ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Photoswitchable Isoprenoid Lipids Enable Optical Control of Peptide Lipidation

Cite this: ACS Chem. Biol. 2022, 17, 10, 2945–2953
Publication Date (Web):October 4, 2022
https://doi.org/10.1021/acschembio.2c00645
Copyright © 2022 American Chemical Society

    Article Views

    1644

    Altmetric

    -

    Citations

    -
    LEARN ABOUT THESE METRICS
    Read OnlinePDF (4 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Photoswitchable lipids have emerged as attractive tools for the optical control of lipid bioactivity, metabolism, and biophysical properties. Their design is typically based on the incorporation of an azobenzene photoswitch into the hydrophobic lipid tail, which can be switched between its trans- and cis-form using two different wavelengths of light. While glycero- and sphingolipids have been successfully designed to be photoswitchable, isoprenoid lipids have not yet been investigated. Herein, we describe the development of photoswitchable analogs of an isoprenoid lipid and systematically assess their potential for the optical control of various steps in the isoprenylation processing pathway of CaaX proteins in Saccharomyces cerevisiae. One photoswitchable analog of farnesyl diphosphate (AzoFPP-1) allowed effective optical control of substrate prenylation by farnesyltransferase. The subsequent steps of isoprenylation processing (proteolysis by either Ste24 or Rce1 and carboxyl methylation by Ste14) were less affected by photoisomerization of the group introduced into the lipid moiety of the substrate a-factor, a mating pheromone from yeast. We assessed both proteolysis and methylation of the a-factor analogs in vitro and the bioactivity of a fully processed a-factor analog containing the photoswitch, exogenously added to cognate yeast cells. Combined, these data describe the first successful conversion of an isoprenoid lipid into a photolipid and suggest the utility of this approach for the optical control of protein prenylation.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acschembio.2c00645.

    • Supplementary Figures, experimental procedures and compound characterization including 1H NMR, 13C NMR, and 31P NMR spectra and HPLC chromatograms (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article has not yet been cited by other publications.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect