Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
A Chemical Approach to Assess the Impact of Post-translational Modification on MHC Peptide Binding and Effector Cell Engagement
My Activity

Figure 1Loading Img
  • Open Access
Article

A Chemical Approach to Assess the Impact of Post-translational Modification on MHC Peptide Binding and Effector Cell Engagement
Click to copy article linkArticle link copied!

  • Joey J. Kelly
    Joey J. Kelly
    Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
  • Nathaniel Bloodworth
    Nathaniel Bloodworth
    Division of Clinical Pharmacology, Department of MedicineVanderbilt University Medical Center, Nashville, Tennessee 37240, United States
  • Qianqian Shao
    Qianqian Shao
    Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
  • Jeffrey Shabanowitz
    Jeffrey Shabanowitz
    Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
  • Donald Hunt
    Donald Hunt
    Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
    More by Donald Hunt
  • Jens Meiler
    Jens Meiler
    Division of Clinical Pharmacology, Department of MedicineVanderbilt University Medical Center, Nashville, Tennessee 37240, United States
    Institute of Drug Discovery, Faculty of MedicineUniversity of Leipzig, Leipzig, SAC 04103, Germany
    Center for Structural Biology Vanderbilt University, Nashville, Tennessee 37232, United States
    Department of Chemistry Vanderbilt University, Nashville, Tennessee 37232, United States
    More by Jens Meiler
  • Marcos M. Pires*
    Marcos M. Pires
    Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
    *Email: [email protected]
Open PDFSupporting Information (1)

ACS Chemical Biology

Cite this: ACS Chem. Biol. 2024, 19, 9, 1991–2001
Click to copy citationCitation copied!
https://doi.org/10.1021/acschembio.4c00312
Published August 16, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Abstract

Click to copy section linkSection link copied!

The human major histocompatibility complex (MHC) plays a pivotal role in the presentation of peptidic fragments from proteins, which can originate from self-proteins or from nonhuman antigens, such as those produced by viruses or bacteria. To prevent cytotoxicity against healthy cells, thymocytes expressing T cell receptors (TCRs) that recognize self-peptides are removed from circulation (negative selection), thus leaving T cells that recognize nonself-peptides. Current understanding suggests that post-translationally modified (PTM) proteins and the resulting peptide fragments they generate following proteolysis are largely excluded from negative selection; this feature means that PTMs can generate nonself-peptides that potentially contribute to the development of autoreactive T cells and subsequent autoimmune diseases. Although it is well-established that PTMs are prevalent in peptides present on MHCs, the precise mechanisms by which PTMs influence the antigen presentation machinery remain poorly understood. In the present work, we introduce chemical modifications mimicking PTMs on synthetic peptides. This is the first systematic study isolating the impact of PTMs on MHC binding and also their impact on TCR recognition. Our findings reveal various ways PTMs alter antigen presentation, which could have implications for tumor neoantigen presentation.

This publication is licensed under

CC-BY 4.0 .
  • cc licence
  • by licence
Copyright © 2024 The Authors. Published by American Chemical Society

Introduction

Click to copy section linkSection link copied!

To maintain homeostasis, the human immune system must efficiently recognize and destroy cells that have accumulated genetic mutations or have been invaded by pathogenic microorganisms. (1,2) Self-identification to the immune system is a primary mechanism deployed by human cells to flag the presence of nonself-proteins or proteins produced by genetic lesions. (3) To this end, presentation of antigenic peptidic fragments via the major histocompatibility complex (MHC) to surveying immune cells serves as a key system to recognize diseased cells (Figure 1A). (2) MHC is present in the membrane of every nucleated cell and is responsible for presenting both antigenic and endogenous protein fragments to the extracellular space. The recognition of peptide-MHC complexes (pMHCs) by T cell receptors (TCRs) (4) initiates an immune cell response, the nature of which depends on the type of the T cell (primarily CD4+ and CD8+ cells). (5)

Figure 1

Figure 1. (A) Schematic representation of the process involving the proteolytic processing of cytosolic protein into peptides. Subsequent steps lead to the loading of the peptides onto MHC molecules that are then transported to cell surface for presentation. (B). Chemical structures of sarsWT and the PTM modified variants. (C) Flow cytometry analysis of RMA-S cells treated with specific peptide (20 μM) detected by APC conjugated antimouse H-2Kb antibody. Data are represented as mean ± SD (n = 3). P-values were determined by a two-tailed t-test (**** p < 0.0001, ns = not significant). (D) A general schematic representation of how the orientation of the PTM within the presented peptide could negatively impact binding to MHC molecules (right) compared to the unmodified peptide (left). Note that modifications can also occur on the termini of the peptides.

Critically, precise recognition and binding of pMHCs by TCRs must operate with a high level of fidelity since the response to self-peptides in healthy cells can result in cellular injury. (6) Through negative selection, thymocytes expressing TCRs that bind tightly to self-peptides are removed from circulation. (4,7) In theory, changes to the primary sequence of a protein could yield autoreactive pMHC as long as the primary sequence was not part of the negative selection process. Some primary sequence changes can be permanent such as amino acid changes due to gene mutations, while others can be transient, like post-translational modifications (PTMs). In healthy states, enzymatic PTMs are added by specific sets of enzymes to modulate protein activity, localization, and interactions of the protein with other cellular components. (8) Because PTMs are covalent modifications, most are stable enough to persist through protease digestion and loading onto MHC molecules, potentially leading to the presentation of modified peptide during immune surveillance. (9)
Remarkably, human proteins containing PTMs have been shown to be excluded from negative selection, despite the potential that pMHCs with PTM-modified peptides to yield autoreactive cells. (10) It has been hypothesized that this exclusion is due to the relatively low abundance of PTMs in healthy and young adults in the prime phase of negative selection, compared to the unmodified parent proteins. However, thymus involution after adolescence may contribute to age-related autoimmune diseases. (11,12) Additionally, various factors, such as imbalances of PTM writers and erasers in diseased states, cellular stresses, or aging, can dramatically increase the prevalence of PTMs across the proteome. (13) Collectively, the increased level of pMHCs bearing PTMs mean that a higher proportion of potentially autoreactive cells is present. (14−20) In other words, when peptides with PTM modifications are presented, the immune system may perceive them as nonself, triggering a pathogenic autoimmune response. (21−24) A recent example of this phenomenon involved cysteine carboxyethylation by a cellular metabolite, leading to a pathogenic neoantigen presented on pMHC and resulting in autoreactive T cell responses. (25)
Various PTMs have been previously found in pMHCs. (26−34) Notably, increased conversion of arginine to citrulline in the myelin sheath has been shown to lead to the development of self-reactive T cells that exacerbate the progression of autoimmune diseases such as Rheumatoid Arthritis (RA) and Multiple Sclerosis (MS). (35−40) Moreover, there is mounting evidence that pMHCs presenting peptides with PTMs are prevalent in tumors. (41−44) A recent report revealed that PTMs can shape the antigenic landscape. (44) Despite the importance of PTMs in potentially generating autoreactive peptides, several aspects of PTM biology in this field remain poorly defined. One primary barrier to better understanding the impact of PTMs on pMHCs has been the complexity of assigning the role of PTMs in the context of the many steps leading to MHC presentation. These processes may include changes in a protein half-life, altered proteolytic processing to generate presentable peptides, or binding affinity of individual peptides to MHC molecules. Among these factors, peptide binding affinity to MHC molecules is a primary determinant of the peptide repertoire within pMHCs. (45,46) Here, we systematically isolate the impact of PTMs on the ability of the peptides to bind to MHC molecules and be recognized by cognate T cells.

Results and Discussion

Click to copy section linkSection link copied!

In general, PTMs can be challenging to detect in the context of complex biological systems, and the levels of PTMs can change in response to cellular cues. (47) Traditional cellular assays do not typically establish the ratio of PTM proteins relative to their unmodified counterparts. (48) These challenges are amplified when analyzing PTMs on peptides from pMHCs. (49) Extracting peptides from isolated MHCs involves challenging separation steps and downstream mass spectrometry analysis. (50) On the other hand, a top-down approach of treating cells with PTM-modified proteins also poses a challenge because exogenous proteins are not readily processed to yield peptides that are presented by MHC I molecules. (51) Even if the peptides get processed, the ultimate pMHC presentation involves multiple factors including peptide half-life, (52) uptake efficiency, or peptide binding affinity to MHC. Consequently, assessment of how various naturally occurring PTMs impact peptide binding to MHCs and recognition by TCRs has not been systematically conducted.
To address these challenges, we based our approach on the RMA-S cell line, which lacks the TAP importer. (53,54) TAP is essential for delivering peptides from the cytosol to the endoplasmic reticulum. By incubating peptides with RMA-S cells at lower temperatures, we allowed peptides to associate with surface-bound MHCs (Figure S1). Upon increasing the temperature, we observed the stabilization of pMHCs on the cell surface. The quantity of MHC on the cell surface correlated with the binding affinity (55−60) of the peptide to the MHC molecule, quantified via a fluorescently labeled anti-MHC antibody. (61) Given the features of this well-established cell line, we anticipated that RMA-S cells would effectively reveal the impact of PTMs on peptides that bind to MHC with high affinity. Moreover, RMA-S cells have been used extensively for isolating the affinity of a peptide for MHC.
To start, we sought to identify a peptide from SARS-CoV-2 spike protein that could be displayed on MHC molecules. We used NetMHCPan4.0, (62) an algorithm that estimates the propensity of peptides to bind MHC, to select a peptide sequence (ESIVRFPNI, referred to as sarsWT) for stabilization of the specific MHC molecule (H-2Kb) on the surface of RMA-S cells. The peptide was synthesized using standard solid-phase peptide synthesis techniques. The culture medium of the RMA-S cells was supplemented with sarsWT at 26 °C to enable association of the peptide with surface bound MHCs. Following sarsWT incubation, the temperature was raised to 37 °C. Subsequently, the cells were incubated with APC conjugated antimouse H-2Kb antibody and analyzed by flow cytometry where fluorescence is expected to correspond with the amount of sarsWT bound to the MHC. The peptide SNFVSAGI (cntPEP) was used as a negative control since it has been reported to not interact appreciably with H-2Kb. (63) Various concentrations of sarsWT were used to optimize the RMA-S stabilization assay with the goal of increasing the number of pMHC molecules formed on the surface of the cells (Figure S2). We found an increased fluorescence signal corresponding to increasing concentrations of sarsWT, indicating that the peptide bound and stabilized the MHC on the surface of the cell. The amount of stable pMHCs that formed at the surface also saturated at 50 μM of peptide and showed an EC50 of 1.7 μM. These results confirmed the suitability of RMA-S to report on the stabilization of the pMHC complex by sarsWT.
Another parameter to consider is the time in which the MHC binding peptide has to associate with the MHC to reach MHC saturation. To evaluate this time frame, the workflow described above was conducted; however, the peptide incubation time at 37 °C was varied from 2 to 6 h (Figure S3). The results showed that the fluorescent signal increased with increased incubation periods. This is likely due to accumulation of stabilized pMHCs in the presence of excess high-affinity peptide. Nevertheless, a 6 h incubation at 37 °C provided the highest signal-to-noise ratio and was used for downstream assays.
With an optimized protocol in hand, we then synthesized a panel of peptides containing PTMs to investigate their potential impact on MHC binding (Figure 1B). We envisioned that modifying residues on sarsWT would be representative of how the selected modifications may impact binding of different MHC peptides. The specific PTMs chosen were a proline to hydroxyproline, (64,65) arginine to citrulline, (66) and N-terminus acetylation (67) modifications, as they are naturally occurring PTMs. By performing the RMA-S stabilization assay, we found that the citrullination and hydroxy-proline modifications had no significant effect on MHC binding, but the N-terminal acetylation modification completely disrupted MHC binding (Figure 1C). Gratifyingly, there is precedence for N-acetylated peptides to be displaced in MHC class I. (68,69) These results demonstrate that naturally occurring PTMs can alter pMHC complex formation and influence the antigen presentation pathway depending on the interface of the peptide and the MHC molecule (Figure 1D).
Next, we shifted our focus to the peptide epitope SIINFEKL (ovaWT) from the model antigen ovalbumin (OVA) to interrogate how other PTMs impact MHC binding as well as TCR recognition. (70) To this end, we synthesized a new library of OVA peptides containing PTMs on its serine and lysine residues and performed a concentration scan to assess MHC binding using the RMA-S stabilization assay (Figure 2A). Interestingly, there was a significant decrease in MHC binding when serine was phosphorylated despite predictions that this site does not contribute significantly to binding (Figure 2B). (71) Our results highlight the potential deficiency of current models to predict how PTMs could impact peptide binding to MHC molecules given how PTM products can be structurally distinct relative to the side chains of the canonical amino acids.

