ACS Publications. Most Trusted. Most Cited. Most Read
Histone Deacetylase 11 Is a Fatty-Acid Deacylase
My Activity
    Articles

    Histone Deacetylase 11 Is a Fatty-Acid Deacylase
    Click to copy article linkArticle link copied!

    • Zsofia Kutil
      Zsofia Kutil
      Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
      More by Zsofia Kutil
    • Zora Novakova
      Zora Novakova
      Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
    • Marat Meleshin
      Marat Meleshin
      Institute of Biochemistry and Biotechnology, Department of Enzymology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
    • Jana Mikesova
      Jana Mikesova
      Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
    • Mike Schutkowski
      Mike Schutkowski
      Institute of Biochemistry and Biotechnology, Department of Enzymology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany
    • Cyril Barinka*
      Cyril Barinka
      Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (2)

    ACS Chemical Biology

    Cite this: ACS Chem. Biol. 2018, 13, 3, 685–693
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acschembio.7b00942
    Published January 16, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Histone deacetylase 11 (HDAC11) is a sole member of the class IV HDAC subfamily with negligible intrinsic deacetylation activity. Here, we report in vitro profiling of HDAC11 deacylase activities, and our data unequivocally show that the enzyme efficiently removes acyl moieties spanning 8–18 carbons from the side chain nitrogen of the lysine residue of a peptidic substrate. Additionally, N-linked lipoic acid and biotin are removed by the enzyme, although with lower efficacy. Catalytic efficiencies toward dodecanoylated and myristoylated peptides were 77 700 and 149 000 M–1 s–1, respectively, making HDAC11 the most proficient fatty-acid deacylase of the HDAC family. Interestingly, HDAC11 is strongly inhibited by free myristic, palmitic, and stearic acids with inhibition constants of 6.5, 0.9, and 1.6 μM, respectively. At the same time, its deacylase activity is stimulated more than 2.5-fold by both palmitoyl-coenzyme A and myristoyl-coenzyme A, pointing toward metabolic control of the enzymatic activity by fatty-acid metabolites. Our data reveal novel enzymatic activity of HDAC11 that can, in turn, facilitate the uncovering of additional biological functions of the enzyme as well as the design of isoform-specific HDAC inhibitors.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acschembio.7b00942.

    • Methods, Figures S1–S21, and Tables S1 and S2 (PDF)

    • Table S3 (XLSX)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 115 publications.

    1. Yasir S. Raouf, Carlos Moreno-Yruela. Slow-Binding and Covalent HDAC Inhibition: A New Paradigm?. JACS Au 2024, 4 (11) , 4148-4161. https://doi.org/10.1021/jacsau.4c00828
    2. Fabian B. Kraft, Lukas Biermann, Linda Schäker-Hübner, Maria Hanl, Alexandra Hamacher, Matthias U. Kassack, Finn K. Hansen. Hydrazide-Based Class I Selective HDAC Inhibitors Completely Reverse Chemoresistance Synergistically in Platinum-Resistant Solid Cancer Cells. Journal of Medicinal Chemistry 2024, 67 (19) , 17796-17819. https://doi.org/10.1021/acs.jmedchem.4c01817
    3. David W. Christianson. Chemical Versatility in Catalysis and Inhibition of the Class IIb Histone Deacetylases. Accounts of Chemical Research 2024, 57 (8) , 1135-1148. https://doi.org/10.1021/acs.accounts.3c00801
    4. Silke Geurs, Dorien Clarisse, Karolien De Bosscher, Matthias D’hooghe. The Zinc-Binding Group Effect: Lessons from Non-Hydroxamic Acid Vorinostat Analogs. Journal of Medicinal Chemistry 2023, 66 (12) , 7698-7729. https://doi.org/10.1021/acs.jmedchem.3c00226
    5. Paris R. Watson, Suchetana Gupta, Parisa Hosseinzadeh, Benjamin P. Brown, David Baker, David W. Christianson. Macrocyclic Octapeptide Binding and Inferences on Protein Substrate Binding to Histone Deacetylase 6. ACS Chemical Biology 2023, 18 (4) , 959-968. https://doi.org/10.1021/acschembio.3c00113
    6. Thanh Tu Ho, Changmin Peng, Edward Seto, Hening Lin. Trapoxin A Analogue as a Selective Nanomolar Inhibitor of HDAC11. ACS Chemical Biology 2023, 18 (4) , 803-809. https://doi.org/10.1021/acschembio.2c00840
