Calcium Signalling. Nat. Rev. Mol. Cell Biol. 2012, 13, 566578,  DOI: 10.1038/nrm3412
  8. 8
    Nemani, N.; Shanmughapriya, S.; Madesh, M. Molecular Regulation of MCU: Implications in Physiology and Disease. Cell Calcium 2018, 74, 8693,  DOI: 10.1016/j.ceca.2018.06.006
  9. 9
    Baughman, J. M.; Perocchi, F.; Girgis, H. S.; Plovanich, M.; Belcher-Timme, C. A.; Sancak, Y.; Bao, X. R.; Strittmatter, L.; Goldberger, O.; Bogorad, R. L.; Koteliansky, V.; Mootha, V. K. Integrative Genomics Identifies MCU as an Essential Component of the Mitochondrial Calcium Uniporter. Nature 2011, 476, 341345,  DOI: 10.1038/nature10234
  10. 10
    De Stefani, D.; Raffaello, A.; Teardo, E.; Szabò, I.; Rizzuto, R. A Forty-Kilodalton Protein of the Inner Membrane is the Mitochondrial Calcium Uniporter. Nature 2011, 476, 336340,  DOI: 10.1038/nature10230
  11. 11
    Mallilankaraman, K.; Doonan, P.; Cárdenas, C.; Chandramoorthy, H. C.; Müller, M.; Miller, R.; Hoffman, N. E.; Gandhirajan, R. K.; Molgó, J.; Birnbaum, M. J.; Rothberg, B. S.; Mak, D. O. D.; Foskett, J. K.; Madesh, M. MICU1 is an Essential Gatekeeper for MCU-Mediated Mitochondrial Ca2+ Uptake That Regulates Cell Survival. Cell 2012, 151, 630644,  DOI: 10.1016/j.cell.2012.10.011
  12. 12
    Sancak, Y.; Markhard, A. L.; Kitami, T.; Kovacs-Bogdan, E.; Kamer, K. J.; Udeshi, N. D.; Carr, S. A.; Chaudhuri, D.; Clapham, D. E.; Li, A. A.; Calvo, S. E.; Goldberger, O.; Mootha, V. K. EMRE is an Essential Component of the Mitochondrial Calcium Uniporter Complex. Science 2013, 342, 13791382,  DOI: 10.1126/science.1242993
  13. 13
    Perocchi, F.; Gohil, V. M.; Girgis, H. S.; Bao, X. R.; McCombs, J. E.; Palmer, A. E.; Mootha, V. K. MICU1 Encodes a Mitochondrial EF Hand Protein Required for Ca2+ uptake. Nature 2010, 467, 291296,  DOI: 10.1038/nature09358
  14. 14
    Plovanich, M.; Bogorad, R. L.; Sancak, Y.; Kamer, K. J.; Strittmatter, L.; Li, A. A.; Girgis, H. S.; Kuchimanchi, S.; De Groot, J.; Speciner, L.; Taneja, N.; OShea, J.; Koteliansky, V.; Mootha, V. K. MICU2, a Paralog of MICU1, Resides within the Mitochondrial Uniporter Complex to Regulate Calcium Handling. PLoS One 2013, 8, e55785,  DOI: 10.1371/journal.pone.0055785
  15. 15
    Csordás, G.; Golenár, T.; Seifert, E. L.; Kamer, K. J.; Sancak, Y.; Perocchi, F.; Moffat, C.; Weaver, D.; De la Fuente, S.; Bogorad, R.; Koteliansky, V.; Adijanto, J.; Mootha, V. K.; Hajnóczky, G. MICU1 Controls Both the Threshold and Cooperative Activation of the Mitochondrial Ca2+ Uniporter. Cell Metab. 2013, 17, 976987,  DOI: 10.1016/j.cmet.2013.04.020
  16. 16
    Mallilankaraman, K.; Cárdenas, C.; Doonan, P. J.; Chandramoorthy, H. C.; Irrinki, K. M.; Golenár, T.; Csordás, G.; Madireddi, P.; Yang, J.; Müller, M.; Miller, R.; Kolesar, J. E.; Molgó, J.; Kaufman, B.; Hajnóczky, G.; Foskett, J. K.; Madesh, M. MCUR1 is an Essential Component of Mitochondrial Ca2+ Uptake that Regulates Cellular Metabolism. Nat. Cell Biol. 2012, 14, 13361343,  DOI: 10.1038/ncb2622
  17. 17
    Patron, M.; Checchetto, V.; Raffaello, A.; Teardo, E.; VecellioReane, D.; Mantoan, M.; Granatiero, V.; Szabò, I.; DeStefani, D.; Rizzuto, R. MICU1 and MICU2 Finely Tune the Mitochondrial Ca2+ Uniporter by Exerting Opposite Effects on MCU Activity. Mol. Cell 2014, 53, 726737,  DOI: 10.1016/j.molcel.2014.01.013
  18. 18
    Oxenoid, K.; Dong, Y.; Cao, C.; Cui, T.; Sancak, Y.; Markhard, A. L.; Grabarek, Z.; Kong, L.; Liu, Z.; Ouyang, B.; Cong, Y.; Mootha, V. K.; Chou, J. J. Architecture of the Mitochondrial Calcium Uniporter. Nature 2016, 533, 269273,  DOI: 10.1038/nature17656
  19. 19
    Bick, A. G.; Calvo, S. E.; Mootha, V. K. Evolutionary Diversity of the Mitochondrial Calcium Uniporter. Science 2012, 336, 886,  DOI: 10.1126/science.1214977
  20. 20
    Baradaran, R.; Wang, C.; Siliciano, A. F.; Long, S. B. Cryo-EM Structures of Fungal and Metazoan Mitochondrial Calcium Uniporters. Nature 2018, 559, 580584,  DOI: 10.1038/s41586-018-0331-8
  21. 21
    Fan, C.; Fan, M.; Orlando, B. J.; Fastman, N. M.; Zhang, J.; Xu, Y.; Chambers, M. G.; Xu, X.; Perry, K.; Liao, M.; Feng, L. X-Ray and Cryo-EM Structures of the Mitochondrial Calcium Uniporter. Nature 2018, 559, 575579,  DOI: 10.1038/s41586-018-0330-9
  22. 22
    Nguyen, N. X.; Armache, J. P.; Lee, C.; Yang, Y.; Zeng, W.; Mootha, V. K.; Cheng, Y.; Bai, X.; Jiang, Y. Cryo-EM Structure of a Fungal Mitochondrial Calcium Uniporter. Nature 2018, 559, 570574,  DOI: 10.1038/s41586-018-0333-6
  23. 23
    Yoo, J.; Wu, M.; Yin, Y.; Herzik, M. A.; Lander, G. C.; Lee, S.-Y. Cryo-EM Structure of a Mitochondrial Calcium Uniporter. Science 2018, 361, 506511,  DOI: 10.1126/science.aar4056
  24. 24
    Hoffman, N. E.; Chandramoorthy, H. C.; Shamugapriya, S.; Zhang, X.; Rajan, S.; Mallilankaraman, K.; Gandhirajan, R. K.; Vagnozzi, R. J.; Ferrer, L. M.; Sreekrishnanilayam, K.; Natarajaseenivasan, K.; Vallem, S.; Force, T.; Choi, E. T.; Cheung, J. Y.; Madesh, M. MICU1 Motifs Define Mitochondrial Calcium Uniporter Binding and Activity. Cell Rep. 2013, 5, 15761588,  DOI: 10.1016/j.celrep.2013.11.026
  25. 25
    Petrungaro, C.; Zimmermann, K. M.; Küttner, V.; Fischer, M.; Dengjel, J.; Bogeski, I.; Riemer, J. The Ca2+-Dependent Release of the Mia40-Induced MICU1-MICU2 Dimer from MCU Regulates Mitochondrial Ca2+ Uptake. Cell Metab. 2015, 22, 721733,  DOI: 10.1016/j.cmet.2015.08.019
  26. 26
    Lee, Y.; Min, C. K.; Kim, T. G.; Song, H. K.; Lim, Y.; Kim, D.; Shin, K.; Kang, M.; Kang, J. Y.; Youn, H.-S.; Lee, J.-G.; An, J. Y.; Park, K. R.; Lim, J. J.; Kim, J. H.; Kim, J. H.; Park, Z. Y.; Kim, Y.-S.; Wang, J.; Kim, D. H.; Eom, S. H. Structure and Function of the N-Terminal Domain of the Human Mitochondrial Calcium Uniporter. EMBO Rep. 2015, 16, 13181333,  DOI: 10.15252/embr.201540436
  27. 27
    Lee, S. K.; Shanmughapriya, S.; Mok, M. C. Y.; Dong, Z.; Tomar, D.; Carvalho, E.; Rajan, S.; Junop, M. S.; Madesh, M.; Stathopulos, P. B. Structural Insights into Mitochondrial Calcium Uniporter Regulation by Divalent Cations. Cell Chem. Biol. 2016, 23, 11571169,  DOI: 10.1016/j.chembiol.2016.07.012
  28. 28
    Tomar, D.; Dong, Z.; Shanmughapriya, S.; Koch, D. A.; Thomas, T.; Hoffman, N. E.; Timbalia, S. A.; Goldman, S. J.; Breves, S. L.; Corbally, D. P.; Nemani, N.; Fairweather, J. P.; Cutri, A. R.; Zhang, X.; Song, J.; Jaña, F.; Huang, J.; Barrero, C.; Rabinowitz, J. E.; Luongo, T. S.; Schumacher, S. M.; Rockman, M. E.; Dietrich, A.; Merali, S.; Caplan, J.; Stathopulos, P. B.; Ahima, R. S.; Cheung, J. Y.; Houser, S. R.; Koch, W. J.; Patel, V.; Gohil, V. M.; Elrod, J. W.; Rajan, S.; Madesh, M. MCUR1 is a Scaffold Factor for the MCU Complex Function and Promotes Mitochondrial Bioenergetics. Cell Rep. 2016, 15, 16731685,  DOI: 10.1016/j.celrep.2016.04.050
  29. 29
    Gunter, T. E.; Gunter, K. K.; Sheu, S.-S.; Gavin, C. E. Mitochondrial Calcium Transport: Physiological and Pathological Relevance. Am. J. Physiol. 1994, 267, C313319,  DOI: 10.1152/ajpcell.1994.267.2.C313
  30. 30
    Hajnóczky, G.; Robb-Gaspers, L. D.; Seitz, M. B.; Thomas, A. P. Decoding of Cytosolic Calcium Oscillations in the Mitochondria. Cell 1995, 82, 415424,  DOI: 10.1016/0092-8674(95)90430-1
  31. 31
    Denton, R.; McCormack, J. G. Ca2+ as a Second Messenger Within Mitochondria Of The Heart And Other Tissues. Annu. Rev. Physiol. 1990, 52, 451466,  DOI: 10.1146/annurev.ph.52.030190.002315
  32. 32
    Santo-Domingo, J.; Demaurex, N. Calcium Uptake Mechanisms of Mitochondria. Biochim. Biophys. Acta, Bioenerg. 2010, 1797, 907912,  DOI: 10.1016/j.bbabio.2010.01.005
  33. 33
    Bernardi, P. Mitochondrial Transport of Cations: Channels, Exchangers, and Permeability Transition. Physiol. Rev. 1999, 79, 11271155,  DOI: 10.1152/physrev.1999.79.4.1127
  34. 34
    Shanmughapriya, S.; Rajan, S.; Hoffman, N. E.; Higgins, A. M.; Tomar, D.; Nemani, N.; Hines, K. J.; Smith, D. J.; Eguchi, A.; Vallem, S.; Shaikh, F.; Cheung, M.; Leonard, N. J.; Stolakis, R. S.; Wolfers, M. P.; Ibetti, J.; Chuprun, J. K.; Jog, N. R.; Houser, S. R.; Koch, W. J.; Elrod, J. W.; Madesh, M. SPG7 is an Essential and Conserved Component of the Mitochondrial Permeability Transition Pore. Mol. Cell 2015, 60, 4762,  DOI: 10.1016/j.molcel.2015.08.009
  35. 35
    Orrenius, S.; Zhivotovsky, B.; Nicotera, P. Regulation of Cell Death: The Calcium-Apoptosis Link. Nat. Rev. Mol. Cell Biol. 2003, 4, 552565,  DOI: 10.1038/nrm1150
  36. 36
    De Stefani, D.; Rizzuto, R.; Pozzan, T. Enjoy the Trip: Calcium in Mitochondria Back and Forth. Annu. Rev. Biochem. 2016, 85, 161192,  DOI: 10.1146/annurev-biochem-060614-034216
  37. 37
    Marchi, S.; Pinton, P. The Mitochondrial Calcium Uniporter Complex: Molecular Components, Structure and Physiopathological Implications. J. Physiol. 2014, 592, 829839,  DOI: 10.1113/jphysiol.2013.268235
  38. 38
    Luongo, T. S.; Lambert, J. P.; Yuan, A.; Zhang, X.; Gross, P.; Song, J.; Shanmughapriya, S.; Gao, E.; Jain, M.; Houser, S. R.; Koch, W. J.; Cheung, J. Y.; Madesh, M.; Elrod, J. W. The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition. Cell Rep. 2015, 12, 2334,  DOI: 10.1016/j.celrep.2015.06.017
  39. 39
    Kwong, J. Q.; Lu, X.; Correll, R. N.; Schwanekamp, J. A.; Vagnozzi, R. J.; Sargent, M. A.; York, A. J.; Zhang, J.; Bers, D. M.; Molkentin, J. D. The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart. Cell Rep. 2015, 12, 1522,  DOI: 10.1016/j.celrep.2015.06.002
  40. 40
    Medvedeva, Y. V.; Weiss, J. H.; Weiss, J. H.; Medvedeva, Y. V. Intramitochondrial Zn2+ Accumulation via the Ca2+ Uniporter Contributes to Acute Ischemic Neurodegeneration. Neurobiol. Dis. 2014, 68, 137144,  DOI: 10.1016/j.nbd.2014.04.011
  41. 41
    Giorgi, C.; Agnoletto, C.; Bononi, A.; Bonora, M.; De Marchi, E.; Marchi, S.; Missiroli, S.; Patergnani, S.; Poletti, F.; Rimessi, A.; Suski, J. M.; Wieckowski, M. R.; Pinton, P. Mitochondrial Calcium Homeostasis as Potential Target for Mitochondrial Medicine. Mitochondrion 2012, 12, 7785,  DOI: 10.1016/j.mito.2011.07.004
  42. 42
    Arduino, D. M.; Wettmarshausen, J.; Vais, H.; Navas-Navarro, P.; Cheng, Y.; Leimpek, A.; Ma, Z.; Delrio-Lorenzo, A.; Giordano, A.; Garcia-Perez, C.; Médard, G.; Kuster, B.; García-Sancho, J.; Mokranjac, D.; Foskett, J. K.; Alonso, M. T.; Perocchi, F. Systematic Identification of MCU Modulators by Orthogonal Interspecies Chemical Screening. Mol. Cell 2017, 67, 711723,  DOI: 10.1016/j.molcel.2017.07.019
  43. 43
    Kon, N.; Murakoshi, M.; Isobe, A.; Kagechika, K.; Miyoshi, N.; Nagayama, T. DS16570511 is a Small-Molecule Inhibitor of the Mitochondrial Calcium Uniporter. Cell Death Discov. 2017, 3, 17045,  DOI: 10.1038/cddiscovery.2017.45
  44. 44
    Thu, V. T.; Kim, H. K.; Long, L. T.; Lee, S. R.; Hanh, T. M.; Ko, T. H.; Heo, H. J.; Kim, N.; Kim, S. H.; Ko, K. S.; Rhee, B. D.; Han, J. NecroX-5 Prevents Hypoxia/Reoxygenation Injury by Inhibiting the Mitochondrial Calcium Uniporter. Cardiovasc. Res. 2012, 94, 342350,  DOI: 10.1093/cvr/cvs122
  45. 45
    Antonenko, Y. N.; Rokitskaya, T. I.; Cooper, A. J. L.; Krasnikov, B. F. Minocycline Chelates Ca2+, Binds to Membranes, and Depolarizes Mitochondria by Formation of Ca2+-Dependent Ion Channels. J. Bioenerg. Biomembr. 2010, 42, 151163,  DOI: 10.1007/s10863-010-9271-1
  46. 46
    Santo-Domingo, J.; Vay, L.; Hernández-Sanmiguel, E.; Lobatón, C. D.; Moreno, A.; Montero, M.; Alvarez, J. The Plasma Membrane Na+/Ca2+ Exchange Inhibitor KB-R7943 is Also a Potent Inhibitor of the Mitochondrial Ca2+ Uniporter. Br. J. Pharmacol. 2007, 151, 647654,  DOI: 10.1038/sj.bjp.0707260
  47. 47
    Kapuscinski, J.; Darzynkiewicz, Z. Interactions of Antitumor Agents Ametantrone and Mitoxantrone (Novatrone) with Double-Stranded DNA. Biochem. Pharmacol. 1985, 34, 42034213,  DOI: 10.1016/0006-2952(85)90275-8
  48. 48
