ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Translation Termination Factor GSPT1 Is a Phenotypically Relevant Off-Target of Heterobifunctional Phthalimide Degraders

  • Mette Ishoey
    Mette Ishoey
    Department of Medical Oncology, Dana−Farber Cancer Institute, Boston, Massachusetts 02115, United States
    More by Mette Ishoey
  • Someth Chorn
    Someth Chorn
    CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH Bt. 25.3, 1090 Vienna, Austria
    More by Someth Chorn
  • Natesh Singh
    Natesh Singh
    University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
    More by Natesh Singh
  • Martin G. Jaeger
    Martin G. Jaeger
    CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH Bt. 25.3, 1090 Vienna, Austria
  • Matthias Brand
    Matthias Brand
    CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH Bt. 25.3, 1090 Vienna, Austria
  • Joshiawa Paulk
    Joshiawa Paulk
    Department of Medical Oncology, Dana−Farber Cancer Institute, Boston, Massachusetts 02115, United States
    Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
  • Sophie Bauer
    Sophie Bauer
    CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH Bt. 25.3, 1090 Vienna, Austria
    More by Sophie Bauer
  • Michael A. Erb
    Michael A. Erb
    Department of Medical Oncology, Dana−Farber Cancer Institute, Boston, Massachusetts 02115, United States
  • Katja Parapatics
    Katja Parapatics
    CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH Bt. 25.3, 1090 Vienna, Austria
  • André C. Müller
    André C. Müller
    CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH Bt. 25.3, 1090 Vienna, Austria
  • Keiryn L. Bennett
    Keiryn L. Bennett
    CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH Bt. 25.3, 1090 Vienna, Austria
  • Gerhard F. Ecker
    Gerhard F. Ecker
    University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria
  • James E. Bradner*
    James E. Bradner
    Department of Medical Oncology, Dana−Farber Cancer Institute, Boston, Massachusetts 02115, United States
    Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
    *Address: Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA. Tel.: 617-871-8800. E-mail: [email protected] (J. E. Bradner).
  • , and 
  • Georg E. Winter*
    Georg E. Winter
    CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Lazarettgasse 14, AKH Bt. 25.3, 1090 Vienna, Austria
    *Address: CeMM Research Center for Molecular Medicine of the Austrian Academy of Science Lazarettgasse 14, AKH Bt. 25.3 Vienna, Austria. Tel.: +43-1-40160-70031. E-mail: [email protected] (G. E. Winter).
Cite this: ACS Chem. Biol. 2018, 13, 3, 553–560
Publication Date (Web):January 22, 2018
https://doi.org/10.1021/acschembio.7b00969
Copyright © 2018 American Chemical Society

    Article Views

    7622

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (5)»

    Abstract

    Abstract Image

    Protein degradation is an emerging therapeutic strategy with a unique molecular pharmacology that enables the disruption of all functions associated with a target. This is particularly relevant for proteins depending on molecular scaffolding, such as transcription factors or receptor tyrosine kinases (RTKs). To address tractability of multiple RTKs for chemical degradation by the E3 ligase CUL4-RBX1-DDB1-CRBN (CRL4CRBN), we synthesized a series of phthalimide degraders based on the promiscuous kinase inhibitors sunitinib and PHA665752. While both series failed to induce degradation of their consensus targets, individual molecules displayed pronounced efficacy in leukemia cell lines. Orthogonal target identification supported by molecular docking led us to identify the translation termination factor G1 to S phase transition 1 (GSPT1) as a converging off-target, resulting from inadvertent E3 ligase modulation. This research highlights the importance of monitoring degradation events that are independent of the respective targeting ligand as a unique feature of small-molecule degraders.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acschembio.7b00969.

    • Supplementary Figures 1–3, Supplementary Tables 1–2, as well as experimental details and synthetic procedures (PDF)

    • RNA-seq values (FPKM) of individual drug-treated biological replicates (Supplementary Table 3) (XLSX)

    • KinomeScan MI-389 (Supplementary Table 4) (XLSX)

    • Chemoproteomics (Supplementary Table 5) (XLS)

    • Expression Proteomics (Supplementary Table 6) (XLSX)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 124 publications.