    7. Ping Sun, Jing Wang, Khadija S. Khan, Weiqin Yang, Billy Wai-Lung Ng, Nikita Ilment, Matthes Zessin, Emre F. Bülbül, Dina Robaa, Frank Erdmann, Matthias Schmidt, Christophe Romier, Mike Schutkowski, Alfred Sze-Lok Cheng, Wolfgang Sippl. Development of Alkylated Hydrazides as Highly Potent and Selective Class I Histone Deacetylase Inhibitors with T cell Modulatory Properties. Journal of Medicinal Chemistry 2022, 65 (24) , 16313-16337. https://doi.org/10.1021/acs.jmedchem.2c01132
    8. Matthes Zessin, Marat Meleshin, Lucas Praetorius, Wolfgang Sippl, Cyril Bařinka, Mike Schutkowski. Uncovering Robust Delactoylase and Depyruvoylase Activities of HDAC Isoforms. ACS Chemical Biology 2022, 17 (6) , 1364-1375. https://doi.org/10.1021/acschembio.1c00863
    9. Ibrahim Yildiz, Banu Sizirici Yildiz. Computational Analysis of Histone Deacetylase 10 Mechanism by the ONIOM Method: A Complementary Approach to X-ray and Kinetics Studies. ACS Omega 2022, 7 (7) , 6393-6402. https://doi.org/10.1021/acsomega.1c07055
    10. Ki-Back Chu, Hae-Ahm Lee, Marc Pflieger, Fabian Fischer, Yodita Asfaha, Leandro A. Alves Avelar, Alexander Skerhut, Matthias U. Kassack, Finn K Hansen, Andrea Schöler, Thomas Kurz, Min-Jeong Kim, Eun-Kyung Moon, Fu-Shi Quan. Antiproliferation and Antiencystation Effect of Class II Histone Deacetylase Inhibitors on Acanthamoeba castellanii. ACS Infectious Diseases 2022, 8 (2) , 271-279. https://doi.org/10.1021/acsinfecdis.1c00390
    11. Sida Shen, Cristina Picci, Kseniya Ustinova, Veronick Benoy, Zsófia Kutil, Guiping Zhang, Maurício T. Tavares, Jiří Pavlíček, Chad A. Zimprich, Matthew B. Robers, Ludo Van Den Bosch, Cyril Bařinka, Brett Langley, Alan P. Kozikowski. Tetrahydroquinoline-Capped Histone Deacetylase 6 Inhibitor SW-101 Ameliorates Pathological Phenotypes in a Charcot–Marie–Tooth Type 2A Mouse Model. Journal of Medicinal Chemistry 2021, 64 (8) , 4810-4840. https://doi.org/10.1021/acs.jmedchem.0c02210
    12. Se In Son, Dan Su, Thanh Tu Ho, Hening Lin. Garcinol Is an HDAC11 Inhibitor. ACS Chemical Biology 2020, 15 (11) , 2866-2871. https://doi.org/10.1021/acschembio.0c00719
    13. Terence C. S. Ho, Alex H. Y. Chan, A. Ganesan. Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight. Journal of Medicinal Chemistry 2020, 63 (21) , 12460-12484. https://doi.org/10.1021/acs.jmedchem.0c00830
    14. Satish Noonepalle, Sida Shen, Jakub Ptáček, Maurício T. Tavares, Guiping Zhang, Jan Stránský, Jiří Pavlíček, Glaucio M. Ferreira, Melissa Hadley, Guido Pelaez, Cyril Bařinka, Alan P. Kozikowski, Alejandro Villagra. Rational Design of Suprastat: A Novel Selective Histone Deacetylase 6 Inhibitor with the Ability to Potentiate Immunotherapy in Melanoma Models. Journal of Medicinal Chemistry 2020, 63 (18) , 10246-10262. https://doi.org/10.1021/acs.jmedchem.0c00567
    15. Matthes Zessin, Zsófia Kutil, Marat Meleshin, Zora Nováková, Ehab Ghazy, Diana Kalbas, Martin Marek, Christophe Romier, Wolfgang Sippl, Cyril Bařinka, Mike Schutkowski. One-Atom Substitution Enables Direct and Continuous Monitoring of Histone Deacylase Activity. Biochemistry 2019, 58 (48) , 4777-4789. https://doi.org/10.1021/acs.biochem.9b00786
    16. Zsófia Kutil, Jana Mikešová, Matthes Zessin, Marat Meleshin, Zora Nováková, Glenda Alquicer, Alan Kozikowski, Wolfgang Sippl, Cyril Bařinka, Mike Schutkowski. Continuous Activity Assay for HDAC11 Enabling Reevaluation of HDAC Inhibitors. ACS Omega 2019, 4 (22) , 19895-19904. https://doi.org/10.1021/acsomega.9b02808
    17. Sida Shen, Melissa Hadley, Kseniya Ustinova, Jiri Pavlicek, Tessa Knox, Satish Noonepalle, Mauricio T. Tavares, Chad A. Zimprich, Guiping Zhang, Matthew B. Robers, Cyril Bařinka, Alan P. Kozikowski, Alejandro Villagra. Discovery of a New Isoxazole-3-hydroxamate-Based Histone Deacetylase 6 Inhibitor SS-208 with Antitumor Activity in Syngeneic Melanoma Mouse Models. Journal of Medicinal Chemistry 2019, 62 (18) , 8557-8577. https://doi.org/10.1021/acs.jmedchem.9b00946
    18. Nicole A. Spiegelman, Xiaoyu Zhang, Hui Jing, Ji Cao, Ilana B. Kotliar, Pornpun Aramsangtienchai, Miao Wang, Zhen Tong, Kelly M. Rosch, Hening Lin. SIRT2 and Lysine Fatty Acylation Regulate the Activity of RalB and Cell Migration. ACS Chemical Biology 2019, 14 (9) , 2014-2023. https://doi.org/10.1021/acschembio.9b00492