    Mazerski, J.; Martelli, S.; Borowski, E. The Geometry of Intercalation Complex of Antitumor Mitoxantrone and Ametantrone with DNA: Molecular Dynamics Simulations. Acta Biochim. Polym. 1998, 45, 111
  49. 49
    Boland, M. P.; Fitzgerald, K. A.; O’Neill, L. A. J. Topoisomerase II Is Required for Mitoxantrone to Signal Nuclear Factor ΚB Activation in HL60 Cells. J. Biol. Chem. 2000, 275, 2523125238,  DOI: 10.1074/jbc.275.33.25231
  50. 50
    Smith, P. J.; Morgan, S. A.; Fox, M. E.; Watson, J. V. Mitoxantrone-DNA Binding and the Induction of Topoisomerase II Associated DNA Damage in Multi-Drug Resistant Small Cell Lung Cancer Cells. Biochem. Pharmacol. 1990, 40, 20692078,  DOI: 10.1016/0006-2952(90)90237-F
  51. 51
    Nägele, H.; Castel, M. A.; Deutsch, O.; Wagner, F. M.; Reichenspurner, H. Heart Transplantation in a Patient with Multiple Sclerosis and Mitoxantrone-Induced Cardiomyopathy. J. Heart Lung Transplant. 2004, 23, 641643,  DOI: 10.1016/S1053-2498(03)00307-3
  52. 52
    Goebel, M.; Kaplan, E. Anthracycline-Induced Cardiotoxicity – A Review. Oncol. Res. Treat. 2004, 15, 198204,  DOI: 10.1159/000217360
  53. 53
    Ying, W.-L.; Emerson, J.; Clarke, M. J.; Sanadi, D. R. Inhibition of Mitochondrial Calcium Ion Transport by an Oxo-Bridged Dinuclear Ruthenium Ammine Complex. Biochemistry 1991, 30, 49494952,  DOI: 10.1021/bi00234a016
  54. 54
    Matlib, M. A.; Zhou, Z.; Knight, S.; Ahmed, S.; Choi, K. M.; Krause-Bauer, J.; Phillips, R.; Altschuld, R.; Katsube, Y.; Sperelakis, N.; Bers, D. M. Oxygen-Bridged Dinuclear Ruthenium Amine Complex Specifically Inhibits Ca2+ Uptake into Mitochondria in Vitro and in Situ in Single Cardiac Myocytes. J. Biol. Chem. 1998, 273, 1022310231,  DOI: 10.1074/jbc.273.17.10223
  55. 55
    Emerson, J.; Clarke, M. J.; Ying, W. L.; Sanadi, D. R. The Component of “Ruthenium Red” Responsible for Inhibition of Mitochondrial Calcium Ion Transport. Spectra, Electrochemistry, and Aquation Kinetics. Crystal Structure of μ-O-[(HCO)2(NH3)4Ru]2Cl3. J. Am. Chem. Soc. 1993, 115, 1179911805,  DOI: 10.1021/ja00078a019
  56. 56
    Nathan, S. R.; Pino, N. W.; Arduino, D. M.; Perocchi, F.; MacMillan, S. N.; Wilson, J. J. Synthetic Methods for the Preparation of a Functional Analogue of Ru360, a Potent Inhibitor of Mitochondrial Calcium Uptake. Inorg. Chem. 2017, 56, 31233126,  DOI: 10.1021/acs.inorgchem.6b03108
  57. 57
    Nathan, S. R.; Wilson, J. J. Synthesis and Evaluation of a Ruthenium-Based Mitochondrial Calcium Uptake Inhibitor. J. Visualized Exp. 2017, 128, e56527,  DOI: 10.3791/56527
  58. 58
    Cao, C.; Wang, S.; Cui, T.; Su, X.-C.; Chou, J. J. Ion and Inhibitor Binding of the Double-Ring Ion Selectivity Filter of the Mitochondrial Calcium Uniporter. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E2846E2851,  DOI: 10.1073/pnas.1620316114
  59. 59
    Gushchin, A. L.; Laricheva, Y. A.; Abramov, P. A.; Sokolov, M. N.; Abramov, P. A. Synthesis and Electrochemical Properties of [RuIV2O(PhCN)4Cl6]. Inorg. Chem. Commun. 2018, 95, 13877003,  DOI: 10.1016/j.inoche.2018.07.033
  60. 60
    Urgiles, J.; Nathan, S. R.; MacMillan, S. N.; Wilson, J. J. Dinuclear Nitrido-Bridged Ruthenium Complexes Bearing Diimine Ligands. Dalton Trans. 2017, 46, 1425614263,  DOI: 10.1039/C7DT03085A
  61. 61
    Dunitz, J. D.; Orgel, L. E. Application of Molecular-Orbital Theory to Some Binuclear Coordination Compounds. J. Chem. Soc. 1953, 25942596,  DOI: 10.1039/jr9530002594
  62. 62
    Cleare, M. J.; Griffith, W. P. Binuclear Nitrido-Complexes of Ruthenium. Chem. Commun. 1968, 21, 1302,  DOI: 10.1039/c19680001302
  63. 63
    Griffith, W. P.; McManus, N. T.; Skapski, A. C. X-Ray Crystal Structure of [Ru2N(ethylenediamine)5]Cl5· H2O; a Novel Complex Containing Both Nitrido and Ethylenediamine Bridges. J. Chem. Soc., Chem. Commun. 1984, 7, 434,  DOI: 10.1039/c39840000434
  64. 64
    Ng, H.-Y.; Cheung, W.-M.; Kwan Huang, E.; Wong, K.-L.; Sung, H. H.-Y.; Williams, I. D.; Leung, W.-H. Ruthenium Chalcogenonitrosyl and Bridged Nitrido Complexes Containing Chelating Sulfur and Oxygen Ligands. Dalton Trans. 2015, 44, 1845918468,  DOI: 10.1039/C5DT02513C
  65. 65
    Ciechanowicz, M.; Skapski, A. C. Crystal Structure of Potassium μ-Nitrido-Bis[Aquotetrachlororuthenate(IV)]. J. Chem. Soc. A 1971, 84, 17921794,  DOI: 10.1039/J19710001792
  66. 66
    Freshney, R. I. Culture of Animal Cells, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2005.
  67. 67
    Shanmughapriya, S.; Rajan, S.; Hoffman, N. E.; Zhang, X.; Guo, S.; Kolesar, J. E.; Hines, K. J.; Ragheb, J.; Jog, N. R.; Caricchio, R.; Baba, Y.; Zhou, Y.; Kaufman, B. A.; Cheung, J. Y.; Kurosaki, T.; Gill, D. L.; Madesh, M. Ca2+ Signals Regulate Mitochondrial Metabolism by Stimulating CREB-Mediated Expression of the Mitochondrial Ca2+ Uniporter Gene MCU. Sci. Signaling 2015, 8, ra23,  DOI: 10.1126/scisignal.2005673
  68. 68
    Reers, M.; Smith, T. W.; Chen, L. B. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 1991, 30, 44804486,  DOI: 10.1021/bi00232a015
  69. 69
    King, A. P.; Gellineau, H. A.; Ahn, J. E.; MacMillan, S. N.; Wilson, J. J. Bis(Thiosemicarbazone) Complexes of Cobalt(III). Synthesis, Characterization, and Anticancer Potential. Inorg. Chem. 2017, 56, 66096623,  DOI: 10.1021/acs.inorgchem.7b00710
  70. 70
    Egger, A. E.; Rappel, C.; Jakupec, M. A.; Hartinger, C. G.; Heffeter, P.; Keppler, B. K. Development of an Experimental Protocol for Uptake Studies of Metal Compounds in Adherent Tumor Cells. J. Anal. At. Spectrom. 2009, 24, 5161,  DOI: 10.1039/B810481F
  71. 71
    Komor, A. C.; Schneider, C. J.; Weidmann, A. G.; Barton, J. K. Cell-Selective Biological Activity of Rhodium Metalloinsertors Correlates with Subcellular Localization. J. Am. Chem. Soc. 2012, 134, 1922319233,  DOI: 10.1021/ja3090687
  72. 72
    Boyle, K. M.; Barton, J. K. A Family of Rhodium Complexes with Selective Toxicity toward Mismatch Repair-Deficient Cancers. J. Am. Chem. Soc. 2018, 140, 56125624,  DOI: 10.1021/jacs.8b02271
  73. 73
    Ahmad, K. A.; Iskandar, K. B.; Hirpara, J. L.; Clement, M. V.; Pervaiz, S. Hydrogen Peroxide-Mediated Cytosolic Acidification is a Signal for Mitochondrial Translocation of Bax during Drug-Induced Apoptosis of Tumor Cells. Cancer Res. 2004, 64, 78677878,  DOI: 10.1158/0008-5472.CAN-04-0648
  74. 74
    Dong, Z.; Shanmughapriya, S.; Tomar, D.; Siddiqui, N.; Lynch, S.; Nemani, N.; Breves, S. L.; Zhang, X.; Tripathi, A.; Palaniappan, P.; Riitano, M. F.; Worth, A. M.; Seelam, A.; Carvalho, E.; Subbiah, R.; Jaña, F.; Soboloff, J.; Peng, Y.; Cheung, J. Y.; Joseph, S. K.; Caplan, J.; Rajan, S.; Stathopulos, P. B.; Madesh, M. Mitochondrial Ca2+ Uniporter is a Mitochondrial Luminal Redox Sensor That Augments MCU Channel Activity. Mol. Cell 2017, 65, 10141028,  DOI: 10.1016/j.molcel.2017.01.032
  75. 75
    Zhao, Y.; Araki, S.; Wu, J.; Teramoto, T.; Chang, Y.-F.; Nakano, M.; Abdelfattah, A. S.; Fujiwara, M.; Ishihara, T.; Nagai, T.; Campbell, R. E. An Expanded Palette of Genetically Encoded Ca2+ Indicators. Science 2011, 333, 18881891,  DOI: 10.1126/science.1208592
  76. 76
    Nakai, J.; Ohkura, M.; Imoto, K. A High Signal-to-Noise Ca2+ Probe Composed of a Single Green Fluorescent Protein. Nat. Biotechnol. 2001, 19, 137141,  DOI: 10.1038/84397
  77. 77
    Chiesi, M.; Schwaller, R.; Eichenberger, K. Structural Dependency of the Inhibitory Action of Benzodiazepines and Related Compounds on the Mitochondrial Na+-Ca2+ Exchanger. Biochem. Pharmacol. 1988, 37, 43994403,  DOI: 10.1016/0006-2952(88)90623-5
  78. 78
    Luongo, T. S.; Lambert, J. P.; Gross, P.; Nwokedi, M.; Lombardi, A. A.; Shanmughapriya, S.; Carpenter, A. C.; Kolmetzky, D.; Gao, E.; van Berlo, J. H.; Tsai, E. J.; Molkentin, J. D.; Chen, X.; Madesh, M.; Houser, S. R.; Elrod, J. W. The Mitochondrial Na+/Ca2+ Exchanger is Essential for Ca2+ Homeostasis and Viability. Nature 2017, 545, 9397,  DOI: 10.1038/nature22082
  79. 79
    Storey, N. M.; Lambert, D. G. Mitochondrial Pharmacology Turns Its Sights on the Ca2+ Uniporter. Cell Death Discov. 2017, 3, 17064,  DOI: 10.1038/cddiscovery.2017.64
  80. 80
    Sebag, S. C.; Koval, O. M.; Paschke, J. D.; Winters, C. J.; Comellas, A. P.; Grumbach, I. M. Inhibition of the Mitochondrial Calcium Uniporter Prevents IL-13 and Allergen-Mediated Airway Epithelial Apoptosis and Loss of Barrier Function. Exp. Cell Res. 2018, 362, 400411,  DOI: 10.1016/j.yexcr.2017.12.003
  81. 81
    Xie, N.; Wu, C.; Wang, C.; Cheng, X.; Zhang, L.; Zhang, H.; Lian, Y. Inhibition of the Mitochondrial Calcium Uniporter Inhibits Aβ-Induced Apoptosis by Reducing Reactive Oxygen Species-Mediated Endoplasmic Reticulum Stress in Cultured Microglia. Brain Res. 2017, 1676, 100106,  DOI: 10.1016/j.brainres.2017.08.035
  82. 82
    Alessio, E. Thirty Years of the Drug Candidate NAMI-A and the Myths in the Field of Ruthenium Anticancer Compounds: A Personal Perspective. Eur. J. Inorg. Chem. 2017, 2017, 15491560,  DOI: 10.1002/ejic.201600986
  83. 83
    Wachter, E.; Heidary, D. K.; Howerton, B. S.; Parkin, S.; Glazer, E. C. Light-Activated Ruthenium Complexes Photobind DNA and are Cytotoxic in the Photodynamic Therapy Window. Chem. Commun. 2012, 48, 96499651,  DOI: 10.1039/c2cc33359g
  84. 84
    Han Ang, W.; Dyson, P. J. Classical and Non-Classical Ruthenium-Based Anticancer Drugs: Towards Targeted Chemotherapy. Eur. J. Inorg. Chem. 2006, 2006, 40034018,  DOI: 10.1002/ejic.200600723
  85. 85
    Süss-Fink, G. Areneruthenium Complexes as Anticancer Agents. Dalton Trans. 2010, 39, 16731688,  DOI: 10.1039/B916860P
  86. 86
    Wang, F.; Chen, H.; Parsons, S.; Oswald, I. D. H.; Davidson, J. E.; Sadler, P. J. Kinetics of Aquation and Anation of Ruthenium(II) Arene Anticancer Complexes, Acidity and X-Ray Structures of Aqua Adducts. Chem. - Eur. J. 2003, 9, 58105820,  DOI: 10.1002/chem.200304724
  87. 87
    Hartinger, C. G.; Jakupec, M. A.; Zorbas-Seifried, S.; Groessl, M.; Egger, A.; Berger, W.; Zorbas, H.; Dyson, P. J.; Keppler, B. K. KP1019, A New Redox-Active Anticancer Agent - Preclinical Development and Results of a Clinical Phase I Study in Tumor Patients. Chem. Biodiversity 2008, 5, 21402155,  DOI: 10.1002/cbdv.200890195
  88. 88
    Peacock, A. F. A.; Habtemariam, A.; Fernández, R.; Walland, V.; Fabbiani, F. P. A.; Parsons, S.; Aird, R. E.; Jodrell, D. I.; Sadler, P. J. Tuning the Reactivity of Osmium(II) and Ruthenium(II) Arene Complexes under Physiological Conditions. J. Am. Chem. Soc. 2006, 128, 17391748,  DOI: 10.1021/ja055886r
  89. 89
    Mühlgassner, G.; Bartel, C.; Schmid, W. F.; Jakupec, M. A.; Arion, V. B.; Keppler, B. K. Biological Activity of Ruthenium and Osmium Arene Complexes with Modified Paullones in Human Cancer Cells. J. Inorg. Biochem. 2012, 116, 180187,  DOI: 10.1016/j.jinorgbio.2012.06.003
  90. 90
    Lameijer, L. N.; Ernst, D.; Hopkins, S. L.; Meijer, M. S.; Askes, S. H. C.; Le Dévédec, S. E.; Bonnet, S. A Red-Light-Activated Ruthenium-Caged NAMPT Inhibitor Remains Phototoxic in Hypoxic Cancer Cells. Angew. Chem., Int. Ed. 2017, 56, 1154911553,  DOI: 10.1002/anie.201703890
  91. 91
    Dutta, B.; Scolaro, C.; Scopelliti, R.; Dyson, P. J.; Severin, K. Importance of the π-Ligand: Remarkable Effect of the Cyclopentadienyl Ring on the Cytotoxicity of Ruthenium PTA Compounds. Organometallics 2008, 27, 13551357,  DOI: 10.1021/om800025a
  92. 92
    Allardyce, C. S.; Dyson, P. J. Metal-Based Drugs that Break the Rules. Dalton Trans. 2016, 45, 32013209,  DOI: 10.1039/C5DT03919C
  93. 93
    Kilpin, K. J.; Dyson, P. J. Enzyme Inhibition by Metal Complexes: Concepts, Strategies and Applications. Chem. Sci. 2013, 4, 14101419,  DOI: 10.1039/c3sc22349c
  94. 94
    Barry, N. P. E.; Sadler, P. J. Exploration of the Medical Periodic Table: Towards New Targets. Chem. Commun. 2013, 49, 51065131,  DOI: 10.1039/c3cc41143e

