ACS Publications. Most Trusted. Most Cited. Most Read
Structure, Biosynthesis, and Biological Activity of the Cyclic Lipopeptide Anikasin
My Activity

Figure 1Loading Img
    Letters

    Structure, Biosynthesis, and Biological Activity of the Cyclic Lipopeptide Anikasin
    Click to copy article linkArticle link copied!

    View Author Information
    Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Junior Research Group Chemistry of Microbial Communication, Beutenbergstraße 11a, 07745 Jena, Germany
    Universität Göttingen, Insitute of Inorganic Chemistry, Tammannstraße 4, 37077 Göttingen, Germany
    § Friedrich-Schiller-Universität Jena, Institute for Inorganic and Analytical Chemistry, Humboldtstraße 8, 07743 Jena, Germany
    Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Arnimallee 22, 14195 Berlin, Germany
    Other Access OptionsSupporting Information (2)

    ACS Chemical Biology

    Cite this: ACS Chem. Biol. 2017, 12, 10, 2498–2502
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acschembio.7b00589
    Published August 28, 2017
    Copyright © 2017 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The class of cyclic lipopeptide natural products consists of compounds with a diverse range of bioactivities. In this study, we elucidated the structure of the cyclic lipopeptide anikasin using X-ray crystallography, analyzed its biosynthetic gene cluster, and investigated its natural role in the interaction between the producer strain Pseudomonas fluorescens HKI0770 and protozoal predators. These results led to the conclusion that anikasin has dual functionality enabling swarming motility and acting as a niche amoebicide, which effectively inhibits the social amoeba Polysphondylium violaceum and protects the producer strain from protozoal grazing.

    Copyright © 2017 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acschembio.7b00589.

    • Figures S1 and S2 (conformation of anikasin), Tables S1–S3 (antimicrobial and cytotoxicity assays); isolation of 15N-labeled anikasin; crystallization of anikasin; determination of the stereochemistry of the amino acids using Marfey’s reagent; plaque assay; NMR spectra of anikasin (PDF)

    • Crystallographic information (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 42 publications.