    1. Wentao Zhu, Wenqian Zhang, Jian Chen, Yichen Tong, Fang Xu, Jiyan Pang. Discovery of Effective Dual PROTAC Degraders for Neurodegenerative Disease-Associated Aggregates. Journal of Medicinal Chemistry 2024, 67 (5) , 3448-3466. https://doi.org/10.1021/acs.jmedchem.3c01719
    2. Amanda Ng, Fabian Offensperger, Jose A. Cisneros, Natalie S. Scholes, Monika Malik, Ludovica Villanti, Andrea Rukavina, Evandro Ferrada, J. Thomas Hannich, Anna Koren, Stefan Kubicek, Giulio Superti-Furga, Georg E. Winter. Discovery of Molecular Glue Degraders via Isogenic Morphological Profiling. ACS Chemical Biology 2023, 18 (12) , 2464-2473. https://doi.org/10.1021/acschembio.3c00598
    3. Natalie Holmberg-DouglasHunter Shunatona, Godwin KumiAshok Purandare. SMALL-MOLECULE DEGRADERS OF IKAROS ZINC FINGER (IKZF) TRANSCRIPTION FACTORS. , 235-259. https://doi.org/10.1021/mc-2023-vol58.ch10
    4. Christian Steinebach, Aleša Bricelj, Arunima Murgai, Izidor Sosič, Luca Bischof, Yuen Lam Dora Ng, Christopher Heim, Samuel Maiwald, Matic Proj, Rabea Voget, Felix Feller, Janez Košmrlj, Valeriia Sapozhnikova, Annika Schmidt, Maximilian Rudolf Zuleeg, Patricia Lemnitzer, Philipp Mertins, Finn K. Hansen, Michael Gütschow, Jan Krönke, Marcus D. Hartmann. Leveraging Ligand Affinity and Properties: Discovery of Novel Benzamide-Type Cereblon Binders for the Design of PROTACs. Journal of Medicinal Chemistry 2023, 66 (21) , 14513-14543. https://doi.org/10.1021/acs.jmedchem.3c00851
    5. Yi-Qian Li, William G. Lannigan, Shabnam Davoodi, Fereidoon Daryaee, Ana Corrionero, Patricia Alfonso, Jose A. Rodriguez-Santamaria, Nan Wang, John D. Haley, Peter J. Tonge. Discovery of Novel Bruton’s Tyrosine Kinase PROTACs with Enhanced Selectivity and Cellular Efficacy. Journal of Medicinal Chemistry 2023, 66 (11) , 7454-7474. https://doi.org/10.1021/acs.jmedchem.3c00176
    6. Jamie A. Jarusiewicz, Satoshi Yoshimura, Anand Mayasundari, Marisa Actis, Anup Aggarwal, Kevin McGowan, Lei Yang, Yong Li, Xiang Fu, Vibhor Mishra, Richard Heath, Shilpa Narina, Shondra M. Pruett-Miller, Gisele Nishiguchi, Jun J. Yang, Zoran Rankovic. Phenyl Dihydrouracil: An Alternative Cereblon Binder for PROTAC Design. ACS Medicinal Chemistry Letters 2023, 14 (2) , 141-145. https://doi.org/10.1021/acsmedchemlett.2c00436
    7. Si Ha, Guoshun Luo, Hua Xiang. A Comprehensive Overview of Small-Molecule Androgen Receptor Degraders: Recent Progress and Future Perspectives. Journal of Medicinal Chemistry 2022, 65 (24) , 16128-16154. https://doi.org/10.1021/acs.jmedchem.2c01487
    8. Yujia Bian, Diego Alem, Francisca Beato, Tara L. Hogenson, Xinrui Yang, Kun Jiang, Jianfeng Cai, Wen Wee Ma, Martin Fernandez-Zapico, Aik Choon Tan, Nicholas J. Lawrence, Jason B. Fleming, Yu Yuan, Hao Xie. Development of SOS1 Inhibitor-Based Degraders to Target KRAS-Mutant Colorectal Cancer. Journal of Medicinal Chemistry 2022, 65 (24) , 16432-16450. https://doi.org/10.1021/acs.jmedchem.2c01300
    9. Chunlong Zhao, Frank J. Dekker. Novel Design Strategies to Enhance the Efficiency of Proteolysis Targeting Chimeras. ACS Pharmacology & Translational Science 2022, 5 (9) , 710-723. https://doi.org/10.1021/acsptsci.2c00089
    10. Mallesh Pandrala, Arne Antoon N. Bruyneel, Anna P. Hnatiuk, Mark Mercola, Sanjay V. Malhotra. Designing Novel BCR-ABL Inhibitors for Chronic Myeloid Leukemia with Improved Cardiac Safety. Journal of Medicinal Chemistry 2022, 65 (16) , 10898-10919. https://doi.org/10.1021/acs.jmedchem.1c01853
    11. Andrew D. Huber, Yongtao Li, Wenwei Lin, Annalise N. Galbraith, Ashutosh Mishra, Shaina N. Porter, Jing Wu, Rebecca R. Florke Gee, Wei Zhuang, Shondra M. Pruett-Miller, Junmin Peng, Taosheng Chen. SJPYT-195: A Designed Nuclear Receptor Degrader That Functions as a Molecular Glue Degrader of GSPT1. ACS Medicinal Chemistry Letters 2022, 13 (8) , 1311-1320. https://doi.org/10.1021/acsmedchemlett.2c00223
    12. Fanye Meng, Chenxi Xu, Kwang-Su Park, H. Ümit Kaniskan, Gang Greg Wang, Jian Jin. Discovery of a First-in-Class Degrader for Nuclear Receptor Binding SET Domain Protein 2 (NSD2) and Ikaros/Aiolos. Journal of Medicinal Chemistry 2022, 65 (15) , 10611-10625. https://doi.org/10.1021/acs.jmedchem.2c00807
    13. Jianyu Yan, Tengfei Li, Zhenyuan Miao, Pei Wang, Chunquan Sheng, Chunlin Zhuang. Homobivalent, Trivalent, and Covalent PROTACs: Emerging Strategies for Protein Degradation. Journal of Medicinal Chemistry 2022, 65 (13) , 8798-8827. https://doi.org/10.1021/acs.jmedchem.2c00728