Figure 2

Figure 2. (A) Chemical structures of ovaWT and the PTM modified variants. (B) Flow cytometry analysis of RMA-S cells treated with specific peptide (20 μM) detected by APC conjugated antimouse H-2Kb antibody. (C) RMA-S cells were incubated with peptide and B3Z T cells overnight at an effector to target ratio of 1:1. β-galactosidase expression was then measured via the colorimetric reagent CPRG on a plate reader at 570 nm. (D) Schematic representation of how PMTs can impact engagement with TCRs. Data are represented as mean ± SD (n = 4). P-values were determined by a two-tailed t test (**** p < 0.0001)

The side chain of lysine (K7) on ovaWT was explored next. Lysine was decorated with different types of PTMs that included three different charge states. Previously, the same lysine on SIINFEKL had been altered with various groups including fluorophores and caging groups. (72−74) Our data showed considerable accommodation of structural alterations to the lysine side chain (Figure 2B). With larger modifications such as biotin, binding levels are altered but the change is not significant. These findings can be explained by the solvent exposed nature of lysine on the pMHC complex and the length of the lysine side chain, which may reduce structurally unfavorable interactions with the MHC molecule (Figure 1D). (75) Critically, for ovaWT the anchor residues that are more important for the overall binding affinity to MHC molecules (Phe5 and Leu8) are not amendable to conventional PTMs. (76)
We then sought to detect changes in peptide binding via a competition assay using the parent cell line (RMA) that has a competent TAP system. To this end, we performed a competition assay using the panel of OVA peptides barring PTM mark in live RMA cells. The assay was performed by coincubating RMA cells individually with PTM-modified peptides and also ovaFl (SIINFEK(FITC)L), in which the γ position of lysine is modified with fluoresceine. ovaFl has long been utilized by the field to interrogate binding of untagged peptides for MHC molecules. A decrease in cellular fluorescence should indicate higher association levels with MHC molecules, thereby informing on the relative affinity of the PTM-modified molecules. Critically, this assay retains MHC molecules within a physiologically relevant context and this alternative readout should complement the RMA-S MHC stabilization assay. As expected, the trend in binding affinity in the competition experiment closely mirrored our results with the RMA-S stabilization assay indicating that the RMA-S assay can accurately report on relative MHC binding affinities in a cellular context (Figure S4). As further evidence and to specifically detect PTM-modified peptides bound on MHC, ovaWT and ovaK7m3 treated RMA-S cells had their MHC-bound peptides eluted and identified using mass spectrometry. The canonical binding peptide, ovaWT, was clearly detected after elution from live RMA-S cells (Figures S5 and S6). Likewise, the ovaK7m3 was detected by mass spectrometry and this provides direct evidence that trimethylation of K7 does not disrupt binding of this peptide to MHC (Figures S7 and S8). While PTMs on solvent exposed residues could potentially retain binding to MHCs, their overall impact may be more strongly reflected in the pMHC engagement with TCRs. TCRs recognize T cell exposed motifs of the bound peptide within pMHCs. (77,78) Therefore, PTMs at these positions may have a greater impact on T cell activation.
To assess the impact of ovaWT PTMs on TCR recognition, we utilized the B3Z T cell hybridoma cell line that contains an OVA specific TCR along with a NFAT-LacZ reporter gene that encodes for β-galactosidase on an IL-2 inducible promoter. (79) Upon B3Z recognition of the OVA pMHC complex on RMA-S cells, IL-2 production promotes β-galactosidase expression, which can hydrolyze chlorophenol red-β-D-galactopyranoside (CPRG), and the resulting color change is representative of activation levels. Our results showed that the PTMs have a much more significant effect on TCR recognition than on peptide binding to MHC (Figure 2C). While relatively modest disruption of TCR recognition was seen for increasing the degree of methylation on the lysine residue, near complete disruption of TCR recognition was seen for all PTMs that imparted a change in charge of either the serine or lysine residue. Additionally, the reduction in TCR recognition for both the phosphoserine and biotinylated OVA cannot be fully explained solely by their decrease in MHC binding. Instead, the PTMs that are well accommodated for MHC binding could be displayed away from the binding cleft and alter engagement with TCRs on cognate T cells (Figure 2D).
To confirm the relevance of these findings in a broader context, we also performed the T cell activation assay on DC2.4 dendritic cells, which also express H-2Kb. Unlike the RMA-S cells, peptides were incubated with DC2.4 cells at 37 °C and were expected to load onto MHC molecules if they display sufficient affinity toward H-2Kb. Satisfyingly, the pattern of T cells activation with PTM modified ovaWT peptides showed a similar profile with DC2.4 cells as RMA-S cells (Figure S9). Our results confirmed that the impact of PTMs on T cell activation may be consistent across multiple cell types. Finally, we sought to investigate whether we could assess PTMs on a peptide that has potential pathological implications. To this end, a number of autoimmune diseases, including RA and MS, have been described to involve the citrullination of arginine. (80) Citrullination is carried out by peptidylarginine deiminases (PADs) and higher levels of citrullinated proteins have been found in older mice relative to young mice. (81) A shift in higher levels of citrullination past the full scope of negative selection could provide a pathway for autoreactivity. Using a peptide originating from a known PAD substrate myelin basic protein (RTAHYGSL, mbpWT) as the baseline (Figure 3A), we found that there was a statistically significant increase in peptide binding to MHC molecules upon citrullination (Figure 3B). This result is consistent with the possibility that PTMs can impact presentation of peptides in the context of disease-linked peptides.

Figure 3

Figure 3. (A) Chemical structures of mbpWT and the PTM modified variant. (B) Flow cytometry analysis of RMA-S cells treated with specific peptide (20 μM) detected by APC conjugated antimouse H-2Kb antibody. (C) NetMHCpan 4.1 predicted binding scores of tumor associated peptides. %Rank is the prediction score for comparing MHC binding across random peptides where a %Rank of 1 indicates that a peptide scored in the top 1% of random peptides. A %Rank of <2 or <0.5 are the cutoffs for weak binding or strong binding to MHC respectively. A %Rank >2 indicates nonbinders. (D) A heat map of wild-type and PTM modified peptides relative MHC binding analyzed by using the RMA-S stabilization assay. RMA-S cells were incubated with peptide at indicated concentration of peptides and detected via flow cytometry with APC conjugated antimouse H-2Kb antibodies. Abbreviations: Cit (citrullination), Yp (phosphorylated tyrosine), Kac (lysine acetylated at the γ position), NAc (acetylation at the α position), and Sp (phosphorylated serine). Data are represented as mean ± SD (n = 4). P-values were determined by a two-tailed t test (**** p < 0.0001).

We then sought to uncover if PTMs are playing a role in influencing the presentation of cancer antigens. However, only a limited number of studies have identified a wide range of PTM modified MHC peptides presented on cancer cells. (43,44) Additionally, the specific impact of these PTMs on peptide-MHC binding remains unclear. To this end, we synthesized 10 PTM modified MHC peptides previously identified on cancer cells and compared their binding affinity to MHC to their respective unmodified versions. (43,44) Out of this library, only 3 PTM modified peptides were found to bind to MHC at the biologically relevant concentrations, highlighting the need for secondary validation assays for peptide libraries identified through mass spectrometry screens (Figure 3C,D). Interestingly, out of the peptides that bound, the PTM versions all showed significant improvement in MHC stabilization on RMA-S cells suggesting that PTMs may enhance the presentation of cancer associated peptides (Figure S10).
To gain additional insight into how PTM s might alter peptide binding affinity to H-2Kb, we simulated peptide binding to H-2Kb using ROSETTA and FlexPepDock. FlexPepDock has been previously benchmarked against MHC-I bound peptides and is capable of generating models with subangstrom accuracy. (82,83) One advantage of FlexPepDock over contemporary machine learning methods is its ability to incorporate noncanonical amino acids and PTM residues by generating custom ROSETTA parameters files; this enables FlexPepDock to generate accurate models of MHC-I bound epitopes containing such residues. (84,85) Furthermore, the binding energy metrics calculated by this application (the reweighted_sc score term) can serve a surrogate for peptide binding affinity to MHC-I. (86) We simulated the binding of the SARS-CoV-2-derived peptide to H-2Kb and generated results recapitulating experimentally derived binding affinity changes (Figure 4). ROSETTA correctly predicts decreased binding affinity for the top-scoring decoys after N-terminal acetylation (corresponding to an increase in the average reweighted_sc term; ROSETTA energy metrics are inversely proportional to binding affinity). ROSETTA predicts either no change or a modest increase in binding affinity for the other two PTMs assessed (Figure 4A). When the top-scoring model for each peptide is visually inspected, we noted significant alterations in the peptide backbone structure for the acetylated N-terminus peptide variant largely confined to the H-2Kb N-terminus binding pocket (Figure 4B), a region that is largely responsible for dictating epitope binding specificity and that cannot easily accommodate large conformational changes. (9) Conversely, R5 citrullinated and P7 hydroxylated variants are located outside the H-2Kb binding pockets and regions tolerant of larger conformational changes (Figure 4C).

Figure 4

Figure 4. Modeling the sars peptide with and without PTMs using FlexPepDock. (A) N-terminal acetylation results in higher reweighted_sc values (and thus lower likelihood of binding) compared to the wild-type peptide, consistent with experimental results (one-way ANOVA and Holm-Sidak posthoc; individual values correspond to the top 0.5% of models generated, and bars represent mean score term values). (B) Top peptide models generated for each epitope positioned in the H-2Kb binding cleft. (C) Side chain modifications compared to the unmodified epitope for the SARS-CoV-2 peptide. Modeling the ovalbumin-derived peptide with and without PTMs using FlexPepDock. (D) Phosphorylation of the N-terminal serine residue generates models with higher average reweighted_sc terms, similar to N-terminal acetylation of the SARS-CoV-2 peptide (one-way ANOVA and Holm-Sidak posthoc; individual values correspond to the top 0.5% of models generated, and bars represent mean score term values). (E) Superimposed peptide backbones for the top peptide models generated for each PTM. (F) Detailed side-chain configurations for the top-scoring models generated by FlexPepDock.

We repeated this analysis on the ovalbumin-derived peptide and each PTM (Figure 4D). Phosphorylation of the N-terminus serine generates structures with higher (and therefore less favorable) score terms, again likely due to disruption of the N-terminus peptide-binding pocket (Figure 4E). Peptide models with the remaining PTMs scored either equivalently or slightly better than their wild-type counterparts. While largely consistent with experimental data, ROSETTA predicts modest increases in peptide binding favorability that are not observed experimentally. This may be a result of biases inherent in ROSETTA’s scoring weights that have not been fully optimized for unusual or noncanonical amino acids such as those modeled here. Alternatively, the assay used for assessing binding affinity may be insufficiently sensitive to detect small changes above certain affinity thresholds. Modifications at the lysine in position 7 alter T cell activation in vitro as illustrated in Figure 2C. In silico, these altered residues do not interact appreciably with peptide binding pockets but instead occur in the region displayed by MHC-I to patrolling T cells (Figure 4F). Methylated and acetylated lysine alters residue charge and hydrophobicity; succinylation adds a negative charge (as opposed to lysine’s normally positively charged side chain); and biotinylation results in the addition of a large aliphatic heteropolycyclic side chain very different in size and character from the native lysine residue.
Finally, we performed a similar analysis with the mbp peptide with and without R1 citrullination and generated in silico results that recapitulated experimental findings (Figure 3). Citrullination at R1 significantly increases the reweighted_sc metrics for the models generated by ROSETTA (Figure S11A). While this modification occurs at the N-terminus binding pocket, it does not appreciably alter peptide backbone configuration (Figure S11A, in contrast to the effects of N-terminal acetylation of the sars peptide). It does, however, alter side chain hydrophobicity and charge. Given that the citrullinated variant is charge-neutral (compared to arginine’s 1+ charge) and given H-2Kb’s preference for hydrophobic or charge-neutral residues at binding pockets, it is reasonable to expect this modification may enhance peptide binding affinity.
Increasingly, there are efforts dedicated to developing therapeutic agents that harness a patient’s immune system against cancerous lesions. (87−89) A prominent example involves the modulation of the programmed death-1 (PD-1) system and its cognate programmed death-ligand 1 (PD-L1). Cancers can often hijack this set of proteins to maintain growth while suppressing the patient immune response against transformed cells. Immune checkpoint inhibitors that disrupt the association of PD-1 and PD-L1 have shown potent anticancer activity by a number of mechanisms but primarily via increased T cell engagement. (90,91) Neoantigens arising from genetic lesions likely provide a pool of antigens that can be presented by cancer MHCs on the cell surface during checkpoint therapy. Importantly, our results suggest that therapeutic agents that increase the presentation of peptides through an altered balance of PTM marks could potentially complement the targeting antigenic pool.
Considering the observed roles of PTMs in MHC binding and recognition by TCRs, it is conceivable that the balance of PTM addition by “writers” and PTM removal by “erasers” can be central in immunological health. Any imbalance that could be driven by age or manufactured by therapeutic interventions could result in pathological state. For example, proteins could naturally exist in high abundance of nonacetylated states on lysine side chains past the peak period of negative selection of T cells. After cancer development, there is an increased level of acetylation, but those marks need to be removed by “erasers” called Lysine Deacetylases (KDAC) to reduce an anticancer immunological response against the cancerous cells. Upon the administration of KDAC inhibitors, a larger pool of acetylated peptide would be presented. As our data showed, the acetylation of lysine that interacts with TCRs would escape negative selection and provide an anticancer immunological response. Such “cryptic” antigens could potentially be driving the pharmacological effect of some PTM modulators in cancer patients. To this end, there are a high number of ongoing studies evaluating the combination of KDAC inhibitors and PD-1/PDL-1 inhibitors across many types of difficult-to-treat tumors. (92−98) We are currently working toward using this strategic platform to demonstrate how KDAC inhibitors directly lead to an immunopeptidome that reveal cryptic antigens able to enhance antitumor immunological activity.

Conclusions

Click to copy section linkSection link copied!

In conclusion, the data presented here demonstrate that naturally occurring PTMs can drastically impact the antigen presentation pathway by altering either their affinity toward MHC molecules or TCR recognition by cognate T cells. In our assays, we showed that some PTMs can disrupt peptide binding to MHC, but primarily on residues that directly engage with MHCs. Conversely, PTMs on residues whose side chains are positioned away from the MHC binding face are more sensitive to TCR recognition due to the altered binding modality with TCRs. To the best of our knowledge, our study is the first systematic analysis of the impact that PTMs have on MHC binding in a whole cell context and how PTMs can also alter T cell activation using live target and effector cells. Provided that negative selection is age-dependent and becomes increasingly diminished past adolescence, it is evident that PTMs could be causal events that result in autoimmune diseases.

Methods

Click to copy section linkSection link copied!