    1. Sebastian Götze, Raghav Vij, Katja Burow, Nicola Thome, Lennart Urbat, Nicolas Schlosser, Sebastian Pflanze, Rita Müller, Veit G. Hänsch, Kevin Schlabach, Leila Fazlikhani, Grit Walther, Hans-Martin Dahse, Lars Regestein, Sascha Brunke, Bernhard Hube, Christian Hertweck, Philipp Franken, Pierre Stallforth. Ecological Niche-Inspired Genome Mining Leads to the Discovery of Crop-Protecting Nonribosomal Lipopeptides Featuring a Transient Amino Acid Building Block. Journal of the American Chemical Society 2023, 145 (4) , 2342-2353. https://doi.org/10.1021/jacs.2c11107
    2. Michael Marner, Maria A. Patras, Michael Kurz, Florian Zubeil, Frank Förster, Sören Schuler, Armin Bauer, Peter Hammann, Andreas Vilcinskas, Till F. Schäberle, Jens Glaeser. Molecular Networking-Guided Discovery and Characterization of Stechlisins, a Group of Cyclic Lipopeptides from a Pseudomonas sp.. Journal of Natural Products 2020, 83 (9) , 2607-2617. https://doi.org/10.1021/acs.jnatprod.0c00263
    3. Yiheng Wang, Yongfu Pei, Xin Wang, Xiongfeng Dai, Manlu Zhu. Antimicrobial metabolites produced by the plant growth-promoting rhizobacteria (PGPR): Bacillus and Pseudomonas. Advanced Agrochem 2024, 3 (3) , 206-221. https://doi.org/10.1016/j.aac.2024.07.007
    4. Yali Li, Tianqi Wangjiang, Zhida Sun, Liu Shi, Sheng Chen, Lang Chen, Xiaojia Guo, Wenjin Wu, Guangquan Xiong, Lan Wang. Inhibition mechanism of crude lipopeptide from Bacillus subtilis against Aeromonas veronii growth, biofilm formation, and spoilage of channel catfish flesh. Food Microbiology 2024, 120 , 104489. https://doi.org/10.1016/j.fm.2024.104489
    5. Hui-Zhong Sun, Qing Li, Wei Shang, Bin Qiao, Qiu-Man Xu, Jing-Sheng Cheng. Combinatorial metabolic engineering of Bacillus subtilis for de novo production of polymyxin B. Metabolic Engineering 2024, 83 , 123-136. https://doi.org/10.1016/j.ymben.2024.04.001
    6. Sebastian Pflanze, Ruchira Mukherji, Anan Ibrahim, Markus Günther, Sebastian Götze, Somak Chowdhury, Lisa Reimer, Lars Regestein, Pierre Stallforth. Nonribosomal peptides protect Pseudomonas nunensis 4A2e from amoebal and nematodal predation. Chemical Science 2023, 14 (41) , 11573-11581. https://doi.org/10.1039/D3SC03335J
    7. Pintu Sar, Sandip Kundu, Aniruddha Ghosh, Bidyut Saha. Natural surfactant mediated bioremediation approaches for contaminated soil. RSC Advances 2023, 13 (44) , 30586-30605. https://doi.org/10.1039/D3RA05062A
    8. Jennifer Millera Niem, Regina Billones-Baaijens, Benjamin J. Stodart, Pierluigi Reveglia, Sandra Savocchia. Biocontrol Potential of an Endophytic Pseudomonas poae Strain against the Grapevine Trunk Disease Pathogen Neofusicoccum luteum and Its Mechanism of Action. Plants 2023, 12 (11) , 2132. https://doi.org/10.3390/plants12112132
    9. Moonika Haahr Marana, Azmi Al-Jubury, Heidi Mathiessen, Kurt Buchmann. Lipopeptide surfactant killing of Ichthyophthirius multifiliis: Mode of action. Aquaculture Reports 2023, 30 , 101562. https://doi.org/10.1016/j.aqrep.2023.101562
    10. Yuko Bando, Yu Hou, Lydia Seyfarth, Jannik Probst, Sebastian Götze, Marta Bogacz, Ute A. Hellmich, Pierre Stallforth, Maria Mittag, Hans‐Dieter Arndt. Total Synthesis and Structure Correction of the Cyclic Lipodepsipeptide Orfamide A. Chemistry – A European Journal 2022, 28 (20) https://doi.org/10.1002/chem.202104417
    11. Muhammad Ibrar, Salman Khan, Fariha Hasan, Xuewei Yang. Biosurfactants and chemotaxis interplay in microbial consortium-based hydrocarbons degradation. Environmental Science and Pollution Research 2022, 29 (17) , 24391-24410. https://doi.org/10.1007/s11356-022-18492-9
    12. Javier Santos-Aberturas, Natalia Vior. Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics 2022, 11 (2) , 195. https://doi.org/10.3390/antibiotics11020195
    13. Léa Girard, Niels Geudens, Brent Pauwels, Monica Höfte, José C. Martins, René De Mot, . Transporter Gene-Mediated Typing for Detection and Genome Mining of Lipopeptide-Producing Pseudomonas. Applied and Environmental Microbiology 2022, 88 (2) https://doi.org/10.1128/AEM.01869-21
    14. Anjali Gupta, Divya Bajpai Tripathy, Meenu Aggarwal, Mohammad Luqman, Mohd. Farhan Khan. Nanomaterials synthesis in switchable solvents. 2022, 133-148. https://doi.org/10.1016/B978-0-12-819850-6.00004-8
    15. Zongwang Ma. Analysis of the complete genome sequence of a rhizosphere-derived Pseudomonas sp. HN3-2 leads to the characterization of a cyclic lipopeptide-type antibiotic bananamide C. 3 Biotech 2022, 12 (1) https://doi.org/10.1007/s13205-021-03100-3
    16. Feyisara Eyiwumi Oni, Qassim Esmaeel, Joseph Tobias Onyeka, Rasheed Adeleke, Cedric Jacquard, Christophe Clement, Harald Gross, Essaid Ait Barka, Monica Höfte. Pseudomonas Lipopeptide-Mediated Biocontrol: Chemotaxonomy and Biological Activity. Molecules 2022, 27 (2) , 372. https://doi.org/10.3390/molecules27020372
    17. Alba Pacheco-Moreno, Francesca L Stefanato, Jonathan J Ford, Christine Trippel, Simon Uszkoreit, Laura Ferrafiat, Lucia Grenga, Ruth Dickens, Nathan Kelly, Alexander DH Kingdon, Liana Ambrosetti, Sergey A Nepogodiev, Kim C Findlay, Jitender Cheema, Martin Trick, Govind Chandra, Graham Tomalin, Jacob G Malone, Andrew W Truman. Pan-genome analysis identifies intersecting roles for Pseudomonas specialized metabolites in potato pathogen inhibition. eLife 2021, 10 https://doi.org/10.7554/eLife.71900
    18. . Full Issue PDF. Molecular Plant-Microbe Interactions® 2021, 1228-1333. https://doi.org/10.1094/MPMI-34-11
    19. Robert Czajkowski, Lukasz Rabalski, Maciej Kosinski, Eigil de Neergaard, Susanne Harding. High-Quality Complete Genome Resource of Pathogenic Bacterium Pectobacterium atrosepticum Strain Green1 Isolated from Potato ( Solanum tuberosum L.) in Greenland. Molecular Plant-Microbe Interactions® 2021, 34 (11) , 1328-1333. https://doi.org/10.1094/MPMI-06-21-0130-A
    20. Lu Zhou, Anne de Jong, Yunhai Yi, Oscar P. Kuipers. Identification, Isolation, and Characterization of Medipeptins, Antimicrobial Peptides From Pseudomonas mediterranea EDOX. Frontiers in Microbiology 2021, 12 https://doi.org/10.3389/fmicb.2021.732771
    21. Jiequn Wu, Danqing Chen, Jinrong Wu, Xiaohe Chu, Yongmei Yang, Lina Fang, Wei Zhang. Comparative Transcriptome Analysis Demonstrates the Positive Effect of the Cyclic AMP Receptor Protein Crp on Daptomycin Biosynthesis in Streptomyces roseosporus. Frontiers in Bioengineering and Biotechnology 2021, 9 https://doi.org/10.3389/fbioe.2021.618029
    22. Flávia F. Magalhães, João C. F. Nunes, Marília T. Araújo, Ana M. Ferreira, Mafalda R. Almeida, Mara G. Freire, Ana P. M. Tavares. Anti-Cancer Biosurfactants. 2021, 159-196. https://doi.org/10.1007/978-981-15-6607-3_8
    23. Fisseha A. Bezza, Shepherd M. Tichapondwa, Evans M. N. Chirwa. Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-73497-z
    24. Lei Zhao, Tien Duy Vo, Marcel Kaiser, Helge B. Bode. Phototemtide A, a Cyclic Lipopeptide Heterologously Expressed from Photorhabdus temperata Meg1, Shows Selective Antiprotozoal Activity. ChemBioChem 2020, 21 (9) , 1288-1292. https://doi.org/10.1002/cbic.201900665
    25. Mout De Vrieze, Adithi R. Varadarajan, Kerstin Schneeberger, Aurélien Bailly, Rudolf P. Rohr, Christian H. Ahrens, Laure Weisskopf. Linking Comparative Genomics of Nine Potato-Associated Pseudomonas Isolates With Their Differing Biocontrol Potential Against Late Blight. Frontiers in Microbiology 2020, 11 https://doi.org/10.3389/fmicb.2020.00857
    26. Sebastian Götze, Pierre Stallforth. Structure elucidation of bacterial nonribosomal lipopeptides. Organic & Biomolecular Chemistry 2020, 18 (9) , 1710-1727. https://doi.org/10.1039/C9OB02539A
    27. Chao Liu, Hideaki Kakeya. Cryptic Chemical Communication: Secondary Metabolic Responses Revealed by Microbial Co‐culture. Chemistry – An Asian Journal 2020, 15 (3) , 327-337. https://doi.org/10.1002/asia.201901505
    28. Sebastian Götze, Pierre Stallforth. Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads. Natural Product Reports 2020, 37 (1) , 29-54. https://doi.org/10.1039/C9NP00022D
    29. Khadija Basaid, Bouchra Chebli, El Hassan Mayad, James N. Furze, Rachid Bouharroud, François Krier, Mustapha Barakate, Timothy Paulitz. Biological activities of essential oils and lipopeptides applied to control plant pests and diseases: a review. International Journal of Pest Management 2020, 47 , 1-23. https://doi.org/10.1080/09670874.2019.1707327
