ACS Publications. Most Trusted. Most Cited. Most Read
Semisynthetic and in Vitro Phosphorylation of Alpha-Synuclein at Y39 Promotes Functional Partly Helical Membrane-Bound States Resembling Those Induced by PD Mutations
My Activity

Figure 1Loading Img
    Articles

    Semisynthetic and in Vitro Phosphorylation of Alpha-Synuclein at Y39 Promotes Functional Partly Helical Membrane-Bound States Resembling Those Induced by PD Mutations
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, New York 10065, United States
    Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
    § Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, United States
    Qatar Biomedical Research Institute (QBRI), Doha, Qatar
    Other Access OptionsSupporting Information (1)

    ACS Chemical Biology

    Cite this: ACS Chem. Biol. 2016, 11, 9, 2428–2437
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acschembio.6b00539
    Published June 29, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Alpha-synuclein is a presynaptic protein of poorly understood function that is linked to both genetic and sporadic forms of Parkinson’s disease. We have proposed that alpha-synuclein may function specifically at synaptic vesicles docked at the plasma membrane, and that the broken-helix state of the protein, comprising two antiparallel membrane-bound helices connected by a nonhelical linker, may target the protein to such docked vesicles by spanning between the vesicle and the plasma membrane. Here, we demonstrate that phosphorylation of alpha-synuclein at tyrosine 39, carried out by c-Abl in vivo, may facilitate interconversion of synuclein from the vesicle-bound extended-helix state to the broken-helix state. Specifically, in the presence of lipid vesicles, Y39 phosphorylation leads to decreased binding of a region corresponding to helix-2 of the broken-helix state, potentially freeing this region of the protein to interact with other membrane surfaces. This effect is largely recapitulated by the phosphomimetic mutation Y39E, and expression of this mutant in yeast results in decreased membrane localization. Intriguingly, the effects of Y39 phosphorylation on membrane binding closely resemble those of the recently reported disease linked mutation G51D. These findings suggest that Y39 phosphorylation could modulate functional aspects of alpha-synuclein and perhaps influence pathological aggregation of the protein as well.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acschembio.6b00539.

    • Description of materials and methods and supplementary data is included. Supporting Figures S1–S9: Membrane-bound states of aSyn; semisynthesis of pY39 aSyn; purity analysis of semisynthetic pY39 aSyn; secondary structure of semisynthetic pY39 aSyn; purity analysis of proteins prepared by in vitro phosphorylation; NMR comparison of WT, pY39, and Y39E aSyn in the free state; PRE of spin labeled aSyn bound to SDS micelles; toxicity of aSyn Y39E in yeast; and characterization of the effect of Y39 phosphorylation on aSyn fibrillization propensity using semisynthetic pY39 aSyn (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 65 publications.

    1. Xiaoxi Lin, Shaswati Mandal, Raj V. Nithun, Rajasekhar Kolla, Bouchra Bouri, Hilal A. Lashuel, Muhammad Jbara. A Versatile Method for Site-Specific Chemical Installation of Aromatic Posttranslational Modification Analogs into Proteins. Journal of the American Chemical Society 2024, 146 (37) , 25788-25798. https://doi.org/10.1021/jacs.4c08416
    2. Wyatt C. Powell, Ruiheng Jing, Maciej A. Walczak. Chemical Synthesis of Microtubule-Associated Protein Tau. Journal of the American Chemical Society 2023, 145 (39) , 21514-21526. https://doi.org/10.1021/jacs.3c07338
    3. Minal Chaturvedi, Ritu Raj, Sanjeev Kumar Yadav, Tulika Srivastava, Shweta Devi, Durga Dharmadana, Céline Valéry, Sandeep K. Sharma, Dinesh Kumar, Smriti Priya. Implications of In Vitro Multi-Serine Phosphorylation of Alpha-Synuclein in Aggregation and Cytotoxicity. ACS Chemical Neuroscience 2023, 14 (17) , 3103-3112. https://doi.org/10.1021/acschemneuro.3c00234
    4. Theresa S. Braun, Juliane Stehle, Sylwia Kacprzak, Patrick Carl, Peter Höfer, Vinod Subramaniam, Malte Drescher. Intracellular Protein–Lipid Interactions Studied by Rapid-Scan Electron Paramagnetic Resonance Spectroscopy. The Journal of Physical Chemistry Letters 2021, 12 (9) , 2471-2475. https://doi.org/10.1021/acs.jpclett.0c03583
    5. Phuong H. Nguyen, Ayyalusamy Ramamoorthy, Bikash R. Sahoo, Jie Zheng, Peter Faller, John E. Straub, Laura Dominguez, Joan-Emma Shea, Nikolay V. Dokholyan, Alfonso De Simone, Buyong Ma, Ruth Nussinov, Saeed Najafi, Son Tung Ngo, Antoine Loquet, Mara Chiricotto, Pritam Ganguly, James McCarty, Mai Suan Li, Carol Hall, Yiming Wang, Yifat Miller, Simone Melchionna, Birgit Habenstein, Stepan Timr, Jiaxing Chen, Brianna Hnath, Birgit Strodel, Rakez Kayed, Sylvain Lesné, Guanghong Wei, Fabio Sterpone, Andrew J. Doig, Philippe Derreumaux. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer’s Disease, Parkinson’s Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews 2021, 121 (4) , 2545-2647. https://doi.org/10.1021/acs.chemrev.0c01122
    6. Buyan Pan, Naoki Kamo, Marie Shimogawa, Yun Huang, Anna Kashina, Elizabeth Rhoades, E. James Petersson. Effects of Glutamate Arginylation on α-Synuclein: Studying an Unusual Post-Translational Modification through Semisynthesis. Journal of the American Chemical Society 2020, 142 (52) , 21786-21798. https://doi.org/10.1021/jacs.0c10054
    7. Robert E. Thompson, Tom W. Muir. Chemoenzymatic Semisynthesis of Proteins. Chemical Reviews 2020, 120 (6) , 3051-3126. https://doi.org/10.1021/acs.chemrev.9b00450
    8. Buyan Pan, Elizabeth Rhoades, E. James Petersson. Chemoenzymatic Semisynthesis of Phosphorylated α-Synuclein Enables Identification of a Bidirectional Effect on Fibril Formation. ACS Chemical Biology 2020, 15 (3) , 640-645. https://doi.org/10.1021/acschembio.9b01038
    9. Stuart P. Moon, Aaron T. Balana, Ana Galesic, Ananya Rakshit, Matthew R. Pratt. Ubiquitination Can Change the Structure of the α-Synuclein Amyloid Fiber in a Site Selective Fashion. The Journal of Organic Chemistry 2020, 85 (3) , 1548-1555. https://doi.org/10.1021/acs.joc.9b02641
    10. Huai Chen, Yu-Fen Zhao, Yong-Xiang Chen, Yan-Mei Li. Exploring the Roles of Post-Translational Modifications in the Pathogenesis of Parkinson’s Disease Using Synthetic and Semisynthetic Modified α-Synuclein. ACS Chemical Neuroscience 2019, 10 (2) , 910-921. https://doi.org/10.1021/acschemneuro.8b00447
    11. YoungDoo Kim, Bhupesh Vaidya, Joseph McInnes, Huda Y. Zoghbi. Alpha-Synuclein Phosphomimetic Y39E and S129D Knock-In Mice Show Cytosolic Alpha-Synuclein Localization without Developing Neurodegeneration or Motor Deficits. eneuro 2025, 12 (4) , ENEURO.0357-24.2025. https://doi.org/10.1523/ENEURO.0357-24.2025
    12. Kostas Vekrellis, Evangelia Emmanouilidou, Maria Xilouri, Leonidas Stefanis. α-Synuclein in Parkinson's Disease: 12 Years Later. Cold Spring Harbor Perspectives in Medicine 2024, 14 (11) , a041645. https://doi.org/10.1101/cshperspect.a041645
    13. Kambiz Hassanzadeh, Jun Liu, Santhosh Maddila, M. Maral Mouradian. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacological Reviews 2024, 76 (6) , 1254-1290. https://doi.org/10.1124/pharmrev.123.001111
    14. Luisa Maria Gatzemeier, Franc Meyer, Tiago Fleming Outeiro. Synthesis and Semi‐Synthesis of Alpha‐Synuclein: Insight into the Chemical Complexity of Synucleinopathies. ChemBioChem 2024, 5 https://doi.org/10.1002/cbic.202400253
    15. Chiara D. Mancinelli, Dagan C. Marx, Alberto J. Gonzalez-Hernandez, Kevin Huynh, Lucia Mancinelli, Anisul Arefin, George Khelashvilli, Joshua Levitz, David Eliezer. Control of G protein–coupled receptor function via membrane-interacting intrinsically disordered C-terminal domains. Proceedings of the National Academy of Sciences 2024, 121 (29) https://doi.org/10.1073/pnas.2407744121
    16. Simran Kapila, Yuhan Sun, Chao Peng, Shujing Zhang. Soluble alpha-synuclein post-translational modifications: unexpected regulators of pathological alpha-synuclein amplification. Neural Regeneration Research 2024, 19 (5) , 959-960. https://doi.org/10.4103/1673-5374.385303
    17. Meraj Ramezani, Alice Wagenknecht-Wiesner, Tong Wang, David A. Holowka, David Eliezer, Barbara A. Baird. Alpha synuclein modulates mitochondrial Ca2+ uptake from ER during cell stimulation and under stress conditions. npj Parkinson's Disease 2023, 9 (1) https://doi.org/10.1038/s41531-023-00578-x
    18. Jennifer Ramirez, Samantha X. Pancoe, Elizabeth Rhoades, E. James Petersson. The Effects of Lipids on α-Synuclein Aggregation In Vitro. Biomolecules 2023, 13 (10) , 1476. https://doi.org/10.3390/biom13101476
    19. Helena Motaln, Boris Rogelj. The Role of c-Abl Tyrosine Kinase in Brain and Its Pathologies. Cells 2023, 12 (16) , 2041. https://doi.org/10.3390/cells12162041
    20. Silvia Mansueto, Giuliana Fusco, Alfonso De Simone. α-Synuclein and biological membranes: the danger of loving too much. Chemical Communications 2023, 59 (57) , 8769-8778. https://doi.org/10.1039/D3CC01682J
    21. Ana Belén Uceda, Juan Frau, Bartolomé Vilanova, Miquel Adrover. Tyrosine Nitroxidation Does Not Affect the Ability of α-Synuclein to Bind Anionic Micelles, but It Diminishes Its Ability to Bind and Assemble Synaptic-like Vesicles. Antioxidants 2023, 12 (6) , 1310. https://doi.org/10.3390/antiox12061310
    22. Viviana Brembati, Gaia Faustini, Francesca Longhena, Arianna Bellucci. Alpha synuclein post translational modifications: potential targets for Parkinson’s disease therapy?. Frontiers in Molecular Neuroscience 2023, 16 https://doi.org/10.3389/fnmol.2023.1197853
    23. Ana Belén Uceda, Juan Frau, Bartolomé Vilanova, Miquel Adrover. On the effect of methionine oxidation on the interplay between α-synuclein and synaptic-like vesicles. International Journal of Biological Macromolecules 2023, 229 , 92-104. https://doi.org/10.1016/j.ijbiomac.2022.12.262
    24. Shujing Zhang, Ruowei Zhu, Buyan Pan, Hong Xu, Modupe F. Olufemi, Ronald J. Gathagan, Yuanxi Li, Luyan Zhang, Jasmine Zhang, Wenxuan Xiang, Eliot Masahiro Kagan, Xingjun Cao, Chaoxing Yuan, Soo-Jung Kim, Christopher K. Williams, Shino Magaki, Harry V. Vinters, Hilal A. Lashuel, Benjamin A. Garcia, E. James Petersson, John Q. Trojanowski, Virginia M.-Y. Lee, Chao Peng. Post-translational modifications of soluble α-synuclein regulate the amplification of pathological α-synuclein. Nature Neuroscience 2023, 26 (2) , 213-225. https://doi.org/10.1038/s41593-022-01239-7
    25. Samantha X. Pancoe, Yanxin J. Wang, Marie Shimogawa, Ryann M. Perez, Sam Giannakoulias, E. James Petersson. Effects of Mutations and Post-Translational Modifications on α-Synuclein In Vitro Aggregation. Journal of Molecular Biology 2022, 434 (23) , 167859. https://doi.org/10.1016/j.jmb.2022.167859
    26. Pedro Magalhães, Hilal A. Lashuel. Opportunities and challenges of alpha-synuclein as a potential biomarker for Parkinson’s disease and other synucleinopathies. npj Parkinson's Disease 2022, 8 (1) https://doi.org/10.1038/s41531-022-00357-0
    27. Melek Firat Altay, Alan King Lun Liu, Janice L. Holton, Laura Parkkinen, Hilal A. Lashuel. Prominent astrocytic alpha-synuclein pathology with unique post-translational modification signatures unveiled across Lewy body disorders. Acta Neuropathologica Communications 2022, 10 (1) https://doi.org/10.1186/s40478-022-01468-8
    28. Tapojyoti Das, Meraj Ramezani, David Snead, Cristian Follmer, Peter Chung, Ka Yee Lee, David A. Holowka, Barbara A. Baird, David Eliezer. The Role of Membrane Affinity and Binding Modes in Alpha-Synuclein Regulation of Vesicle Release and Trafficking. Biomolecules 2022, 12 (12) , 1816. https://doi.org/10.3390/biom12121816
    29. Lasse Reimer, Hjalte Gram, Nanna Møller Jensen, Cristine Betzer, Li Yang, Lorrain Jin, Min Shi, Driss Boudeffa, Giuliana Fusco, Alfonso De Simone, Deniz Kirik, Hilal A Lashuel, Jing Zhang, Poul Henning Jensen, . Protein kinase R dependent phosphorylation of α-synuclein regulates its membrane binding and aggregation. PNAS Nexus 2022, 1 (5) https://doi.org/10.1093/pnasnexus/pgac259
    30. Lara Petricca, Nour Chiki, Layane Hanna-El-Daher, Lorène Aeschbach, Ritwik Burai, Erik Stoops, Mohamed-Bilal Fares, Hilal A. Lashuel. Comparative Analysis of Total Alpha-Synuclein (αSYN) Immunoassays Reveals That They Do Not Capture the Diversity of Modified αSYN Proteoforms. Journal of Parkinson's Disease 2022, 12 (5) , 1449-1462. https://doi.org/10.3233/JPD-223285
    31. Tim Bilbrough, Emanuele Piemontese, Oliver Seitz. Dissecting the role of protein phosphorylation: a chemical biology toolbox. Chemical Society Reviews 2022, 51 (13) , 5691-5730. https://doi.org/10.1039/D1CS00991E
    32. Fiamma A. Buratti, Nicola Boeffinger, Hugo A. Garro, Jesica S. Flores, Francisco J. Hita, Phelippe do Carmo Gonçalves, Federico dos Reis Copello, Leonardo Lizarraga, Giulia Rossetti, Paolo Carloni, Markus Zweckstetter, Tiago F. Outeiro, Stefan Eimer, Christian Griesinger, Claudio O. Fernández. Aromaticity at position 39 in α‐synuclein: A modulator of amyloid fibril assembly and membrane‐bound conformations. Protein Science 2022, 31 (7) https://doi.org/10.1002/pro.4360
    33. Gaetano Calabrese, Cristen Molzahn, Thibault Mayor. Protein interaction networks in neurodegenerative diseases: From physiological function to aggregation. Journal of Biological Chemistry 2022, 298 (7) , 102062. https://doi.org/10.1016/j.jbc.2022.102062
    34. Ana Belén Uceda, Juan Frau, Bartolomé Vilanova, Miquel Adrover. Glycation of α-synuclein hampers its binding to synaptic-like vesicles and its driving effect on their fusion. Cellular and Molecular Life Sciences 2022, 79 (6) https://doi.org/10.1007/s00018-022-04373-4
    35. Isabelle Landrieu, Elian Dupré, Davy Sinnaeve, Léa El Hajjar, Caroline Smet-Nocca. Deciphering the Structure and Formation of Amyloids in Neurodegenerative Diseases With Chemical Biology Tools. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.886382
    36. André Saraiva Leão Marcelo Antunes. Post-translational Modifications in Parkinson’s Disease. 2022, 85-94. https://doi.org/10.1007/978-3-031-05460-0_6
    37. Diana M. Acosta, Chiara Mancinelli, Clay Bracken, David Eliezer. Post-translational modifications within tau paired helical filament nucleating motifs perturb microtubule interactions and oligomer formation. Journal of Biological Chemistry 2022, 298 (1) , 101442. https://doi.org/10.1016/j.jbc.2021.101442
    38. Wing K. Man, Bogachan Tahirbegi, Michail D. Vrettas, Swapan Preet, Liming Ying, Michele Vendruscolo, Alfonso De Simone, Giuliana Fusco. The docking of synaptic vesicles on the presynaptic membrane induced by α-synuclein is modulated by lipid composition. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-21027-4
    39. Luis M. A. Oliveira, Thomas Gasser, Robert Edwards, Markus Zweckstetter, Ronald Melki, Leonidas Stefanis, Hilal A. Lashuel, David Sulzer, Kostas Vekrellis, Glenda M. Halliday, Julianna J. Tomlinson, Michael Schlossmacher, Poul Henning Jensen, Julia Schulze-Hentrich, Olaf Riess, Warren D. Hirst, Omar El-Agnaf, Brit Mollenhauer, Peter Lansbury, Tiago F. Outeiro. Alpha-synuclein research: defining strategic moves in the battle against Parkinson’s disease. npj Parkinson's Disease 2021, 7 (1) https://doi.org/10.1038/s41531-021-00203-9
    40. E. Srinivasan, G. Chandrasekhar, P. Chandrasekar, K. Anbarasu, A. S. Vickram, Rohini Karunakaran, R. Rajasekaran, P. S. Srikumar. Alpha-Synuclein Aggregation in Parkinson's Disease. Frontiers in Medicine 2021, 8 https://doi.org/10.3389/fmed.2021.736978
    41. Stuart P. Moon, Aaron T. Balana, Matthew R. Pratt. Consequences of post-translational modifications on amyloid proteins as revealed by protein semisynthesis. Current Opinion in Chemical Biology 2021, 64 , 76-89. https://doi.org/10.1016/j.cbpa.2021.05.007
    42. Alessia Sarchione, Antoine Marchand, Jean-Marc Taymans, Marie-Christine Chartier-Harlin. Alpha-Synuclein and Lipids: The Elephant in the Room?. Cells 2021, 10 (9) , 2452. https://doi.org/10.3390/cells10092452
    43. Rosie Bell, Michele Vendruscolo. Modulation of the Interactions Between α-Synuclein and Lipid Membranes by Post-translational Modifications. Frontiers in Neurology 2021, 12 https://doi.org/10.3389/fneur.2021.661117
    44. Buyan Pan, Joo Hyung Park, Trudy Ramlall, David Eliezer, Elizabeth Rhoades, E. James Petersson. Chemoenzymatic Semi‐synthesis Enables Efficient Production of Isotopically Labeled α‐Synuclein with Site‐Specific Tyrosine Phosphorylation. ChemBioChem 2021, 22 (8) , 1440-1447. https://doi.org/10.1002/cbic.202000742
    45. Dan Li, Cong Liu. Hierarchical chemical determination of amyloid polymorphs in neurodegenerative disease. Nature Chemical Biology 2021, 17 (3) , 237-245. https://doi.org/10.1038/s41589-020-00708-z
    46. Juan Segura-Aguilar. Parkinson's disease. 2021, 1-171. https://doi.org/10.1016/B978-0-12-822120-4.00001-0
    47. Anne C. Conibear. Deciphering protein post-translational modifications using chemical biology tools. Nature Reviews Chemistry 2020, 4 (12) , 674-695. https://doi.org/10.1038/s41570-020-00223-8
    48. Matteo Runfola, Alfonso De Simone, Michele Vendruscolo, Christopher M. Dobson, Giuliana Fusco. The N-terminal Acetylation of α-Synuclein Changes the Affinity for Lipid Membranes but not the Structural Properties of the Bound State. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-019-57023-4
    49. Md. Razaul Karim, Elly E. Liao, Jaekwang Kim, Joyce Meints, Hector Martell Martinez, Olga Pletnikova, Juan C. Troncoso, Michael K. Lee. α-Synucleinopathy associated c-Abl activation causes p53-dependent autophagy impairment. Molecular Neurodegeneration 2020, 15 (1) https://doi.org/10.1186/s13024-020-00364-w
    50. Emelie E. Aspholm, Irena Matečko-Burmann, Björn M. Burmann. Keeping α-Synuclein at Bay: A More Active Role of Molecular Chaperones in Preventing Mitochondrial Interactions and Transition to Pathological States?. Life 2020, 10 (11) , 289. https://doi.org/10.3390/life10110289
    51. Kun Zhao, Yeh-Jun Lim, Zhenying Liu, Houfang Long, Yunpeng Sun, Jin-Jian Hu, Chunyu Zhao, Youqi Tao, Xing Zhang, Dan Li, Yan-Mei Li, Cong Liu. Parkinson’s disease-related phosphorylation at Tyr39 rearranges α-synuclein amyloid fibril structure revealed by cryo-EM. Proceedings of the National Academy of Sciences 2020, 117 (33) , 20305-20315. https://doi.org/10.1073/pnas.1922741117
    52. Sarah M. Hernandez, Elena B. Tikhonova, Andrey L. Karamyshev. Protein-Protein Interactions in Alpha-Synuclein Biogenesis: New Potential Targets in Parkinson’s Disease. Frontiers in Aging Neuroscience 2020, 12 https://doi.org/10.3389/fnagi.2020.00072
    53. Meraj Ramezani, Marcus M. Wilkes, Tapojyoti Das, David Holowka, David Eliezer, Barbara Baird. Regulation of exocytosis and mitochondrial relocalization by Alpha-synuclein in a mammalian cell model. npj Parkinson's Disease 2019, 5 (1) https://doi.org/10.1038/s41531-019-0084-6
    54. Bryan A. Killinger, Ronald Melki, Patrik Brundin, Jeffrey H. Kordower. Endogenous alpha-synuclein monomers, oligomers and resulting pathology: let’s talk about the lipids in the room. npj Parkinson's Disease 2019, 5 (1) https://doi.org/10.1038/s41531-019-0095-3
    55. Tapojyoti Das, David Eliezer. Membrane interactions of intrinsically disordered proteins: The example of alpha-synuclein. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2019, 1867 (10) , 879-889. https://doi.org/10.1016/j.bbapap.2019.05.001
    56. Zhipeng Wang, Ge Gao, Chunli Duan, Hui Yang. Progress of immunotherapy of anti-α-synuclein in Parkinson’s disease. Biomedicine & Pharmacotherapy 2019, 115 , 108843. https://doi.org/10.1016/j.biopha.2019.108843
    57. David Snead, David Eliezer. Intrinsically disordered proteins in synaptic vesicle trafficking and release. Journal of Biological Chemistry 2019, 294 (10) , 3325-3342. https://doi.org/10.1074/jbc.REV118.006493
    58. Tapojyoti Das, David Eliezer. Probing Structural Changes in Alpha-Synuclein by Nuclear Magnetic Resonance Spectroscopy. 2019, 157-181. https://doi.org/10.1007/978-1-4939-9124-2_13
    59. Yoon‐Hui Sung, David Eliezer. Structure and dynamics of the extended‐helix state of alpha‐synuclein: Intrinsic lability of the linker region. Protein Science 2018, 27 (7) , 1314-1324. https://doi.org/10.1002/pro.3426
    60. John Forsayeth, Piotr Hadaczek. Ganglioside Metabolism and Parkinson's Disease. Frontiers in Neuroscience 2018, 12 https://doi.org/10.3389/fnins.2018.00045
    61. Giuliana Fusco, Maximo Sanz-Hernandez, Alfonso De Simone. Order and disorder in the physiological membrane binding of α-synuclein. Current Opinion in Structural Biology 2018, 48 , 49-57. https://doi.org/10.1016/j.sbi.2017.09.004
    62. David Snead, David Eliezer. Spectroscopic Characterization of Structure–Function Relationships in the Intrinsically Disordered Protein Complexin. 2018, 227-286. https://doi.org/10.1016/bs.mie.2018.08.005
    63. John J. Ferrie, Conor M. Haney, Jimin Yoon, Buyan Pan, Yi-Chih Lin, Zahra Fakhraai, Elizabeth Rhoades, Abhinav Nath, E. James Petersson. Using a FRET Library with Multiple Probe Pairs To Drive Monte Carlo Simulations of α-Synuclein. Biophysical Journal 2018, 114 (1) , 53-64. https://doi.org/10.1016/j.bpj.2017.11.006
    64. James A. Duce, Bruce X. Wong, Hannah Durham, Jean-Christophe Devedjian, David P. Smith, David Devos. Post translational changes to α-synuclein control iron and dopamine trafficking; a concept for neuron vulnerability in Parkinson’s disease. Molecular Neurodegeneration 2017, 12 (1) https://doi.org/10.1186/s13024-017-0186-8
    65. Saurav Brahmachari, Senthilkumar S. Karuppagounder, Preston Ge, Saebom Lee, Valina L. Dawson, Ted M. Dawson, Han Seok Ko. c-Abl and Parkinson’s Disease: Mechanisms and Therapeutic Potential. Journal of Parkinson’s Disease 2017, 7 (4) , 589-601. https://doi.org/10.3233/JPD-171191

    ACS Chemical Biology

    Cite this: ACS Chem. Biol. 2016, 11, 9, 2428–2437
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acschembio.6b00539
    Published June 29, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    1408

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.