Mammalian Cell Culture

RMA-S cells were a kind gift from Dr. John Sampson. RMA-S cells were maintained in RPMI 1640 media supplemented with 10% fetal bovine serum, 50 IU/mL penicillin, 50 μg/mL streptomycin,1X MEM nonessential amino acid solution (ThermoFisher) and cultured in a humidified atmosphere of 5% CO2 at 37 °C. B3Z cells were kindly provided by Dr. Aaron Esser-Kahn and maintained in RPMI 1640 media supplemented with 10% fetal bovine serum, 50 IU/mL penicillin, 50 μg/mL streptomycin and cultured in a humidified atmosphere of 5% CO2 at 37 °C.

RMA-S Stabilization Assay

105 RMA-S cells were seeded in a treated 96 well plate at 37 °C overnight. The next day, RMA-S cells were moved to a 26 °C incubator for 24–48 h. Following the incubation period, cells were incubated with peptides in culture media at indicated concentrations for 1 h at 26 °C before being moved to the 37 °C incubator for 6 h. The media was then replaced with a 1:100 dilution of APC-labeled antimouse H-2Kd/H-2Dd antibody in culture media for 1 h at 4 °C. Cells were removed from the well plate by vigorous pipetting, fixed with 2% formaldehyde solution, and analyzed using the Attune NxT Flow Cytometer (Thermo Fischer) equipped with a 637 nm laser with 670/14 nm bandpass filter.

Mild Acid Elution

109 RMA-S cells were treated with 20 μM peptide at 26 °C for 1 h. Cells were then warmed to 37 °C for 6 h. RMA-S cells were collected by spinning down at 500 x g for 5 min and thoroughly washed with 1X PBS Buffer pH 7.4 (Invitrogen). Next, 15 mL of mild acid elution (MAE) buffer (0.131 M citric acid, 0.066 M Na2HPO4, 150 mM NaCl, 0.3 μM Aprotinin, and 5 mM iodoacetamide at pH 3.3) was added to RMA-S cells for 2 min. RMA-S cells were then spun down at 4000 x g for 5 min and the supernatant was collected, lyophilized, and stored at −80 °C until further use.

Mass Spectrometry Analysis

The emitter tip of the analytical column was laser-pulled to produce an opening of 2–5 μm, and a 2 mm kasil frit was used in place of the irregular reverse phase (RP) resin. The precolumns (100 μm i.d. x 360 μm O.D. fused silica) were packed to 7 cm with 10 μm C18 beads, and the analytical columns (75 μm i.d. x 360 μm o.d. fused silica) were packed to 10 cm with 3 μm C18 beads. Ova samples and 100 fmol each of the internal standards (Angio and Vaso) were loaded onto the precolumn using a pressure vessel for a 15 min desalting rinse at a flow rate of 100 nL/min with 0.1% acetic acid (AcOH) in water before connecting to the analytical column with a 2 cm Teflon tubing. Reverse phase separation was conducted at a flow rate of 100 nL/min by HPLC using 0.1% AcOH for solvent A and 0.1% AcOH in 60% acetonitrile for solvent B, and a gradient as follows: 0% to 60% solvent B in 60 min, 60% to 100% solvent B in 2 min, 100% solvent B for 4 min, 0% in 2 min, followed by a 22 min equilibration with 100% solvent A. The peptides eluted from the analytical column were electrosprayed into an LTQ-Orbitrap mass spectrometer. MS1 spectra were acquired with a resolution of 60,000, an AGC target of 5e5 and scan range of 300 to 2000 m/z in the Orbitrap analyzer, followed by low resolution data dependent MS2 acquisition in the ion trap with normal scan rate. Only precursor ions with charge +2 and +3 were selected for fragmentation. The top 2 most abundant precursor ions, as well as the targeted +1 and +2 precursor masses for the ovaWT and ovaK7m3 peptides, were selected for collision-activated dissociation (CAD) in the ion trap analyzer with an AGC target of 1e4, a normalized collision energy of 35%, an activation time of 30 ms, and a 2.0 m/z isolation window. If the same precursor ion was selected three times or was detected twice within a 20-s repeat duration, the ion was dynamically excluded for 15 s. The presence of ovaWT and ovaK7m3 peptides was verified by manually inspecting the targeted MS2 spectra for the expected fragmentations and fragment ion masses.

B3Z T Cell Activation

105 RMA-S cells were seeded in a treated 96 well plate at 37 °C overnight. The following day the culture media was replaced with media containing indicated concentration of peptide along with 105 B3Z cells in culture media and coincubated overnight. Cells were then spun down at 500xg for 5 min and washed with 1X PBS a total of two times. Lysis buffer containing 0.2% saponin, 500 μM CPRG reagent, 100 mM MgCl2, and 100 mM β-mercaptoethanol in 1X PBS was added to each well. After 2–4 h absorbance 570 was recorded using a BioTek Epoch 2 microplate reader.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acschembio.4c00312.

  • Additional figures including RMA-S (workflow scheme, concentration scan with sarsWT, and time scan), DC2.4 T Cell activation, modeling of citrullination, and mass spectrometry results from MHC peptides; materials/methods; and synthetic peptide characterization (mass spectrometry and analytical HPLC traces) (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
  • Authors
    • Joey J. Kelly - Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
    • Nathaniel Bloodworth - Division of Clinical Pharmacology, Department of MedicineVanderbilt University Medical Center, Nashville, Tennessee 37240, United States
    • Qianqian Shao - Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
    • Jeffrey Shabanowitz - Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United StatesOrcidhttps://orcid.org/0000-0001-5750-3539
    • Donald Hunt - Department of Chemistry University of Virginia Charlottesville, Virginia 22904, United States
    • Jens Meiler - Division of Clinical Pharmacology, Department of MedicineVanderbilt University Medical Center, Nashville, Tennessee 37240, United StatesInstitute of Drug Discovery, Faculty of MedicineUniversity of Leipzig, Leipzig, SAC 04103, GermanyCenter for Structural Biology Vanderbilt University, Nashville, Tennessee 37232, United StatesDepartment of Chemistry Vanderbilt University, Nashville, Tennessee 37232, United States
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

This study was supported by the NIH grant 2R35GM124893 (M.M.P.), GM037537 (D.H.), NIH 5T32HL144446-05 (N.B.), 5R01AI141661-05 (J.M.), and 5R01DA046138-05 (J.M.).

References

Click to copy section linkSection link copied!

This article references 98 other publications.