    30. R. Herbst, M. Günther, P. Stallforth. Chemical Ecology of Dictyostelium discoideum. 2020, 31-44. https://doi.org/10.1016/B978-0-12-409547-2.14719-5
    31. Olumide Owolabi Omoboye, Niels Geudens, Matthieu Duban, Mickaël Chevalier, Christophe Flahaut, José C. Martins, Valérie Leclère, Feyisara Eyiwumi Oni, Monica Höfte. Pseudomonas sp. COW3 Produces New Bananamide-Type Cyclic Lipopeptides with Antimicrobial Activity against Pythium myriotylum and Pyricularia oryzae. Molecules 2019, 24 (22) , 4170. https://doi.org/10.3390/molecules24224170
    32. Olumide Owolabi Omoboye, Feyisara Eyiwumi Oni, Humaira Batool, Henok Zimene Yimer, René De Mot, Monica Höfte. Pseudomonas Cyclic Lipopeptides Suppress the Rice Blast Fungus Magnaporthe oryzae by Induced Resistance and Direct Antagonism. Frontiers in Plant Science 2019, 10 https://doi.org/10.3389/fpls.2019.00901
    33. Chuping Luo, Yongxing Chen, Xuehui Liu, Xiaohua Wang, Xiaoyu Wang, Xiangqian Li, Yuping Zhao, Lihui Wei. Engineered biosynthesis of cyclic lipopeptide locillomycins in surrogate host Bacillus velezensis FZB42 and derivative strains enhance antibacterial activity. Applied Microbiology and Biotechnology 2019, 103 (11) , 4467-4481. https://doi.org/10.1007/s00253-019-09784-1
    34. Geudens, Kovács, Sinnaeve, Oni, Höfte, Martins. Conformation and Dynamics of the Cyclic Lipopeptide Viscosinamide at the Water-Lipid Interface. Molecules 2019, 24 (12) , 2257. https://doi.org/10.3390/molecules24122257
    35. , T.P. Pirog, , L.V. Kliuchka, , T.A. Shevchuk, , F.V. Muchnyk, . Interrelation of Chemical Composition and Biological Properties of Microbial Surfactants. Mikrobiolohichnyi Zhurnal 2019, 81 (3) , 84-104. https://doi.org/10.15407/microbiolj81.03.084
    36. Zhilei Gao, Ida Karlsson, Stefan Geisen, George Kowalchuk, Alexandre Jousset. Protists: Puppet Masters of the Rhizosphere Microbiome. Trends in Plant Science 2019, 24 (2) , 165-176. https://doi.org/10.1016/j.tplants.2018.10.011
    37. Sarah P. Niehs, Benjamin Dose, Kirstin Scherlach, Martin Roth, Christian Hertweck. Genomics‐Driven Discovery of a Symbiont‐Specific Cyclopeptide from Bacteria Residing in the Rice Seedling Blight Fungus. ChemBioChem 2018, 19 (20) , 2167-2172. https://doi.org/10.1002/cbic.201800400
    38. Yumiko F. Saito, Saki H. Miyazaki, Derek G. Bartlem, Yukiko Nagamatsu, Tamao Saito, . Chemical compounds from Dictyostelium discoideum repel a plant-parasitic nematode and can protect roots. PLOS ONE 2018, 13 (9) , e0204671. https://doi.org/10.1371/journal.pone.0204671
    39. Niels Geudens, José C. Martins. Cyclic Lipodepsipeptides From Pseudomonas spp. – Biological Swiss-Army Knives. Frontiers in Microbiology 2018, 9 https://doi.org/10.3389/fmicb.2018.01867
    40. Margot Schlusselhuber, Justine Godard, Muriel Sebban, Benoit Bernay, David Garon, Virginie Seguin, Hassan Oulyadi, Nathalie Desmasures. Characterization of Milkisin, a Novel Lipopeptide With Antimicrobial Properties Produced By Pseudomonas sp. UCMA 17988 Isolated From Bovine Raw Milk. Frontiers in Microbiology 2018, 9 https://doi.org/10.3389/fmicb.2018.01030
    41. Johannes Arp, Sebastian Götze, Ruchira Mukherji, Derek J. Mattern, María García-Altares, Martin Klapper, Debra A. Brock, Axel A. Brakhage, Joan E. Strassmann, David C. Queller, Bettina Bardl, Karsten Willing, Gundela Peschel, Pierre Stallforth. Synergistic activity of cosecreted natural products from amoebae-associated bacteria. Proceedings of the National Academy of Sciences 2018, 115 (15) , 3758-3763. https://doi.org/10.1073/pnas.1721790115
    42. Joe Dan Dunn, Cristina Bosmani, Caroline Barisch, Lyudmil Raykov, Louise H. Lefrançois, Elena Cardenal-Muñoz, Ana Teresa López-Jiménez, Thierry Soldati. Eat Prey, Live: Dictyostelium discoideum As a Model for Cell-Autonomous Defenses. Frontiers in Immunology 2018, 8 https://doi.org/10.3389/fimmu.2017.01906

    ACS Chemical Biology

    Cite this: ACS Chem. Biol. 2017, 12, 10, 2498–2502
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acschembio.7b00589
    Published August 28, 2017
    Copyright © 2017 American Chemical Society

    Article Views

    2730

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.