    19. Se In Son, Ji Cao, Cheng-Liang Zhu, Seth P. Miller, Hening Lin. Activity-Guided Design of HDAC11-Specific Inhibitors. ACS Chemical Biology 2019, 14 (7) , 1393-1397. https://doi.org/10.1021/acschembio.9b00292
    20. Magalie Géraldy, Michael Morgen, Peter Sehr, Raphael R. Steimbach, Davide Moi, Johannes Ridinger, Ina Oehme, Olaf Witt, Mona Malz, Mauro S. Nogueira, Oliver Koch, Nikolas Gunkel, Aubry K. Miller. Selective Inhibition of Histone Deacetylase 10: Hydrogen Bonding to the Gatekeeper Residue is Implicated. Journal of Medicinal Chemistry 2019, 62 (9) , 4426-4443. https://doi.org/10.1021/acs.jmedchem.8b01936
    21. Wesley Wei Wang, Maria Angulo-Ibanez, Jie Lyu, Yadagiri Kurra, Zhen Tong, Bo Wu, Ling Zhang, Vangmayee Sharma, Jennifer Zhou, Hening Lin, Yi Qin Gao, Wei Li, Katrin F. Chua, Wenshe Ray Liu. A Click Chemistry Approach Reveals the Chromatin-Dependent Histone H3K36 Deacylase Nature of SIRT7. Journal of the American Chemical Society 2019, 141 (6) , 2462-2473. https://doi.org/10.1021/jacs.8b12083
    22. Nicholas J. Porter, Florence F. Wagner, David W. Christianson. Entropy as a Driver of Selectivity for Inhibitor Binding to Histone Deacetylase 6. Biochemistry 2018, 57 (26) , 3916-3924. https://doi.org/10.1021/acs.biochem.8b00367
    23. Stephen A. Shinsky, David W. Christianson. Polyamine Deacetylase Structure and Catalysis: Prokaryotic Acetylpolyamine Amidohydrolase and Eukaryotic HDAC10. Biochemistry 2018, 57 (22) , 3105-3114. https://doi.org/10.1021/acs.biochem.8b00079
    24. Juana Goulart Stollmaier, B. Abigail R. Czarnecki, David W. Christianson. Mechanism-Based Inhibition of Histone Deacetylase 6 by a Selenocyanate is Subject to Redox Modulation. 2025https://doi.org/10.1101/2025.01.04.631333
    25. Ruiqi Shao, Takayoshi Suzuki, Mikita Suyama, Yuichi Tsukada. The impact of selective HDAC inhibitors on the transcriptome of early mouse embryos. BMC Genomics 2024, 25 (1) https://doi.org/10.1186/s12864-024-10029-3
    26. Leonie G. Graf, Carlos Moreno-Yruela, Chuan Qin, Sabrina Schulze, Gottfried J. Palm, Ole Schmöker, Nancy Wang, Dianna M. Hocking, Leila Jebeli, Britta Girbardt, Leona Berndt, Babett Dörre, Daniel M. Weis, Markus Janetzky, Dirk Albrecht, Daniela Zühlke, Susanne Sievers, Richard A. Strugnell, Christian A. Olsen, Kay Hofmann, Michael Lammers. Distribution and diversity of classical deacylases in bacteria. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-53903-0
    27. Yunxia Li, Qi Han, Yuxin Liu, Jie Yin, Jie Ma. Role of the histone deacetylase family in lipid metabolism: Structural specificity and functional diversity. Pharmacological Research 2024, 210 , 107493. https://doi.org/10.1016/j.phrs.2024.107493
    28. Jinwei Zhang, Maoshuo Yang, Qian Liu, Xintong Xue, Sijia Tian, Xi Hu, Mengzhe Li, Jintao Li, Qipeng Chai, Fabao Liu, Xiaona You, Yingjie Zhang. Discovery of epigenetic modulators targeting HDACs and EZH2 simultaneously for the treatment of hematological malignancies. Bioorganic Chemistry 2024, 153 , 107964. https://doi.org/10.1016/j.bioorg.2024.107964
    29. Tuba Kablan, Efe Biyikli, Nazlican Bozdemir, Fatma Uysal. A narrative review of the histone acetylation and deacetylation during mammalian spermatogenesis. Biochimie 2024, 128 https://doi.org/10.1016/j.biochi.2024.11.011
    30. Li-Ying Zhang, Sen-Yu Zhang, Ri Wen, Tie-Ning Zhang, Ni Yang. Role of histone deacetylases and their inhibitors in neurological diseases. Pharmacological Research 2024, 208 , 107410. https://doi.org/10.1016/j.phrs.2024.107410
    31. Fady Baselious, Sebastian Hilscher, Sven Hagemann, Sunita Tripathee, Dina Robaa, Cyril Barinka, Stefan Hüttelmaier, Mike Schutkowski, Wolfgang Sippl. Utilization of an optimized AlphaFold protein model for structure‐based design of a selective HDAC11 inhibitor with anti‐neuroblastoma activity. Archiv der Pharmazie 2024, 357 (10) https://doi.org/10.1002/ardp.202400486
    32. Samima Khatun, Rinki Prasad Bhagat, Ritam Dutta, Anwesha Datta, Abhishek Jaiswal, Swapnamay Halder, Tarun Jha, Sk. Abdul Amin, Shovanlal Gayen. Unraveling HDAC11: Epigenetic orchestra in different diseases and structural insights for inhibitor design. Biochemical Pharmacology 2024, 225 , 116312. https://doi.org/10.1016/j.bcp.2024.116312
    33. Marten A. Fischer, Al-Hassan M. Mustafa, Kristin Hausmann, Ramy Ashry, Anita G. Kansy, Magdalena C. Liebl, Christina Brachetti, Andrea Piée-Staffa, Matthes Zessin, Hany S. Ibrahim, Thomas G. Hofmann, Mike Schutkowski, Wolfgang Sippl, Oliver H. Krämer. Novel hydroxamic acid derivative induces apoptosis and constrains autophagy in leukemic cells. Journal of Advanced Research 2024, 60 , 201-214. https://doi.org/10.1016/j.jare.2023.07.005
    34. Geng Jia, Jinyu Liu, Xinlu Hou, Yuqi Jiang, Xiaoyang Li. Biological function and small molecule inhibitors of histone deacetylase 11. European Journal of Medicinal Chemistry 2024, 447 , 116634. https://doi.org/10.1016/j.ejmech.2024.116634
    35. Jihong Chen, Qiao Li. Emerging role of HDAC11 in skeletal muscle biology. Frontiers in Cell and Developmental Biology 2024, 12 https://doi.org/10.3389/fcell.2024.1368171
    36. Antonio Curcio, Roberta Rocca, Stefano Alcaro, Anna Artese. The Histone Deacetylase Family: Structural Features and Application of Combined Computational Methods. Pharmaceuticals 2024, 17 (5) , 620. https://doi.org/10.3390/ph17050620
    37. Fady Baselious, Sebastian Hilscher, Dina Robaa, Cyril Barinka, Mike Schutkowski, Wolfgang Sippl. Comparative Structure-Based Virtual Screening Utilizing Optimized AlphaFold Model Identifies Selective HDAC11 Inhibitor. International Journal of Molecular Sciences 2024, 25 (2) , 1358. https://doi.org/10.3390/ijms25021358
    38. Randall H. Morse. Histone modifications. 2024, 331-441. https://doi.org/10.1016/B978-0-12-814809-9.00002-0
    39. Padmashri Naren, Khan Sabiya Samim, Kamatham Pushpa Tryphena, Lalitkumar K. Vora, Saurabh Srivastava, Shashi Bala Singh, Dharmendra Kumar Khatri. Microtubule acetylation dyshomeostasis in Parkinson’s disease. Translational Neurodegeneration 2023, 12 (1) https://doi.org/10.1186/s40035-023-00354-0
    40. Yan He, Can-Can Zheng, Jing Yang, Shu-Jun Li, Tao-Yang Xu, Xian Wei, Wen-You Chen, Zhi-Li Jiang, Jiao-Jiao Xu, Guo-Geng Zhang, Chao Cheng, Kui-Sheng Chen, Xing-Yuan Shi, Da-Jiang Qin, Jin-Bao Liu, Bin Li. Lysine butyrylation of HSP90 regulated by KAT8 and HDAC11 confers chemoresistance. Cell Discovery 2023, 9 (1) https://doi.org/10.1038/s41421-023-00570-y
    41. Elena V. Feofanova, Michael R. Brown, Taryn Alkis, Astrid M. Manuel, Xihao Li, Usman A. Tahir, Zilin Li, Kevin M. Mendez, Rachel S. Kelly, Qibin Qi, Han Chen, Martin G. Larson, Rozenn N. Lemaitre, Alanna C. Morrison, Charles Grieser, Kari E. Wong, Robert E. Gerszten, Zhongming Zhao, Jessica Lasky-Su, , Honghuang Lin, Jeffrey Haessler, Jennifer A. Brody, Kari E. North, Kent D. Taylor, Clary B. Clish, James G. Wilson, Xihong Lin, Robert C. Kaplan, Charles Kooperberg, Bruce M. Psaty, Stephen S. Rich, Jerome I. Rotter, Ramachandran S. Vasan, Eric Boerwinkle, Bing Yu. Whole-Genome Sequencing Analysis of Human Metabolome in Multi-Ethnic Populations. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-38800-2
    42. Jinxiao Ru, Yuxi Wang, Zijia Li, Jiaxing Wang, Changyu Ren, Jifa Zhang. Technologies of targeting histone deacetylase in drug discovery: Current progress and emerging prospects. European Journal of Medicinal Chemistry 2023, 261 , 115800. https://doi.org/10.1016/j.ejmech.2023.115800
    43. Fady Baselious, Dina Robaa, Wolfgang Sippl. Utilization of AlphaFold models for drug discovery: Feasibility and challenges. Histone deacetylase 11 as a case study. Computers in Biology and Medicine 2023, 167 , 107700. https://doi.org/10.1016/j.compbiomed.2023.107700
    44. LongJiang DI, Jun ZHANG, Wei-Guo ZHU. Progress in the research of epigenetic regulators in cancer therapy. SCIENTIA SINICA Vitae 2023, 53 (11) , 1546-1563. https://doi.org/10.1360/SSV-2023-0139
    45. Yufeng Xiao, Seth Hale, Nikee Awasthee, Chengcheng Meng, Xuan Zhang, Yi Liu, Haocheng Ding, Zhiguang Huo, Dongwen Lv, Weizhou Zhang, Mei He, Guangrong Zheng, Daiqing Liao. HDAC3 and HDAC8 PROTAC dual degrader reveals roles of histone acetylation in gene regulation. Cell Chemical Biology 2023, 30 (11) , 1421-1435.e12. https://doi.org/10.1016/j.chembiol.2023.07.010
    46. Emma L. Robinson, Rushita A. Bagchi, Jennifer L. Major, Bryan C. Bergman, Jennifer L. Matsuda, Timothy A. McKinsey. HDAC11 inhibition triggers bimodal thermogenic pathways to circumvent adipocyte catecholamine resistance. Journal of Clinical Investigation 2023, 133 (19) https://doi.org/10.1172/JCI168192
    47. Yan Liu, Xuechao Tong, Weina Hu, Da Chen. HDAC11: A novel target for improved cancer therapy. Biomedicine & Pharmacotherapy 2023, 166 , 115418. https://doi.org/10.1016/j.biopha.2023.115418
    48. Paris R. Watson, Juana Goulart Stollmaier, David W. Christianson. Crystal structure of histone deacetylase 6 complexed with (R)-lipoic acid, an essential cofactor in central carbon metabolism. Journal of Biological Chemistry 2023, 299 (10) , 105228. https://doi.org/10.1016/j.jbc.2023.105228
    49. Urvashi Patel, Joshua P. Smalley, James T. Hodgkinson. PROTAC chemical probes for histone deacetylase enzymes. RSC Chemical Biology 2023, 4 (9) , 623-634. https://doi.org/10.1039/D3CB00105A
    50. Naoya Kitamura, James J. Galligan. A global view of the human post-translational modification landscape. Biochemical Journal 2023, 480 (16) , 1241-1265. https://doi.org/10.1042/BCJ20220251
    51. Mariana Sayuri Ishikawa Fragoso, Caroline Moraes de Siqueira, Francisca Nathália Luna Vitorino, Alexandre Zanatta Vieira, Érica Santos Martins-Duarte, Helisson Faoro, Júlia Pinheiro Chagas da Cunha, Andréa Rodrigues Ávila, Sheila Cristina Nardelli. TgKDAC4: A Unique Deacetylase of Toxoplasma’s Apicoplast. Microorganisms 2023, 11 (6) , 1558. https://doi.org/10.3390/microorganisms11061558
    52. Tao Liang, Fengli Wang, Reham M. Elhassan, Yongmei Cheng, Xiaolei Tang, Wengang Chen, Hao Fang, Xuben Hou. Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharmaceutica Sinica B 2023, 13 (6) , 2425-2463. https://doi.org/10.1016/j.apsb.2023.02.007
    53. Guoqing Luo, Bohao Liu, Tinglv Fu, Yi Liu, Boyang Li, Ning Li, Qing Geng. The Role of Histone Deacetylases in Acute Lung Injury—Friend or Foe. International Journal of Molecular Sciences 2023, 24 (9) , 7876. https://doi.org/10.3390/ijms24097876
    54. Dilipkumar Pal, Khushboo Raj, Shyam Sundar Nandi, Surajit Sinha, Abhishek Mishra, Arijit Mondal, Ricardo Lagoa, Jack T. Burcher, Anupam Bishayee. Potential of Synthetic and Natural Compounds as Novel Histone Deacetylase Inhibitors for the Treatment of Hematological Malignancies. Cancers 2023, 15 (10) , 2808. https://doi.org/10.3390/cancers15102808
    55. Martina Sandonà, Giorgia Cavioli, Alessandra Renzini, Alessia Cedola, Giuseppe Gigli, Dario Coletti, Timothy A. McKinsey, Viviana Moresi, Valentina Saccone. Histone Deacetylases: Molecular Mechanisms and Therapeutic Implications for Muscular Dystrophies. International Journal of Molecular Sciences 2023, 24 (5) , 4306. https://doi.org/10.3390/ijms24054306
    56. Matthes Zessin, Marat Meleshin, Wolfgang Sippl, Mike Schutkowski. Continuous Histone Deacylase Activity Assays. 2023, 411-428. https://doi.org/10.1007/978-1-0716-2788-4_27
    57. Antoine Jutras-Carignan, Tania Guillemette, Catherine Mounier. From endoplasmic reticulum to nucleus: the fate of cellular fatty acids. 2023, 127-169. https://doi.org/10.1016/B978-0-323-95582-9.00018-8
    58. Yandong Zhang, Qian Zhao, Hening Lin. Identification of potential HDAC11 deacylase substrates by affinity pulldown MS. 2023, 43-55. https://doi.org/10.1016/bs.mie.2023.03.012
    59. Huizhen Chen, Chunguang Xie, Qiu Chen, Shougang Zhuang. HDAC11, an emerging therapeutic target for metabolic disorders. Frontiers in Endocrinology 2022, 13 https://doi.org/10.3389/fendo.2022.989305
    60. Weiping Zheng. The Zinc-dependent HDACs: Non-histone Substrates and Catalytic Deacylation Beyond Deacetylation. Mini-Reviews in Medicinal Chemistry 2022, 22 (19) , 2478-2485. https://doi.org/10.2174/1389557522666220330144151
    61. Rahma K. Alseksek, Wafaa S. Ramadan, Ekram Saleh, Raafat El-Awady. The Role of HDACs in the Response of Cancer Cells to Cellular Stress and the Potential for Therapeutic Intervention. International Journal of Molecular Sciences 2022, 23 (15) , 8141. https://doi.org/10.3390/ijms23158141