  1. 1
    Roche, P. A.; Furuta, K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol 2015, 15, 203216,  DOI: 10.1038/nri3818
  2. 2
    Neefjes, J.; Jongsma, M. L.; Paul, P.; Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol 2011, 11, 823836,  DOI: 10.1038/nri3084
  3. 3
    Pishesha, N.; Harmand, T. J.; Ploegh, H. L. A guide to antigen processing and presentation. Nat. Rev. Immunol 2022, 22, 751764,  DOI: 10.1038/s41577-022-00707-2
  4. 4
    Huppa, J. B.; Davis, M. M. T-cell-antigen recognition and the immunological synapse. Nat. Rev. Immunol 2003, 3, 973983,  DOI: 10.1038/nri1245
  5. 5
    Gorentla, B. K.; Zhong, X. P. T cell Receptor Signal Transduction in T lymphocytes. J. Clin. Cell Immunol. 2012, 2012, 5,  DOI: 10.4172/2155-9899.s12-005
  6. 6
    Jameson, S. C. Maintaining the norm: T-cell homeostasis. Nat. Rev. Immunol 2002, 2, 547556,  DOI: 10.1038/nri853
  7. 7
    Klein, L.; Kyewski, B.; Allen, P. M.; Hogquist, K. A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat. Rev. Immunol 2014, 14, 377391,  DOI: 10.1038/nri3667
  8. 8
    Conibear, A. C. Deciphering protein post-translational modifications using chemical biology tools. Nat. Rev. Chem. 2020, 4, 674695,  DOI: 10.1038/s41570-020-00223-8
  9. 9
    Sandalova, T.; Sala, B. M.; Achour, A. Structural aspects of chemical modifications in the MHC-restricted immunopeptidome; Implications for immune recognition. Front Chem. 2022, 10, 861609  DOI: 10.3389/fchem.2022.861609
  10. 10
    Raposo, B.; Merky, P.; Lundqvist, C.; Yamada, H.; Urbonaviciute, V.; Niaudet, C.; Viljanen, J.; Kihlberg, J.; Kyewski, B.; Ekwall, O.; Holmdahl, R.; Backlund, J. T cells specific for post-translational modifications escape intrathymic tolerance induction. Nat. Commun. 2018, 9, 353,  DOI: 10.1038/s41467-017-02763-y
  11. 11
    Srinivasan, J.; Lancaster, J. N.; Singarapu, N.; Hale, L. P.; Ehrlich, L. I. R.; Richie, E. R. Age-Related Changes in Thymic Central Tolerance. Front Immunol 2021, 12, 676236  DOI: 10.3389/fimmu.2021.676236
  12. 12
    Lancaster, J. N.; Keatinge-Clay, D. E.; Srinivasan, J.; Li, Y.; Selden, H. J.; Nam, S.; Richie, E. R.; Ehrlich, L. I. R. Central tolerance is impaired in the middle-aged thymic environment. Aging Cell 2022, 21, e13624  DOI: 10.1111/acel.13624
  13. 13
    Li, W.; Li, F. F.; Zhang, X.; Lin, H. K.; Xu, C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment (vol 7, 31, 2022). Signal Transduct Tar 2022, 7, 422,  DOI: 10.1038/s41392-021-00825-8
  14. 14
    Michaelsson, E.; Malmstrom, V.; Reis, S.; Engstrom, A.; Burkhardt, H.; Holmdahl, R. T-Cell Recognition of Carbohydrates on Type-Ii Collagen. J. Exp Med. 1994, 180, 745749,  DOI: 10.1084/jem.180.2.745
  15. 15
    Sidney, J.; Vela, J. L.; Friedrich, D.; Kolla, R.; von Herrath, M.; Wesley, J. D.; Sette, A. Low HLA binding of diabetes-associated CD8+T-cell epitopes is increased by post translational modifications. Bmc Immunol 2018, 19, 12,  DOI: 10.1186/s12865-018-0250-3
  16. 16
    McAdam, S. N.; Fleckenstein, B.; Rasmussen, I. B.; Schmid, D. G.; Sandlie, I.; Bogen, B.; Viner, N. J.; Sollid, L. M. T cell recognition of the dominant I-A(k)-restricted hen egg lysozyme epitope: Critical role for asparagine deamidation. J. Exp Med. 2001, 193, 12391246,  DOI: 10.1084/jem.193.11.1239
  17. 17
    Mamula, M. J.; Gee, R. J.; Elliott, J. I.; Sette, A.; Southwood, S.; Jones, P. J.; Blier, P. R. Isoaspartyl post-translational modification triggers autoimmune responses to self-proteins. J. Biol. Chem. 1999, 274, 2232122327,  DOI: 10.1074/jbc.274.32.22321
  18. 18
    Kim, J. K.; Mastronardi, F. G.; Wood, D. D.; Lubman, D. M.; Zand, R.; Moscarello, M. A. Multiple sclerosis: an important role for post-translational modifications of myelin basic protein in pathogenesis. Mol. Cell Proteomics 2003, 2, 453462,  DOI: 10.1074/mcp.M200050-MCP200
  19. 19
    Raposo, B.; Merky, P.; Lundqvist, C.; Yamada, H.; Urbonaviciute, V.; Niaudet, C.; Viljanen, J.; Kihlberg, J.; Kyewski, B.; Ekwall, O.; Holmdahl, R.; Backlund, J. T cells specific for post-translational modifications escape intrathymic tolerance induction. Nat. Commun. 2018, 9, 353,  DOI: 10.1038/s41467-017-02763-y
  20. 20
    Doyle, H. A.; Mamula, M. J. Autoantigenesis: the evolution of protein modifications in autoimmune disease. Curr. Opin Immunol 2012, 24, 112118,  DOI: 10.1016/j.coi.2011.12.003
  21. 21
    Clement, C. C.; Moncrieffe, H.; Lele, A.; Janow, G.; Becerra, A.; Bauli, F.; Saad, F. A.; Perino, G.; Montagna, C.; Cobelli, N.; Hardin, J.; Stern, L. J.; Ilowite, N.; Porcelli, S. A.; Santambrogio, L. Autoimmune response to transthyretin in juvenile idiopathic arthritis. JCI Insight 2016, 1, e85633  DOI: 10.1172/jci.insight.85633
  22. 22
    Clement, C. C.; Nanaware, P. P.; Yamazaki, T.; Negroni, M. P.; Ramesh, K.; Morozova, K.; Thangaswamy, S.; Graves, A.; Kim, H. J.; Li, T. W.; Vigano, M.; Soni, R. K.; Gadina, M.; Tse, H. Y.; Galluzzi, L.; Roche, P. A.; Denzin, L. K.; Stern, L. J.; Santambrogio, L. Pleiotropic consequences of metabolic stress for the major histocompatibility complex class II molecule antigen processing and presentation machinery. Immunity 2021, 54, 721736,  DOI: 10.1016/j.immuni.2021.02.019
  23. 23
    Clement, C. C.; Osan, J.; Buque, A.; Nanaware, P. P.; Chang, Y. C.; Perino, G.; Shetty, M.; Yamazaki, T.; Tsai, W. L.; Urbanska, A. M.; Calvo-Calle, J. M.; Ramsamooj, S.; Ramsamooj, S.; Vergani, D.; Mieli-Vergani, G.; Terziroli Beretta-Piccoli, B.; Gadina, M.; Montagna, C.; Goncalves, M. D.; Sallusto, F.; Galluzzi, L.; Soni, R. K.; Stern, L. J.; Santambrogio, L. PDIA3 epitope-driven immune autoreactivity contributes to hepatic damage in type 2 diabetes. Sci. Immunol. 2022, 7, eabl3795  DOI: 10.1126/sciimmunol.abl3795
  24. 24
    Sidney, J.; Vela, J. L.; Friedrich, D.; Kolla, R.; von Herrath, M.; Wesley, J. D.; Sette, A. Low HLA binding of diabetes-associated CD8+ T-cell epitopes is increased by post translational modifications. BMC Immunol. 2018, 19, 12,  DOI: 10.1186/s12865-018-0250-3
  25. 25
    Zhai, Y.; Chen, L.; Zhao, Q.; Zheng, Z. H.; Chen, Z. N.; Bian, H.; Yang, X.; Lu, H. Y.; Lin, P.; Chen, X.; Chen, R.; Sun, H. Y.; Fan, L. N.; Zhang, K.; Wang, B.; Sun, X. X.; Feng, Z.; Zhu, Y. M.; Zhou, J. S.; Chen, S. R.; Zhang, T.; Chen, S. Y.; Chen, J. J.; Zhang, K.; Wang, Y.; Chang, Y.; Zhang, R.; Zhang, B.; Wang, L. J.; Li, X. M.; He, Q.; Yang, X. M.; Nan, G.; Xie, R. H.; Yang, L.; Yang, J. H.; Zhu, P. Cysteine carboxyethylation generates neoantigens to induce HLA-restricted autoimmunity. Science 2023, 379, eabg2482  DOI: 10.1126/science.abg2482
  26. 26
    Petersen, J.; Purcell, A. W.; Rossjohn, J. Post-translationally modified T cell epitopes: immune recognition and immunotherapy. J. Mol. Med. 2009, 87, 10451051,  DOI: 10.1007/s00109-009-0526-4
  27. 27
    Marcilla, M.; Alpizar, A.; Lombardia, M.; Ramos-Fernandez, A.; Ramos, M.; Albar, J. P. Increased diversity of the HLA-B40 ligandome by the presentation of peptides phosphorylated at their main anchor residue. Mol. Cell Proteomics 2014, 13, 462474,  DOI: 10.1074/mcp.M113.034314
  28. 28
    Bassani-Sternberg, M.; Braunlein, E.; Klar, R.; Engleitner, T.; Sinitcyn, P.; Audehm, S.; Straub, M.; Weber, J.; Slotta-Huspenina, J.; Specht, K.; Martignoni, M. E.; Werner, A.; Hein, R.; D, H. B.; Peschel, C.; Rad, R.; Cox, J.; Mann, M.; Krackhardt, A. M. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat. Commun. 2016, 7, 13404,  DOI: 10.1038/ncomms13404
  29. 29
    Alpizar, A.; Marino, F.; Ramos-Fernandez, A.; Lombardia, M.; Jeko, A.; Pazos, F.; Paradela, A.; Santiago, C.; Heck, A. J.; Marcilla, M. A Molecular Basis for the Presentation of Phosphorylated Peptides by HLA-B Antigens. Mol. Cell Proteomics 2017, 16, 181193,  DOI: 10.1074/mcp.M116.063800
  30. 30
    Malaker, S. A.; Penny, S. A.; Steadman, L. G.; Myers, P. T.; Loke, J. C.; Raghavan, M.; Bai, D. L.; Shabanowitz, J.; Hunt, D. F.; Cobbold, M. Identification of Glycopeptides as Posttranslationally Modified Neoantigens in Leukemia. Cancer Immunol Res. 2017, 5, 376384,  DOI: 10.1158/2326-6066.CIR-16-0280
  31. 31
    Marino, F.; Mommen, G. P.; Jeko, A.; Meiring, H. D.; van Gaans-van den Brink, J. A.; Scheltema, R. A.; van Els, C. A.; Heck, A. J. Arginine (Di)methylated Human Leukocyte Antigen Class I Peptides Are Favorably Presented by HLA-B*07. J. Proteome Res. 2017, 16, 3444,  DOI: 10.1021/acs.jproteome.6b00528
  32. 32
    Mohammed, F.; Stones, D. H.; Zarling, A. L.; Willcox, C. R.; Shabanowitz, J.; Cummings, K. L.; Hunt, D. F.; Cobbold, M.; Engelhard, V. H.; Willcox, B. E. The antigenic identity of human class I MHC phosphopeptides is critically dependent upon phosphorylation status. Oncotarget 2017, 8, 5416054172,  DOI: 10.18632/oncotarget.16952
  33. 33
    Sandalova, T.; Sala, B. M.; Achour, A. Structural aspects of chemical modifications in the MHC-restricted immunopeptidome. Implications for immune recognition, Front Chem. 2022, 10, 861609  DOI: 10.3389/fchem.2022.861609
  34. 34
    Mangalaparthi, K. K.; Madugundu, A. K.; Ryan, Z. C.; Garapati, K.; Peterson, J. A.; Dey, G.; Prakash, A.; Pandey, A. Digging deeper into the immunopeptidome: characterization of post-translationally modified peptides presented by MHC I. J. Proteins Proteom 2021, 12, 151160,  DOI: 10.1007/s42485-021-00066-x
  35. 35
    Ireland, J.; Herzog, J.; Unanue, E. R. Cutting edge: Unique T cells that recognize citrullinated peptides are a feature of protein immunization. J. Immunol 2006, 177, 14211425,  DOI: 10.4049/jimmunol.177.3.1421
  36. 36
    Huseby, E. S.; Sather, B.; Huseby, P. G.; Goverman, J. Age-dependent T cell tolerance and autoimmunity to myelin basic protein. Immunity 2001, 14, 471481,  DOI: 10.1016/S1074-7613(01)00127-3
  37. 37
    Malmstrom, V.; Catrina, A. I.; Klareskog, L. The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting. Nat. Rev. Immunol 2017, 17, 6075,  DOI: 10.1038/nri.2016.124
  38. 38
    Curran, A. M.; Naik, P.; Giles, J. T.; Darrah, E. PAD enzymes in rheumatoid arthritis: pathogenic effectors and autoimmune targets. Nat. Rev. Rheumatol 2020, 16, 301315,  DOI: 10.1038/s41584-020-0409-1
  39. 39
    Yang, L.; Tan, D.; Piao, H. Myelin Basic Protein Citrullination in Multiple Sclerosis: A Potential Therapeutic Target for the Pathology. Neurochem. Res. 2016, 41, 18451856,  DOI: 10.1007/s11064-016-1920-2
  40. 40
    Hill, J. A.; Southwood, S.; Sette, A.; Jevnikar, A. M.; Bell, D. A.; Cairns, E. Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J. Immunol 2003, 171, 538541,  DOI: 10.4049/jimmunol.171.2.538
  41. 41
    Ramarathinam, S. H.; Croft, N. P.; Illing, P. T.; Faridi, P.; Purcell, A. W. Employing proteomics in the study of antigen presentation: an update. Expert Rev. Proteomics 2018, 15, 637645,  DOI: 10.1080/14789450.2018.1509000
  42. 42
    Jaeger, A. M.; Stopfer, L. E.; Ahn, R.; Sanders, E. A.; Sandel, D. A.; Freed-Pastor, W. A.; Rideout, W. M., 3rd; Naranjo, S.; Fessenden, T.; Nguyen, K. B.; Winter, P. S.; Kohn, R. E.; Westcott, P. M. K.; Schenkel, J. M.; Shanahan, S. L.; Shalek, A. K.; Spranger, S.; White, F. M.; Jacks, T. Deciphering the immunopeptidome in vivo reveals new tumour antigens. Nature 2022, 607, 149155,  DOI: 10.1038/s41586-022-04839-2
  43. 43
    Yi, X.; Liao, Y.; Wen, B.; Li, K.; Dou, Y.; Savage, S. R.; Zhang, B. caAtlas: An immunopeptidome atlas of human cancer. iScience 2021, 24, 103107  DOI: 10.1016/j.isci.2021.103107
  44. 44
    Kacen, A.; Javitt, A.; Kramer, M. P.; Morgenstern, D.; Tsaban, T.; Shmueli, M. D.; Teo, G. C.; da Veiga Leprevost, F.; Barnea, E.; Yu, F.; Admon, A.; Eisenbach, L.; Samuels, Y.; Schueler-Furman, O.; Levin, Y.; Nesvizhskii, A. I.; Merbl, Y. Post-translational modifications reshape the antigenic landscape of the MHC I immunopeptidome in tumors. Nat. Biotechnol. 2023, 41, 239251,  DOI: 10.1038/s41587-022-01464-2
  45. 45
    Garstka, M. A.; Fish, A.; Celie, P. H.; Joosten, R. P.; Janssen, G. M.; Berlin, I.; Hoppes, R.; Stadnik, M.; Janssen, L.; Ovaa, H.; van Veelen, P. A.; Perrakis, A.; Neefjes, J. The first step of peptide selection in antigen presentation by MHC class I molecules. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 15051510,  DOI: 10.1073/pnas.1416543112
  46. 46
    Sette, A.; Vitiello, A.; Reherman, B.; Fowler, P.; Nayersina, R.; Kast, W. M.; Melief, C. J.; Oseroff, C.; Yuan, L.; Ruppert, J.; Sidney, J.; del Guercio, M. F.; Southwood, S.; Kubo, R. T.; Chesnut, R. W.; Grey, H. M.; Chisari, F. V. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J. Immunol 1994, 153, 55865592,  DOI: 10.4049/jimmunol.153.12.5586
  47. 47
    Deribe, Y. L.; Pawson, T.; Dikic, I. Post-translational modifications in signal integration. Nat. Struct Mol. Biol. 2010, 17, 666672,  DOI: 10.1038/nsmb.1842
  48. 48
    Zhao, Y.; Jensen, O. N. Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics 2009, 9, 46324641,  DOI: 10.1002/pmic.200900398
  49. 49
    Solleder, M.; Guillaume, P.; Racle, J.; Michaux, J.; Pak, H. S.; Muller, M.; Coukos, G.; Bassani-Sternberg, M.; Gfeller, D. Mass Spectrometry Based Immunopeptidomics Leads to Robust Predictions of Phosphorylated HLA Class I Ligands. Mol. Cell Proteomics 2020, 19, 390404,  DOI: 10.1074/mcp.TIR119.001641
  50. 50
    Hassan, C.; Kester, M. G.; Oudgenoeg, G.; de Ru, A. H.; Janssen, G. M.; Drijfhout, J. W.; Spaapen, R. M.; Jimenez, C. R.; Heemskerk, M. H.; Falkenburg, J. H.; van Veelen, P. A. Accurate quantitation of MHC-bound peptides by application of isotopically labeled peptide MHC complexes. J. Proteomics 2014, 109, 240244,  DOI: 10.1016/j.jprot.2014.07.009
  51. 51
    Colbert, J. D.; Cruz, F. M.; Rock, K. L. Cross-presentation of exogenous antigens on MHC I molecules. Curr. Opin Immunol 2020, 64, 18,  DOI: 10.1016/j.coi.2019.12.005
  52. 52
    Lee, J. M.; Hammaren, H. M.; Savitski, M. M.; Baek, S. H. Control of protein stability by post-translational modifications. Nat. Commun. 2023, 14, 201,  DOI: 10.1038/s41467-023-35795-8
  53. 53
    Ljunggren, H. G.; Stam, N.; Ohlen, C.; Neefjes, J. J.; Hoglund, P.; Heemels, M. T.; Bastin, J.; Schumacher, T.; Townsend, A.; Karre, K.; Ploegh, H. L. Empty Mhc Class-I Molecules Come out in the Cold. Scand J. Immunol 1990, 32, 403403,  DOI: 10.1038/346476a0
  54. 54
    Schumacher, T. N.; Heemels, M. T.; Neefjes, J. J.; Kast, W. M.; Melief, C. J.; Ploegh, H. L. Direct binding of peptide to empty MHC class I molecules on intact cells and in vitro. Cell 1990, 62, 563567,  DOI: 10.1016/0092-8674(90)90020-F
  55. 55
    Saito, Y.; Peterson, P. A.; Matsumura, M. Quantitation of peptide anchor residue contributions to class I major histocompatibility complex molecule binding. J. Biol. Chem. 1993, 268, 2130921317,  DOI: 10.1016/S0021-9258(19)36925-X
  56. 56
    Ross, P.; Holmes, J. C.; Gojanovich, G. S.; Hess, P. R. A cell-based MHC stabilization assay for the detection of peptide binding to the canine classical class I molecule, DLA-88. Vet. Immunol. Immunopathol. 2012, 150, 206212,  DOI: 10.1016/j.vetimm.2012.08.012
  57. 57
    Apostolopoulos, V.; Haurum, J. S.; McKenzie, I. F. MUC1 peptide epitopes associated with five different H-2 class I molecules. Eur. J. Immunol. 1997, 27, 25792587,  DOI: 10.1002/eji.1830271017
  58. 58
    Cerundolo, V.; Elliott, T.; Elvin, J.; Bastin, J.; Rammensee, H. G.; Townsend, A. The binding affinity and dissociation rates of peptides for class I major histocompatibility complex molecules. Eur. J. Immunol. 1991, 21, 20692075,  DOI: 10.1002/eji.1830210915
  59. 59
    De Silva, A. D.; Boesteanu, A.; Song, R.; Nagy, N.; Harhaj, E.; Harding, C. V.; Joyce, S. Thermolabile H-2Kb molecules expressed by transporter associated with antigen processing-deficient RMA-S cells are occupied by low-affinity peptides. J. Immunol 1999, 163, 44134420,  DOI: 10.4049/jimmunol.163.8.4413
  60. 60
    Feltkamp, M. C.; Vierboom, M. P.; Kast, W. M.; Melief, C. J. Efficient MHC class I-peptide binding is required but does not ensure MHC class I-restricted immunogenicity. Mol. Immunol 1994, 31, 13911401,  DOI: 10.1016/0161-5890(94)90155-4
  61. 61
    Elvin, J.; Potter, C.; Elliott, T.; Cerundolo, V.; Townsend, A. A method to quantify binding of unlabeled peptides to class I MHC molecules and detect their allele specificity. J. Immunol Methods 1993, 158, 161171,  DOI: 10.1016/0022-1759(93)90210-X
  62. 62
    Jurtz, V.; Paul, S.; Andreatta, M.; Marcatili, P.; Peters, B.; Nielsen, M. NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J. Immunol 2017, 199, 33603368,  DOI: 10.4049/jimmunol.1700893
  63. 63
    Dubey, P.; Hendrickson, R. C.; Meredith, S. C.; Siegel, C. T.; Shabanowitz, J.; Skipper, J. C. A.; Engelhard, V. H.; Hunt, D. F.; Schreiber, H. The immunodominant antigen of an ultraviolet-induced regressor tumor is generated by a somatic point mutation in the DEAD box helicase p68. J. Exp Med. 1997, 185, 695705,  DOI: 10.1084/jem.185.4.695
  64. 64
    Kjellen, P.; Brunsberg, U.; Broddefalk, J.; Hansen, B.; Vestberg, M.; Ivarsson, I.; Engstrom, A.; Svejgaard, A.; Kihlberg, J.; Fugger, L.; Holmdahl, R. The structural basis of MHC control of collagen-induced arthritis; binding of the immunodominant type II collagen 256–270 glycopeptide to H-2Aq and H-2Ap molecules. Eur. J. Immunol. 1998, 28, 755767,  DOI: 10.1002/(SICI)1521-4141(199802)28:02<755::AID-IMMU755>3.0.CO;2-2
  65. 65
    Rosloniec, E. F.; Whittington, K. B.; Zaller, D. M.; Kang, A. H. HLA-DR1 (DRB1*0101) and DR4 (DRB1*0401) use the same anchor residues for binding an immunodominant peptide derived from human type II collagen. J. Immunol 2002, 168, 253259,  DOI: 10.4049/jimmunol.168.1.253
  66. 66
    Huizinga, T. W.; Amos, C. I.; van der Helm-van Mil, A. H.; Chen, W.; van Gaalen, F. A.; Jawaheer, D.; Schreuder, G. M.; Wener, M.; Breedveld, F. C.; Ahmad, N.; Lum, R. F.; de Vries, R. R.; Gregersen, P. K.; Toes, R. E.; Criswell, L. A. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum 2005, 52, 34333438,  DOI: 10.1002/art.21385
  67. 67
    Yague, J.; Alvarez, I.; Rognan, D.; Ramos, M.; Vazquez, J.; de Castro, J. A. An N-acetylated natural ligand of human histocompatibility leukocyte antigen (HLA)-B39. Classical major histocompatibility complex class I proteins bind peptides with a blocked NH(2) terminus in vivo. J. Exp Med. 2000, 191, 20832092,  DOI: 10.1084/jem.191.12.2083
  68. 68
    Sun, M.; Liu, J.; Qi, J.; Tefsen, B.; Shi, Y.; Yan, J.; Gao, G. F. Nalpha-terminal acetylation for T cell recognition: molecular basis of MHC class I-restricted nalpha-acetylpeptide presentation. J. Immunol 2014, 192, 55095519,  DOI: 10.4049/jimmunol.1400199
  69. 69
    de Haan, E. C.; Wauben, M. H.; Wagenaar-Hilbers, J. P.; Grosfeld-Stulemeyer, M. C.; Rijkers, D. T.; Moret, E. E.; Liskamp, R. M. Stabilization of peptide guinea pig myelin basic protein 72–85 by N-terminal acetylation-implications for immunological studies. Mol. Immunol 2004, 40, 943948,  DOI: 10.1016/j.molimm.2003.10.015
  70. 70
    Shastri, N.; Gonzalez, F. Endogenous generation and presentation of the ovalbumin peptide/Kb complex to T cells. J. Immunol 1993, 150, 27242736,  DOI: 10.4049/jimmunol.150.7.2724
  71. 71
    Koch, C. P.; Perna, A. M.; Pillong, M.; Todoroff, N. K.; Wrede, P.; Folkers, G.; Hiss, J. A.; Schneider, G. Scrutinizing MHC-I binding peptides and their limits of variation. PLoS Comput. Biol. 2013, 9, e1003088  DOI: 10.1371/journal.pcbi.1003088
  72. 72
    van der Gracht, A. M. F.; de Geus, M. A. R.; Camps, M. G. M.; Ruckwardt, T. J.; Sarris, A. J. C.; Bremmers, J.; Maurits, E.; Pawlak, J. B.; Posthoorn, M. M.; Bonger, K. M.; Filippov, D. V.; Overkleeft, H. S.; Robillard, M. S.; Ossendorp, F.; van Kasteren, S. I. Chemical Control over T-Cell Activation in Vivo Using Deprotection of trans-Cyclooctene-Modified Epitopes. ACS Chem. Biol. 2018, 13, 15691576,  DOI: 10.1021/acschembio.8b00155
  73. 73
    Fremont, D. H.; Stura, E. A.; Matsumura, M.; Peterson, P. A.; Wilson, I. A. Crystal structure of an H-2Kb-ovalbumin peptide complex reveals the interplay of primary and secondary anchor positions in the major histocompatibility complex binding groove. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 24792483,  DOI: 10.1073/pnas.92.7.2479
  74. 74
    Swee, L. K.; Guimaraes, C. P.; Sehrawat, S.; Spooner, E.; Barrasa, M. I.; Ploegh, H. L. Sortase-mediated modification of alphaDEC205 affords optimization of antigen presentation and immunization against a set of viral epitopes. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 14281433,  DOI: 10.1073/pnas.1214994110
  75. 75
    Fremont, D. H.; Stura, E. A.; Matsumura, M.; Peterson, P. A.; Wilson, I. A. Crystal-Structure of an H-2k(B)-Ovalbumin Peptide Complex Reveals the Interplay of Primary and Secondary Anchor Positions in the Major Histocompatibility Complex Binding Groove. P Natl. Acad. Sci. USA 1995, 92, 24792483,  DOI: 10.1073/pnas.92.7.2479
  76. 76
    Deres, K.; Beck, W.; Faath, S.; Jung, G.; Rammensee, H. G. MHC/peptide binding studies indicate hierarchy of anchor residues. Cell Immunol 1993, 151, 158167,  DOI: 10.1006/cimm.1993.1228
  77. 77
    Bremel, R. D.; Homan, E. J. Frequency Patterns of T-Cell Exposed Amino Acid Motifs in Immunoglobulin Heavy Chain Peptides Presented by MHCs. Front. Immunol. 2014, 5, 541,  DOI: 10.3389/fimmu.2014.00541
  78. 78
    Reddehase, M. J.; Rothbard, J. B.; Koszinowski, U. H. A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 1989, 337, 651653,  DOI: 10.1038/337651a0
  79. 79
    Karttunen, J.; Shastri, N. Measurement of ligand-induced activation in single viable T cells using the lacZ reporter gene. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 39723976,  DOI: 10.1073/pnas.88.9.3972
  80. 80
    Curran, A. M.; Girgis, A. A.; Jang, Y.; Crawford, J. D.; Thomas, M. A.; Kawalerski, R.; Coller, J.; Bingham, C. O., 3rd; Na, C. H.; Darrah, E. Citrullination modulates antigen processing and presentation by revealing cryptic epitopes in rheumatoid arthritis. Nat. Commun. 2023, 14, 1061,  DOI: 10.1038/s41467-023-36620-y
  81. 81
    Martinod, K.; Witsch, T.; Erpenbeck, L.; Savchenko, A.; Hayashi, H.; Cherpokova, D.; Gallant, M.; Mauler, M.; Cifuni, S. M.; Wagner, D. D. Peptidylarginine deiminase 4 promotes age-related organ fibrosis. J. Exp Med. 2017, 214, 439458,  DOI: 10.1084/jem.20160530
  82. 82
    Liu, T.; Pan, X.; Chao, L.; Tan, W.; Qu, S.; Yang, L.; Wang, B.; Mei, H. Subangstrom accuracy in pHLA-I modeling by Rosetta FlexPepDock refinement protocol. J. Chem. Inf Model 2014, 54, 22332242,  DOI: 10.1021/ci500393h
  83. 83
    Raveh, B.; London, N.; Schueler-Furman, O. Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 2010, 78, 20292040,  DOI: 10.1002/prot.22716
  84. 84
    Bloodworth, N.; Barbaro, N. R.; Moretti, R.; Harrison, D. G.; Meiler, J. Rosetta FlexPepDock to predict peptide-MHC binding: An approach for non-canonical amino acids. PLoS One 2022, 17, e0275759  DOI: 10.1371/journal.pone.0275759
  85. 85
    Tivon, B.; Gabizon, R.; Somsen, B. A.; Cossar, P. J.; Ottmann, C.; London, N. Covalent flexible peptide docking in Rosetta. Chem. Sci. 2021, 12, 1083610847,  DOI: 10.1039/D1SC02322E
  86. 86
    Alam, N.; Schueler-Furman, O. Modeling Peptide-Protein Structure and Binding Using Monte Carlo Sampling Approaches: Rosetta FlexPepDock and FlexPepBind. Methods Mol. Biol. 2017, 1561, 139169,  DOI: 10.1007/978-1-4939-6798-8_9
  87. 87
    Marin-Acevedo, J. A.; Dholaria, B.; Soyano, A. E.; Knutson, K. L.; Chumsri, S.; Lou, Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J. Hematol. Oncol. 2018, 11, 39,  DOI: 10.1186/s13045-018-0582-8
  88. 88
    Topalian, S. L.; Hodi, F. S.; Brahmer, J. R.; Gettinger, S. N.; Smith, D. C.; McDermott, D. F.; Powderly, J. D.; Carvajal, R. D.; Sosman, J. A.; Atkins, M. B.; Leming, P. D.; Spigel, D. R.; Antonia, S. J.; Horn, L.; Drake, C. G.; Pardoll, D. M.; Chen, L.; Sharfman, W. H.; Anders, R. A.; Taube, J. M.; McMiller, T. L.; Xu, H.; Korman, A. J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G. D.; Gupta, A.; Wigginton, J. M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J. Med. 2012, 366, 24432454,  DOI: 10.1056/NEJMoa1200690
  89. 89
    Tumeh, P. C.; Harview, C. L.; Yearley, J. H.; Shintaku, I. P.; Taylor, E. J.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; West, A. N.; Carmona, M.; Kivork, C.; Seja, E.; Cherry, G.; Gutierrez, A. J.; Grogan, T. R.; Mateus, C.; Tomasic, G.; Glaspy, J. A.; Emerson, R. O.; Robins, H.; Pierce, R. H.; Elashoff, D. A.; Robert, C.; Ribas, A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568571,  DOI: 10.1038/nature13954
  90. 90
    Riaz, N.; Morris, L.; Havel, J. J.; Makarov, V.; Desrichard, A.; Chan, T. A. The role of neoantigens in response to immune checkpoint blockade. Int. Immunol. 2016, 28, 411419,  DOI: 10.1093/intimm/dxw019
  91. 91
    Gubin, M. M.; Zhang, X.; Schuster, H.; Caron, E.; Ward, J. P.; Noguchi, T.; Ivanova, Y.; Hundal, J.; Arthur, C. D.; Krebber, W. J.; Mulder, G. E.; Toebes, M.; Vesely, M. D.; Lam, S. S.; Korman, A. J.; Allison, J. P.; Freeman, G. J.; Sharpe, A. H.; Pearce, E. L.; Schumacher, T. N.; Aebersold, R.; Rammensee, H. G.; Melief, C. J.; Mardis, E. R.; Gillanders, W. E.; Artyomov, M. N.; Schreiber, R. D. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014, 515, 577581,  DOI: 10.1038/nature13988
  92. 92
    Woods, D. M.; Sodre, A. L.; Villagra, A.; Sarnaik, A.; Sotomayor, E. M.; Weber, J. HDAC Inhibition Upregulates PD-1 Ligands in Melanoma and Augments Immunotherapy with PD-1 Blockade. Cancer Immunol Res. 2015, 3, 13751385,  DOI: 10.1158/2326-6066.CIR-15-0077-T
  93. 93
    Gameiro, S. R.; Malamas, A. S.; Tsang, K. Y.; Ferrone, S.; Hodge, J. W. Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells. Oncotarget 2016, 7, 73907402,  DOI: 10.18632/oncotarget.7180
  94. 94
    Llopiz, D.; Ruiz, M.; Villanueva, L.; Iglesias, T.; Silva, L.; Egea, J.; Lasarte, J. J.; Pivette, P.; Trochon-Joseph, V.; Vasseur, B.; Dixon, G.; Sangro, B.; Sarobe, P. Enhanced anti-tumor efficacy of checkpoint inhibitors in combination with the histone deacetylase inhibitor Belinostat in a murine hepatocellular carcinoma model. Cancer Immunol Immunother 2019, 68, 379393,  DOI: 10.1007/s00262-018-2283-0
  95. 95
    Burke, B.; Eden, C.; Perez, C.; Belshoff, A.; Hart, S.; Plaza-Rojas, L.; Delos Reyes, M.; Prajapati, K.; Voelkel-Johnson, C.; Henry, E.; Gupta, G.; Guevara-Patino, J. Inhibition of Histone Deacetylase (HDAC) Enhances Checkpoint Blockade Efficacy by Rendering Bladder Cancer Cells Visible for T Cell-Mediated Destruction. Front. Oncol. 2020, 10, 699,  DOI: 10.3389/fonc.2020.00699
  96. 96
    Baretti, M.; Yarchoan, M. Epigenetic modifiers synergize with immune-checkpoint blockade to enhance long-lasting antitumor efficacy. J. Clin Invest 2021, 131, e151002  DOI: 10.1172/JCI151002
  97. 97
    Truong, A. S.; Zhou, M.; Krishnan, B.; Utsumi, T.; Manocha, U.; Stewart, K. G.; Beck, W.; Rose, T. L.; Milowsky, M. I.; He, X.; Smith, C. C.; Bixby, L. M.; Perou, C. M.; Wobker, S. E.; Bailey, S. T.; Vincent, B. G.; Kim, W. Y. Entinostat induces antitumor immune responses through immune editing of tumor neoantigens. J. Clin Invest 2021, 131, e138560  DOI: 10.1172/JCI138560
  98. 98
    Zhang, P.; Du, Y.; Bai, H.; Wang, Z.; Duan, J.; Wang, X.; Zhong, J.; Wan, R.; Xu, J.; He, X.; Wang, D.; Fei, K.; Yu, R.; Tian, J.; Wang, J. Optimized dose selective HDAC inhibitor tucidinostat overcomes anti-PD-L1 antibody resistance in experimental solid tumors. BMC Med. 2022, 20, 435,  DOI: 10.1186/s12916-022-02598-5