Cited By

Click to copy section linkSection link copied!

This article is cited by 118 publications.

  1. Peng Wang, Xian Zheng, Ronghuan Du, Jinghan Xu, Jing Li, Huaqi Zhang, Xi Liang, Hui Liang. Astaxanthin Protects against Alcoholic Liver Injury via Regulating Mitochondrial Redox Balance and Calcium Homeostasis. Journal of Agricultural and Food Chemistry 2023, 71 (49) , 19531-19550. https://doi.org/10.1021/acs.jafc.3c05529
  2. Nicholas P. Bigham, Justin J. Wilson. Metal Coordination Complexes as Therapeutic Agents for Ischemia-Reperfusion Injury. Journal of the American Chemical Society 2023, 145 (17) , 9389-9409. https://doi.org/10.1021/jacs.3c01984
  3. Nicholas P. Bigham, Zhouyang Huang, Jesse Spivey, Joshua J. Woods, Samantha N. MacMillan, Justin J. Wilson. Carboxylate-Capped Analogues of Ru265 Are MCU Inhibitor Prodrugs. Inorganic Chemistry 2022, 61 (43) , 17299-17312. https://doi.org/10.1021/acs.inorgchem.2c02930
  4. Jakub Cervinka, Alberto Gobbo, Lorenzo Biancalana, Lenka Markova, Vojtech Novohradsky, Massimo Guelfi, Stefano Zacchini, Jana Kasparkova, Viktor Brabec, Fabio Marchetti. Ruthenium(II)–Tris-pyrazolylmethane Complexes Inhibit Cancer Cell Growth by Disrupting Mitochondrial Calcium Homeostasis. Journal of Medicinal Chemistry 2022, 65 (15) , 10567-10587. https://doi.org/10.1021/acs.jmedchem.2c00722
  5. Hiromitsu Sasaki, Ichiro Nakagawa, Takanori Furuta, Shohei Yokoyama, Yudai Morisaki, Yasuhiko Saito, Hiroyuki Nakase. Mitochondrial Calcium Uniporter (MCU) is Involved in an Ischemic Postconditioning Effect Against Ischemic Reperfusion Brain Injury in Mice. Cellular and Molecular Neurobiology 2024, 44 (1) https://doi.org/10.1007/s10571-024-01464-7
  6. Esther Densu Agyapong, Gaia Pedriali, Daniela Ramaccini, Esmaa Bouhamida, Elena Tremoli, Carlotta Giorgi, Paolo Pinton, Giampaolo Morciano. Calcium signaling from sarcoplasmic reticulum and mitochondria contact sites in acute myocardial infarction. Journal of Translational Medicine 2024, 22 (1) https://doi.org/10.1186/s12967-024-05240-5
  7. João L. Alves, Patrícia M. Reis, Rosa M. Quinta-Ferreira, M. Emília Quinta-Ferreira, Carlos M. Matias. Changes in reactive oxygen species and autofluorescence under hypoxia at the hippocampal CA3 area: Role of calcium and zinc influxes. Neurochemistry International 2024, 180 , 105882. https://doi.org/10.1016/j.neuint.2024.105882
  8. Anagha Inguva Sheth, Mark J. Althoff, Hunter Tolison, Krysta Engel, Maria L. Amaya, Anna E. Krug, Tracy N. Young, Mohammad Minhajuddin, Shanshan Pei, Sweta B. Patel, Amanda Winters, Regan Miller, Ian T. Shelton, Jonathan St-Germain, Tianyi Ling, Courtney L. Jones, Brian Raught, Austin E. Gillen, Monica Ransom, Sarah Staggs, Clayton A. Smith, Daniel A. Pollyea, Brett M. Stevens, Craig T. Jordan. Targeting Acute Myeloid Leukemia Stem Cells through Perturbation of Mitochondrial Calcium. Cancer Discovery 2024, 14 (10) , 1922-1939. https://doi.org/10.1158/2159-8290.CD-23-1145
  9. J. P. Jose Merlin, Anine Crous, Heidi Abrahamse. Combining Photodynamic Therapy and Targeted Drug Delivery Systems: Enhancing Mitochondrial Toxicity for Improved Cancer Outcomes. International Journal of Molecular Sciences 2024, 25 (19) , 10796. https://doi.org/10.3390/ijms251910796
  10. An Xie, Gyeoung-Jin Kang, Eun Ji Kim, Hong Liu, Feng Feng, Samuel C. Dudley. c-Src Is Responsible for Mitochondria-Mediated Arrhythmic Risk in Ischemic Cardiomyopathy. Circulation: Arrhythmia and Electrophysiology 2024, 17 (10) https://doi.org/10.1161/CIRCEP.124.013054
  11. Jin Guo, Yukun Wang, Chunxia Shi, Danmei Zhang, Qingqi Zhang, Luwen Wang, Zuojiong Gong. Mitochondrial calcium uniporter complex: Unveiling the interplay between its regulators and calcium homeostasis. Cellular Signalling 2024, 121 , 111284. https://doi.org/10.1016/j.cellsig.2024.111284
  12. Nicholas P. Bigham, Robyn J. Novorolsky, Keana R. Davis, Haipei Zou, Samantha N. MacMillan, Michael J. Stevenson, George S. Robertson, Justin J. Wilson. Supramolecular delivery of dinuclear ruthenium and osmium MCU inhibitors. Inorganic Chemistry Frontiers 2024, 11 (16) , 5064-5079. https://doi.org/10.1039/D4QI01102C
  13. Tulanisa Kadier, Yi-guo Zhang, Yi-xin Jing, Zi-yi Weng, Shi-shi Liao, Jie Luo, Ke Ding, Chen Cao, Rong Chen, Qing-tao Meng. MCU inhibition protects against intestinal ischemia‒reperfusion by inhibiting Drp1-dependent mitochondrial fission. Free Radical Biology and Medicine 2024, 221 , 111-124. https://doi.org/10.1016/j.freeradbiomed.2024.05.024
  14. Matthew K. Kirchner, Ferdinand Althammer, Elba Campos-Lira, Juliana Montanez, Javier E. Stern. Endoplasmic Reticulum and Mitochondrial Calcium Handling Dynamically Shape Slow Afterhyperpolarizations in Vasopressin Magnocellular Neurons. The Journal of Neuroscience 2024, 44 (30) , e0003242024. https://doi.org/10.1523/JNEUROSCI.0003-24.2024
  15. Robert Valencia, Joshua W. Kranrod, Liye Fang, Amro M. Soliman, Brandon Azer, Xavier Clemente‐Casares, John M. Seubert. Linoleic acid‐derived diol 12,13‐ DiHOME enhances NLRP3 inflammasome activation in macrophages. The FASEB Journal 2024, 38 (13) https://doi.org/10.1096/fj.202301640RR
  16. Danielle M. Colussi, Peter B. Stathopulos. The mitochondrial calcium uniporter: Balancing tumourigenic and anti‐tumourigenic responses. The Journal of Physiology 2024, 602 (14) , 3315-3339. https://doi.org/10.1113/JP285515
  17. Umar Amjid, Ubair Aziz, Uzma Habib, Ishrat Jabeen. Biological regulatory network analysis for targeting the mitochondrial calcium uniporter (MCU) mediated calcium (Ca 2+ ) transport in neurodegenerative disorders. Cell Biochemistry and Function 2024, 42 (5) https://doi.org/10.1002/cbf.4082
  18. Yunkyung Eom, Sung Rae Kim, Yeong-Kyeong Kim, Sung Hoon Lee. Mitochondrial Calcium Waves by Electrical Stimulation in Cultured Hippocampal Neurons. Molecular Neurobiology 2024, 61 (6) , 3477-3489. https://doi.org/10.1007/s12035-023-03795-w
  19. Ya Hou, Fuhan Fan, Na Xie, Yi Zhang, Xiaobo Wang, Xianli Meng. Rhodiola crenulata alleviates hypobaric hypoxia-induced brain injury by maintaining BBB integrity and balancing energy metabolism dysfunction. Phytomedicine 2024, 128 , 155529. https://doi.org/10.1016/j.phymed.2024.155529
  20. Peng Xu, Sarpras Swain, Robyn J. Novorolsky, Esperanza Garcia, Zhouyang Huang, Terrance P. Snutch, Justin J. Wilson, George S. Robertson, Robert B. Renden. The mitochondrial calcium uniporter inhibitor Ru265 increases neuronal excitability and reduces neurotransmission via off‐target effects. British Journal of Pharmacology 2024, https://doi.org/10.1111/bph.16425
  21. Thiruvelselvan Ponnusamy, Prema Velusamy, Santhanam Shanmughapriya. Mrs2-mediated mitochondrial magnesium uptake is essential for the regulation of MCU-mediated mitochondrial Ca2+ uptake and viability. Mitochondrion 2024, 76 , 101877. https://doi.org/10.1016/j.mito.2024.101877
  22. Tyler L. Stevens, Henry M. Cohen, Joanne F. Garbincius, John W. Elrod. Mitochondrial calcium uniporter channel gatekeeping in cardiovascular disease. Nature Cardiovascular Research 2024, 3 (5) , 500-514. https://doi.org/10.1038/s44161-024-00463-7
  23. Alissa Lance‐Byrne, Brent Lindquist‐Kleissler, Timothy C. Johnstone. Chemical Structure Elucidation in the Development of Inorganic Drugs: Evidence from Ru‐, Au‐, As‐, and Sb‐based Medicines. European Journal of Inorganic Chemistry 2024, 27 (11) https://doi.org/10.1002/ejic.202300717
  24. Sasha R. Weller, John E. Burnell, Brandon M. Aho, Bright Obeng, Emily L. Ledue, Juyoung K. Shim, Samuel T. Hess, Julie A. Gosse. Antimicrobial cetylpyridinium chloride causes functional inhibition of mitochondria as potently as canonical mitotoxicants, nanostructural disruption of mitochondria, and mitochondrial Ca2+ efflux in living rodent and primary human cells. Food and Chemical Toxicology 2024, 186 , 114547. https://doi.org/10.1016/j.fct.2024.114547
  25. Renjia Zhong, Michael T. Rua, Lan Wei‐LaPierre. Targeting mitochondrial Ca 2+ uptake for the treatment of amyotrophic lateral sclerosis. The Journal of Physiology 2024, 602 (8) , 1519-1549. https://doi.org/10.1113/JP284143
  26. Abhishek Singh, Satish Kumar, Tusar Kanta Acharya, Shamit Kumar, Saurabh Chawla, Chandan Goswami, Luna Goswami. Modulation of calcium-influx by carboxymethyl tamarind‑gold nanoparticles promotes biomineralization for tissue regeneration. International Journal of Biological Macromolecules 2024, 264 , 130605. https://doi.org/10.1016/j.ijbiomac.2024.130605
  27. Anqi Xu, Yixuan Wang, Dongliu Luo, Yu Xia, Hua Xue, Haidong Yao, Shu Li. By regulating the IP3R/GRP75/VDAC1 complex to restore mitochondrial dynamic balance, selenomethionine reduces lipopolysaccharide‐induced neuronal apoptosis. Journal of Cellular Physiology 2024, 239 (4) https://doi.org/10.1002/jcp.31190
  28. Rachel L Doser, Kaz M Knight, Ennis W Deihl, Frederic J Hoerndli. Activity-dependent mitochondrial ROS signaling regulates recruitment of glutamate receptors to synapses. eLife 2024, 13 https://doi.org/10.7554/eLife.92376
  29. Jin Wang, Jinyong Jiang, Haoliang Hu, Linxi Chen. MCU complex: Exploring emerging targets and mechanisms of mitochondrial physiology and pathology. Journal of Advanced Research 2024, 2021 https://doi.org/10.1016/j.jare.2024.02.013
  30. Kamila S. Nebesnaya, Albert R. Makhmudov, Khondamir R. Rustamov, Nigina S.H. Rakhmatullina, Sarvinoz I. Rustamova, Ulugbek Z. Mirkhodjaev, Oksana S. Charishnikova, Ravshan Z. Sabirov, Artyom Y. Baev. Inorganic polyphosphate regulates functions of thymocytes via activation of P2X purinoreceptors. Biochimica et Biophysica Acta (BBA) - General Subjects 2024, 1868 (1) , 130523. https://doi.org/10.1016/j.bbagen.2023.130523
  31. Erna Mitaishvili, Hanna Feinsod, Zachary David, Jessica Shpigel, Chelsea Fernandez, Moira Sauane, Columba de la Parra. The Molecular Mechanisms behind Advanced Breast Cancer Metabolism: Warburg Effect, OXPHOS, and Calcium. Frontiers in Bioscience-Landmark 2024, 29 (3) https://doi.org/10.31083/j.fbl2903099
  32. Alejandro Marmolejo-Garza, Inge E. Krabbendam, Minh Danh Anh Luu, Famke Brouwer, Marina Trombetta-Lima, Osman Unal, Shane J. O’Connor, Naďa Majerníková, Carolina R. S. Elzinga, Cristina Mammucari, Martina Schmidt, Muniswamy Madesh, Erik Boddeke, Amalia M. Dolga. Negative modulation of mitochondrial calcium uniporter complex protects neurons against ferroptosis. Cell Death & Disease 2023, 14 (11) https://doi.org/10.1038/s41419-023-06290-1
  33. Xavier R. Chapa-Dubocq, Keishla M. Rodríguez-Graciani, Nelson Escobales, Sabzali Javadov. Mitochondrial Volume Regulation and Swelling Mechanisms in Cardiomyocytes. Antioxidants 2023, 12 (8) , 1517. https://doi.org/10.3390/antiox12081517
  34. Robyn J. Novorolsky, Gracious D. S. Kasheke, Antoine Hakim, Marianna Foldvari, Gabriel G. Dorighello, Israel Sekler, Vidyasagar Vuligonda, Martin E. Sanders, Robert B. Renden, Justin J. Wilson, George S. Robertson. Preserving and enhancing mitochondrial function after stroke to protect and repair the neurovascular unit: novel opportunities for nanoparticle-based drug delivery. Frontiers in Cellular Neuroscience 2023, 17 https://doi.org/10.3389/fncel.2023.1226630
  35. Preetam Kishore, Amelie C. T. Collinet, Bianca J. J. M. Brundel. Prevention of Atrial Fibrillation: Putting Proteostasis Derailment Back on Track. Journal of Clinical Medicine 2023, 12 (13) , 4352. https://doi.org/10.3390/jcm12134352
  36. Siva Prasad Panda, Adarsh Kesharwani. Micronutrients/miRs/ATP networking in mitochondria: Clinical intervention with ferroptosis, cuproptosis, and calcium burden. Mitochondrion 2023, 71 , 1-16. https://doi.org/10.1016/j.mito.2023.05.003
  37. Zhouyang Huang, Justin J. Wilson. Structure‐Activity Relationships of Metal‐Based Inhibitors of the Mitochondrial Calcium Uniporter. ChemMedChem 2023, 18 (12) https://doi.org/10.1002/cmdc.202300106
  38. Yavuz F. Yazicioglu, Eros Marin, Ciaran Sandhu, Silvia Galiani, Iwan G. A. Raza, Mohammad Ali, Barbara Kronsteiner, Ewoud B. Compeer, Moustafa Attar, Susanna J. Dunachie, Michael L. Dustin, Alexander J. Clarke. Dynamic mitochondrial transcription and translation in B cells control germinal center entry and lymphomagenesis. Nature Immunology 2023, 24 (6) , 991-1006. https://doi.org/10.1038/s41590-023-01484-3
  39. Agnese De Mario, Donato D'Angelo, Giuseppe Zanotti, Anna Raffaello, Cristina Mammucari. The mitochondrial calcium uniporter complex–A play in five acts. Cell Calcium 2023, 112 , 102720. https://doi.org/10.1016/j.ceca.2023.102720
  40. Macarena Rodríguez-Prados, Kai-Ting Huang, Katalin Márta, Melanie Paillard, György Csordás, Suresh K. Joseph, György Hajnóczky. MICU1 controls the sensitivity of the mitochondrial Ca2+ uniporter to activators and inhibitors. Cell Chemical Biology 2023, 30 (6) , 606-617.e4. https://doi.org/10.1016/j.chembiol.2023.05.002
  41. Ildiko Szabo, Adam Szewczyk. Mitochondrial Ion Channels. Annual Review of Biophysics 2023, 52 (1) , 229-254. https://doi.org/10.1146/annurev-biophys-092622-094853
  42. Saeid Bagheri‐Mohammadi, Mohammad Farjami, Ali Jaafari Suha, Seyed Mohsen Aghaei Zarch, Sajad Najafi, Ali Esmaeili. The mitochondrial calcium signaling, regulation, and cellular functions: A novel target for therapeutic medicine in neurological disorders. Journal of Cellular Biochemistry 2023, 124 (5) , 635-655. https://doi.org/10.1002/jcb.30414
  43. Qingxi Zhang, Yin Huang, Anbiao Wu, Qingrui Duan, Peikun He, Haifeng Huang, Yuyuan Gao, Kun Nie, Qicai Liu, Lijuan Wang. Calcium/calmodulin-dependent serine protein kinase exacerbates mitochondrial calcium uniporter-related mitochondrial calcium overload by phosphorylating α-synuclein in Parkinson’s disease. The International Journal of Biochemistry & Cell Biology 2023, 157 , 106385. https://doi.org/10.1016/j.biocel.2023.106385
  44. Omar Lozano, Patricio Marcos, Felipe de Jesús Salazar‐Ramirez, Anay F. Lázaro‐Alfaro, Luis Sobrevia, Gerardo García‐Rivas. Targeting the mitochondrial Ca 2+ uniporter complex in cardiovascular disease. Acta Physiologica 2023, 237 (4) https://doi.org/10.1111/apha.13946
  45. Yun Haeng Lee, Myeong Uk Kuk, Moon Kyoung So, Eun Seon Song, Haneur Lee, Soon Kil Ahn, Hyung Wook Kwon, Joon Tae Park, Sang Chul Park. Targeting Mitochondrial Oxidative Stress as a Strategy to Treat Aging and Age-Related Diseases. Antioxidants 2023, 12 (4) , 934. https://doi.org/10.3390/antiox12040934
  46. Nicholas P. Bigham, Justin J. Wilson. Investigation of Cobalt(III) Cage Complexes as Inhibitors of the Mitochondrial Calcium Uniporter. European Journal of Inorganic Chemistry 2023, 26 (9) https://doi.org/10.1002/ejic.202200735
  47. Zhouyang Huang, Samantha N. MacMillan, Justin J. Wilson. A Fluorogenic Inhibitor of the Mitochondrial Calcium Uniporter. Angewandte Chemie 2023, 135 (6) https://doi.org/10.1002/ange.202214920
  48. Zhouyang Huang, Samantha N. MacMillan, Justin J. Wilson. A Fluorogenic Inhibitor of the Mitochondrial Calcium Uniporter. Angewandte Chemie International Edition 2023, 62 (6) https://doi.org/10.1002/anie.202214920
  49. Zhouyang Huang, Jesse A. Spivey, Samantha N. MacMillan, Justin J. Wilson. A ferrocene-containing analogue of the MCU inhibitor Ru265 with increased cell permeability. Inorganic Chemistry Frontiers 2023, 10 (2) , 591-599. https://doi.org/10.1039/D2QI02183H
  50. Joshua J. Woods, Robyn J. Novorolsky, Nicholas P. Bigham, George S. Robertson, Justin J. Wilson. Dinuclear nitrido-bridged osmium complexes inhibit the mitochondrial calcium uniporter and protect cortical neurons against lethal oxygen–glucose deprivation. RSC Chemical Biology 2023, 4 (1) , 84-93. https://doi.org/10.1039/D2CB00189F
  51. Danielle M. Colussi, Peter B. Stathopulos. From passage to inhibition: Uncovering the structural and physiological inhibitory mechanisms of MCUb in mitochondrial calcium regulation. The FASEB Journal 2023, 37 (1) https://doi.org/10.1096/fj.202201080R
  52. Weiwei Zhang, Bo Liu, Yazhou Wang, Hengli Zhang, Lang He, Pan Wang, Mingqing Dong. Mitochondrial dysfunction in pulmonary arterial hypertension. Frontiers in Physiology 2022, 13 https://doi.org/10.3389/fphys.2022.1079989
  53. Christopher J. Groten, Brian A. MacVicar. Mitochondrial Ca2+ uptake by the MCU facilitates pyramidal neuron excitability and metabolism during action potential firing. Communications Biology 2022, 5 (1) https://doi.org/10.1038/s42003-022-03848-1
  54. Nikita Arnst, Nelly Redolfi, Annamaria Lia, Martina Bedetta, Elisa Greotti, Paola Pizzo. Mitochondrial Ca2+ Signaling and Bioenergetics in Alzheimer’s Disease. Biomedicines 2022, 10 (12) , 3025. https://doi.org/10.3390/biomedicines10123025
  55. Keerti Mishra, Min Luo. Mitochondrial Channels and Their Role in Cardioprotection. 2022https://doi.org/10.5772/intechopen.101127
  56. Shashank Kumar Maurya, Suchi Gupta, Amrita Bakshi, Harpreet Kaur, Arushi Jain, Sabyasachi Senapati, Meghraj Singh Baghel. Targeting mitochondria in the regulation of neurodegenerative diseases: A comprehensive review. Journal of Neuroscience Research 2022, 100 (10) , 1845-1861. https://doi.org/10.1002/jnr.25110
  57. Li Zhang, Felicia Dietsche, Bruno Seitaj, Liliana Rojas-Charry, Nadina Latchman, Dhanendra Tomar, Rob CI Wüst, Alexander Nickel, Katrin BM Frauenknecht, Benedikt Schoser, Sven Schumann, Michael J Schmeisser, Johannes vom Berg, Thorsten Buch, Stefanie Finger, Philip Wenzel, Christoph Maack, John W Elrod, Jan B Parys, Geert Bultynck, Axel Methner. TMBIM5 loss of function alters mitochondrial matrix ion homeostasis and causes a skeletal myopathy. Life Science Alliance 2022, 5 (10) , e202201478. https://doi.org/10.26508/lsa.202201478
  58. Alejandro Marmolejo-Garza, Tiago Medeiros-Furquim, Ramya Rao, Bart J.L. Eggen, Erik Boddeke, Amalia M. Dolga. Transcriptomic and epigenomic landscapes of Alzheimer's disease evidence mitochondrial-related pathways. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2022, 1869 (10) , 119326. https://doi.org/10.1016/j.bbamcr.2022.119326
  59. Karima Ait-Aissa, Olha M. Koval, Nathanial R. Lindsey, Isabella M. Grumbach. Mitochondrial Ca 2+ Uptake Drives Endothelial Injury By Radiation Therapy. Arteriosclerosis, Thrombosis, and Vascular Biology 2022, 42 (9) , 1121-1136. https://doi.org/10.1161/ATVBAHA.122.317869
  60. Celio Damacena de Angelis, Benney T. Endoni, Daniel Nuno, Kathryn Lamping, Johannes Ledolter, Olha M. Koval, Isabella M. Grumbach. Sex‐Specific Differences in Endothelial Function Are Driven by Divergent Mitochondrial Ca 2+ Handling. Journal of the American Heart Association 2022, 11 (13) https://doi.org/10.1161/JAHA.121.023912
  61. Zhanchen Dong, Jianyu Wang, Tianming Qiu, Jialu Wu, Yu An, Xiaoxia Shi, Xiance Sun, Liping Jiang, Xiaofang Liu, Guang Yang, Jun Cao, Xiaofeng Yao. Perfluorooctane sulfonate induces mitochondrial calcium overload and early hepatic insulin resistance via autophagy/detyrosinated alpha-tubulin-regulated IP3R2-VDAC1-MICU1 interaction. Science of The Total Environment 2022, 825 , 153933. https://doi.org/10.1016/j.scitotenv.2022.153933
  62. Joanne F. Garbincius, John W. Elrod. Mitochondrial calcium exchange in physiology and disease. Physiological Reviews 2022, 102 (2) , 893-992. https://doi.org/10.1152/physrev.00041.2020
  63. Giampaolo Morciano, Alessandro Rimessi, Simone Patergnani, Veronica A.M. Vitto, Alberto Danese, Asrat Kahsay, Laura Palumbo, Massimo Bonora, Mariusz R. Wieckowski, Carlotta Giorgi, Paolo Pinton. Calcium dysregulation in heart diseases: Targeting calcium channels to achieve a correct calcium homeostasis. Pharmacological Research 2022, 177 , 106119. https://doi.org/10.1016/j.phrs.2022.106119
  64. Dale S. George, Sandra Hackelberg, Nirupa D. Jayaraj, Dongjun Ren, Seby L. Edassery, Craig A. Rathwell, Rachel E. Miller, Anne-Marie Malfait, Jeffrey N. Savas, Richard J. Miller, Daniela M. Menichella. Mitochondrial calcium uniporter deletion prevents painful diabetic neuropathy by restoring mitochondrial morphology and dynamics. Pain 2022, 163 (3) , 560-578. https://doi.org/10.1097/j.pain.0000000000002391
  65. Joshua J. Woods, Jesse A. Spivey, Justin J. Wilson. A [ 1 H, 15 N] Heteronuclear Single Quantum Coherence NMR Study of the Solution Reactivity of the Ruthenium‐Based Mitochondrial Calcium Uniporter Inhibitor Ru265. European Journal of Inorganic Chemistry 2022, 2022 (6) https://doi.org/10.1002/ejic.202100995
  66. Anu Antony, Neville Ng, Antonio Lauto, Jens R. Coorssen, Simon J. Myers. Calcium-Mediated Calpain Activation and Microtubule Dissociation in Cell Model of Hereditary Sensory Neuropathy Type-1 Expressing V144D SPTLC1 Mutation. DNA and Cell Biology 2022, 41 (2) , 225-234. https://doi.org/10.1089/dna.2021.0816
  67. Veronica Costiniti, Guilherme H. S. Bomfim, Maria Neginskaya, Ga‐Yeon Son, Erna Mitaishvili, Marta Giacomello, Evgeny Pavlov, Rodrigo S. Lacruz. Mitochondria modulate ameloblast Ca 2+ signaling. The FASEB Journal 2022, 36 (2) https://doi.org/10.1096/fj.202100602R
  68. Anna Maria Krstic, Amelia Sally Power, Marie-Louise Ward. Visualization of Dynamic Mitochondrial Calcium Fluxes in Isolated Cardiomyocytes. Frontiers in Physiology 2022, 12 https://doi.org/10.3389/fphys.2021.808798
  69. Zhanchen Dong, Xiaofeng Yao. Insight of the role of mitochondrial calcium homeostasis in hepatic insulin resistance. Mitochondrion 2022, 62 , 128-138. https://doi.org/10.1016/j.mito.2021.11.007
  70. Andrey Khaitin. Calcium in Neuronal and Glial Response to Axotomy. International Journal of Molecular Sciences 2021, 22 (24) , 13344. https://doi.org/10.3390/ijms222413344
  71. Neelanjan Vishnu, Justin Wilson, Muniswamy Madesh. Emergence of repurposed drugs as modulators of MCU channel for clinical therapeutics. Cell Calcium 2021, 99 , 102456. https://doi.org/10.1016/j.ceca.2021.102456
  72. Yan-Cheng Shen, Yan-Jhih Shen, Wen-Sen Lee, Michael Yu-Chih Chen, Wei-Chia Tu, Kun-Ta Yang. Two Benzene Rings with a Boron Atom Comprise the Core Structure of 2-APB Responsible for the Anti-Oxidative and Protective Effect on the Ischemia/Reperfusion-Induced Rat Heart Injury. Antioxidants 2021, 10 (11) , 1667. https://doi.org/10.3390/antiox10111667
  73. Yun Haeng Lee, Ji Yun Park, Haneur Lee, Eun Seon Song, Myeong Uk Kuk, Junghyun Joo, Sekyung Oh, Hyung Wook Kwon, Joon Tae Park, Sang Chul Park. Targeting Mitochondrial Metabolism as a Strategy to Treat Senescence. Cells 2021, 10 (11) , 3003. https://doi.org/10.3390/cells10113003
  74. Suman Saurav, Jyoti Tanwar, Kriti Ahuja, Rajender K. Motiani. Dysregulation of host cell calcium signaling during viral infections: Emerging paradigm with high clinical relevance. Molecular Aspects of Medicine 2021, 81 , 101004. https://doi.org/10.1016/j.mam.2021.101004
  75. Alicia G. Gómez-Valadés, Macarena Pozo, Luis Varela, Mehdi Boutagouga Boudjadja, Sara Ramírez, Iñigo Chivite, Elena Eyre, Roberta Haddad-Tóvolli, Arnaud Obri, Maria Milà-Guasch, Jordi Altirriba, Marc Schneeberger, Mónica Imbernón, Angela R. Garcia-Rendueles, Pau Gama-Perez, Jonathan Rojo-Ruiz, Bence Rácz, Maria Teresa Alonso, Ramon Gomis, Antonio Zorzano, Giuseppe D’Agostino, Clara V. Alvarez, Rubén Nogueiras, Pablo M. Garcia-Roves, Tamas L. Horvath, Marc Claret. Mitochondrial cristae-remodeling protein OPA1 in POMC neurons couples Ca2+ homeostasis with adipose tissue lipolysis. Cell Metabolism 2021, 33 (9) , 1820-1835.e9. https://doi.org/10.1016/j.cmet.2021.07.008
  76. Shanna Hamilton, Radmila Terentyeva, Richard T. Clements, Andriy E. Belevych, Dmitry Terentyev. Sarcoplasmic reticulum-mitochondria communication; implications for cardiac arrhythmia. Journal of Molecular and Cellular Cardiology 2021, 156 , 105-113. https://doi.org/10.1016/j.yjmcc.2021.04.002
  77. Alberto Danese, Sara Leo, Alessandro Rimessi, Mariusz R. Wieckowski, Francesco Fiorica, Carlotta Giorgi, Paolo Pinton. Cell death as a result of calcium signaling modulation: A cancer-centric prospective. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2021, 1868 (8) , 119061. https://doi.org/10.1016/j.bbamcr.2021.119061
  78. Joshua J. Woods, Madison X. Rodriguez, Chen-Wei Tsai, Ming-Feng Tsai, Justin J. Wilson. Cobalt amine complexes and Ru265 interact with the DIME region of the mitochondrial calcium uniporter. Chemical Communications 2021, 57 (50) , 6161-6164. https://doi.org/10.1039/D1CC01623G
  79. Taylor E. Huntington, Rahul Srinivasan. Astrocytic mitochondria in adult mouse brain slices show spontaneous calcium influx events with unique properties. Cell Calcium 2021, 96 , 102383. https://doi.org/10.1016/j.ceca.2021.102383
  80. Agnese De Mario, Anna Tosatto, Julia Marie Hill, Janos Kriston-Vizi, Robin Ketteler, Denis Vecellio Reane, Gino Cortopassi, Gyorgy Szabadkai, Rosario Rizzuto, Cristina Mammucari. Identification and functional validation of FDA-approved positive and negative modulators of the mitochondrial calcium uniporter. Cell Reports 2021, 35 (12) , 109275. https://doi.org/10.1016/j.celrep.2021.109275
  81. Ildiko Szabo, Mario Zoratti, Lucia Biasutto. Targeting mitochondrial ion channels for cancer therapy. Redox Biology 2021, 42 , 101846. https://doi.org/10.1016/j.redox.2020.101846
  82. Lorenzo Modesti, Alberto Danese, Veronica Angela Maria Vitto, Daniela Ramaccini, Gianluca Aguiari, Roberta Gafà, Giovanni Lanza, Carlotta Giorgi, Paolo Pinton. Mitochondrial Ca2+ Signaling in Health, Disease and Therapy. Cells 2021, 10 (6) , 1317. https://doi.org/10.3390/cells10061317
  83. Konstantin N. Belosludtsev, Rinat R. Sharipov, Dmitry P. Boyarkin, Natalia V. Belosludtseva, Mikhail V. Dubinin, Irina A. Krasilnikova, Zanda V. Bakaeva, Arina E. Zgodova, Vsevolod G. Pinelis, Alexander M. Surin. The effect of DS16570511, a new inhibitor of mitochondrial calcium uniporter, on calcium homeostasis, metabolism, and functional state of cultured cortical neurons and isolated brain mitochondria. Biochimica et Biophysica Acta (BBA) - General Subjects 2021, 1865 (5) , 129847. https://doi.org/10.1016/j.bbagen.2021.129847
  84. Ian de Ridder, Martijn Kerkhofs, Santhini Pulikkal Veettil, Wim Dehaen, Geert Bultynck. Cancer cell death strategies by targeting Bcl-2's BH4 domain. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2021, 1868 (5) , 118983. https://doi.org/10.1016/j.bbamcr.2021.118983
  85. Alessandro Rimessi, Veronica A. M. Vitto, Simone Patergnani, Paolo Pinton. Update on Calcium Signaling in Cystic Fibrosis Lung Disease. Frontiers in Pharmacology 2021, 12 https://doi.org/10.3389/fphar.2021.581645
  86. Martijn Kerkhofs, Rita La Rovere, Kirsten Welkenhuysen, Ann Janssens, Peter Vandenberghe, Muniswamy Madesh, Jan B. Parys, Geert Bultynck. BIRD-2, a BH4-domain-targeting peptide of Bcl-2, provokes Bax/Bak-independent cell death in B-cell cancers through mitochondrial Ca2+-dependent mPTP opening. Cell Calcium 2021, 94 , 102333. https://doi.org/10.1016/j.ceca.2020.102333
  87. Md Imam Faizan, Tanveer Ahmad. Altered mitochondrial calcium handling and cell death by necroptosis: An emerging paradigm. Mitochondrion 2021, 57 , 47-62. https://doi.org/10.1016/j.mito.2020.12.004
  88. Michael D. Wetzel, Kristen Stanley, Soumya Maity, Muniswamy Madesh, Jean C. Bopassa, Alaa S. Awad. Homoarginine ameliorates diabetic nephropathy independent of nitric oxide synthase‐3. Physiological Reports 2021, 9 (5) https://doi.org/10.14814/phy2.14766
  89. Elizabeth Murphy, Charles Steenbergen. Regulation of Mitochondrial Ca 2+ Uptake. Annual Review of Physiology 2021, 83 (1) , 107-126. https://doi.org/10.1146/annurev-physiol-031920-092419
  90. Katalin Márta, Prottoy Hasan, Macarena Rodríguez-Prados, Melanie Paillard, György Hajnóczky. Pharmacological inhibition of the mitochondrial Ca2+ uniporter: Relevance for pathophysiology and human therapy. Journal of Molecular and Cellular Cardiology 2021, 151 , 135-144. https://doi.org/10.1016/j.yjmcc.2020.09.014
  91. Riccardo Filadi, Elisa Greotti. The yin and yang of mitochondrial Ca2+ signaling in cell physiology and pathology. Cell Calcium 2021, 93 , 102321. https://doi.org/10.1016/j.ceca.2020.102321
  92. Bhargavi Duvvuri, Christian Lood. Mitochondrial Calcification. Immunometabolism 2021, 3 (1) https://doi.org/10.20900/immunometab20210008
  93. Yang Liu, Mingpeng Jin, Yaya Wang, Jianjun Zhu, Rui Tan, Jing Zhao, Xiaoying Ji, Chao Jin, Yongfeng Jia, Tingting Ren, Jinliang Xing. MCU-induced mitochondrial calcium uptake promotes mitochondrial biogenesis and colorectal cancer growth. Signal Transduction and Targeted Therapy 2020, 5 (1) https://doi.org/10.1038/s41392-020-0155-5
  94. Mayara S. Bertolini, Roberto Docampo. Different Sensitivity of Control and MICU1- and MICU2-Ablated Trypanosoma cruzi Mitochondrial Calcium Uniporter Complex to Ruthenium-Based Inhibitors. International Journal of Molecular Sciences 2020, 21 (23) , 9316. https://doi.org/10.3390/ijms21239316
  95. Archita Ray, Ashish Jaiswal, Joytri Dutta, Sabita Singh, Ulaganathan Mabalirajan. A looming role of mitochondrial calcium in dictating the lung epithelial integrity and pathophysiology of lung diseases. Mitochondrion 2020, 55 , 111-121. https://doi.org/10.1016/j.mito.2020.09.004
  96. Qun Guan, Le‐Le Zhou, Fan‐Hong Lv, Wen‐Yan Li, Yan‐An Li, Yu‐Bin Dong. A Glycosylated Covalent Organic Framework Equipped with BODIPY and CaCO 3 for Synergistic Tumor Therapy. Angewandte Chemie International Edition 2020, 59 (41) , 18042-18047. https://doi.org/10.1002/anie.202008055
  97. Qun Guan, Le‐Le Zhou, Fan‐Hong Lv, Wen‐Yan Li, Yan‐An Li, Yu‐Bin Dong. A Glycosylated Covalent Organic Framework Equipped with BODIPY and CaCO 3 for Synergistic Tumor Therapy. Angewandte Chemie 2020, 132 (41) , 18198-18203. https://doi.org/10.1002/ange.202008055
  98. Michael D. Wetzel, Kristen Stanley, Wei Wei Wang, Soumya Maity, Muniswamy Madesh, W. Brian Reeves, Alaa S. Awad. Selective inhibition of arginase-2 in endothelial cells but not proximal tubules reduces renal fibrosis. JCI Insight 2020, 5 (19) https://doi.org/10.1172/jci.insight.142187
  99. Simone Patergnani, Veronica A.M. Vitto, Paolo Pinton, Alessandro Rimessi. Mitochondrial Stress Responses and “Mito-Inflammation” in Cystic Fibrosis. Frontiers in Pharmacology 2020, 11 https://doi.org/10.3389/fphar.2020.581114
  100. Sonia Missiroli, Mariasole Perrone, Ilaria Genovese, Paolo Pinton, Carlotta Giorgi. Cancer metabolism and mitochondria: Finding novel mechanisms to fight tumours. eBioMedicine 2020, 59 , 102943. https://doi.org/10.1016/j.ebiom.2020.102943
Load all citations