    14. Haiwei Li, Shouxin Wang, Wenxiao Ma, Boyang Cheng, Yanliang Yi, Xinyuan Ma, Sulong Xiao, Lihe Zhang, Demin Zhou. Discovery of Pentacyclic Triterpenoid PROTACs as a Class of Effective Hemagglutinin Protein Degraders. Journal of Medicinal Chemistry 2022, 65 (10) , 7154-7169. https://doi.org/10.1021/acs.jmedchem.1c02013
    15. Lisa J. Alcock, Yunchao Chang, Jamie A. Jarusiewicz, Marisa Actis, Stanley Nithianantham, Anand Mayasundari, Jaeki Min, Dylan Maxwell, Jeremy Hunt, Brandon Smart, Jun J. Yang, Gisele Nishiguchi, Marcus Fischer, Charles G. Mullighan, Zoran Rankovic. Development of Potent and Selective Janus Kinase 2/3 Directing PG–PROTACs. ACS Medicinal Chemistry Letters 2022, 13 (3) , 475-482. https://doi.org/10.1021/acsmedchemlett.1c00650
    16. Zhi Lin, Yuka Amako, Farah Kabir, Hope A. Flaxman, Bogdan Budnik, Christina M. Woo. Development of Photolenalidomide for Cellular Target Identification. Journal of the American Chemical Society 2022, 144 (1) , 606-614. https://doi.org/10.1021/jacs.1c11920
    17. Rambabu N. Reddi, Adi Rogel, Efrat Resnick, Ronen Gabizon, Pragati Kishore Prasad, Neta Gurwicz, Haim Barr, Ziv Shulman, Nir London. Site-Specific Labeling of Endogenous Proteins Using CoLDR Chemistry. Journal of the American Chemical Society 2021, 143 (48) , 20095-20108. https://doi.org/10.1021/jacs.1c06167
    18. Adam G. Bond, Conner Craigon, Kwok-Ho Chan, Andrea Testa, Athanasios Karapetsas, Rotimi Fasimoye, Thomas Macartney, J. Julian Blow, Dario R. Alessi, Alessio Ciulli. Development of BromoTag: A “Bump-and-Hole”–PROTAC System to Induce Potent, Rapid, and Selective Degradation of Tagged Target Proteins. Journal of Medicinal Chemistry 2021, 64 (20) , 15477-15502. https://doi.org/10.1021/acs.jmedchem.1c01532
    19. He Chen, Jing Liu, H. Ümit Kaniskan, Wenyi Wei, Jian Jin. Folate-Guided Protein Degradation by Immunomodulatory Imide Drug-Based Molecular Glues and Proteolysis Targeting Chimeras. Journal of Medicinal Chemistry 2021, 64 (16) , 12273-12285. https://doi.org/10.1021/acs.jmedchem.1c00901
    20. Gisele Nishiguchi, Fatemeh Keramatnia, Jaeki Min, Yunchao Chang, Barbara Jonchere, Sourav Das, Marisa Actis, Jeanine Price, Divyabharathi Chepyala, Brandon Young, Kevin McGowan, P. Jake Slavish, Anand Mayasundari, Jamie A. Jarusiewicz, Lei Yang, Yong Li, Xiang Fu, Shalandus H. Garrett, James B. Papizan, Kiran Kodali, Junmin Peng, Shondra M. Pruett Miller, Martine F. Roussel, Charles Mullighan, Marcus Fischer, Zoran Rankovic. Identification of Potent, Selective, and Orally Bioavailable Small-Molecule GSPT1/2 Degraders from a Focused Library of Cereblon Modulators. Journal of Medicinal Chemistry 2021, 64 (11) , 7296-7311. https://doi.org/10.1021/acs.jmedchem.0c01313
    21. Maha Hanafi, Xinde Chen, Nouri Neamati. Discovery of a Napabucasin PROTAC as an Effective Degrader of the E3 Ligase ZFP91. Journal of Medicinal Chemistry 2021, 64 (3) , 1626-1648. https://doi.org/10.1021/acs.jmedchem.0c01897
    22. Cyrille S. Kounde, Edward W. Tate. Photoactive Bifunctional Degraders: Precision Tools To Regulate Protein Stability. Journal of Medicinal Chemistry 2020, 63 (24) , 15483-15493. https://doi.org/10.1021/acs.jmedchem.0c01542
    23. Liqun Chen, Yanke Chen, Chunyan Zhang, Bingyang Jiao, Sheng Liang, Qiong Tan, Hongyu Chai, Weihua Yu, Yongzheng Qian, Hui Yang, Wuyi Yao, Jianguo Yu, Ying Luo, Michael Plewe, Jialiang Wang, Xiao-Ran Han, Jing Liu. Discovery of First-In-Class Potent and Selective Tropomyosin Receptor Kinase Degraders. Journal of Medicinal Chemistry 2020, 63 (23) , 14562-14575. https://doi.org/10.1021/acs.jmedchem.0c01342
    24. Yiqing Yang, Hongying Gao, Xiuyun Sun, Yonghui Sun, Yueping Qiu, Qinjie Weng, Yu Rao. Global PROTAC Toolbox for Degrading BCR–ABL Overcomes Drug-Resistant Mutants and Adverse Effects. Journal of Medicinal Chemistry 2020, 63 (15) , 8567-8583. https://doi.org/10.1021/acs.jmedchem.0c00967
    25. Jiuling Yang, Yangbing Li, Angelo Aguilar, Zhaomin Liu, Chao-Yie Yang, Shaomeng Wang. Simple Structural Modifications Converting a Bona fide MDM2 PROTAC Degrader into a Molecular Glue Molecule: A Cautionary Tale in the Design of PROTAC Degraders. Journal of Medicinal Chemistry 2019, 62 (21) , 9471-9487. https://doi.org/10.1021/acs.jmedchem.9b00846
    26. Hannah Tovell, Andrea Testa, Chiara Maniaci, Houjiang Zhou, Alan R Prescott, Thomas Macartney, Alessio Ciulli, Dario R Alessi. Rapid and Reversible Knockdown of Endogenously Tagged Endosomal Proteins via an Optimized HaloPROTAC Degrader. ACS Chemical Biology 2019, 14 (5) , 882-892. https://doi.org/10.1021/acschembio.8b01016
    27. Vittoria Zoppi, Scott J. Hughes, Chiara Maniaci, Andrea Testa, Teresa Gmaschitz, Corinna Wieshofer, Manfred Koegl, Kristin M. Riching, Danette L. Daniels, Andrea Spallarossa, Alessio Ciulli. Iterative Design and Optimization of Initially Inactive Proteolysis Targeting Chimeras (PROTACs) Identify VZ185 as a Potent, Fast, and Selective von Hippel–Lindau (VHL) Based Dual Degrader Probe of BRD9 and BRD7. Journal of Medicinal Chemistry 2019, 62 (2) , 699-726. https://doi.org/10.1021/acs.jmedchem.8b01413
    28. Xin Han, Chao Wang, Chong Qin, Weiguo Xiang, Ester Fernandez-Salas, Chao-Yie Yang, Mi Wang, Lijie Zhao, Tianfeng Xu, Krishnapriya Chinnaswamy, James Delproposto, Jeanne Stuckey, Shaomeng Wang. Discovery of ARD-69 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Androgen Receptor (AR) for the Treatment of Prostate Cancer. Journal of Medicinal Chemistry 2019, 62 (2) , 941-964. https://doi.org/10.1021/acs.jmedchem.8b01631
    29. Christian Steinebach, Stefanie Lindner, Namrata D. Udeshi, Deepak C. Mani, Hannes Kehm, Simon Köpff, Steven A. Carr, Michael Gütschow, Jan Krönke. Homo-PROTACs for the Chemical Knockdown of Cereblon. ACS Chemical Biology 2018, 13 (9) , 2771-2782. https://doi.org/10.1021/acschembio.8b00693
    30. Huiwen Li, Xinhui Cai, Xiaoyu Yang, Xuan Zhang. An overview of PROTACs targeting MDM2 as a novel approach for cancer therapy. European Journal of Medicinal Chemistry 2024, 272 , 116506. https://doi.org/10.1016/j.ejmech.2024.116506
    31. Trever R. Carter, Natalia Milosevich, Lucas Dada, James B. Shaum, K. Barry Sharpless, Seiya Kitamura, Michael A. Erb. SuFEx-based chemical diversification for the systematic discovery of CRBN molecular glues. Bioorganic & Medicinal Chemistry 2024, 184 , 117699. https://doi.org/10.1016/j.bmc.2024.117699
    32. Lori A. Emert-Sedlak, Colin M. Tice, Haibin Shi, John J. Alvarado, Sherry T. Shu, Allen B. Reitz, Thomas E. Smithgall. PROTAC-mediated degradation of HIV-1 Nef efficiently restores cell-surface CD4 and MHC-I expression and blocks HIV-1 replication. Cell Chemical Biology 2024, 31 (4) , 658-668.e14. https://doi.org/10.1016/j.chembiol.2024.02.004
    33. Yan Li, Guangyu Li, Chenwei Zuo, Xiaolin Wang, Fang Han, Yi Jia, Hai Shang, Yu Tian. Discovery of ganoderic acid A (GAA) PROTACs as MDM2 protein degraders for the treatment of breast cancer. European Journal of Medicinal Chemistry 2024, 270 , 116367. https://doi.org/10.1016/j.ejmech.2024.116367
    34. Xuewu Liang, Hairu Ren, Fengyang Han, Renwen Liang, Jiayan Zhao, Hong Liu. The new direction of drug development: Degradation of undruggable targets through targeting chimera technology. Medicinal Research Reviews 2024, 44 (2) , 632-685. https://doi.org/10.1002/med.21992
    35. Chao Zhang, Yongbo Liu, Guangchen Li, Zhouli Yang, Chi Han, Xiuyun Sun, Chunquan Sheng, Ke Ding, Yu Rao. Targeting the undruggables—the power of protein degraders. Science Bulletin 2024, 17 https://doi.org/10.1016/j.scib.2024.03.056
    36. Xiujin Chang, Fangui Qu, Chunxiao Li, Jingtian Zhang, Yanqing Zhang, Yuanyuan Xie, Zhongpeng Fan, Jinlei Bian, Jubo Wang, Zhiyu Li, Xi Xu. Development and therapeutic potential of GSPT1 molecular glue degraders: A medicinal chemistry perspective. Medicinal Research Reviews 2024, 2 https://doi.org/10.1002/med.22024
    37. Qiao-Hong Chen, Erick Munoz, Dennis Ashong. Insight into Recent Advances in Degrading Androgen Receptor for Castration-Resistant Prostate Cancer. Cancers 2024, 16 (3) , 663. https://doi.org/10.3390/cancers16030663
    38. Saki Ichikawa, N. Connor Payne, Wenqing Xu, Chia-Fu Chang, Nandini Vallavoju, Spencer Frome, Hope A. Flaxman, Ralph Mazitschek, Christina M. Woo. The cyclimids: Degron-inspired cereblon binders for targeted protein degradation. Cell Chemical Biology 2024, 181 https://doi.org/10.1016/j.chembiol.2024.01.003
    39. Vladas Oleinikovas, Pablo Gainza, Thomas Ryckmans, Bernhard Fasching, Nicolas H. Thomä. From Thalidomide to Rational Molecular Glue Design for Targeted Protein Degradation. Annual Review of Pharmacology and Toxicology 2024, 64 (1) , 291-312. https://doi.org/10.1146/annurev-pharmtox-022123-104147
    40. Marta Pichlak, Tomasz Sobierajski, Katarzyna M. Błażewska, Edyta Gendaszewska-Darmach. Targeting reversible post-translational modifications with PROTACs: a focus on enzymes modifying protein lysine and arginine residues. Journal of Enzyme Inhibition and Medicinal Chemistry 2023, 38 (1) https://doi.org/10.1080/14756366.2023.2254012
    41. Jeremy M. Kelm, Deepti S. Pandey, Evan Malin, Hussein Kansou, Sahil Arora, Raj Kumar, Navnath S. Gavande. PROTAC’ing oncoproteins: targeted protein degradation for cancer therapy. Molecular Cancer 2023, 22 (1) https://doi.org/10.1186/s12943-022-01707-5
    42. Yu-Ling Tseng, Po-Chao Lu, Chi-Chang Lee, Ruei-Yu He, Yung-An Huang, Yin-Chen Tseng, Ting-Jen Rachel Cheng, Joseph Jen-Tse Huang, Jim-Min Fang. Degradation of neurodegenerative disease-associated TDP-43 aggregates and oligomers via a proteolysis-targeting chimera. Journal of Biomedical Science 2023, 30 (1) https://doi.org/10.1186/s12929-023-00921-7
    43. Jean M. Etersque, Iris K. Lee, Nitika Sharma, Kexiang Xu, Andrew Ruff, Justin D. Northrup, Swarbhanu Sarkar, Tommy Nguyen, Richard Lauman, George M. Burslem, Mark A. Sellmyer. Regulation of eDHFR-tagged proteins with trimethoprim PROTACs. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-42820-3
    44. Jian Song, Mingzheng Hu, Jun Zhou, Songbo Xie, Tianliang Li, Yan Li. Targeted protein degradation in drug development: Recent advances and future challenges. European Journal of Medicinal Chemistry 2023, 261 , 115839. https://doi.org/10.1016/j.ejmech.2023.115839
    45. Habib Bouguenina, Andrea Scarpino, Jack A. O'Hanlon, Justin Warne, Hannah Z. Wang, Laura Chan Wah Hak, Amine Sadok, P. Craig McAndrew, Mark Stubbs, Olivier A. Pierrat, Tamas Hahner, Marc P. Cabry, Yann‐Vaï Le Bihan, Costas Mitsopoulos, Fernando J. Sialana, Theodoros I. Roumeliotis, Rosemary Burke, Rob L. M. van Montfort, Jyoti Choudhari, Rajesh Chopra, John J. Caldwell, Ian Collins. A Degron Blocking Strategy Towards Improved CRL4 CRBN Recruiting PROTAC Selectivity**. ChemBioChem 2023, 13 https://doi.org/10.1002/cbic.202300351
    46. Bedwyr ab Ion Thomas, H. Lois Lewis, D. Heulyn Jones, Simon E. Ward. Central Nervous System Targeted Protein Degraders. Biomolecules 2023, 13 (8) , 1164. https://doi.org/10.3390/biom13081164
    47. Dazhao Mi, Yuzhan Li, Haijun Gu, Yan Li, Yihua Chen. Current advances of small molecule E3 ligands for proteolysis-targeting chimeras design. European Journal of Medicinal Chemistry 2023, 256 , 115444. https://doi.org/10.1016/j.ejmech.2023.115444
    48. Md Kabir, Xufen Yu, H. Ümit Kaniskan, Jian Jin. Chemically induced degradation of epigenetic targets. Chemical Society Reviews 2023, 52 (13) , 4313-4342. https://doi.org/10.1039/D3CS00100H
    49. Ana Maria Faisca Phillips, Armando J. L. Pombeiro. A Mild and Sustainable Procedure for the Functionalization of Morpholin-2-Ones by Oxidative Imidation Reactions. Catalysts 2023, 13 (7) , 1072. https://doi.org/10.3390/catal13071072
    50. Habib Bouguenina, Stephanos Nicolaou, Yann-Vaï Le Bihan, Elizabeth A. Bowling, Cheyenne Calderon, John J. Caldwell, Brinley Harrington, Angela Hayes, P. Craig McAndrew, Costas Mitsopoulos, Fernando Jr. Sialana, Andrea Scarpino, Mark Stubbs, Arjun Thapaliya, Siddhartha Tyagi, Hannah Z. Wang, Francesca Wood, Rosemary Burke, Florence Raynaud, Jyoti Choudhary, Rob L.M. van Montfort, Amine Sadok, Thomas F. Westbrook, Ian Collins, Rajesh Chopra. iTAG an optimized IMiD-induced degron for targeted protein degradation in human and murine cells. iScience 2023, 26 (7) , 107059. https://doi.org/10.1016/j.isci.2023.107059
    51. Albert Stuart Reece, Gary Kenneth Hulse. Sociodemographically Stratified Exploration of Pancreatic Cancer Incidence in Younger US Patients: Implication of Cannabis Exposure as a Risk Factor. Gastroenterology Insights 2023, 14 (2) , 204-235. https://doi.org/10.3390/gastroent14020016
    52. Xiang Li, Yanqing Liu, Wei Huang, Xin Xie, Hongping Zhu, Cheng Peng, Bo Han. Advancements in Small Molecule PROTACs Containing Indole/Spiro-fused Oxindole Scaffolds: An Emerging Degrader Targeting Cancers. Anti-Cancer Agents in Medicinal Chemistry 2023, 23 (10) , 1164-1173. https://doi.org/10.2174/1871520622666220509175305