Cited By

Click to copy section linkSection link copied!

This article has not yet been cited by other publications.

Open PDF

ACS Chemical Biology

Cite this: ACS Chem. Biol. 2024, 19, 9, 1991–2001
Click to copy citationCitation copied!
https://doi.org/10.1021/acschembio.4c00312
Published August 16, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Article Views

1207

Altmetric

-

Citations

-
Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. (A) Schematic representation of the process involving the proteolytic processing of cytosolic protein into peptides. Subsequent steps lead to the loading of the peptides onto MHC molecules that are then transported to cell surface for presentation. (B). Chemical structures of sarsWT and the PTM modified variants. (C) Flow cytometry analysis of RMA-S cells treated with specific peptide (20 μM) detected by APC conjugated antimouse H-2Kb antibody. Data are represented as mean ± SD (n = 3). P-values were determined by a two-tailed t-test (**** p < 0.0001, ns = not significant). (D) A general schematic representation of how the orientation of the PTM within the presented peptide could negatively impact binding to MHC molecules (right) compared to the unmodified peptide (left). Note that modifications can also occur on the termini of the peptides.

    Figure 2

    Figure 2. (A) Chemical structures of ovaWT and the PTM modified variants. (B) Flow cytometry analysis of RMA-S cells treated with specific peptide (20 μM) detected by APC conjugated antimouse H-2Kb antibody. (C) RMA-S cells were incubated with peptide and B3Z T cells overnight at an effector to target ratio of 1:1. β-galactosidase expression was then measured via the colorimetric reagent CPRG on a plate reader at 570 nm. (D) Schematic representation of how PMTs can impact engagement with TCRs. Data are represented as mean ± SD (n = 4). P-values were determined by a two-tailed t test (**** p < 0.0001)

    Figure 3

    Figure 3. (A) Chemical structures of mbpWT and the PTM modified variant. (B) Flow cytometry analysis of RMA-S cells treated with specific peptide (20 μM) detected by APC conjugated antimouse H-2Kb antibody. (C) NetMHCpan 4.1 predicted binding scores of tumor associated peptides. %Rank is the prediction score for comparing MHC binding across random peptides where a %Rank of 1 indicates that a peptide scored in the top 1% of random peptides. A %Rank of <2 or <0.5 are the cutoffs for weak binding or strong binding to MHC respectively. A %Rank >2 indicates nonbinders. (D) A heat map of wild-type and PTM modified peptides relative MHC binding analyzed by using the RMA-S stabilization assay. RMA-S cells were incubated with peptide at indicated concentration of peptides and detected via flow cytometry with APC conjugated antimouse H-2Kb antibodies. Abbreviations: Cit (citrullination), Yp (phosphorylated tyrosine), Kac (lysine acetylated at the γ position), NAc (acetylation at the α position), and Sp (phosphorylated serine). Data are represented as mean ± SD (n = 4). P-values were determined by a two-tailed t test (**** p < 0.0001).

    Figure 4

    Figure 4. Modeling the sars peptide with and without PTMs using FlexPepDock. (A) N-terminal acetylation results in higher reweighted_sc values (and thus lower likelihood of binding) compared to the wild-type peptide, consistent with experimental results (one-way ANOVA and Holm-Sidak posthoc; individual values correspond to the top 0.5% of models generated, and bars represent mean score term values). (B) Top peptide models generated for each epitope positioned in the H-2Kb binding cleft. (C) Side chain modifications compared to the unmodified epitope for the SARS-CoV-2 peptide. Modeling the ovalbumin-derived peptide with and without PTMs using FlexPepDock. (D) Phosphorylation of the N-terminal serine residue generates models with higher average reweighted_sc terms, similar to N-terminal acetylation of the SARS-CoV-2 peptide (one-way ANOVA and Holm-Sidak posthoc; individual values correspond to the top 0.5% of models generated, and bars represent mean score term values). (E) Superimposed peptide backbones for the top peptide models generated for each PTM. (F) Detailed side-chain configurations for the top-scoring models generated by FlexPepDock.

  • References


    This article references 98 other publications.