ACS Central Science

Cite this: ACS Cent. Sci. 2019, 5, 1, 153–166
Click to copy citationCitation copied!
https://doi.org/10.1021/acscentsci.8b00773
Published January 4, 2019

Copyright © 2019 American Chemical Society. This publication is licensed under these Terms of Use.

Article Views

9831

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Topology diagram of the MCU. (A) Diagram showing the relevant regulator proteins EMRE, MCUR1, MICU1, and MICU2 and the orientation of the MCU in the IMM. Insets depict (left) the location of Cys97 in the X-ray crystal structure of the MCU-NTD (residues 72–189, PDB 5KUJ) (27) and (right) location of the DXXE motif in the solvent-accessible region of the MCU pore in the cryo-EM structure of the MCU (PDB 6DNF). (20) (B) At low Ca2+ concentration, MICU1 and MICU2 prevent Ca2+ from entering the mitochondria. (C) Elevated Ca2+ concentrations cause MICU1 and MICU2 to dissociate from the MCU, allowing Ca2+ transport across the IMM. (D) Binding of Ca2+ to the MRAP region in the MCU-NTD promotes a change in MCU conformation, preventing Ca2+ uptake.

    Figure 2

    Figure 2. (A) Chemical structures of the established and commercially available MCU inhibitor Ru360 (left) and the related analogue C-1. (B) Synthetic scheme for the preparation of C-2 and C-3. Crystal structures of (C) C-2 and (D) C-3. Outer sphere chlorides and solvent are omitted for clarity. Thermal ellipsoids are shown at the 50% probability level. Interatomic distances and angles are given in Tables S1–S3 in the Supporting Information (SI).

    Figure 3

    Figure 3. (A–C) Changes in ΔΨm (JC-1, top panel) and extramitochondrial Ca2+ ([Ca2+]out) clearance (Fura-2-FF, bottom panel) in digitonin-permeabilized HEK293T cells in response to 20 μM of Ca2+ after treatment with 5 μM of C-1, C-2, and C-3. The transient drop in ΔΨm in control cells upon Ca2+ addition indicates accumulation of Ca2+ in the mitochondrial matrix. (D) Quantification of the rate of [Ca2+]m uptake as a function of decrease in [Ca2+]out after 20 μM Ca2+pulse. Data are represented as mean ± standard error of measurement (SEM); ***p < 0.001; n = 3–6.

    Figure 4

    Figure 4. (A, B) Cytosolic ([Ca2+]c, Fluo-4 AM) and mitochondrial ([Ca2+]m, Rhod-2 AM) calcium transients in HeLa cells after treatment with histamine (100 μM) that were pretreated with or without C-1, C-2, or C-3 (50 μM) for 30 min. (C, D) Cytosolic ([Ca2+]c, R-GECO) and mitochondrial ([Ca2+]m, GCamP6-mt) calcium transients in HeLa cells after treatment with histamine (100 μM) that were pretreated with or without C-1, C-2, or C-3 (50 μM) for 30 min. HeLa cells were cotransfected with R-GECO1 and GCamP6-mt and analyzed 48 h post-transfection. Data are represented as mean ± SEM; *p < 0.05; n = 3–6.

    Figure 5

    Figure 5. (A) Representative traces of [Ca2+]out clearance in permeabilized HEK293T cells challenged with a range of C-2 concentrations (1, 2, 3, 5, and 10 nM). (B) Comparison of MCU-inhibitory effect by Ru360 (30 nM) and C-2 (3 and 10 nM) at lower concentrations. (C) Calculation of dose-dependent inhibition by C-2 and Ru360. (D) Assessment of mitochondrial Ca2+ influx and efflux rates. Permeabilized HEK293T cells pulsed with 20 μM Ca2+ at 350 s to measure mitochondrial Ca2+ uptake, followed by the addition of the 1 μM C-2 or Ru360 at 550 s, 10 μM CGP37157 at 600 s, and 6 μM CCCP at 750 s. Representative trace depicts the comparison of C-2 and Ru360. (E) Quantification of Ca2+ influx rate. (F) Quantification of Ca2+ efflux rate after addition of C-2 or Ru360. (G) Quantification of CCCP-induced release of accumulated mitochondrial Ca2+. Data represent mean ± SEM; n.s., not significant n = 3–6.

    Figure 6

    Figure 6. Representative traces of [Ca2+]out clearance and ΔΨm in permeabilized HEK293T cells stably expressing Flag-tagged MCUWT and MCUS259A mutant challenged with either (A) C-2 (10 nM) or (B) Ru360 (500 nM). Bar graphs represent the quantification of the rate of [Ca2+]m uptake. Representative traces of [Ca2+]out clearance and ΔΨm in HEK293T cells stably expressing Flag-tagged MCUWT and MCUC97A mutant challenged with either (C) C-2 (10 nM) or (D) Ru360 (500 nM). Bar graphs represent the quantification of the rate of [Ca2+]m uptake. Compound MCU-inhibitory effect was compared with cells reconstituted with appropriate mutants alone. Data represent mean ± SEM; ***p < 0.001; n = 3–6.; n = 4.

    Figure 7

    Figure 7. (A) 1H–15N-heteronuclear single quantum coherence (HSQC) spectra of uniformly 15N-labeled human MCU N-terminal domain (residues 72–189; MCU72–189) in the absence (blue cross-peaks) and presence (magenta cross-peaks) of C-2. A large amount of the protein immediately precipitated out of solution with the addition of 3 molar excess C-2 to the sample with no detectable change in solvent pH or ionic strength. Consequently, most amide H(N) cross-peaks show a drastic loss in intensity compared to cross-peaks in the control spectrum. (B) Coomassie blue-stained 15% (w/v) SDS-PAGE gel visualizing the insoluble precipitate formed after mixing 125 μM MCU72–189 with 375 μM C-2 (Insol. + C-2) and 375 μM Ru360 (Insol. + Ru360) compared to untreated MCU72–189 protein (Sol.). (C) Cross-peak broadening map on the MCU72–189 high-resolution crystal structure (PDB 5KUJ). (27) Tentatively assigned residues which exhibited a ≥40% reduction in peak intensity are highlighted in red on the backbone ribbon view of MCU72–189 (top dashed box). The surface representation of the same view (bottom dashed box) shows that the most affected H(N) cross-peaks primarily cluster on one face of the domain.

    Figure 8

    Figure 8. Measurement of ΔΨm (top panels) and MCU-mediated Ca2+ uptake (bottom panels) in (A) control, (B) C-2, and (C) Ru360 treated NRVMs exposed to normoxia (black) and H/R (red). (D) Quantification of basal ΔΨm from parts A–C under normoxia and H/R before the addition of extramitochondrial Ca2+ pulses. (E) Quantification of the rate of MCU-mediated Ca2+ uptake from parts A–C as a function of decrease in bath Ca2+ fluorescence. (F) Swelling of isolated NRVM mitochondria subjected to H/R injury in the absence (black trace) or presence (blue trace) of C-2 or Ru360 (red trace). Data represent mean ± SEM; ***p < 0.001; n = 3–6.

  • References


    This article references 94 other publications.

    1. 1
      Berridge, M. J.; Bootman, M. D.; Roderick, H. L. Calcium Signalling: Dynamics, Homeostasis and Remodelling. Nat. Rev. Mol. Cell Biol. 2003, 4, 517529,  DOI: 10.1038/nrm1155
    2. 2
      Soboloff, J.; Rothberg, B. S.; Madesh, M.; Gill, D. L. STIM Proteins: Dynamic Calcium Signal Transducers. Nat. Rev. Mol. Cell Biol. 2012, 13, 549565,  DOI: 10.1038/nrm3414
    3. 3
      Clapham, D. E. Calcium Signaling. Cell 2007, 131, 10471058,  DOI: 10.1016/j.cell.2007.11.028
    4. 4
      Hogan, P. G.; Lewis, R. S.; Rao, A. Molecular Basis of Calcium Signaling in Lymphocytes: STIM and ORAI. Annu. Rev. Immunol. 2010, 28, 491533,  DOI: 10.1146/annurev.immunol.021908.132550
    5. 5
      Kirichok, Y.; Krapivinsky, G.; Clapham, D. E. The Mitochondrial Calcium Uniporter is a Highly Selective Ion Channel. Nature 2004, 427, 360364,  DOI: 10.1038/nature02246
    6. 6
      Kamer, K. J.; Mootha, V. K. The Molecular Era of the Mitochondrial Calcium Uniporter. Nat. Rev. Mol. Cell Biol. 2015, 16, 545553,  DOI: 10.1038/nrm4039
    7. 7
      Rizzuto, R.; De Stefani, D.; Raffaello, A.; Mammucari, C. Mitochondria as Sensors and Regulators of Calcium Signalling. Nat. Rev. Mol. Cell Biol. 2012, 13, 566578,  DOI: 10.1038/nrm3412
    8. 8
      Nemani, N.; Shanmughapriya, S.; Madesh, M. Molecular Regulation of MCU: Implications in Physiology and Disease. Cell Calcium 2018, 74, 8693,  DOI: 10.1016/j.ceca.2018.06.006
    9. 9
      Baughman, J. M.; Perocchi, F.; Girgis, H. S.; Plovanich, M.; Belcher-Timme, C. A.; Sancak, Y.; Bao, X. R.; Strittmatter, L.; Goldberger, O.; Bogorad, R. L.; Koteliansky, V.; Mootha, V. K. Integrative Genomics Identifies MCU as an Essential Component of the Mitochondrial Calcium Uniporter. Nature 2011, 476, 341345,  DOI: 10.1038/nature10234
    10. 10
      De Stefani, D.; Raffaello, A.; Teardo, E.; Szabò, I.; Rizzuto, R. A Forty-Kilodalton Protein of the Inner Membrane is the Mitochondrial Calcium Uniporter. Nature 2011, 476, 336340,  DOI: 10.1038/nature10230
    11. 11
      Mallilankaraman, K.; Doonan, P.; Cárdenas, C.; Chandramoorthy, H. C.; Müller, M.; Miller, R.; Hoffman, N. E.; Gandhirajan, R. K.; Molgó, J.; Birnbaum, M. J.; Rothberg, B. S.; Mak, D. O. D.; Foskett, J. K.; Madesh, M. MICU1 is an Essential Gatekeeper for MCU-Mediated Mitochondrial Ca2+ Uptake That Regulates Cell Survival. Cell 2012, 151, 630644,  DOI: 10.1016/j.cell.2012.10.011
    12. 12
      Sancak, Y.; Markhard, A. L.; Kitami, T.; Kovacs-Bogdan, E.; Kamer, K. J.; Udeshi, N. D.; Carr, S. A.; Chaudhuri, D.; Clapham, D. E.; Li, A. A.; Calvo, S. E.; Goldberger, O.; Mootha, V. K. EMRE is an Essential Component of the Mitochondrial Calcium Uniporter Complex. Science 2013, 342, 13791382,  DOI: 10.1126/science.1242993
    13. 13
      Perocchi, F.; Gohil, V. M.; Girgis, H. S.; Bao, X. R.; McCombs, J. E.; Palmer, A. E.; Mootha, V. K. MICU1 Encodes a Mitochondrial EF Hand Protein Required for Ca2+ uptake. Nature 2010, 467, 291296,  DOI: 10.1038/nature09358
    14. 14
      Plovanich, M.; Bogorad, R. L.; Sancak, Y.; Kamer, K. J.; Strittmatter, L.; Li, A. A.; Girgis, H. S.; Kuchimanchi, S.; De Groot, J.; Speciner, L.; Taneja, N.; OShea, J.; Koteliansky, V.; Mootha, V. K. MICU2, a Paralog of MICU1, Resides within the Mitochondrial Uniporter Complex to Regulate Calcium Handling. PLoS One 2013, 8, e55785,  DOI: 10.1371/journal.pone.0055785
    15. 15
      Csordás, G.; Golenár, T.; Seifert, E. L.; Kamer, K. J.; Sancak, Y.; Perocchi, F.; Moffat, C.; Weaver, D.; De la Fuente, S.; Bogorad, R.; Koteliansky, V.; Adijanto, J.; Mootha, V. K.; Hajnóczky, G. MICU1 Controls Both the Threshold and Cooperative Activation of the Mitochondrial Ca2+ Uniporter. Cell Metab. 2013, 17, 976987,  DOI: 10.1016/j.cmet.2013.04.020
    16. 16
      Mallilankaraman, K.; Cárdenas, C.; Doonan, P. J.; Chandramoorthy, H. C.; Irrinki, K. M.; Golenár, T.; Csordás, G.; Madireddi, P.; Yang, J.; Müller, M.; Miller, R.; Kolesar, J. E.; Molgó, J.; Kaufman, B.; Hajnóczky, G.; Foskett, J. K.; Madesh, M. MCUR1 is an Essential Component of Mitochondrial Ca2+ Uptake that Regulates Cellular Metabolism. Nat. Cell Biol. 2012, 14, 13361343,  DOI: 10.1038/ncb2622
    17. 17
      Patron, M.; Checchetto, V.; Raffaello, A.; Teardo, E.; VecellioReane, D.; Mantoan, M.; Granatiero, V.; Szabò, I.; DeStefani, D.; Rizzuto, R. MICU1 and MICU2 Finely Tune the Mitochondrial Ca2+ Uniporter by Exerting Opposite Effects on MCU Activity. Mol. Cell 2014, 53, 726737,  DOI: 10.1016/j.molcel.2014.01.013
    18. 18
      Oxenoid, K.; Dong, Y.; Cao, C.; Cui, T.; Sancak, Y.; Markhard, A. L.; Grabarek, Z.; Kong, L.; Liu, Z.; Ouyang, B.; Cong, Y.; Mootha, V. K.; Chou, J. J. Architecture of the Mitochondrial Calcium Uniporter. Nature 2016, 533, 269273,  DOI: 10.1038/nature17656
    19. 19
      Bick, A. G.; Calvo, S. E.; Mootha, V. K. Evolutionary Diversity of the Mitochondrial Calcium Uniporter. Science 2012, 336, 886,  DOI: 10.1126/science.1214977
    20. 20
      Baradaran, R.; Wang, C.; Siliciano, A. F.; Long, S. B. Cryo-EM Structures of Fungal and Metazoan Mitochondrial Calcium Uniporters. Nature 2018, 559, 580584,  DOI: 10.1038/s41586-018-0331-8
    21. 21
      Fan, C.; Fan, M.; Orlando, B. J.; Fastman, N. M.; Zhang, J.; Xu, Y.; Chambers, M. G.; Xu, X.; Perry, K.; Liao, M.; Feng, L. X-Ray and Cryo-EM Structures of the Mitochondrial Calcium Uniporter. Nature 2018, 559, 575579,  DOI: 10.1038/s41586-018-0330-9
    22. 22
      Nguyen, N. X.; Armache, J. P.; Lee, C.; Yang, Y.; Zeng, W.; Mootha, V. K.; Cheng, Y.; Bai, X.; Jiang, Y. Cryo-EM Structure of a Fungal Mitochondrial Calcium Uniporter. Nature 2018, 559, 570574,  DOI: 10.1038/s41586-018-0333-6
    23. 23
      Yoo, J.; Wu, M.; Yin, Y.; Herzik, M. A.; Lander, G. C.; Lee, S.-Y. Cryo-EM Structure of a Mitochondrial Calcium Uniporter. Science 2018, 361, 506511,  DOI: 10.1126/science.aar4056
    24. 24
      Hoffman, N. E.; Chandramoorthy, H. C.; Shamugapriya, S.; Zhang, X.; Rajan, S.; Mallilankaraman, K.; Gandhirajan, R. K.; Vagnozzi, R. J.; Ferrer, L. M.; Sreekrishnanilayam, K.; Natarajaseenivasan, K.; Vallem, S.; Force, T.; Choi, E. T.; Cheung, J. Y.; Madesh, M. MICU1 Motifs Define Mitochondrial Calcium Uniporter Binding and Activity. Cell Rep. 2013, 5, 15761588,  DOI: 10.1016/j.celrep.2013.11.026
    25. 25
      Petrungaro, C.; Zimmermann, K. M.; Küttner, V.; Fischer, M.; Dengjel, J.; Bogeski, I.; Riemer, J. The Ca2+-Dependent Release of the Mia40-Induced MICU1-MICU2 Dimer from MCU Regulates Mitochondrial Ca2+ Uptake. Cell Metab. 2015, 22, 721733,  DOI: 10.1016/j.cmet.2015.08.019
    26. 26
      Lee, Y.; Min, C. K.; Kim, T. G.; Song, H. K.; Lim, Y.; Kim, D.; Shin, K.; Kang, M.; Kang, J. Y.; Youn, H.-S.; Lee, J.-G.; An, J. Y.; Park, K. R.; Lim, J. J.; Kim, J. H.; Kim, J. H.; Park, Z. Y.; Kim, Y.-S.; Wang, J.; Kim, D. H.; Eom, S. H. Structure and Function of the N-Terminal Domain of the Human Mitochondrial Calcium Uniporter. EMBO Rep. 2015, 16, 13181333,  DOI: 10.15252/embr.201540436
    27. 27
      Lee, S. K.; Shanmughapriya, S.; Mok, M. C. Y.; Dong, Z.; Tomar, D.; Carvalho, E.; Rajan, S.; Junop, M. S.; Madesh, M.; Stathopulos, P. B. Structural Insights into Mitochondrial Calcium Uniporter Regulation by Divalent Cations. Cell Chem. Biol. 2016, 23, 11571169,  DOI: 10.1016/j.chembiol.2016.07.012
    28. 28
      Tomar, D.; Dong, Z.; Shanmughapriya, S.; Koch, D. A.; Thomas, T.; Hoffman, N. E.; Timbalia, S. A.; Goldman, S. J.; Breves, S. L.; Corbally, D. P.; Nemani, N.; Fairweather, J. P.; Cutri, A. R.; Zhang, X.; Song, J.; Jaña, F.; Huang, J.; Barrero, C.; Rabinowitz, J. E.; Luongo, T. S.; Schumacher, S. M.; Rockman, M. E.; Dietrich, A.; Merali, S.; Caplan, J.; Stathopulos, P. B.; Ahima, R. S.; Cheung, J. Y.; Houser, S. R.; Koch, W. J.; Patel, V.; Gohil, V. M.; Elrod, J. W.; Rajan, S.; Madesh, M. MCUR1 is a Scaffold Factor for the MCU Complex Function and Promotes Mitochondrial Bioenergetics. Cell Rep. 2016, 15, 16731685,  DOI: 10.1016/j.celrep.2016.04.050
    29. 29
      Gunter, T. E.; Gunter, K. K.; Sheu, S.-S.; Gavin, C. E. Mitochondrial Calcium Transport: Physiological and Pathological Relevance. Am. J. Physiol. 1994, 267, C313319,  DOI: 10.1152/ajpcell.1994.267.2.C313
    30. 30
      Hajnóczky, G.; Robb-Gaspers, L. D.; Seitz, M. B.; Thomas, A. P. Decoding of Cytosolic Calcium Oscillations in the Mitochondria. Cell 1995, 82, 415424,  DOI: 10.1016/0092-8674(95)90430-1
    31. 31
      Denton, R.; McCormack, J. G. Ca2+ as a Second Messenger Within Mitochondria Of The Heart And Other Tissues. Annu. Rev. Physiol. 1990, 52, 451466,  DOI: 10.1146/annurev.ph.52.030190.002315
    32. 32
      Santo-Domingo, J.; Demaurex, N. Calcium Uptake Mechanisms of Mitochondria. Biochim. Biophys. Acta, Bioenerg. 2010, 1797, 907912,  DOI: 10.1016/j.bbabio.2010.01.005
    33. 33
      Bernardi, P. Mitochondrial Transport of Cations: Channels, Exchangers, and Permeability Transition. Physiol. Rev. 1999, 79, 11271155,  DOI: 10.1152/physrev.1999.79.4.1127
    34. 34
      Shanmughapriya, S.; Rajan, S.; Hoffman, N. E.; Higgins, A. M.; Tomar, D.; Nemani, N.; Hines, K. J.; Smith, D. J.; Eguchi, A.; Vallem, S.; Shaikh, F.; Cheung, M.; Leonard, N. J.; Stolakis, R. S.; Wolfers, M. P.; Ibetti, J.; Chuprun, J. K.; Jog, N. R.; Houser, S. R.; Koch, W. J.; Elrod, J. W.; Madesh, M. SPG7 is an Essential and Conserved Component of the Mitochondrial Permeability Transition Pore. Mol. Cell 2015, 60, 4762,  DOI: 10.1016/j.molcel.2015.08.009
    35. 35
      Orrenius, S.; Zhivotovsky, B.; Nicotera, P. Regulation of Cell Death: The Calcium-Apoptosis Link. Nat. Rev. Mol. Cell Biol. 2003, 4, 552565,  DOI: 10.1038/nrm1150
    36. 36
      De Stefani, D.; Rizzuto, R.; Pozzan, T. Enjoy the Trip: Calcium in Mitochondria Back and Forth. Annu. Rev. Biochem. 2016, 85, 161192,  DOI: 10.1146/annurev-biochem-060614-034216
    37. 37
      Marchi, S.; Pinton, P. The Mitochondrial Calcium Uniporter Complex: Molecular Components, Structure and Physiopathological Implications. J. Physiol. 2014, 592, 829839,  DOI: 10.1113/jphysiol.2013.268235
    38. 38
      Luongo, T. S.; Lambert, J. P.; Yuan, A.; Zhang, X.; Gross, P.; Song, J.; Shanmughapriya, S.; Gao, E.; Jain, M.; Houser, S. R.; Koch, W. J.; Cheung, J. Y.; Madesh, M.; Elrod, J. W. The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition. Cell Rep. 2015, 12, 2334,  DOI: 10.1016/j.celrep.2015.06.017
    39. 39
      Kwong, J. Q.; Lu, X.; Correll, R. N.; Schwanekamp, J. A.; Vagnozzi, R. J.; Sargent, M. A.; York, A. J.; Zhang, J.; Bers, D. M.; Molkentin, J. D. The Mitochondrial Calcium Uniporter Selectively Matches Metabolic Output to Acute Contractile Stress in the Heart. Cell Rep. 2015, 12, 1522,  DOI: 10.1016/j.celrep.2015.06.002
    40. 40
      Medvedeva, Y. V.; Weiss, J. H.; Weiss, J. H.; Medvedeva, Y. V. Intramitochondrial Zn2+ Accumulation via the Ca2+ Uniporter Contributes to Acute Ischemic Neurodegeneration. Neurobiol. Dis. 2014, 68, 137144,  DOI: 10.1016/j.nbd.2014.04.011
    41. 41
      Giorgi, C.; Agnoletto, C.; Bononi, A.; Bonora, M.; De Marchi, E.; Marchi, S.; Missiroli, S.; Patergnani, S.; Poletti, F.; Rimessi, A.; Suski, J. M.; Wieckowski, M. R.; Pinton, P. Mitochondrial Calcium Homeostasis as Potential Target for Mitochondrial Medicine. Mitochondrion 2012, 12, 7785,  DOI: 10.1016/j.mito.2011.07.004
    42. 42
      Arduino, D. M.; Wettmarshausen, J.; Vais, H.; Navas-Navarro, P.; Cheng, Y.; Leimpek, A.; Ma, Z.; Delrio-Lorenzo, A.; Giordano, A.; Garcia-Perez, C.; Médard, G.; Kuster, B.; García-Sancho, J.; Mokranjac, D.; Foskett, J. K.; Alonso, M. T.; Perocchi, F. Systematic Identification of MCU Modulators by Orthogonal Interspecies Chemical Screening. Mol. Cell 2017, 67, 711723,  DOI: 10.1016/j.molcel.2017.07.019
    43. 43
      Kon, N.; Murakoshi, M.; Isobe, A.; Kagechika, K.; Miyoshi, N.; Nagayama, T. DS16570511 is a Small-Molecule Inhibitor of the Mitochondrial Calcium Uniporter. Cell Death Discov. 2017, 3, 17045,  DOI: 10.1038/cddiscovery.2017.45
    44. 44
      Thu, V. T.; Kim, H. K.; Long, L. T.; Lee, S. R.; Hanh, T. M.; Ko, T. H.; Heo, H. J.; Kim, N.; Kim, S. H.; Ko, K. S.; Rhee, B. D.; Han, J. NecroX-5 Prevents Hypoxia/Reoxygenation Injury by Inhibiting the Mitochondrial Calcium Uniporter. Cardiovasc. Res. 2012, 94, 342350,  DOI: 10.1093/cvr/cvs122
    45. 45
      Antonenko, Y. N.; Rokitskaya, T. I.; Cooper, A. J. L.; Krasnikov, B. F. Minocycline Chelates Ca2+, Binds to Membranes, and Depolarizes Mitochondria by Formation of Ca2+-Dependent Ion Channels. J. Bioenerg. Biomembr. 2010, 42, 151163,  DOI: 10.1007/s10863-010-9271-1
    46. 46
      Santo-Domingo, J.; Vay, L.; Hernández-Sanmiguel, E.; Lobatón, C. D.; Moreno, A.; Montero, M.; Alvarez, J. The Plasma Membrane Na+/Ca2+ Exchange Inhibitor KB-R7943 is Also a Potent Inhibitor of the Mitochondrial Ca2+ Uniporter. Br. J. Pharmacol. 2007, 151, 647654,  DOI: 10.1038/sj.bjp.0707260
    47. 47
      Kapuscinski, J.; Darzynkiewicz, Z. Interactions of Antitumor Agents Ametantrone and Mitoxantrone (Novatrone) with Double-Stranded DNA. Biochem. Pharmacol. 1985, 34, 42034213,  DOI: 10.1016/0006-2952(85)90275-8
    48. 48
      Mazerski, J.; Martelli, S.; Borowski, E. The Geometry of Intercalation Complex of Antitumor Mitoxantrone and Ametantrone with DNA: Molecular Dynamics Simulations. Acta Biochim. Polym. 1998, 45, 111
    49. 49
      Boland, M. P.; Fitzgerald, K. A.; O’Neill, L. A. J. Topoisomerase II Is Required for Mitoxantrone to Signal Nuclear Factor ΚB Activation in HL60 Cells. J. Biol. Chem. 2000, 275, 2523125238,  DOI: 10.1074/jbc.275.33.25231
    50. 50
      Smith, P. J.; Morgan, S. A.; Fox, M. E.; Watson, J. V. Mitoxantrone-DNA Binding and the Induction of Topoisomerase II Associated DNA Damage in Multi-Drug Resistant Small Cell Lung Cancer Cells. Biochem. Pharmacol. 1990, 40, 20692078,  DOI: 10.1016/0006-2952(90)90237-F
    51. 51
      Nägele, H.; Castel, M. A.; Deutsch, O.; Wagner, F. M.; Reichenspurner, H. Heart Transplantation in a Patient with Multiple Sclerosis and Mitoxantrone-Induced Cardiomyopathy. J. Heart Lung Transplant. 2004, 23, 641643,  DOI: 10.1016/S1053-2498(03)00307-3
    52. 52
      Goebel, M.; Kaplan, E. Anthracycline-Induced Cardiotoxicity – A Review. Oncol. Res. Treat. 2004, 15, 198204,  DOI: 10.1159/000217360
    53. 53
      Ying, W.-L.; Emerson, J.; Clarke, M. J.; Sanadi, D. R. Inhibition of Mitochondrial Calcium Ion Transport by an Oxo-Bridged Dinuclear Ruthenium Ammine Complex. Biochemistry 1991, 30, 49494952,  DOI: 10.1021/bi00234a016
    54. 54
      Matlib, M. A.; Zhou, Z.; Knight, S.; Ahmed, S.; Choi, K. M.; Krause-Bauer, J.; Phillips, R.; Altschuld, R.; Katsube, Y.; Sperelakis, N.; Bers, D. M. Oxygen-Bridged Dinuclear Ruthenium Amine Complex Specifically Inhibits Ca2+ Uptake into Mitochondria in Vitro and in Situ in Single Cardiac Myocytes. J. Biol. Chem. 1998, 273, 1022310231,  DOI: 10.1074/jbc.273.17.10223
    55. 55
      Emerson, J.; Clarke, M. J.; Ying, W. L.; Sanadi, D. R. The Component of “Ruthenium Red” Responsible for Inhibition of Mitochondrial Calcium Ion Transport. Spectra, Electrochemistry, and Aquation Kinetics. Crystal Structure of μ-O-[(HCO)2(NH3)4Ru]2Cl3. J. Am. Chem. Soc. 1993, 115, 1179911805,  DOI: 10.1021/ja00078a019
    56. 56
      Nathan, S. R.; Pino, N. W.; Arduino, D. M.; Perocchi, F.; MacMillan, S. N.; Wilson, J. J. Synthetic Methods for the Preparation of a Functional Analogue of Ru360, a Potent Inhibitor of Mitochondrial Calcium Uptake. Inorg. Chem. 2017, 56, 31233126,  DOI: 10.1021/acs.inorgchem.6b03108
    57. 57
      Nathan, S. R.; Wilson, J. J. Synthesis and Evaluation of a Ruthenium-Based Mitochondrial Calcium Uptake Inhibitor. J. Visualized Exp. 2017, 128, e56527,  DOI: 10.3791/56527
    58. 58
      Cao, C.; Wang, S.; Cui, T.; Su, X.-C.; Chou, J. J. Ion and Inhibitor Binding of the Double-Ring Ion Selectivity Filter of the Mitochondrial Calcium Uniporter. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E2846E2851,  DOI: 10.1073/pnas.1620316114
    59. 59
      Gushchin, A. L.; Laricheva, Y. A.; Abramov, P. A.; Sokolov, M. N.; Abramov, P. A. Synthesis and Electrochemical Properties of [RuIV2O(PhCN)4Cl6]. Inorg. Chem. Commun. 2018, 95, 13877003,  DOI: 10.1016/j.inoche.2018.07.033
    60. 60
      Urgiles, J.; Nathan, S. R.; MacMillan, S. N.; Wilson, J. J. Dinuclear Nitrido-Bridged Ruthenium Complexes Bearing Diimine Ligands. Dalton Trans. 2017, 46, 1425614263,  DOI: 10.1039/C7DT03085A
    61. 61
      Dunitz, J. D.; Orgel, L. E. Application of Molecular-Orbital Theory to Some Binuclear Coordination Compounds. J. Chem. Soc. 1953, 25942596,  DOI: 10.1039/jr9530002594
    62. 62
      Cleare, M. J.; Griffith, W. P. Binuclear Nitrido-Complexes of Ruthenium. Chem. Commun. 1968, 21, 1302,  DOI: 10.1039/c19680001302
    63. 63
      Griffith, W. P.; McManus, N. T.; Skapski, A. C. X-Ray Crystal Structure of [Ru2N(ethylenediamine)5]Cl5· H2O; a Novel Complex Containing Both Nitrido and Ethylenediamine Bridges. J. Chem. Soc., Chem. Commun. 1984, 7, 434,  DOI: 10.1039/c39840000434
    64. 64
      Ng, H.-Y.; Cheung, W.-M.; Kwan Huang, E.; Wong, K.-L.; Sung, H. H.-Y.; Williams, I. D.; Leung, W.-H. Ruthenium Chalcogenonitrosyl and Bridged Nitrido Complexes Containing Chelating Sulfur and Oxygen Ligands. Dalton Trans. 2015, 44, 1845918468,  DOI: 10.1039/C5DT02513C
    65. 65
      Ciechanowicz, M.; Skapski, A. C. Crystal Structure of Potassium μ-Nitrido-Bis[Aquotetrachlororuthenate(IV)]. J. Chem. Soc. A 1971, 84, 17921794,  DOI: 10.1039/J19710001792
    66. 66
      Freshney, R. I. Culture of Animal Cells, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2005.
    67. 67
      Shanmughapriya, S.; Rajan, S.; Hoffman, N. E.; Zhang, X.; Guo, S.; Kolesar, J. E.; Hines, K. J.; Ragheb, J.; Jog, N. R.; Caricchio, R.; Baba, Y.; Zhou, Y.; Kaufman, B. A.; Cheung, J. Y.; Kurosaki, T.; Gill, D. L.; Madesh, M. Ca2+ Signals Regulate Mitochondrial Metabolism by Stimulating CREB-Mediated Expression of the Mitochondrial Ca2+ Uniporter Gene MCU. Sci. Signaling 2015, 8, ra23,  DOI: 10.1126/scisignal.2005673
    68. 68
      Reers, M.; Smith, T. W.; Chen, L. B. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 1991, 30, 44804486,  DOI: 10.1021/bi00232a015
    69. 69
      King, A. P.; Gellineau, H. A.; Ahn, J. E.; MacMillan, S. N.; Wilson, J. J. Bis(Thiosemicarbazone) Complexes of Cobalt(III). Synthesis, Characterization, and Anticancer Potential. Inorg. Chem. 2017, 56, 66096623,  DOI: 10.1021/acs.inorgchem.7b00710
    70. 70
      Egger, A. E.; Rappel, C.; Jakupec, M. A.; Hartinger, C. G.; Heffeter, P.; Keppler, B. K. Development of an Experimental Protocol for Uptake Studies of Metal Compounds in Adherent Tumor Cells. J. Anal. At. Spectrom. 2009, 24, 5161,  DOI: 10.1039/B810481F
    71. 71
      Komor, A. C.; Schneider, C. J.; Weidmann, A. G.; Barton, J. K. Cell-Selective Biological Activity of Rhodium Metalloinsertors Correlates with Subcellular Localization. J. Am. Chem. Soc. 2012, 134, 1922319233,  DOI: 10.1021/ja3090687
    72. 72
      Boyle, K. M.; Barton, J. K. A Family of Rhodium Complexes with Selective Toxicity toward Mismatch Repair-Deficient Cancers. J. Am. Chem. Soc. 2018, 140, 56125624,  DOI: 10.1021/jacs.8b02271
    73. 73
      Ahmad, K. A.; Iskandar, K. B.; Hirpara, J. L.; Clement, M. V.; Pervaiz, S. Hydrogen Peroxide-Mediated Cytosolic Acidification is a Signal for Mitochondrial Translocation of Bax during Drug-Induced Apoptosis of Tumor Cells. Cancer Res. 2004, 64, 78677878,  DOI: 10.1158/0008-5472.CAN-04-0648
    74. 74
      Dong, Z.; Shanmughapriya, S.; Tomar, D.; Siddiqui, N.; Lynch, S.; Nemani, N.; Breves, S. L.; Zhang, X.; Tripathi, A.; Palaniappan, P.; Riitano, M. F.; Worth, A. M.; Seelam, A.; Carvalho, E.; Subbiah, R.; Jaña, F.; Soboloff, J.; Peng, Y.; Cheung, J. Y.; Joseph, S. K.; Caplan, J.; Rajan, S.; Stathopulos, P. B.; Madesh, M. Mitochondrial Ca2+ Uniporter is a Mitochondrial Luminal Redox Sensor That Augments MCU Channel Activity. Mol. Cell 2017, 65, 10141028,  DOI: 10.1016/j.molcel.2017.01.032
    75. 75
      Zhao, Y.; Araki, S.; Wu, J.; Teramoto, T.; Chang, Y.-F.; Nakano, M.; Abdelfattah, A. S.; Fujiwara, M.; Ishihara, T.; Nagai, T.; Campbell, R. E. An Expanded Palette of Genetically Encoded Ca2+ Indicators. Science 2011, 333, 18881891,  DOI: 10.1126/science.1208592
    76. 76
      Nakai, J.; Ohkura, M.; Imoto, K. A High Signal-to-Noise Ca2+ Probe Composed of a Single Green Fluorescent Protein. Nat. Biotechnol. 2001, 19, 137141,  DOI: 10.1038/84397
    77. 77
      Chiesi, M.; Schwaller, R.; Eichenberger, K. Structural Dependency of the Inhibitory Action of Benzodiazepines and Related Compounds on the Mitochondrial Na+-Ca2+ Exchanger. Biochem. Pharmacol. 1988, 37, 43994403,  DOI: 10.1016/0006-2952(88)90623-5
    78. 78
      Luongo, T. S.; Lambert, J. P.; Gross, P.; Nwokedi, M.; Lombardi, A. A.; Shanmughapriya, S.; Carpenter, A. C.; Kolmetzky, D.; Gao, E.; van Berlo, J. H.; Tsai, E. J.; Molkentin, J. D.; Chen, X.; Madesh, M.; Houser, S. R.; Elrod, J. W. The Mitochondrial Na+/Ca2+ Exchanger is Essential for Ca2+ Homeostasis and Viability. Nature 2017, 545, 9397,  DOI: 10.1038/nature22082
    79. 79
      Storey, N. M.; Lambert, D. G. Mitochondrial Pharmacology Turns Its Sights on the Ca2+ Uniporter. Cell Death Discov. 2017, 3, 17064,  DOI: 10.1038/cddiscovery.2017.64
    80. 80
      Sebag, S. C.; Koval, O. M.; Paschke, J. D.; Winters, C. J.; Comellas, A. P.; Grumbach, I. M. Inhibition of the Mitochondrial Calcium Uniporter Prevents IL-13 and Allergen-Mediated Airway Epithelial Apoptosis and Loss of Barrier Function. Exp. Cell Res. 2018, 362, 400411,  DOI: 10.1016/j.yexcr.2017.12.003
    81. 81
      Xie, N.; Wu, C.; Wang, C.; Cheng, X.; Zhang, L.; Zhang, H.; Lian, Y. Inhibition of the Mitochondrial Calcium Uniporter Inhibits Aβ-Induced Apoptosis by Reducing Reactive Oxygen Species-Mediated Endoplasmic Reticulum Stress in Cultured Microglia. Brain Res. 2017, 1676, 100106,  DOI: 10.1016/j.brainres.2017.08.035
    82. 82
      Alessio, E. Thirty Years of the Drug Candidate NAMI-A and the Myths in the Field of Ruthenium Anticancer Compounds: A Personal Perspective. Eur. J. Inorg. Chem. 2017, 2017, 15491560,  DOI: 10.1002/ejic.201600986
    83. 83
      Wachter, E.; Heidary, D. K.; Howerton, B. S.; Parkin, S.; Glazer, E. C. Light-Activated Ruthenium Complexes Photobind DNA and are Cytotoxic in the Photodynamic Therapy Window. Chem. Commun. 2012, 48, 96499651,  DOI: 10.1039/c2cc33359g
    84. 84
      Han Ang, W.; Dyson, P. J. Classical and Non-Classical Ruthenium-Based Anticancer Drugs: Towards Targeted Chemotherapy. Eur. J. Inorg. Chem. 2006, 2006, 40034018,  DOI: 10.1002/ejic.200600723
    85. 85
      Süss-Fink, G. Areneruthenium Complexes as Anticancer Agents. Dalton Trans. 2010, 39, 16731688,  DOI: 10.1039/B916860P
    86. 86
      Wang, F.; Chen, H.; Parsons, S.; Oswald, I. D. H.; Davidson, J. E.; Sadler, P. J. Kinetics of Aquation and Anation of Ruthenium(II) Arene Anticancer Complexes, Acidity and X-Ray Structures of Aqua Adducts. Chem. - Eur. J. 2003, 9, 58105820,  DOI: 10.1002/chem.200304724
    87. 87
      Hartinger, C. G.; Jakupec, M. A.; Zorbas-Seifried, S.; Groessl, M.; Egger, A.; Berger, W.; Zorbas, H.; Dyson, P. J.; Keppler, B. K. KP1019, A New Redox-Active Anticancer Agent - Preclinical Development and Results of a Clinical Phase I Study in Tumor Patients. Chem. Biodiversity 2008, 5, 21402155,  DOI: 10.1002/cbdv.200890195
    88. 88
      Peacock, A. F. A.; Habtemariam, A.; Fernández, R.; Walland, V.; Fabbiani, F. P. A.; Parsons, S.; Aird, R. E.; Jodrell, D. I.; Sadler, P. J. Tuning the Reactivity of Osmium(II) and Ruthenium(II) Arene Complexes under Physiological Conditions. J. Am. Chem. Soc. 2006, 128, 17391748,  DOI: 10.1021/ja055886r
    89. 89
      Mühlgassner, G.; Bartel, C.; Schmid, W. F.; Jakupec, M. A.; Arion, V. B.; Keppler, B. K. Biological Activity of Ruthenium and Osmium Arene Complexes with Modified Paullones in Human Cancer Cells. J. Inorg. Biochem. 2012, 116, 180187,  DOI: 10.1016/j.jinorgbio.2012.06.003
    90. 90
      Lameijer, L. N.; Ernst, D.; Hopkins, S. L.; Meijer, M. S.; Askes, S. H. C.; Le Dévédec, S. E.; Bonnet, S. A Red-Light-Activated Ruthenium-Caged NAMPT Inhibitor Remains Phototoxic in Hypoxic Cancer Cells. Angew. Chem., Int. Ed. 2017, 56, 1154911553,  DOI: 10.1002/anie.201703890
    91. 91
      Dutta, B.; Scolaro, C.; Scopelliti, R.; Dyson, P. J.; Severin, K. Importance of the π-Ligand: Remarkable Effect of the Cyclopentadienyl Ring on the Cytotoxicity of Ruthenium PTA Compounds. Organometallics 2008, 27, 13551357,  DOI: 10.1021/om800025a
    92. 92
      Allardyce, C. S.; Dyson, P. J. Metal-Based Drugs that Break the Rules. Dalton Trans. 2016, 45, 32013209,  DOI: 10.1039/C5DT03919C
    93. 93
      Kilpin, K. J.; Dyson, P. J. Enzyme Inhibition by Metal Complexes: Concepts, Strategies and Applications. Chem. Sci. 2013, 4, 14101419,  DOI: 10.1039/c3sc22349c
    94. 94
      Barry, N. P. E.; Sadler, P. J. Exploration of the Medical Periodic Table: Towards New Targets. Chem. Commun. 2013, 49, 51065131,  DOI: 10.1039/c3cc41143e
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscentsci.8b00773.

    • Experimental details, complex characterization data, cell viability curves, cell uptake, UV–vis spectra, and dose–response data for Ca2+ uptake inhibition (PDF)

    • X-ray crystal data for C-2 and C-3 (CIF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.