    53. Nuwayo Ishimwe Sincere, Krishnan Anand, Sumel Ashique, Jing Yang, Chongge You. PROTACs: Emerging Targeted Protein Degradation Approaches for Advanced Druggable Strategies. Molecules 2023, 28 (10) , 4014. https://doi.org/10.3390/molecules28104014
    54. Yu Xue, Andrew A. Bolinger, Jia Zhou. Novel approaches to targeted protein degradation technologies in drug discovery. Expert Opinion on Drug Discovery 2023, 18 (4) , 467-483. https://doi.org/10.1080/17460441.2023.2187777
    55. Hong‐Yi Zhao, Minhang Xin, San‐Qi Zhang. Progress of small molecules for targeted protein degradation: PROTACs and other technologies. Drug Development Research 2023, 84 (2) , 337-394. https://doi.org/10.1002/ddr.22026
    56. Sun-Mi Park, David K. Miyamoto, Grace Y.Q. Han, Mandy Chan, Nicole M. Curnutt, Nathan L. Tran, Anthony Velleca, Jun Hyun Kim, Alexandra Schurer, Kathryn Chang, Wenqing Xu, Michael G. Kharas, Christina M. Woo. Dual IKZF2 and CK1α degrader targets acute myeloid leukemia cells. Cancer Cell 2023, 41 (4) , 726-739.e11. https://doi.org/10.1016/j.ccell.2023.02.010
    57. Deyi Zhang, Hailey M. Harris, Jonathan Chen, Jen Judy, Gabriella James, Aileen Kelly, Joel McIntosh, Austin Tenn-McClellan, Eileen Ambing, Ying Siow Tan, Hao Lu, Stefan Gajewski, Matthew C. Clifton, Stephanie Yung, Daniel W. Robbins, Mehdi Pirooznia, Sigrid S. Skånland, Erika Gaglione, Maissa Mhibik, Chingiz Underbayev, Inhye E. Ahn, Clare Sun, Sarah E. M. Herman, Mark Noviski, Adrian Wiestner. NRX-0492 degrades wild-type and C481 mutant BTK and demonstrates in vivo activity in CLL patient-derived xenografts. Blood 2023, 141 (13) , 1584-1596. https://doi.org/10.1182/blood.2022016934
    58. Radosław P. Nowak, Jianwei Che, Silas Ferrao, Nikki R. Kong, Hu Liu, Breanna L. Zerfas, Lyn H. Jones. Structural rationalization of GSPT1 and IKZF1 degradation by thalidomide molecular glue derivatives. RSC Medicinal Chemistry 2023, 14 (3) , 501-506. https://doi.org/10.1039/D2MD00347C
    59. Huifang Wang, Runhua Zhou, Fushan Xu, Kongjun Yang, Liuhai Zheng, Pan Zhao, Guangwei Shi, Lingyun Dai, Chengchao Xu, Le Yu, Zhijie Li, Jianhong Wang, Jigang Wang. Beyond canonical PROTAC: biological targeted protein degradation (bioTPD). Biomaterials Research 2023, 27 (1) https://doi.org/10.1186/s40824-023-00385-8
    60. Brianna Hill-Payne, Sebastian Dilones, George Burslem. The importance of controls in targeted protein degradation: Determining mechanism. 2023, 215-240. https://doi.org/10.1016/bs.mie.2022.10.006
    61. Jiao Kong, Lin Du, Xiangyang Li, Jidong Zhu, Ya-Qiu Long. Small Molecule Degraders Targeting the SHP2 E76A Mutant Effectively Inhibiting the Proliferation of Wild-type and Mutant SHP2 Dependent Tumor Cells. Acta Chimica Sinica 2023, 81 (9) , 1120. https://doi.org/10.6023/A23050229
    62. Jiadai Zhai, Chuang Li, Bingxia Sun, Sinan Wang, Yuting Cui, Qingzhi Gao, Feng Sang. Sunitinib-based Proteolysis Targeting Chimeras (PROTACs) reduced the protein levels of FLT-3 and c-KIT in leukemia cell lines. Bioorganic & Medicinal Chemistry Letters 2022, 78 , 129041. https://doi.org/10.1016/j.bmcl.2022.129041
    63. Alessio Ciulli, Oliver Hsia. PROTAC Degraders. 2022, 317-356. https://doi.org/10.1002/9781119774198.ch9
    64. Jing Liu, Yunhua Peng, Hiroyuki Inuzuka, Wenyi Wei. Targeting micro-environmental pathways by PROTACs as a therapeutic strategy. Seminars in Cancer Biology 2022, 86 , 269-279. https://doi.org/10.1016/j.semcancer.2022.07.001
    65. Jiadai Zhai, Chuang Li, Sinan Wang, Bingxia Sun, Yuting Cui, Qingzhi Gao, Feng Sang. Proteolysis Targeting Chimeras (PROTACs) Based on Promiscuous Kinase Inhibitor Synergistically Induce Cancer Cell Apoptosis Through Multiple Mechanisms. ChemistrySelect 2022, 7 (40) https://doi.org/10.1002/slct.202203463
    66. Chaoguo Cao, Ming He, Liguo Wang, Yuna He, Yu Rao. Chemistries of bifunctional PROTAC degraders. Chemical Society Reviews 2022, 51 (16) , 7066-7114. https://doi.org/10.1039/D2CS00220E
    67. Jia-Yue Xi, Ru-Yue Zhang, Ke Chen, Lin Yao, Mu-Qiong Li, Ru Jiang, Xiao-Ye Li, Li Fan. Advances and perspectives of proteolysis targeting chimeras (PROTACs) in drug discovery. Bioorganic Chemistry 2022, 125 , 105848. https://doi.org/10.1016/j.bioorg.2022.105848