    1. 1
      Roche, P. A.; Furuta, K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat. Rev. Immunol 2015, 15, 203216,  DOI: 10.1038/nri3818
    2. 2
      Neefjes, J.; Jongsma, M. L.; Paul, P.; Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol 2011, 11, 823836,  DOI: 10.1038/nri3084
    3. 3
      Pishesha, N.; Harmand, T. J.; Ploegh, H. L. A guide to antigen processing and presentation. Nat. Rev. Immunol 2022, 22, 751764,  DOI: 10.1038/s41577-022-00707-2
    4. 4
      Huppa, J. B.; Davis, M. M. T-cell-antigen recognition and the immunological synapse. Nat. Rev. Immunol 2003, 3, 973983,  DOI: 10.1038/nri1245
    5. 5
      Gorentla, B. K.; Zhong, X. P. T cell Receptor Signal Transduction in T lymphocytes. J. Clin. Cell Immunol. 2012, 2012, 5,  DOI: 10.4172/2155-9899.s12-005
    6. 6
      Jameson, S. C. Maintaining the norm: T-cell homeostasis. Nat. Rev. Immunol 2002, 2, 547556,  DOI: 10.1038/nri853
    7. 7
      Klein, L.; Kyewski, B.; Allen, P. M.; Hogquist, K. A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat. Rev. Immunol 2014, 14, 377391,  DOI: 10.1038/nri3667
    8. 8
      Conibear, A. C. Deciphering protein post-translational modifications using chemical biology tools. Nat. Rev. Chem. 2020, 4, 674695,  DOI: 10.1038/s41570-020-00223-8
    9. 9
      Sandalova, T.; Sala, B. M.; Achour, A. Structural aspects of chemical modifications in the MHC-restricted immunopeptidome; Implications for immune recognition. Front Chem. 2022, 10, 861609  DOI: 10.3389/fchem.2022.861609
    10. 10
      Raposo, B.; Merky, P.; Lundqvist, C.; Yamada, H.; Urbonaviciute, V.; Niaudet, C.; Viljanen, J.; Kihlberg, J.; Kyewski, B.; Ekwall, O.; Holmdahl, R.; Backlund, J. T cells specific for post-translational modifications escape intrathymic tolerance induction. Nat. Commun. 2018, 9, 353,  DOI: 10.1038/s41467-017-02763-y
    11. 11
      Srinivasan, J.; Lancaster, J. N.; Singarapu, N.; Hale, L. P.; Ehrlich, L. I. R.; Richie, E. R. Age-Related Changes in Thymic Central Tolerance. Front Immunol 2021, 12, 676236  DOI: 10.3389/fimmu.2021.676236
    12. 12
      Lancaster, J. N.; Keatinge-Clay, D. E.; Srinivasan, J.; Li, Y.; Selden, H. J.; Nam, S.; Richie, E. R.; Ehrlich, L. I. R. Central tolerance is impaired in the middle-aged thymic environment. Aging Cell 2022, 21, e13624  DOI: 10.1111/acel.13624
    13. 13
      Li, W.; Li, F. F.; Zhang, X.; Lin, H. K.; Xu, C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment (vol 7, 31, 2022). Signal Transduct Tar 2022, 7, 422,  DOI: 10.1038/s41392-021-00825-8
    14. 14
      Michaelsson, E.; Malmstrom, V.; Reis, S.; Engstrom, A.; Burkhardt, H.; Holmdahl, R. T-Cell Recognition of Carbohydrates on Type-Ii Collagen. J. Exp Med. 1994, 180, 745749,  DOI: 10.1084/jem.180.2.745
    15. 15
      Sidney, J.; Vela, J. L.; Friedrich, D.; Kolla, R.; von Herrath, M.; Wesley, J. D.; Sette, A. Low HLA binding of diabetes-associated CD8+T-cell epitopes is increased by post translational modifications. Bmc Immunol 2018, 19, 12,  DOI: 10.1186/s12865-018-0250-3
    16. 16
      McAdam, S. N.; Fleckenstein, B.; Rasmussen, I. B.; Schmid, D. G.; Sandlie, I.; Bogen, B.; Viner, N. J.; Sollid, L. M. T cell recognition of the dominant I-A(k)-restricted hen egg lysozyme epitope: Critical role for asparagine deamidation. J. Exp Med. 2001, 193, 12391246,  DOI: 10.1084/jem.193.11.1239
    17. 17
      Mamula, M. J.; Gee, R. J.; Elliott, J. I.; Sette, A.; Southwood, S.; Jones, P. J.; Blier, P. R. Isoaspartyl post-translational modification triggers autoimmune responses to self-proteins. J. Biol. Chem. 1999, 274, 2232122327,  DOI: 10.1074/jbc.274.32.22321
    18. 18
      Kim, J. K.; Mastronardi, F. G.; Wood, D. D.; Lubman, D. M.; Zand, R.; Moscarello, M. A. Multiple sclerosis: an important role for post-translational modifications of myelin basic protein in pathogenesis. Mol. Cell Proteomics 2003, 2, 453462,  DOI: 10.1074/mcp.M200050-MCP200
    19. 19
      Raposo, B.; Merky, P.; Lundqvist, C.; Yamada, H.; Urbonaviciute, V.; Niaudet, C.; Viljanen, J.; Kihlberg, J.; Kyewski, B.; Ekwall, O.; Holmdahl, R.; Backlund, J. T cells specific for post-translational modifications escape intrathymic tolerance induction. Nat. Commun. 2018, 9, 353,  DOI: 10.1038/s41467-017-02763-y
    20. 20
      Doyle, H. A.; Mamula, M. J. Autoantigenesis: the evolution of protein modifications in autoimmune disease. Curr. Opin Immunol 2012, 24, 112118,  DOI: 10.1016/j.coi.2011.12.003
    21. 21
      Clement, C. C.; Moncrieffe, H.; Lele, A.; Janow, G.; Becerra, A.; Bauli, F.; Saad, F. A.; Perino, G.; Montagna, C.; Cobelli, N.; Hardin, J.; Stern, L. J.; Ilowite, N.; Porcelli, S. A.; Santambrogio, L. Autoimmune response to transthyretin in juvenile idiopathic arthritis. JCI Insight 2016, 1, e85633  DOI: 10.1172/jci.insight.85633
    22. 22
      Clement, C. C.; Nanaware, P. P.; Yamazaki, T.; Negroni, M. P.; Ramesh, K.; Morozova, K.; Thangaswamy, S.; Graves, A.; Kim, H. J.; Li, T. W.; Vigano, M.; Soni, R. K.; Gadina, M.; Tse, H. Y.; Galluzzi, L.; Roche, P. A.; Denzin, L. K.; Stern, L. J.; Santambrogio, L. Pleiotropic consequences of metabolic stress for the major histocompatibility complex class II molecule antigen processing and presentation machinery. Immunity 2021, 54, 721736,  DOI: 10.1016/j.immuni.2021.02.019
    23. 23
      Clement, C. C.; Osan, J.; Buque, A.; Nanaware, P. P.; Chang, Y. C.; Perino, G.; Shetty, M.; Yamazaki, T.; Tsai, W. L.; Urbanska, A. M.; Calvo-Calle, J. M.; Ramsamooj, S.; Ramsamooj, S.; Vergani, D.; Mieli-Vergani, G.; Terziroli Beretta-Piccoli, B.; Gadina, M.; Montagna, C.; Goncalves, M. D.; Sallusto, F.; Galluzzi, L.; Soni, R. K.; Stern, L. J.; Santambrogio, L. PDIA3 epitope-driven immune autoreactivity contributes to hepatic damage in type 2 diabetes. Sci. Immunol. 2022, 7, eabl3795  DOI: 10.1126/sciimmunol.abl3795
    24. 24
      Sidney, J.; Vela, J. L.; Friedrich, D.; Kolla, R.; von Herrath, M.; Wesley, J. D.; Sette, A. Low HLA binding of diabetes-associated CD8+ T-cell epitopes is increased by post translational modifications. BMC Immunol. 2018, 19, 12,  DOI: 10.1186/s12865-018-0250-3
    25. 25
      Zhai, Y.; Chen, L.; Zhao, Q.; Zheng, Z. H.; Chen, Z. N.; Bian, H.; Yang, X.; Lu, H. Y.; Lin, P.; Chen, X.; Chen, R.; Sun, H. Y.; Fan, L. N.; Zhang, K.; Wang, B.; Sun, X. X.; Feng, Z.; Zhu, Y. M.; Zhou, J. S.; Chen, S. R.; Zhang, T.; Chen, S. Y.; Chen, J. J.; Zhang, K.; Wang, Y.; Chang, Y.; Zhang, R.; Zhang, B.; Wang, L. J.; Li, X. M.; He, Q.; Yang, X. M.; Nan, G.; Xie, R. H.; Yang, L.; Yang, J. H.; Zhu, P. Cysteine carboxyethylation generates neoantigens to induce HLA-restricted autoimmunity. Science 2023, 379, eabg2482  DOI: 10.1126/science.abg2482
    26. 26
      Petersen, J.; Purcell, A. W.; Rossjohn, J. Post-translationally modified T cell epitopes: immune recognition and immunotherapy. J. Mol. Med. 2009, 87, 10451051,  DOI: 10.1007/s00109-009-0526-4
    27. 27
      Marcilla, M.; Alpizar, A.; Lombardia, M.; Ramos-Fernandez, A.; Ramos, M.; Albar, J. P. Increased diversity of the HLA-B40 ligandome by the presentation of peptides phosphorylated at their main anchor residue. Mol. Cell Proteomics 2014, 13, 462474,  DOI: 10.1074/mcp.M113.034314
    28. 28
      Bassani-Sternberg, M.; Braunlein, E.; Klar, R.; Engleitner, T.; Sinitcyn, P.; Audehm, S.; Straub, M.; Weber, J.; Slotta-Huspenina, J.; Specht, K.; Martignoni, M. E.; Werner, A.; Hein, R.; D, H. B.; Peschel, C.; Rad, R.; Cox, J.; Mann, M.; Krackhardt, A. M. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat. Commun. 2016, 7, 13404,  DOI: 10.1038/ncomms13404
    29. 29
      Alpizar, A.; Marino, F.; Ramos-Fernandez, A.; Lombardia, M.; Jeko, A.; Pazos, F.; Paradela, A.; Santiago, C.; Heck, A. J.; Marcilla, M. A Molecular Basis for the Presentation of Phosphorylated Peptides by HLA-B Antigens. Mol. Cell Proteomics 2017, 16, 181193,  DOI: 10.1074/mcp.M116.063800
    30. 30
      Malaker, S. A.; Penny, S. A.; Steadman, L. G.; Myers, P. T.; Loke, J. C.; Raghavan, M.; Bai, D. L.; Shabanowitz, J.; Hunt, D. F.; Cobbold, M. Identification of Glycopeptides as Posttranslationally Modified Neoantigens in Leukemia. Cancer Immunol Res. 2017, 5, 376384,  DOI: 10.1158/2326-6066.CIR-16-0280
    31. 31
      Marino, F.; Mommen, G. P.; Jeko, A.; Meiring, H. D.; van Gaans-van den Brink, J. A.; Scheltema, R. A.; van Els, C. A.; Heck, A. J. Arginine (Di)methylated Human Leukocyte Antigen Class I Peptides Are Favorably Presented by HLA-B*07. J. Proteome Res. 2017, 16, 3444,  DOI: 10.1021/acs.jproteome.6b00528
    32. 32
      Mohammed, F.; Stones, D. H.; Zarling, A. L.; Willcox, C. R.; Shabanowitz, J.; Cummings, K. L.; Hunt, D. F.; Cobbold, M.; Engelhard, V. H.; Willcox, B. E. The antigenic identity of human class I MHC phosphopeptides is critically dependent upon phosphorylation status. Oncotarget 2017, 8, 5416054172,  DOI: 10.18632/oncotarget.16952
    33. 33
      Sandalova, T.; Sala, B. M.; Achour, A. Structural aspects of chemical modifications in the MHC-restricted immunopeptidome. Implications for immune recognition, Front Chem. 2022, 10, 861609  DOI: 10.3389/fchem.2022.861609
    34. 34
      Mangalaparthi, K. K.; Madugundu, A. K.; Ryan, Z. C.; Garapati, K.; Peterson, J. A.; Dey, G.; Prakash, A.; Pandey, A. Digging deeper into the immunopeptidome: characterization of post-translationally modified peptides presented by MHC I. J. Proteins Proteom 2021, 12, 151160,  DOI: 10.1007/s42485-021-00066-x
    35. 35
      Ireland, J.; Herzog, J.; Unanue, E. R. Cutting edge: Unique T cells that recognize citrullinated peptides are a feature of protein immunization. J. Immunol 2006, 177, 14211425,  DOI: 10.4049/jimmunol.177.3.1421
    36. 36
      Huseby, E. S.; Sather, B.; Huseby, P. G.; Goverman, J. Age-dependent T cell tolerance and autoimmunity to myelin basic protein. Immunity 2001, 14, 471481,  DOI: 10.1016/S1074-7613(01)00127-3
    37. 37
      Malmstrom, V.; Catrina, A. I.; Klareskog, L. The immunopathogenesis of seropositive rheumatoid arthritis: from triggering to targeting. Nat. Rev. Immunol 2017, 17, 6075,  DOI: 10.1038/nri.2016.124
    38. 38
      Curran, A. M.; Naik, P.; Giles, J. T.; Darrah, E. PAD enzymes in rheumatoid arthritis: pathogenic effectors and autoimmune targets. Nat. Rev. Rheumatol 2020, 16, 301315,  DOI: 10.1038/s41584-020-0409-1
    39. 39
      Yang, L.; Tan, D.; Piao, H. Myelin Basic Protein Citrullination in Multiple Sclerosis: A Potential Therapeutic Target for the Pathology. Neurochem. Res. 2016, 41, 18451856,  DOI: 10.1007/s11064-016-1920-2
    40. 40
      Hill, J. A.; Southwood, S.; Sette, A.; Jevnikar, A. M.; Bell, D. A.; Cairns, E. Cutting edge: the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J. Immunol 2003, 171, 538541,  DOI: 10.4049/jimmunol.171.2.538
    41. 41
      Ramarathinam, S. H.; Croft, N. P.; Illing, P. T.; Faridi, P.; Purcell, A. W. Employing proteomics in the study of antigen presentation: an update. Expert Rev. Proteomics 2018, 15, 637645,  DOI: 10.1080/14789450.2018.1509000
    42. 42
      Jaeger, A. M.; Stopfer, L. E.; Ahn, R.; Sanders, E. A.; Sandel, D. A.; Freed-Pastor, W. A.; Rideout, W. M., 3rd; Naranjo, S.; Fessenden, T.; Nguyen, K. B.; Winter, P. S.; Kohn, R. E.; Westcott, P. M. K.; Schenkel, J. M.; Shanahan, S. L.; Shalek, A. K.; Spranger, S.; White, F. M.; Jacks, T. Deciphering the immunopeptidome in vivo reveals new tumour antigens. Nature 2022, 607, 149155,  DOI: 10.1038/s41586-022-04839-2
    43. 43
      Yi, X.; Liao, Y.; Wen, B.; Li, K.; Dou, Y.; Savage, S. R.; Zhang, B. caAtlas: An immunopeptidome atlas of human cancer. iScience 2021, 24, 103107  DOI: 10.1016/j.isci.2021.103107
    44. 44
      Kacen, A.; Javitt, A.; Kramer, M. P.; Morgenstern, D.; Tsaban, T.; Shmueli, M. D.; Teo, G. C.; da Veiga Leprevost, F.; Barnea, E.; Yu, F.; Admon, A.; Eisenbach, L.; Samuels, Y.; Schueler-Furman, O.; Levin, Y.; Nesvizhskii, A. I.; Merbl, Y. Post-translational modifications reshape the antigenic landscape of the MHC I immunopeptidome in tumors. Nat. Biotechnol. 2023, 41, 239251,  DOI: 10.1038/s41587-022-01464-2
    45. 45
      Garstka, M. A.; Fish, A.; Celie, P. H.; Joosten, R. P.; Janssen, G. M.; Berlin, I.; Hoppes, R.; Stadnik, M.; Janssen, L.; Ovaa, H.; van Veelen, P. A.; Perrakis, A.; Neefjes, J. The first step of peptide selection in antigen presentation by MHC class I molecules. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 15051510,  DOI: 10.1073/pnas.1416543112
    46. 46
      Sette, A.; Vitiello, A.; Reherman, B.; Fowler, P.; Nayersina, R.; Kast, W. M.; Melief, C. J.; Oseroff, C.; Yuan, L.; Ruppert, J.; Sidney, J.; del Guercio, M. F.; Southwood, S.; Kubo, R. T.; Chesnut, R. W.; Grey, H. M.; Chisari, F. V. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J. Immunol 1994, 153, 55865592,  DOI: 10.4049/jimmunol.153.12.5586
    47. 47
      Deribe, Y. L.; Pawson, T.; Dikic, I. Post-translational modifications in signal integration. Nat. Struct Mol. Biol. 2010, 17, 666672,  DOI: 10.1038/nsmb.1842
    48. 48
      Zhao, Y.; Jensen, O. N. Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics 2009, 9, 46324641,  DOI: 10.1002/pmic.200900398
    49. 49
      Solleder, M.; Guillaume, P.; Racle, J.; Michaux, J.; Pak, H. S.; Muller, M.; Coukos, G.; Bassani-Sternberg, M.; Gfeller, D. Mass Spectrometry Based Immunopeptidomics Leads to Robust Predictions of Phosphorylated HLA Class I Ligands. Mol. Cell Proteomics 2020, 19, 390404,  DOI: 10.1074/mcp.TIR119.001641
    50. 50
      Hassan, C.; Kester, M. G.; Oudgenoeg, G.; de Ru, A. H.; Janssen, G. M.; Drijfhout, J. W.; Spaapen, R. M.; Jimenez, C. R.; Heemskerk, M. H.; Falkenburg, J. H.; van Veelen, P. A. Accurate quantitation of MHC-bound peptides by application of isotopically labeled peptide MHC complexes. J. Proteomics 2014, 109, 240244,  DOI: 10.1016/j.jprot.2014.07.009
    51. 51
      Colbert, J. D.; Cruz, F. M.; Rock, K. L. Cross-presentation of exogenous antigens on MHC I molecules. Curr. Opin Immunol 2020, 64, 18,  DOI: 10.1016/j.coi.2019.12.005
    52. 52
      Lee, J. M.; Hammaren, H. M.; Savitski, M. M.; Baek, S. H. Control of protein stability by post-translational modifications. Nat. Commun. 2023, 14, 201,  DOI: 10.1038/s41467-023-35795-8
    53. 53
      Ljunggren, H. G.; Stam, N.; Ohlen, C.; Neefjes, J. J.; Hoglund, P.; Heemels, M. T.; Bastin, J.; Schumacher, T.; Townsend, A.; Karre, K.; Ploegh, H. L. Empty Mhc Class-I Molecules Come out in the Cold. Scand J. Immunol 1990, 32, 403403,  DOI: 10.1038/346476a0
    54. 54
      Schumacher, T. N.; Heemels, M. T.; Neefjes, J. J.; Kast, W. M.; Melief, C. J.; Ploegh, H. L. Direct binding of peptide to empty MHC class I molecules on intact cells and in vitro. Cell 1990, 62, 563567,  DOI: 10.1016/0092-8674(90)90020-F
    55. 55
      Saito, Y.; Peterson, P. A.; Matsumura, M. Quantitation of peptide anchor residue contributions to class I major histocompatibility complex molecule binding. J. Biol. Chem. 1993, 268, 2130921317,  DOI: 10.1016/S0021-9258(19)36925-X
    56. 56
      Ross, P.; Holmes, J. C.; Gojanovich, G. S.; Hess, P. R. A cell-based MHC stabilization assay for the detection of peptide binding to the canine classical class I molecule, DLA-88. Vet. Immunol. Immunopathol. 2012, 150, 206212,  DOI: 10.1016/j.vetimm.2012.08.012
    57. 57
      Apostolopoulos, V.; Haurum, J. S.; McKenzie, I. F. MUC1 peptide epitopes associated with five different H-2 class I molecules. Eur. J. Immunol. 1997, 27, 25792587,  DOI: 10.1002/eji.1830271017
    58. 58
      Cerundolo, V.; Elliott, T.; Elvin, J.; Bastin, J.; Rammensee, H. G.; Townsend, A. The binding affinity and dissociation rates of peptides for class I major histocompatibility complex molecules. Eur. J. Immunol. 1991, 21, 20692075,  DOI: 10.1002/eji.1830210915
    59. 59
      De Silva, A. D.; Boesteanu, A.; Song, R.; Nagy, N.; Harhaj, E.; Harding, C. V.; Joyce, S. Thermolabile H-2Kb molecules expressed by transporter associated with antigen processing-deficient RMA-S cells are occupied by low-affinity peptides. J. Immunol 1999, 163, 44134420,  DOI: 10.4049/jimmunol.163.8.4413
    60. 60
      Feltkamp, M. C.; Vierboom, M. P.; Kast, W. M.; Melief, C. J. Efficient MHC class I-peptide binding is required but does not ensure MHC class I-restricted immunogenicity. Mol. Immunol 1994, 31, 13911401,  DOI: 10.1016/0161-5890(94)90155-4
    61. 61
      Elvin, J.; Potter, C.; Elliott, T.; Cerundolo, V.; Townsend, A. A method to quantify binding of unlabeled peptides to class I MHC molecules and detect their allele specificity. J. Immunol Methods 1993, 158, 161171,  DOI: 10.1016/0022-1759(93)90210-X
    62. 62
      Jurtz, V.; Paul, S.; Andreatta, M.; Marcatili, P.; Peters, B.; Nielsen, M. NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data. J. Immunol 2017, 199, 33603368,  DOI: 10.4049/jimmunol.1700893
    63. 63
      Dubey, P.; Hendrickson, R. C.; Meredith, S. C.; Siegel, C. T.; Shabanowitz, J.; Skipper, J. C. A.; Engelhard, V. H.; Hunt, D. F.; Schreiber, H. The immunodominant antigen of an ultraviolet-induced regressor tumor is generated by a somatic point mutation in the DEAD box helicase p68. J. Exp Med. 1997, 185, 695705,  DOI: 10.1084/jem.185.4.695
    64. 64
      Kjellen, P.; Brunsberg, U.; Broddefalk, J.; Hansen, B.; Vestberg, M.; Ivarsson, I.; Engstrom, A.; Svejgaard, A.; Kihlberg, J.; Fugger, L.; Holmdahl, R. The structural basis of MHC control of collagen-induced arthritis; binding of the immunodominant type II collagen 256–270 glycopeptide to H-2Aq and H-2Ap molecules. Eur. J. Immunol. 1998, 28, 755767,  DOI: 10.1002/(SICI)1521-4141(199802)28:02<755::AID-IMMU755>3.0.CO;2-2
    65. 65
      Rosloniec, E. F.; Whittington, K. B.; Zaller, D. M.; Kang, A. H. HLA-DR1 (DRB1*0101) and DR4 (DRB1*0401) use the same anchor residues for binding an immunodominant peptide derived from human type II collagen. J. Immunol 2002, 168, 253259,  DOI: 10.4049/jimmunol.168.1.253
    66. 66
      Huizinga, T. W.; Amos, C. I.; van der Helm-van Mil, A. H.; Chen, W.; van Gaalen, F. A.; Jawaheer, D.; Schreuder, G. M.; Wener, M.; Breedveld, F. C.; Ahmad, N.; Lum, R. F.; de Vries, R. R.; Gregersen, P. K.; Toes, R. E.; Criswell, L. A. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheum 2005, 52, 34333438,  DOI: 10.1002/art.21385
    67. 67
      Yague, J.; Alvarez, I.; Rognan, D.; Ramos, M.; Vazquez, J.; de Castro, J. A. An N-acetylated natural ligand of human histocompatibility leukocyte antigen (HLA)-B39. Classical major histocompatibility complex class I proteins bind peptides with a blocked NH(2) terminus in vivo. J. Exp Med. 2000, 191, 20832092,  DOI: 10.1084/jem.191.12.2083
    68. 68
      Sun, M.; Liu, J.; Qi, J.; Tefsen, B.; Shi, Y.; Yan, J.; Gao, G. F. Nalpha-terminal acetylation for T cell recognition: molecular basis of MHC class I-restricted nalpha-acetylpeptide presentation. J. Immunol 2014, 192, 55095519,  DOI: 10.4049/jimmunol.1400199
    69. 69
      de Haan, E. C.; Wauben, M. H.; Wagenaar-Hilbers, J. P.; Grosfeld-Stulemeyer, M. C.; Rijkers, D. T.; Moret, E. E.; Liskamp, R. M. Stabilization of peptide guinea pig myelin basic protein 72–85 by N-terminal acetylation-implications for immunological studies. Mol. Immunol 2004, 40, 943948,  DOI: 10.1016/j.molimm.2003.10.015
    70. 70
      Shastri, N.; Gonzalez, F. Endogenous generation and presentation of the ovalbumin peptide/Kb complex to T cells. J. Immunol 1993, 150, 27242736,  DOI: 10.4049/jimmunol.150.7.2724
    71. 71
      Koch, C. P.; Perna, A. M.; Pillong, M.; Todoroff, N. K.; Wrede, P.; Folkers, G.; Hiss, J. A.; Schneider, G. Scrutinizing MHC-I binding peptides and their limits of variation. PLoS Comput. Biol. 2013, 9, e1003088  DOI: 10.1371/journal.pcbi.1003088
    72. 72
      van der Gracht, A. M. F.; de Geus, M. A. R.; Camps, M. G. M.; Ruckwardt, T. J.; Sarris, A. J. C.; Bremmers, J.; Maurits, E.; Pawlak, J. B.; Posthoorn, M. M.; Bonger, K. M.; Filippov, D. V.; Overkleeft, H. S.; Robillard, M. S.; Ossendorp, F.; van Kasteren, S. I. Chemical Control over T-Cell Activation in Vivo Using Deprotection of trans-Cyclooctene-Modified Epitopes. ACS Chem. Biol. 2018, 13, 15691576,  DOI: 10.1021/acschembio.8b00155
    73. 73
      Fremont, D. H.; Stura, E. A.; Matsumura, M.; Peterson, P. A.; Wilson, I. A. Crystal structure of an H-2Kb-ovalbumin peptide complex reveals the interplay of primary and secondary anchor positions in the major histocompatibility complex binding groove. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 24792483,  DOI: 10.1073/pnas.92.7.2479
    74. 74
      Swee, L. K.; Guimaraes, C. P.; Sehrawat, S.; Spooner, E.; Barrasa, M. I.; Ploegh, H. L. Sortase-mediated modification of alphaDEC205 affords optimization of antigen presentation and immunization against a set of viral epitopes. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 14281433,  DOI: 10.1073/pnas.1214994110
    75. 75
      Fremont, D. H.; Stura, E. A.; Matsumura, M.; Peterson, P. A.; Wilson, I. A. Crystal-Structure of an H-2k(B)-Ovalbumin Peptide Complex Reveals the Interplay of Primary and Secondary Anchor Positions in the Major Histocompatibility Complex Binding Groove. P Natl. Acad. Sci. USA 1995, 92, 24792483,  DOI: 10.1073/pnas.92.7.2479
    76. 76
      Deres, K.; Beck, W.; Faath, S.; Jung, G.; Rammensee, H. G. MHC/peptide binding studies indicate hierarchy of anchor residues. Cell Immunol 1993, 151, 158167,  DOI: 10.1006/cimm.1993.1228
    77. 77
      Bremel, R. D.; Homan, E. J. Frequency Patterns of T-Cell Exposed Amino Acid Motifs in Immunoglobulin Heavy Chain Peptides Presented by MHCs. Front. Immunol. 2014, 5, 541,  DOI: 10.3389/fimmu.2014.00541
    78. 78
      Reddehase, M. J.; Rothbard, J. B.; Koszinowski, U. H. A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 1989, 337, 651653,  DOI: 10.1038/337651a0
    79. 79
      Karttunen, J.; Shastri, N. Measurement of ligand-induced activation in single viable T cells using the lacZ reporter gene. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 39723976,  DOI: 10.1073/pnas.88.9.3972
    80. 80
      Curran, A. M.; Girgis, A. A.; Jang, Y.; Crawford, J. D.; Thomas, M. A.; Kawalerski, R.; Coller, J.; Bingham, C. O., 3rd; Na, C. H.; Darrah, E. Citrullination modulates antigen processing and presentation by revealing cryptic epitopes in rheumatoid arthritis. Nat. Commun. 2023, 14, 1061,  DOI: 10.1038/s41467-023-36620-y
    81. 81
      Martinod, K.; Witsch, T.; Erpenbeck, L.; Savchenko, A.; Hayashi, H.; Cherpokova, D.; Gallant, M.; Mauler, M.; Cifuni, S. M.; Wagner, D. D. Peptidylarginine deiminase 4 promotes age-related organ fibrosis. J. Exp Med. 2017, 214, 439458,  DOI: 10.1084/jem.20160530
    82. 82
      Liu, T.; Pan, X.; Chao, L.; Tan, W.; Qu, S.; Yang, L.; Wang, B.; Mei, H. Subangstrom accuracy in pHLA-I modeling by Rosetta FlexPepDock refinement protocol. J. Chem. Inf Model 2014, 54, 22332242,  DOI: 10.1021/ci500393h
    83. 83
      Raveh, B.; London, N.; Schueler-Furman, O. Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 2010, 78, 20292040,  DOI: 10.1002/prot.22716
    84. 84
      Bloodworth, N.; Barbaro, N. R.; Moretti, R.; Harrison, D. G.; Meiler, J. Rosetta FlexPepDock to predict peptide-MHC binding: An approach for non-canonical amino acids. PLoS One 2022, 17, e0275759  DOI: 10.1371/journal.pone.0275759
    85. 85
      Tivon, B.; Gabizon, R.; Somsen, B. A.; Cossar, P. J.; Ottmann, C.; London, N. Covalent flexible peptide docking in Rosetta. Chem. Sci. 2021, 12, 1083610847,  DOI: 10.1039/D1SC02322E
    86. 86
      Alam, N.; Schueler-Furman, O. Modeling Peptide-Protein Structure and Binding Using Monte Carlo Sampling Approaches: Rosetta FlexPepDock and FlexPepBind. Methods Mol. Biol. 2017, 1561, 139169,  DOI: 10.1007/978-1-4939-6798-8_9
    87. 87
      Marin-Acevedo, J. A.; Dholaria, B.; Soyano, A. E.; Knutson, K. L.; Chumsri, S.; Lou, Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J. Hematol. Oncol. 2018, 11, 39,  DOI: 10.1186/s13045-018-0582-8
    88. 88
      Topalian, S. L.; Hodi, F. S.; Brahmer, J. R.; Gettinger, S. N.; Smith, D. C.; McDermott, D. F.; Powderly, J. D.; Carvajal, R. D.; Sosman, J. A.; Atkins, M. B.; Leming, P. D.; Spigel, D. R.; Antonia, S. J.; Horn, L.; Drake, C. G.; Pardoll, D. M.; Chen, L.; Sharfman, W. H.; Anders, R. A.; Taube, J. M.; McMiller, T. L.; Xu, H.; Korman, A. J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G. D.; Gupta, A.; Wigginton, J. M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J. Med. 2012, 366, 24432454,  DOI: 10.1056/NEJMoa1200690
    89. 89
      Tumeh, P. C.; Harview, C. L.; Yearley, J. H.; Shintaku, I. P.; Taylor, E. J.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; West, A. N.; Carmona, M.; Kivork, C.; Seja, E.; Cherry, G.; Gutierrez, A. J.; Grogan, T. R.; Mateus, C.; Tomasic, G.; Glaspy, J. A.; Emerson, R. O.; Robins, H.; Pierce, R. H.; Elashoff, D. A.; Robert, C.; Ribas, A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568571,  DOI: 10.1038/nature13954
    90. 90
      Riaz, N.; Morris, L.; Havel, J. J.; Makarov, V.; Desrichard, A.; Chan, T. A. The role of neoantigens in response to immune checkpoint blockade. Int. Immunol. 2016, 28, 411419,  DOI: 10.1093/intimm/dxw019
    91. 91
      Gubin, M. M.; Zhang, X.; Schuster, H.; Caron, E.; Ward, J. P.; Noguchi, T.; Ivanova, Y.; Hundal, J.; Arthur, C. D.; Krebber, W. J.; Mulder, G. E.; Toebes, M.; Vesely, M. D.; Lam, S. S.; Korman, A. J.; Allison, J. P.; Freeman, G. J.; Sharpe, A. H.; Pearce, E. L.; Schumacher, T. N.; Aebersold, R.; Rammensee, H. G.; Melief, C. J.; Mardis, E. R.; Gillanders, W. E.; Artyomov, M. N.; Schreiber, R. D. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014, 515, 577581,  DOI: 10.1038/nature13988
    92. 92
      Woods, D. M.; Sodre, A. L.; Villagra, A.; Sarnaik, A.; Sotomayor, E. M.; Weber, J. HDAC Inhibition Upregulates PD-1 Ligands in Melanoma and Augments Immunotherapy with PD-1 Blockade. Cancer Immunol Res. 2015, 3, 13751385,  DOI: 10.1158/2326-6066.CIR-15-0077-T
    93. 93
      Gameiro, S. R.; Malamas, A. S.; Tsang, K. Y.; Ferrone, S.; Hodge, J. W. Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells. Oncotarget 2016, 7, 73907402,  DOI: 10.18632/oncotarget.7180
    94. 94
      Llopiz, D.; Ruiz, M.; Villanueva, L.; Iglesias, T.; Silva, L.; Egea, J.; Lasarte, J. J.; Pivette, P.; Trochon-Joseph, V.; Vasseur, B.; Dixon, G.; Sangro, B.; Sarobe, P. Enhanced anti-tumor efficacy of checkpoint inhibitors in combination with the histone deacetylase inhibitor Belinostat in a murine hepatocellular carcinoma model. Cancer Immunol Immunother 2019, 68, 379393,  DOI: 10.1007/s00262-018-2283-0
    95. 95
      Burke, B.; Eden, C.; Perez, C.; Belshoff, A.; Hart, S.; Plaza-Rojas, L.; Delos Reyes, M.; Prajapati, K.; Voelkel-Johnson, C.; Henry, E.; Gupta, G.; Guevara-Patino, J. Inhibition of Histone Deacetylase (HDAC) Enhances Checkpoint Blockade Efficacy by Rendering Bladder Cancer Cells Visible for T Cell-Mediated Destruction. Front. Oncol. 2020, 10, 699,  DOI: 10.3389/fonc.2020.00699
    96. 96
      Baretti, M.; Yarchoan, M. Epigenetic modifiers synergize with immune-checkpoint blockade to enhance long-lasting antitumor efficacy. J. Clin Invest 2021, 131, e151002  DOI: 10.1172/JCI151002
    97. 97
      Truong, A. S.; Zhou, M.; Krishnan, B.; Utsumi, T.; Manocha, U.; Stewart, K. G.; Beck, W.; Rose, T. L.; Milowsky, M. I.; He, X.; Smith, C. C.; Bixby, L. M.; Perou, C. M.; Wobker, S. E.; Bailey, S. T.; Vincent, B. G.; Kim, W. Y. Entinostat induces antitumor immune responses through immune editing of tumor neoantigens. J. Clin Invest 2021, 131, e138560  DOI: 10.1172/JCI138560
    98. 98
      Zhang, P.; Du, Y.; Bai, H.; Wang, Z.; Duan, J.; Wang, X.; Zhong, J.; Wan, R.; Xu, J.; He, X.; Wang, D.; Fei, K.; Yu, R.; Tian, J.; Wang, J. Optimized dose selective HDAC inhibitor tucidinostat overcomes anti-PD-L1 antibody resistance in experimental solid tumors. BMC Med. 2022, 20, 435,  DOI: 10.1186/s12916-022-02598-5
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acschembio.4c00312.

    • Additional figures including RMA-S (workflow scheme, concentration scan with sarsWT, and time scan), DC2.4 T Cell activation, modeling of citrullination, and mass spectrometry results from MHC peptides; materials/methods; and synthetic peptide characterization (mass spectrometry and analytical HPLC traces) (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.