    62. Daniel Herp, Johannes Ridinger, Dina Robaa, Stephen A. Shinsky, Karin Schmidtkunz, Talha Z. Yesiloglu, Theresa Bayer, Raphael R. Steimbach, Corey J. Herbst‐Gervasoni, Annika Merz, Christophe Romier, Peter Sehr, Nikolas Gunkel, Aubry K. Miller, David W. Christianson, Ina Oehme, Wolfgang Sippl, Manfred Jung. First Fluorescent Acetylspermidine Deacetylation Assay for HDAC10 Identifies Selective Inhibitors with Cellular Target Engagement**. ChemBioChem 2022, 23 (14) https://doi.org/10.1002/cbic.202200180
    63. Yusheng Xie, Shubo Du, Zhiyang Liu, Min Liu, Zhiqiang Xu, Xiaojie Wang, Jia Xuan Kee, Fan Yi, Hongyan Sun, Shao Q. Yao. Chemical Biology Tools for Protein Lysine Acylation. Angewandte Chemie International Edition 2022, 61 (21) https://doi.org/10.1002/anie.202200303
    64. Yusheng Xie, Shubo Du, Zhiyang Liu, Min Liu, Zhiqiang Xu, Xiaojie Wang, Jia Xuan Kee, Fan Yi, Hongyan Sun, Shao Q. Yao. Chemical Biology Tools for Protein Lysine Acylation. Angewandte Chemie 2022, 134 (21) https://doi.org/10.1002/ange.202200303
    65. Zsofia Kutil, Marat Meleshin, Petra Baranova, Barbora Havlinova, Mike Schutkowski, Cyril Barinka. Characterization of the class IIa histone deacetylases substrate specificity. The FASEB Journal 2022, 36 (5) https://doi.org/10.1096/fj.202101663R
    66. Yaiza Núñez‐Álvarez, Mònica Suelves. HDAC11: a multifaceted histone deacetylase with proficient fatty deacylase activity and its roles in physiological processes. The FEBS Journal 2022, 289 (10) , 2771-2792. https://doi.org/10.1111/febs.15895
    67. Joshua G. Travers, Charles A. Tharp, Marcello Rubino, Timothy A. McKinsey. Therapeutic targets for cardiac fibrosis: from old school to next-gen. Journal of Clinical Investigation 2022, 132 (5) https://doi.org/10.1172/JCI148554
    68. Rushita A. Bagchi, Emma L. Robinson, Tianjing Hu, Ji Cao, Jun Young Hong, Charles A. Tharp, Hanan Qasim, Kathleen M. Gavin, Julie Pires da Silva, Jennifer L. Major, Bradley K. McConnell, Edward Seto, Hening Lin, Timothy A. McKinsey. Reversible lysine fatty acylation of an anchoring protein mediates adipocyte adrenergic signaling. Proceedings of the National Academy of Sciences 2022, 119 (7) https://doi.org/10.1073/pnas.2119678119
    69. Fabian Fischer, Leandro A Alves Avelar, Laoise Murray, Thomas Kurz. Designing HDAC-PROTACs: Lessons Learned So Far. Future Medicinal Chemistry 2022, 14 (3) , 143-166. https://doi.org/10.4155/fmc-2021-0206
    70. Sebastian Guttzeit, Johannes Backs. Post-translational modifications talk and crosstalk to class IIa histone deacetylases. Journal of Molecular and Cellular Cardiology 2022, 162 , 53-61. https://doi.org/10.1016/j.yjmcc.2021.08.007
    71. Hany S. Ibrahim, Mohamed Abdelsalam, Yanira Zeyn, Matthes Zessin, Al-Hassan M. Mustafa, Marten A. Fischer, Patrik Zeyen, Ping Sun, Emre F. Bülbül, Anita Vecchio, Frank Erdmann, Matthias Schmidt, Dina Robaa, Cyril Barinka, Christophe Romier, Mike Schutkowski, Oliver H. Krämer, Wolfgang Sippl. Synthesis, Molecular Docking and Biological Characterization of Pyrazine Linked 2-Aminobenzamides as New Class I Selective Histone Deacetylase (HDAC) Inhibitors with Anti-Leukemic Activity. International Journal of Molecular Sciences 2022, 23 (1) , 369. https://doi.org/10.3390/ijms23010369
    72. AGM Mostofa, Allison Distler, Mark B. Meads, Eva Sahakian, John J. Powers, Alexandra Achille, David Noyes, Gabriela Wright, Bin Fang, Victoria Izumi, John Koomen, Rupal Rampakrishnan, Tuan P. Nguyen, Gabriel De Avila, Ariosto S. Silva, Praneeth Sudalagunta, Rafael Renatino Canevarolo, Maria D. Coelho Siqueira Silva, Raghunandan Reddy Alugubelli, Hongyue A. Dai, Amit Kulkarni, William S. Dalton, Oliver A. Hampton, Eric A. Welsh, Jamie K. Teer, Alexandre Tungesvik, Kenneth L. Wright, Javier Pinilla-Ibarz, Eduardo M. Sotomayor, Kenneth H. Shain, Jason Brayer. Plasma cell dependence on histone/protein deacetylase 11 reveals a therapeutic target in multiple myeloma. JCI Insight 2021, 6 (24) https://doi.org/10.1172/jci.insight.151713
    73. Matthes Zessin, Marat Meleshin, Zeljko Simic, Diana Kalbas, Miriam Arbach, Philip Gebhardt, Jelena Melesina, Sandra Liebscher, Frank Bordusa, Wolfgang Sippl, Cyril Barinka, Mike Schutkowski. Continuous Sirtuin/HDAC (histone deacetylase) activity assay using thioamides as PET (Photoinduced Electron Transfer)–based fluorescence quencher. Bioorganic Chemistry 2021, 117 , 105425. https://doi.org/10.1016/j.bioorg.2021.105425
    74. Andrey D. Bondarev, Misty M. Attwood, Jörgen Jonsson, Vladimir N. Chubarev, Vadim V. Tarasov, Helgi B. Schiöth. Recent developments of HDAC inhibitors: Emerging indications and novel molecules. British Journal of Clinical Pharmacology 2021, 87 (12) , 4577-4597. https://doi.org/10.1111/bcp.14889
    75. Igor Maksimovic, Yael David. Non-enzymatic Covalent Modifications as a New Chapter in the Histone Code. Trends in Biochemical Sciences 2021, 46 (9) , 718-730. https://doi.org/10.1016/j.tibs.2021.04.004
    76. Hong Yang, Lingling Chen, Qian Sun, Fangyao Yao, Saeed Muhammad, Chao Sun. The role of HDAC11 in obesity‐related metabolic disorders: A critical review. Journal of Cellular Physiology 2021, 236 (8) , 5582-5591. https://doi.org/10.1002/jcp.30286
    77. Garrison Komaniecki, Hening Lin. Lysine Fatty Acylation: Regulatory Enzymes, Research Tools, and Biological Function. Frontiers in Cell and Developmental Biology 2021, 9 https://doi.org/10.3389/fcell.2021.717503
    78. Ma Su, Xingyu Gong, Feng Liu. An update on the emerging approaches for histone deacetylase (HDAC) inhibitor drug discovery and future perspectives. Expert Opinion on Drug Discovery 2021, 16 (7) , 745-761. https://doi.org/10.1080/17460441.2021.1877656
    79. Miao Wang, Hening Lin. Understanding the Function of Mammalian Sirtuins and Protein Lysine Acylation. Annual Review of Biochemistry 2021, 90 (1) , 245-285. https://doi.org/10.1146/annurev-biochem-082520-125411
    80. Jelena Melesina, Conrad V. Simoben, Lucas Praetorius, Emre F. Bülbül, Dina Robaa, Wolfgang Sippl. Strategies To Design Selective Histone Deacetylase Inhibitors. ChemMedChem 2021, 16 (9) , 1336-1359. https://doi.org/10.1002/cmdc.202000934
    81. Alexander L. Nielsen, Nima Rajabi, Norio Kudo, Kathrine Lundø, Carlos Moreno-Yruela, Michael Bæk, Martin Fontenas, Alessia Lucidi, Andreas S. Madsen, Minoru Yoshida, Christian A. Olsen. Mechanism-based inhibitors of SIRT2: structure–activity relationship, X-ray structures, target engagement, regulation of α-tubulin acetylation and inhibition of breast cancer cell migration. RSC Chemical Biology 2021, 2 (2) , 612-626. https://doi.org/10.1039/D0CB00036A
    82. Zohreh Nazmara, Peymaneh Shirinbayan, Hamid reza Asgari, Reza Ahadi, Fatemeh Asgari, Chad B. Maki, Fahimeh Fattahi, Bitasadat Hosseini, Ehsan Janzamin, Morteza Koruji. The epigenetic alterations of human sperm cells caused by heroin use disorder. Andrologia 2021, 53 (1) https://doi.org/10.1111/and.13799
    83. Yaiza Núñez‐Álvarez, Erica Hurtado, Mar Muñoz, Ignacio García‐Tuñon, Gabriel E. Rech, Raquel Pluvinet, Lauro Sumoy, Alberto M. Pendás, Miguel A. Peinado, Mònica Suelves. Loss of HDAC11 accelerates skeletal muscle regeneration in mice. The FEBS Journal 2021, 288 (4) , 1201-1223. https://doi.org/10.1111/febs.15468
    84. Erica Hurtado, Yaiza Núñez‐Álvarez, Mar Muñoz, Cristina Gutiérrez‐Caballero, Josefina Casas, Alberto M. Pendás, Miguel A. Peinado, Mònica Suelves. HDAC11 is a novel regulator of fatty acid oxidative metabolism in skeletal muscle. The FEBS Journal 2021, 288 (3) , 902-919. https://doi.org/10.1111/febs.15456
    85. Rosa María Tordera, María Cortés-Erice. Role of Histone Deacetylases in Monocyte Function in Health and Chronic Inflammatory Diseases. 2021, 1-47. https://doi.org/10.1007/112_2021_59
    86. Harrison Yoo, Gregory A Polsinelli. Kinetic Characterization of Human Histone Deacetylase 8 With Medium-Chain Fatty Acyl Lysine. Epigenetics Insights 2021, 14 https://doi.org/10.1177/25168657211065685
    87. Namrata Bora-Singhal, Durairaj Mohankumar, Biswarup Saha, Christelle M. Colin, Jennifer Y. Lee, Matthew W. Martin, Xiaozhang Zheng, Domenico Coppola, Srikumar Chellappan. Novel HDAC11 inhibitors suppress lung adenocarcinoma stem cell self-renewal and overcome drug resistance by suppressing Sox2. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-61295-6
    88. Vasundhara Sharma, Kenneth L. Wright, Pearlie K. Epling-Burnette, Gary W. Reuther. Metabolic Vulnerabilities and Epigenetic Dysregulation in Myeloproliferative Neoplasms. Frontiers in Immunology 2020, 11 https://doi.org/10.3389/fimmu.2020.604142
    89. Tasha B. Toro, Terry J. Watt. Critical review of non‐histone human substrates of metal‐dependent lysine deacetylases. The FASEB Journal 2020, 34 (10) , 13140-13155. https://doi.org/10.1096/fj.202001301RR
    90. Cortney E. Heim, Megan E. Bosch, Kelsey J. Yamada, Amy L. Aldrich, Sujata S. Chaudhari, David Klinkebiel, Casey M. Gries, Abdulelah A. Alqarzaee, Yixuan Li, Vinai C. Thomas, Edward Seto, Adam R. Karpf, Tammy Kielian. Lactate production by Staphylococcus aureus biofilm inhibits HDAC11 to reprogramme the host immune response during persistent infection. Nature Microbiology 2020, 5 (10) , 1271-1284. https://doi.org/10.1038/s41564-020-0756-3
    91. Guo Li, Yuan Tian, Wei-Guo Zhu. The Roles of Histone Deacetylases and Their Inhibitors in Cancer Therapy. Frontiers in Cell and Developmental Biology 2020, 8 https://doi.org/10.3389/fcell.2020.576946
    92. Qinyao Wei, Yun Qian, Jun Yu, Chi Chun Wong. Metabolic rewiring in the promotion of cancer metastasis: mechanisms and therapeutic implications. Oncogene 2020, 39 (39) , 6139-6156. https://doi.org/10.1038/s41388-020-01432-7
    93. Jintong Du, Jing Guo, Dongwei Kang, Zhihong Li, Guan Wang, Jianbing Wu, Zhen Zhang, Hao Fang, Xuben Hou, Zhangjian Huang, Guobo Li, Xiaoyun Lu, Xinyong Liu, Liang Ouyang, Li Rao, Peng Zhan, Xiaojin Zhang, Yihua Zhang. New techniques and strategies in drug discovery. Chinese Chemical Letters 2020, 31 (7) , 1695-1708. https://doi.org/10.1016/j.cclet.2020.03.028
    94. Giorgio Milazzo, Daniele Mercatelli, Giulia Di Muzio, Luca Triboli, Piergiuseppe De Rosa, Giovanni Perini, Federico M. Giorgi. Histone Deacetylases (HDACs): Evolution, Specificity, Role in Transcriptional Complexes, and Pharmacological Actionability. Genes 2020, 11 (5) , 556. https://doi.org/10.3390/genes11050556
    95. Jeremy D. Osko, David W. Christianson. Structural determinants of affinity and selectivity in the binding of inhibitors to histone deacetylase 6. Bioorganic & Medicinal Chemistry Letters 2020, 30 (8) , 127023. https://doi.org/10.1016/j.bmcl.2020.127023
    96. Michael Bæk, Pablo Martín‐Gago, Jonas S. Laursen, Julie L. H. Madsen, Saswati Chakladar, Christian A. Olsen. Photo Cross‐Linking Probes Containing ϵ‐ N ‐Thioacyllysine and ϵ‐ N ‐Acyl‐(δ‐aza)lysine Residues. Chemistry – A European Journal 2020, 26 (17) , 3862-3869. https://doi.org/10.1002/chem.201905338
    97. Lanzhu Yue, Vasundhara Sharma, Nathan P. Horvat, Afua A. Akuffo, Matthew S. Beatty, Cem Murdun, Christelle Colin, Julia M. R. Billington, William E. Goodheart, Eva Sahakian, Ling Zhang, John J. Powers, Narmin E. Amin, Que T. Lambert-Showers, Lancia N. Darville, Javier Pinilla-Ibarz, Gary W. Reuther, Kenneth L. Wright, Chiara Conti, Jennifer Y. Lee, Xiaozhang Zheng, Pui Yee Ng, Matthew W. Martin, C. Gary Marshall, John M. Koomen, Ross L. Levine, Amit Verma, H. Leighton Grimes, Eduardo M. Sotomayor, Zonghong Shao, Pearlie K. Epling-Burnette. HDAC11 deficiency disrupts oncogene-induced hematopoiesis in myeloproliferative neoplasms. Blood 2020, 135 (3) , 191-207. https://doi.org/10.1182/blood.2019895326
    98. Julian Seidel, Tobias Meisinger, Julia Sindlinger, Paulina Pieloch, Iris Finkemeier, Dirk Schwarzer. Peptide‐Based 2‐Aminophenylamide Probes for Targeting Endogenous Class I Histone Deacetylase Complexes. ChemBioChem 2019, 20 (24) , 3001-3005. https://doi.org/10.1002/cbic.201900339
    99. Nicholas J Porter, David W Christianson. Structure, mechanism, and inhibition of the zinc-dependent histone deacetylases. Current Opinion in Structural Biology 2019, 59 , 9-18. https://doi.org/10.1016/j.sbi.2019.01.004
    100. Nina Reßing, Viktoria Marquardt, Christoph G. W. Gertzen, Andrea Schöler, Alexander Schramm, Thomas Kurz, Holger Gohlke, Achim Aigner, Marc Remke, Finn K. Hansen. Design, synthesis and biological evaluation of β-peptoid-capped HDAC inhibitors with anti-neuroblastoma and anti-glioblastoma activity. MedChemComm 2019, 10 (7) , 1109-1115. https://doi.org/10.1039/C8MD00454D
    Load all citations

    ACS Chemical Biology

    Cite this: ACS Chem. Biol. 2018, 13, 3, 685–693
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acschembio.7b00942
    Published January 16, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    2958

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.