    68. Dongxu Li, Xufen Yu, Jithesh Kottur, Weida Gong, Zhao Zhang, Aaron J. Storey, Yi-Hsuan Tsai, Hidetaka Uryu, Yudao Shen, Stephanie D. Byrum, Rick D. Edmondson, Samuel G. Mackintosh, Ling Cai, Zhijie Liu, Aneel K. Aggarwal, Alan J. Tackett, Jing Liu, Jian Jin, Gang Greg Wang. Discovery of a dual WDR5 and Ikaros PROTAC degrader as an anti-cancer therapeutic. Oncogene 2022, 41 (24) , 3328-3340. https://doi.org/10.1038/s41388-022-02340-8
    69. Izidor Sosič, Aleša Bricelj, Christian Steinebach. E3 ligase ligand chemistries: from building blocks to protein degraders. Chemical Society Reviews 2022, 51 (9) , 3487-3534. https://doi.org/10.1039/D2CS00148A
    70. Shipeng He, Guoqiang Dong, Junfei Cheng, Ying Wu, Chunquan Sheng. Strategies for designing proteolysis targeting chimaeras (PROTACs). Medicinal Research Reviews 2022, 42 (3) , 1280-1342. https://doi.org/10.1002/med.21877
    71. Xin Luo, Ivonne Archibeque, Ken Dellamaggiore, Kate Smither, Oliver Homann, James Russell Lipford, Dane Mohl. Profiling of diverse tumor types establishes the broad utility of VHL-based ProTaCs and triages candidate ubiquitin ligases. iScience 2022, 25 (3) , 103985. https://doi.org/10.1016/j.isci.2022.103985
    72. Svenja Lier, Andreas Sellmer, Felix Orben, Stephanie Heinzlmeir, Lukas Krauß, Christian Schneeweis, Zonera Hassan, Carolin Schneider, Arlett Patricia Gloria Schäfer, Herwig Pongratz, Thomas Engleitner, Rupert Öllinger, Anna Kuisl, Florian Bassermann, Christoph Schlag, Bo Kong, Stefan Dove, Bernhard Kuster, Roland Rad, Maximilian Reichert, Matthias Wirth, Dieter Saur, Siavosh Mahboobi, Günter Schneider. A novel Cereblon E3 ligase modulator with antitumor activity in gastrointestinal cancer. Bioorganic Chemistry 2022, 119 , 105505. https://doi.org/10.1016/j.bioorg.2021.105505
    73. Masato T. Kanemaki. Ligand-induced degrons for studying nuclear functions. Current Opinion in Cell Biology 2022, 74 , 29-36. https://doi.org/10.1016/j.ceb.2021.12.006
    74. Xin Yu, Wen-Hao Guo, Hanfeng Lin, Ran Cheng, Erika Y. Monroy, Feng Jin, Lang Ding, Dong Lu, Xiaoli Qi, Meng C. Wang, Jin Wang. Discovery of a potent BTK and IKZF1/3 triple degrader through reversible covalent BTK PROTAC development. Current Research in Chemical Biology 2022, 2 , 100029. https://doi.org/10.1016/j.crchbi.2022.100029
    75. Yunchao Chang, Jaeki Min, Jamie A. Jarusiewicz, Marisa Actis, Shanshan Yu-Chen Bradford, Anand Mayasundari, Lei Yang, Divyabharathi Chepyala, Lisa J. Alcock, Kathryn G. Roberts, Stanley Nithianantham, Dylan Maxwell, Lauren Rowland, Randolph Larsen, Aman Seth, Hiroaki Goto, Toshihiko Imamura, Koshi Akahane, Baranda S. Hansen, Shondra M. Pruett-Miller, Elisabeth M. Paietta, Mark R. Litzow, Chunxu Qu, Jun J. Yang, Marcus Fischer, Zoran Rankovic, Charles G. Mullighan. Degradation of Janus kinases in CRLF2 -rearranged acute lymphoblastic leukemia. Blood 2021, 138 (23) , 2313-2326. https://doi.org/10.1182/blood.2020006846
    76. Haobin Li, Jinyun Dong, Maohua Cai, Zhiyuan Xu, Xiang-Dong Cheng, Jiang-Jiang Qin. Protein degradation technology: a strategic paradigm shift in drug discovery. Journal of Hematology & Oncology 2021, 14 (1) https://doi.org/10.1186/s13045-021-01146-7
    77. Brandon Dale, Meng Cheng, Kwang-Su Park, H. Ümit Kaniskan, Yue Xiong, Jian Jin. Advancing targeted protein degradation for cancer therapy. Nature Reviews Cancer 2021, 21 (10) , 638-654. https://doi.org/10.1038/s41568-021-00365-x
    78. Aleša Bricelj, Christian Steinebach, Robert Kuchta, Michael Gütschow, Izidor Sosič. E3 Ligase Ligands in Successful PROTACs: An Overview of Syntheses and Linker Attachment Points. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.707317
    79. Bo Wang, Jin Liu, Ira Tandon, Suzhen Wu, Peng Teng, Jianhua Liao, Weiping Tang. Development of MDM2 degraders based on ligands derived from Ugi reactions: Lessons and discoveries. European Journal of Medicinal Chemistry 2021, 219 , 113425. https://doi.org/10.1016/j.ejmech.2021.113425
    80. Martin Reynders, Dirk Trauner. Optical control of targeted protein degradation. Cell Chemical Biology 2021, 28 (7) , 969-986. https://doi.org/10.1016/j.chembiol.2021.05.010
    81. Aimo Kannt, Ivan Đikić. Expanding the arsenal of E3 ubiquitin ligases for proximity-induced protein degradation. Cell Chemical Biology 2021, 28 (7) , 1014-1031. https://doi.org/10.1016/j.chembiol.2021.04.007
    82. Kalyn M Rambacher, Matthew F Calabrese, Masaya Yamaguchi. Perspectives on the Development of First-in-Class Protein Degraders. Future Medicinal Chemistry 2021, 13 (14) , 1203-1226. https://doi.org/10.4155/fmc-2021-0033
    83. Shipeng He, Junhui Ma, Yuxin Fang, Ying Liu, Shanchao Wu, Guoqiang Dong, Wei Wang, Chunquan Sheng. Homo-PROTAC mediated suicide of MDM2 to treat non-small cell lung cancer. Acta Pharmaceutica Sinica B 2021, 11 (6) , 1617-1628. https://doi.org/10.1016/j.apsb.2020.11.022
    84. Barbara Zdrazil, Gerhard F. Ecker. Cancer Drug Resistance – Targets and Therapies. 2021, 1-27. https://doi.org/10.1002/0471266949.bmc215.pub2
    85. Raghu Vannam, Jan Sayilgan, Samuel Ojeda, Barbara Karakyriakou, Eileen Hu, Johannes Kreuzer, Robert Morris, Xcanda Ixchel Herrera Lopez, Sumit Rai, Wilhelm Haas, Michael Lawrence, Christopher J. Ott. Targeted degradation of the enhancer lysine acetyltransferases CBP and p300. Cell Chemical Biology 2021, 28 (4) , 503-514.e12. https://doi.org/10.1016/j.chembiol.2020.12.004
    86. Yvonne A. Nagel, Adrian Britschgi, Antonio Ricci. From Degraders to Molecular Glues: New Ways of Breaking Down Disease‐Associated Proteins. 2021, 47-85. https://doi.org/10.1002/9783527826872.ch2
    87. Nil Ege, Habib Bouguenina, Marianthi Tatari, Rajesh Chopra. Phenotypic screening with target identification and validation in the discovery and development of E3 ligase modulators. Cell Chemical Biology 2021, 28 (3) , 283-299. https://doi.org/10.1016/j.chembiol.2021.02.011
    88. Laura Pacini, Andrew D Jenks, Simon Vyse, Christopher P Wilding, Amani Arthur, Paul H Huang. Tackling Drug Resistance in EGFR Exon 20 Insertion Mutant Lung Cancer. Pharmacogenomics and Personalized Medicine 2021, Volume 14 , 301-317. https://doi.org/10.2147/PGPM.S242045
    89. Ryan Casement, Adam Bond, Conner Craigon, Alessio Ciulli. Mechanistic and Structural Features of PROTAC Ternary Complexes. 2021, 79-113. https://doi.org/10.1007/978-1-0716-1665-9_5
    90. Shanique B. Alabi, Craig M. Crews. Major advances in targeted protein degradation: PROTACs, LYTACs, and MADTACs. Journal of Biological Chemistry 2021, 296 , 100647. https://doi.org/10.1016/j.jbc.2021.100647
    91. M. Maneiro, E. De Vita, D. Conole, C.S. Kounde, Q. Zhang, E.W. Tate. PROTACs, molecular glues and bifunctionals from bench to bedside: Unlocking the clinical potential of catalytic drugs. 2021, 67-190. https://doi.org/10.1016/bs.pmch.2021.01.002
    92. Thomas M. Leissing, Laura M. Luh, Philipp M. Cromm. Structure driven compound optimization in targeted protein degradation. Drug Discovery Today: Technologies 2020, 37 , 73-82. https://doi.org/10.1016/j.ddtec.2020.11.005
    93. Daniela Tomaselli, Nicola Mautone, Antonello Mai, Dante Rotili. Recent advances in epigenetic proteolysis targeting chimeras (Epi-PROTACs). European Journal of Medicinal Chemistry 2020, 207 , 112750. https://doi.org/10.1016/j.ejmech.2020.112750
    94. Jie Li, Jieqing Liu. PROTAC: A Novel Technology for Drug Development**. ChemistrySelect 2020, 5 (42) , 13232-13247. https://doi.org/10.1002/slct.202003162
    95. Lina Yin, Qingzhong Hu. Chimera induced protein degradation: PROTACs and beyond. European Journal of Medicinal Chemistry 2020, 206 , 112494. https://doi.org/10.1016/j.ejmech.2020.112494
    96. Bomie Han. A suite of mathematical solutions to describe ternary complex formation and their application to targeted protein degradation by heterobifunctional ligands. Journal of Biological Chemistry 2020, 295 (45) , 15280-15291. https://doi.org/10.1074/jbc.RA120.014715
    97. Behnam Nabet, Nathanael S. Gray. Immediate and Selective Control of Protein Abundance Using the dTAG System. 2020, 55-74. https://doi.org/10.1039/9781839160691-00055
    98. Mary E. Matyskiela, Thomas Clayton, Joel W. Thompson, Christopher Carroll, Leslie Bateman, Laurie LeBrun, Philip P. Chamberlain. New Activities of CELMoDs, Cereblon E3 Ligase-modulating Drugs. 2020, 94-114. https://doi.org/10.1039/9781839160691-00094
    99. Xin Zhou, Ru Dong, Jin-Yang Zhang, Xin Zheng, Li-Ping Sun. PROTAC: A promising technology for cancer treatment. European Journal of Medicinal Chemistry 2020, 203 , 112539. https://doi.org/10.1016/j.ejmech.2020.112539
    100. Natesh Singh, Bruno O. Villoutreix. Demystifying the Molecular Basis of Pyrazoloquinolinones Recognition at the Extracellular α1+/β3- Interface of the GABAA Receptor by Molecular Modeling. Frontiers in Pharmacology 2020, 11 https://doi.org/10.3389/fphar.2020.561834
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect