ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Gene Drive: Evolved and Synthetic

View Author Information
Life Sciences, Imperial College, Silwood Park, Ascot, SL5 7PY, United Kingdom
Life Sciences, Imperial College, South Kensington, London, SW7 2AZ, United Kingdom
Cite this: ACS Chem. Biol. 2018, 13, 2, 343–346
Publication Date (Web):February 5, 2018
https://doi.org/10.1021/acschembio.7b01031

Copyright © 2022 American Chemical Society. This publication is licensed under CC-BY.

  • Open Access

Article Views

6001

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (352 KB)

Abstract

Drive is a process of accelerated inheritance from one generation to the next that allows some genes to spread rapidly through populations even if they do not contribute to—or indeed even if they detract from—organismal survival and reproduction. Genetic elements that can spread by drive include gametic and zygotic killers, meiotic drivers, homing endonuclease genes, B chromosomes, and transposable elements. The fact that gene drive can lead to the spread of fitness-reducing traits (including lethality and sterility) makes it an attractive process to consider exploiting to control disease vectors and other pests. There are a number of efforts to develop synthetic gene drive systems, particularly focused on the mosquito-borne diseases that continue to plague us.

SPECIAL ISSUE

This article is part of the Chemical Biology of CRISPR special issue.

Introduction to Gene Drive

ARTICLE SECTIONS
Jump To

Most genes are thought to spread and persist in populations because they do something useful for the organisms carrying them, increasing survival and/or reproduction, at least on average. That is, most genes spread in populations by positive Darwinian selection and are maintained in the face of recurrent mutation by purifying selection. Some features of a gene may be selectively neutral—such as which nucleotide is found at a particular silent site—but random drift by itself will not lead to long open reading frames and associated control sequences that produce complex proteins performing a particular function.
There are other genes, a minority, which spread and persist not by natural selection, not by increasing organismal survival or reproduction, but instead by distorting their transmission from one generation to the next. For example, some genes manage to be transmitted to more than half of an individual’s gametes, even when that individual only inherited the gene from one of its two parents. In this case, the frequency of the gene increases due to the process of gene transmission from one generation to the next, and it is this unequal genetic transmission that gives the gene its advantage. Genes or genetic elements showing such transmission ratio distortion, or “drive,” include gametic and zygotic killers, meiotic drivers, homing endonuclease genes, B chromosomes, and transposable elements, each of which has evolved several or many times in different taxa. (1, 2) Moreover, drive has been an important process affecting such genomic features as genome size, base composition, chromosome shape, repeat structure, distribution of recombination hotspots, and centromere structure. (1, 3, 4)
Not only can driving genes spread without doing anything useful for the organisms carrying them, they can even spread if they cause some harm, as long as the effect of the transmission distortion is greater than the effect of the reduced survival and reproduction. For this reason, they are often called selfish genes, or selfish genetic elements. (1, 2) And since they can be harmful to the organism, genes that suppress these genes can themselves spread by natural selection (analogous to the spread of genes suppressing any other parasite), which the selfish gene will then be selected to avoid, potentially leading to an arms race. Occasionally, features of a selfish genetic element may be co-opted to do something useful for the host. Classic examples include mating type switching in yeast, antibody diversification in vertebrates, and telomere maintenance in Drosophila (and in eukaryotes more generally)—the evolution of all of these operations has involved the domestication or co-option of functions of selfish genetic elements. (1, 3)

Synthetic Gene Drive Systems

ARTICLE SECTIONS
Jump To

The fact that gene drive can lead to the spread of fitness-reducing traits makes it potentially useful for controlling disease vectors and other pests. Moreover, the spread can be rapid: in a closed, random mating population, a construct with 100% drive and no fitness effects can increase from 1% to 99% in the population in just nine generations—fast enough to be attractive for public health interventions. Discussions about how to exploit gene drive for pest control date back for decades, long before there was any mechanistic understanding of how they worked, particularly among medical entomologists looking for new ways to control disease vectors. (5-10) However, classical genetic approaches were not sufficiently flexible to be able to construct a useful gene drive system. Now, with the recent progress in molecular biology, there is renewed interest in trying to make synthetic gene drive elements, (11, 12) and preliminary discussions of potential uses have expanded to agriculture and conservation. (13)
In broad outline, two types of intervention have been considered, either to reduce the size of the target population, or to leave numbers more-or-less intact and genetically modify the population such that it is less harmful (e.g., less able to transmit a pathogen). And three main molecular paradigms are being explored, the use of toxin–antidote systems, chromosomal rearrangements, or sequence-specific nucleases. Toxin-antidote systems and chromosomal rearrangements may be useful for introducing and spreading a new “cargo” gene through a population that makes the population less harmful (e.g., an effector gene that makes mosquitoes unable to transmit a pathogen). (14, 15) Nuclease-based drive systems may also be used to introduce novel genes, or they may be used for population suppression. (16, 17)

Toxin-Antidote Systems and Chromosomal Rearrangements

Many naturally occurring gene drive systems act as if they produce a toxin and antidote, though often the molecular details are not known. For example, in mice heterozygous for the t-haplotype, and Drosophila heterozygous for Segregation Distorter, these elements somehow act during spermatogenesis to sabotage spermatids or sperm carrying the wild-type allele, with the result that each is transmitted to over 90% of the progeny (compared to the Mendelian 50%). (18, 19) In Tribolium flour beetles, the medea gene acts in heterozygous females to somehow cause progeny that do not inherit the medea gene to die. (20, 21) Though the underlying molecular mechanisms are not known, this example stimulated the development of a synthetic gene drive construct in Drosophila with the same logic. (22) The construct combined a microRNA-based repressor of myd88 (an important protein normally supplied by the mother into the embryo) with a zygotically expressed myd88 gene that was not affected by the microRNA and supplied the missing protein. As intended, this construct was able to increase in frequency over successive generations in experimental cage populations. Two other medea systems, using different components, have also been developed in Drosophila, (23) as have toxin–antidote systems that display maternal-effect lethal underdominance and threshold-dependent invasion into population cages. (15, 24) Recent descriptions of natural toxin–antidote systems in plants, fungi, and nematodes (25-31) may provide further insights into how these sorts of systems can be engineered.
One way for toxin–antidote systems to work is by generating underdominant fitness interactions, in which the heterozygote is less fit than either of the two homozygotes. Underdominant interactions can also be generated with chromosomal rearrangements such as reciprocal translocations, and if these can be introduced at a sufficient frequency into a population (>50% in the simplest scenario), then they can spread to fixation. (6) Strains of Drosophila with reciprocal translocations have been engineered, and these showed the expected frequency-dependent spread in lab populations. (32)

Nuclease-Based Systems: Chromosome Shredding

In Aedes and Culex mosquitoes, there is a naturally occurring driving Y chromosome that, in some crosses, is transmitted to more than 90% of a male’s progeny. First described in the 1960s, (5, 33) there is still no good understanding of how it works at the molecular level, but cytologically it is associated with breaks of the X chromosome at male meiosis, perhaps having something to do with interrupted crossovers. (34, 35) This observation led to the idea that cleavage of the X chromosome during male meiosis might lead to drive of the Y. (16) In Anopheles gambiae, the most important vector of malaria in Africa, the rRNA genes are found in a single cluster of hundreds of copies on the X chromosome, making it an ideal target, (36) and sure enough, production of a nuclease targeting this sequence during spermatogenesis can produce biased sex ratios, up to 95% males, using both an engineered meganuclease and a CRISPR-based nuclease. (37, 38) A male-biased population sex ratio would be useful because males do not bite people and transmit disease, nor do they contribute as much materially to population productivity, and so total population size is also likely to decline. (39) The constructs reported to date do not yet constitute a fully functional gene drive system, because the nuclease genes have been inserted on an autosome, and so are themselves still transmitted in a Mendelian manner; the next step is to put them on the Y chromosome, which is challenging because it is highly repetitive and largely suppressed at meiosis, though some progress has been made. (40, 41)

Nuclease-Based Systems: Homing

Homing endonuclease genes (HEGs) are a class of natural occurring driving elements for which there is a good understanding about the molecular mechanisms, and these are both simple and general enough to potentially be worth exploiting. HEGs encode a nuclease that recognizes and cuts a sequence that typically occurs just once in the genome. The gene is in the middle of its own recognition sequence, disrupting it and protecting the chromosome it is on from being cut. Therefore, in heterozygotes, only the chromosome not containing the gene is cut; it is then repaired using the HEG-containing homologue as a template, with the result that the HEG is copied across to the chromosome where previously it was absent, converting a heterozygote into a homozygote. (42, 43) This “homing” reaction simply requires a gene encoding a sequence-specific nuclease, with the gene inserted in the middle of its own recognition sequence, and the cell’s DNA repair system takes care of the rest.
HEGs occur naturally in many microbes but have not yet been identified in any insects or vertebrates. Important proof-of-principle experiments demonstrated that the homing reaction can occur in both Drosophila and Anopheles. (44-47) These first experiments used meganucleases, and later experiments showed the reaction could also be catalyzed by zinc finger and TALE nucleases, (48) and, more recently, CRISPR-based nucleases. (49-51) In principle, the homing reaction can be used for both population-wide knockout of target genes, such as those involved in survival, fertility, or pathogen transmission, or for population-wide knock-in of novel effector genes. (17, 52, 53) As with other forms of pest or disease control, due attention must be given to the possibility of resistance evolving. (54-57)

Prospects

ARTICLE SECTIONS
Jump To

There are a relatively small number of species for which genetic control methods, including gene drive, may be appropriate. Most prominent are those causing or transmitting diseases. Even now, more than 700 000 people die every year from vector-borne diseases, and there is an additional heavy burden of nonlethal morbidity. (58) Much of disease control is, ultimately, chemical, with efficacy largely determined by the degree to which production and delivery can be targeted and affordable. Vaccination can be among the most cost-effective of all health interventions because it uses the adaptive immune system to generate and deliver the active agents. The promise of genetic approaches—and gene drive in particular—is again to use biological processes–mating, meiosis, transcription, translation, etc.—for targeted, cost-effective delivery of appropriate chemicals (e.g., nucleases or antimicrobial peptides) that will substantially reduce disease transmission. Indeed, gene drive may take efficiency a step further, with a single release (perhaps with periodic “booster” releases) giving area-wide, population-level control. Important steps have been made toward realizing this potential, though there remains much more to do.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
    • Austin Burt - Life Sciences, Imperial College, Silwood Park, Ascot, SL5 7PY, United Kingdom Email: [email protected]
    • Andrea Crisanti - Life Sciences, Imperial College, South Kensington, London, SW7 2AZ, United Kingdom Email: [email protected]
    • Notes
      The authors declare no competing financial interest.

    Acknowledgment

    ARTICLE SECTIONS
    Jump To

    We thank the reviewers for useful comments. Funded by grants from the Bill & Melinda Gates Foundation and the Open Philanthropy Project.

    References

    ARTICLE SECTIONS
    Jump To

    This article references 58 other publications.

    1. 1
      Burt, A. and Trivers, R. (2006) Genes in Conflict: the Biology of Selfish Genetic Elements, Belknap Press of Harvard University Press, Cambridge.
    2. 2
      Werren, J. H., Nur, U., and Wu, C. I. (1988) Selfish genetic elements Trends Ecol. Evol. 3, 297 302 DOI: 10.1016/0169-5347(88)90105-X
    3. 3
      McLaughlin, R. N. and Malik, H. S. (2017) Genetic conflicts: the usual suspects and beyond J. Exp. Biol. 220, 6 17 DOI: 10.1242/jeb.148148
    4. 4
      Werren, J. H. (2011) Selfish genetic elements, genetic conflict, and evolutionary innovation Proc. Natl. Acad. Sci. U. S. A. 108, 10863 10870 DOI: 10.1073/pnas.1102343108
    5. 5
      Craig, G. B., Jr., Hickey, W. A., and VandeHey, R. C. (1960) An inherited male-producing factor in Science 132, 1887 1889 DOI: 10.1126/science.132.3443.1887
    6. 6
      Curtis, C. F. (1968) Possible uses of translocations to fix desirable genes in insect pest populations Nature 218, 368 369 DOI: 10.1038/218368a0
    7. 7
      Curtis, C. F., Grover, K. K., Suguna, S. G., Uppal, D. K., Dietz, K., Agarwal, H. V., and Kazmi, S. J. (1976) Comparative field cage tests of population suppressing efficiency of 3 genetic-control systems for Heredity 36, 11 29 DOI: 10.1038/hdy.1976.2
    8. 8
      Hickey, W. A. and Craig, G. B., Jr. (1966) Distortion of sex ratio in populations of Aedes aegypti Can. J. Genet. Cytol. 8, 260 278 DOI: 10.1139/g66-033
    9. 9
      Hickey, W. A. and Craig, G. B., Jr. (1966) Genetic distortion of sex ratio in a mosquito Aedes aegypti Genetics 53, 1177 96
    10. 10
      Sinkins, S. P. and Gould, F. (2006) Gene drive systems for insect disease vectors Nat. Rev. Genet. 7, 427 435 DOI: 10.1038/nrg1870
    11. 11
      Adelman, Z. N. (2016) Genetic Control of Malaria and Dengue, Academic Press, London.
    12. 12
      Champer, J., Buchman, A., and Akbari, O. S. (2016) Cheating evolution: engineering gene drives to manipulate the fate of wild populations Nat. Rev. Genet. 17, 146 159 DOI: 10.1038/nrg.2015.34
    13. 13
      NASEM. (2016) Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values, The National Academies Press, Washington, DC.
    14. 14
      Adelman, Z. N., Basu, S., and Myles, K. M. (2016) Engineering pathogen resistance in mosquitoes, in Genetic Control of Malaria and Dengue (Adelman, Z. N., Ed.), pp 277 304, Academic Press, London.
    15. 15
      Marshall, J. M. and Akbari, O. S. (2016) Gene drive strategies for population replacement, in Genetic Control of Malaria and Dengue (Adelman, Z. N., Ed.), pp 169 200, Academic Press, London.
    16. 16
      Burt, A. (2003) Site-specific selfish genes as tools for the control and genetic engineering of natural populations Proc. R. Soc. London, Ser. B 270, 921 928 DOI: 10.1098/rspb.2002.2319
    17. 17
      Burt, A. (2014) Heritable strategies for controlling insect vectors of disease Philos. Trans. R. Soc., B 369, 20130432 DOI: 10.1098/rstb.2013.0432
    18. 18
      Larracuente, A. M. and Presgraves, D. C. (2012) The selfish Segregation Distorter gene complex of Drosophila melanogaster Genetics 192, 33 53 DOI: 10.1534/genetics.112.141390
    19. 19
      Lyon, M. F. (2003) Transmission ratio distortion in mice Annu. Rev. Genet. 37, 393 408 DOI: 10.1146/annurev.genet.37.110801.143030
    20. 20
      Beeman, R. W., Friesen, K. S., and Denell, R. E. (1992) Maternal-effect selfish genes in flour beetles Science 256, 89 92 DOI: 10.1126/science.1566060
    21. 21
      Lorenzen, M. D., Gnirke, A., Margolis, J., Garnes, J., Campbell, M., Stuart, J. J., Aggarwal, R., Richards, S., Park, Y., and Beeman, R. W. (2008) The maternal-effect, selfish genetic element Medea is associated with a composite Tc1 transposon Proc. Natl. Acad. Sci. U. S. A. 105, 10085 10089 DOI: 10.1073/pnas.0800444105
    22. 22
      Chen, C. H., Huang, H. X., Ward, C. M., Su, J. T., Schaeffer, L. V., Guo, M., and Hay, B. A. (2007) A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila Science 316, 597 600 DOI: 10.1126/science.1138595
    23. 23
      Akbari, O. S., Chen, C.-H., Marshall, J. M., Huang, H., Antoshechkin, I., and Hay, B. A. (2014) Novel synthetic medea selfish genetic elements drive population replacement in Drosophila; a theoretical exploration of medea-dependent population suppression ACS Synth. Biol. 3, 915 928 DOI: 10.1021/sb300079h
    24. 24
      Akbari, O. S., Matzen, K. D., Marshall, J. M., Huang, H., Ward, C. M., and Hay, B. A. (2013) A synthetic gene drive system for local, reversible modification and suppression of insect populations Curr. Biol. 23, 671 677 DOI: 10.1016/j.cub.2013.02.059
    25. 25
      Ben-David, E., Burga, A., and Kruglyak, L. (2017) A maternal-effect selfish genetic element in Caenorhabditis elegans Science 356, 1051 1055 DOI: 10.1126/science.aan0621
    26. 26
      Grognet, P., Lalucque, H., Malagnac, F., and Silar, P. (2014) Genes that bias Mendelian segregation PLoS Genet. 10, e1004387 DOI: 10.1371/journal.pgen.1004387
    27. 27
      Hammond, T. M., Rehard, D. G., Xiao, H., and Shiu, P. K. T. (2012) Molecular dissection of Neurospora Spore killer meiotic drive elements Proc. Natl. Acad. Sci. U. S. A. 109, 12093 12098 DOI: 10.1073/pnas.1203267109
    28. 28
      Hu, W., Jiang, Z. D., Suo, F., Zheng, J. X., He, W. Z., and Du, L. L. (2017) A large gene family in fission yeast encodes spore killers that subvert Mendel’s law eLife 6, e26057 DOI: 10.7554/eLife.26057
    29. 29
      Nuckolls, N. L., Bravo Nunez, M. A., Eickbush, M. T., Young, J. M., Lange, J. J., Yu, J. S., Smith, G. R., Jaspersen, S. L., Malik, H. S., and Zanders, S. E. (2017) wtf genes are prolific dual poison-antidote meiotic drivers eLife 6, e26033 DOI: 10.7554/eLife.26033
    30. 30
      Seidel, H. S., Ailion, M., Li, J. L., van Oudenaarden, A., Rockman, M. V., and Kruglyak, L. (2011) A novel sperm-delivered toxin causes late-stage embryo lethality and transmission ratio distortion in C. elegans PLoS Biol. 9, e1001115 DOI: 10.1371/journal.pbio.1001115
    31. 31
      Yang, J. Y., Zhao, X. B., Cheng, K., Du, H. Y., Ouyang, Y. D., Chen, J. J., Qiu, S. Q., Huang, J. Y., Jiang, Y. H., Jiang, L. W., Ding, J. H., Wang, J., Xu, C. G., Li, X. H., and Zhang, Q. F. (2012) A killer-protector system regulates both hybrid sterility and segregation distortion in rice Science 337, 1336 1340 DOI: 10.1126/science.1223702
    32. 32
      Buchman, A. B., Ivy, T., Marshall, J. M., Akbari, O., and Hay, B. A. (2016) Engineered reciprocal chromosome translocations drive high threshold, reversible population replacement in Drosophila, bioRxiv, DOI:  DOI: 10.1101/088393 .
    33. 33
      Wood, R. J. and Newton, M. E. (1991) Sex-ratio distortion caused by meiotic drive in mosquitos Am. Nat. 137, 379 391 DOI: 10.1086/285171
    34. 34
      Newton, M. E., Wood, R. J., and Southern, D. I. (1976) Cytogenetic analysis of meiotic drive in mosquito, Aedes aegypti (L) Genetica 46, 297 318 DOI: 10.1007/BF00055473
    35. 35
      Sweeny, T. L. and Barr, A. R. (1978) Sex-ratio distortion caused by meiotic drive in a mosquito, Culex pipiens L Genetics 88, 427 446
    36. 36
      Windbichler, N., Papathanos, P. A., Catteruccia, F., Ranson, H., Burt, A., and Crisanti, A. (2007) Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos Nucleic Acids Res. 35, 5922 5933 DOI: 10.1093/nar/gkm632
    37. 37
      Galizi, R., Doyle, L. A., Menichelli, M., Bernardini, F., Deredec, A., Burt, A., Stoddard, B. L., Windbichler, N., and Crisanti, A. (2014) A synthetic sex ratio distortion system for the control of the human malaria mosquito Nat. Commun. 5, 3977 DOI: 10.1038/ncomms4977
    38. 38
      Galizi, R., Hammond, A., Kyrou, K., Taxiarchi, C., Bernardini, F., O’Loughlin, S. M., Papathanos, P. A., Nolan, T., Windbichler, N., and Crisanti, A. (2016) A CRISPR-Cas9 sex-ratio distortion system for genetic control Sci. Rep. 6, 31139 DOI: 10.1038/srep31139
    39. 39
      Deredec, A., Godfray, H. C. J., and Burt, A. (2011) Requirements for effective malaria control with homing endonuclease genes Proc. Natl. Acad. Sci. U. S. A. 108, E874 E880 DOI: 10.1073/pnas.1110717108
    40. 40
      Bernardini, F., Galizi, R., Menichelli, M., Papathanos, P. A., Dritsou, V., Marois, E., Crisanti, A., and Windbichler, N. (2014) Site-specific genetic engineering of the Anopheles gambiae Y chromosome Proc. Natl. Acad. Sci. U. S. A. 111, 7600 7605 DOI: 10.1073/pnas.1404996111
    41. 41
      Hall, A. B., Papathanos, P. A., Sharma, A., Cheng, C. D., Akbari, O. S., Assour, L., Bergman, N. H., Cagnetti, A., Crisanti, A., Dottorini, T., Fiorentini, E., Galizi, R., Hnath, J., Jiang, X. F., Koren, S., Nolan, T., Radune, D., Sharakhova, M. V., Steele, A., Timoshevskiy, V. A., Windbichler, N., Zhang, S. M., Hahn, M. W., Phillippy, A. M., Emrich, S. J., Sharakhov, I. V., Tu, Z. J., and Besansky, N. J. (2016) Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes Proc. Natl. Acad. Sci. U. S. A. 113, E2114 E2123 DOI: 10.1073/pnas.1525164113
    42. 42
      Colleaux, L., D'Auriol, L., Betermier, M., Cottarel, G., Jacquier, A., Galibert, F., and Dujon, B. (1986) Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into Escherichia coli as a specific double strand endonuclease Cell 44, 521 533 DOI: 10.1016/0092-8674(86)90262-X
    43. 43
      Dujon, B. (1989) Group I introns as mobile genetic elements – facts and mechanistic speculations – a review Gene 82, 91 114 DOI: 10.1016/0378-1119(89)90034-6
    44. 44
      Chan, Y.-S., Huen, D. S., Glauert, R., Whiteway, E., and Russell, S. (2013) Optimising homing endonuclease gene drive performance in a semi-refractory species: the Drosophila melanogaster experience PLoS One 8, e54130 DOI: 10.1371/journal.pone.0054130
    45. 45
      Chan, Y.-S., Naujoks, D. A., Huen, D. S., and Russell, S. (2011) Insect population control by homing endonuclease-based gene drive: an evaluation in Drosophila melanogaster Genetics 188, 33 44 DOI: 10.1534/genetics.111.127506
    46. 46
      Chan, Y.-S., Takeuchi, R., Jarjour, J., Huen, D. S., Stoddard, B. L., and Russell, S. (2013) The design and in vivo evaluation of engineered I-OnuI-based enzymes for HEG gene drive PLoS One 8, e74254 DOI: 10.1371/journal.pone.0074254
    47. 47
      Windbichler, N., Menichelli, M., Papathanos, P. A., Thyme, S. B., Li, H., Ulge, U. Y., Hovde, B. T., Baker, D., Monnat, R. J., Jr., Burt, A., and Crisanti, A. (2011) A synthetic homing endonuclease-based gene drive system in the human malaria mosquito Nature 473, 212 215 DOI: 10.1038/nature09937
    48. 48
      Simoni, A., Siniscalchi, C., Chan, Y.-S., Huen, D. S., Russell, S., Windbichler, N., and Crisanti, A. (2014) Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster Nucleic Acids Res. 42, 7461 7472 DOI: 10.1093/nar/gku387
    49. 49
      Gantz, V. M. and Bier, E. (2015) The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations Science 348, 442 444 DOI: 10.1126/science.aaa5945
    50. 50
      Gantz, V. M., Jasinskiene, N., Tatarenkova, O., Fazekas, A., Macias, V. M., Bier, E., and James, A. A. (2015) Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi Proc. Natl. Acad. Sci. U. S. A. 112, E6736 E6743 DOI: 10.1073/pnas.1521077112
    51. 51
      Hammond, A., Galizi, R., Kyrou, K., Simoni, A., Siniscalchi, C., Katsanos, D., Gribble, M., Baker, D., Marois, E., Russell, S., Burt, A., Windbichler, N., Crisanti, A., and Nolan, T. (2016) A CRISPR-Cas9 gene drive system-targeting female reproduction in the malaria mosquito vector Anopheles gambiae Nat. Biotechnol. 34, 78 83 DOI: 10.1038/nbt.3439
    52. 52
      Eckhoff, P. A., Wenger, E. A., Godfray, H. C. J., and Burt, A. (2017) Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics Proc. Natl. Acad. Sci. U. S. A. 114, E255 E264 DOI: 10.1073/pnas.1611064114
    53. 53
      Godfray, H. C. J., North, A., and Burt, A. (2017) How driving endonuclease genes can be used to combat pests and disease vectors BMC Biol. 15, 81 DOI: 10.1186/s12915-017-0420-4
    54. 54
      Beaghton, A., Beaghton, P. J., and Burt, A. (2017) Vector control with driving Y chromosomes: modelling the evolution of resistance Malar. J. 16, 286 DOI: 10.1186/s12936-017-1932-7
    55. 55
      Beaghton, A., Hammond, A., Nolan, T., Crisanti, A., Godfray, H. C. J., and Burt, A. (2017) Requirements for driving antipathogen effector genes into populations of disease vectors by homing Genetics 205, 1587 1596 DOI: 10.1534/genetics.116.197632
    56. 56
      Champer, J., Reeves, R., Oh, S. Y., Liu, C., Liu, J. X., Clark, A. G., and Messer, P. W. (2017) Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations PLoS Genet. 13, e1006796 DOI: 10.1371/journal.pgen.1006796
    57. 57
      Hammond, A. M., Kyrou, K., Bruttini, M., North, A., Galizi, R., Karlsson, X., Kranjc, N., Carpi, F. M., D’Aurizio, R., Crisanti, A., and Nolan, T. (2017) The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito PLoS Genet. 13, e1007039 DOI: 10.1371/journal.pgen.1007039
    58. 58
      WHO Vector-borne diseases. http://www.who.int/mediacentre/factsheets/fs387/en/ (accessed Nov 26, 2017) .

    Cited By

    This article is cited by 49 publications.

    1. Yutong Zhu, Jackson Champer. Simulations Reveal High Efficiency and Confinement of a Population Suppression CRISPR Toxin-Antidote Gene Drive. ACS Synthetic Biology 2023, 12 (3) , 809-819. https://doi.org/10.1021/acssynbio.2c00611
    2. Soumyashree A. Gangopadhyay, Kurt J. Cox, Debasish Manna, Donghyun Lim, Basudeb Maji, Qingxuan Zhou, Amit Choudhary. Precision Control of CRISPR-Cas9 Using Small Molecules and Light. Biochemistry 2019, 58 (4) , 234-244. https://doi.org/10.1021/acs.biochem.8b01202
    3. Anandrao A. Patil, William Klobasa, Dina Espinoza‐Rivera, Oliver Baars, Marcé D. Lorenzen, Maxwell J. Scott. Development of transgenic corn planthopper Peregrinus maidis that express the tetracycline transactivator . Insect Molecular Biology 2023, 32 (4) , 363-375. https://doi.org/10.1111/imb.12836
    4. Qinwen Xia, Kaleem Tariq, Daniel A. Hahn, Alfred M. Handler. Sequence and expression analysis of the spermatogenesis-specific gene cognates, wampa and Prosα6T, in Drosophila suzukii. Genetica 2023, 151 (3) , 215-223. https://doi.org/10.1007/s10709-023-00189-7
    5. Asher D. Cutter. Synthetic gene drives as an anthropogenic evolutionary force. Trends in Genetics 2023, 39 (5) , 347-357. https://doi.org/10.1016/j.tig.2023.02.010
    6. Muhammad Arslan Mahmood, Rubab Zahra Naqvi, Hamid Anees Siddiqui, Imran Amin, Shahid Mansoor. Current knowledge and implementations of Bemisia tabaci genomic technologies for sustainable control. Journal of Pest Science 2023, 96 (2) , 427-440. https://doi.org/10.1007/s10340-022-01520-5
    7. Aaron J. Roberts, Delphine Thizy. Articulating ethical principles guiding Target Malaria's engagement strategy. Malaria Journal 2022, 21 (1) https://doi.org/10.1186/s12936-022-04062-4
    8. Giuseppe Saccone. A history of the genetic and molecular identification of genes and their functions controlling insect sex determination. Insect Biochemistry and Molecular Biology 2022, 151 , 103873. https://doi.org/10.1016/j.ibmb.2022.103873
    9. Camilla Beech, Nathan Rose, Brinda Dass. Regulation of Transgenic Insects. 2022, 493-517. https://doi.org/10.1079/9781800621176.0025
    10. Jackson Champer. Drosophila melanogaster as a Model for Gene Drive Systems. 2022, 200-223. https://doi.org/10.1079/9781800621176.0009
    11. Anna M Langmüller, Jackson Champer, Sandra Lapinska, Lin Xie, Matthew Metzloff, Samuel E Champer, Jingxian Liu, Yineng Xu, Jie Du, Andrew G Clark, Philipp W Messer. Fitness effects of CRISPR endonucleases in Drosophila melanogaster populations. eLife 2022, 11 https://doi.org/10.7554/eLife.71809
    12. John B. Connolly, Jörg Romeis, Yann Devos, Debora C.M. Glandorf, Geoff Turner, Mamadou B. Coulibaly. Gene drive in species complexes: defining target organisms. Trends in Biotechnology 2022, 270 https://doi.org/10.1016/j.tibtech.2022.06.013
    13. Alex Siddall, Tim Harvey-Samuel, Tracey Chapman, Philip T. Leftwich. Manipulating Insect Sex Determination Pathways for Genetic Pest Management: Opportunities and Challenges. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.867851
    14. Andrew R. Castle, Serene Wohlgemuth, Luis Arce, David Westaway, . Investigating CRISPR/Cas9 gene drive for production of disease-preventing prion gene alleles. PLOS ONE 2022, 17 (6) , e0269342. https://doi.org/10.1371/journal.pone.0269342
    15. P.J. Beaghton, Austin Burt. Gene drives and population persistence vs elimination: The impact of spatial structure and inbreeding at low density. Theoretical Population Biology 2022, 145 , 109-125. https://doi.org/10.1016/j.tpb.2022.02.002
    16. Emily Yang, Matthew Metzloff, Anna M Langmüller, Xuejiao Xu, Andrew G Clark, Philipp W Messer, Jackson Champer, . A homing suppression gene drive with multiplexed gRNAs maintains high drive conversion efficiency and avoids functional resistance alleles. G3 Genes|Genomes|Genetics 2022, 12 (6) https://doi.org/10.1093/g3journal/jkac081
    17. Bruce Warburton, Charles Eason, Penny Fisher, Nick Hancox, Brian Hopkins, Graham Nugent, Shaun Ogilvie, Thomas A. A. Prowse, James Ross, Phil E. Cowan. Alternatives for mammal pest control in New Zealand in the context of concerns about 1080 toxicant (sodium fluoroacetate). New Zealand Journal of Zoology 2022, 49 (2) , 79-121. https://doi.org/10.1080/03014223.2021.1977345
    18. Yann Devos, John D. Mumford, Michael B. Bonsall, Ana M. Camargo, Leslie G. Firbank, Debora C. M. Glandorf, Fabien Nogué, Konstantinos Paraskevopoulos, Ernst A. Wimmer. Potential use of gene drive modified insects against disease vectors, agricultural pests and invasive species poses new challenges for risk assessment. Critical Reviews in Biotechnology 2022, 42 (2) , 254-270. https://doi.org/10.1080/07388551.2021.1933891
    19. Aaron A. Vogan, Ivain Martinossi-Allibert, S. Lorena Ament-Velásquez, Jesper Svedberg, Hanna Johannesson. The spore killers, fungal meiotic driver elements. Mycologia 2022, 114 (1) , 1-23. https://doi.org/10.1080/00275514.2021.1994815
    20. Yann Devos, John D. Mumford, Michael B. Bonsall, Debora C.M. Glandorf, Hector D. Quemada. Risk management recommendations for environmental releases of gene drive modified insects. Biotechnology Advances 2022, 54 , 107807. https://doi.org/10.1016/j.biotechadv.2021.107807
    21. Nawaphan Metchanun, Christian Borgemeister, Gaston Amzati, Joachim von Braun, Milen Nikolov, Prashanth Selvaraj, Jaline Gerardin. Modeling impact and cost‐effectiveness of driving‐Y gene drives for malaria elimination in the Democratic Republic of the Congo. Evolutionary Applications 2022, 15 (1) , 132-148. https://doi.org/10.1111/eva.13331
    22. Samuel E. Champer, Nathan Oakes, Ronin Sharma, Pablo García-Díaz, Jackson Champer, Philipp W. Messer, . Modeling CRISPR gene drives for suppression of invasive rodents using a supervised machine learning framework. PLOS Computational Biology 2021, 17 (12) , e1009660. https://doi.org/10.1371/journal.pcbi.1009660
    23. José Fabricio López Hernández, Rachel M Helston, Jeffrey J Lange, R Blake Billmyre, Samantha H Schaffner, Michael T Eickbush, Scott McCroskey, Sarah E Zanders. Diverse mating phenotypes impact the spread of wtf meiotic drivers in Schizosaccharomyces pombe. eLife 2021, 10 https://doi.org/10.7554/eLife.70812
    24. Phillip Shults, Lee W. Cohnstaedt, Zach N. Adelman, Corey Brelsfoard. Next-generation tools to control biting midge populations and reduce pathogen transmission. Parasites & Vectors 2021, 14 (1) https://doi.org/10.1186/s13071-020-04524-1
    25. Mark Q Benedict, . Sterile Insect Technique: Lessons From the Past. Journal of Medical Entomology 2021, 58 (5) , 1974-1979. https://doi.org/10.1093/jme/tjab024
    26. Brock T. Burgess, Robyn L. Irvine, Gregg R. Howald, Michael A. Russello. The Promise of Genetics and Genomics for Improving Invasive Mammal Management on Islands. Frontiers in Ecology and Evolution 2021, 9 https://doi.org/10.3389/fevo.2021.704809
    27. Silvia Grilli, Roberto Galizi, Chrysanthi Taxiarchi. Genetic Technologies for Sustainable Management of Insect Pests and Disease Vectors. Sustainability 2021, 13 (10) , 5653. https://doi.org/10.3390/su13105653
    28. Katie Willis, Austin Burt, . Double drives and private alleles for localised population genetic control. PLOS Genetics 2021, 17 (3) , e1009333. https://doi.org/10.1371/journal.pgen.1009333
    29. Laurie Zoloth. The ethical scientist in a time of uncertainty. Cell 2021, 184 (6) , 1430-1439. https://doi.org/10.1016/j.cell.2021.02.051
    30. Philip T. Leftwich, Lewis G. Spurgin, Tim Harvey-Samuel, Callum J. E. Thomas, Leonela Carabajal Paladino, Matthew P. Edgington, Luke Alphey. Genetic pest management and the background genetics of release strains. Philosophical Transactions of the Royal Society B: Biological Sciences 2021, 376 (1818) , 20190805. https://doi.org/10.1098/rstb.2019.0805
    31. Bruce A. Hay, Georg Oberhofer, Ming Guo. Engineering the Composition and Fate of Wild Populations with Gene Drive. Annual Review of Entomology 2021, 66 (1) , 407-434. https://doi.org/10.1146/annurev-ento-020117-043154
    32. Jackson Champer, Isabel K. Kim, Samuel E. Champer, Andrew G. Clark, Philipp W. Messer. Performance analysis of novel toxin-antidote CRISPR gene drive systems. BMC Biology 2020, 18 (1) https://doi.org/10.1186/s12915-020-0761-2
    33. Seynabou Sougoufara, Emmanuel Chinweuba Ottih, Frederic Tripet. The need for new vector control approaches targeting outdoor biting anopheline malaria vector communities. Parasites & Vectors 2020, 13 (1) https://doi.org/10.1186/s13071-020-04170-7
    34. Jackson Champer, Esther Lee, Emily Yang, Chen Liu, Andrew G. Clark, Philipp W. Messer. A toxin-antidote CRISPR gene drive system for regional population modification. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-14960-3
    35. , Hanspeter Naegeli, Jean‐Louis Bresson, Tamas Dalmay, Ian C Dewhurst, Michelle M Epstein, Philippe Guerche, Jan Hejatko, Francisco J Moreno, Ewen Mullins, Fabien Nogué, Nils Rostoks, Jose J Sánchez Serrano, Giovanni Savoini, Eve Veromann, Fabio Veronesi, Michael B Bonsall, John Mumford, Ernst A Wimmer, Yann Devos, Konstantinos Paraskevopoulos, Leslie G Firbank. Adequacy and sufficiency evaluation of existing EFSA guidelines for the molecular characterisation, environmental risk assessment and post‐market environmental monitoring of genetically modified insects containing engineered gene drives. EFSA Journal 2020, 18 (11) https://doi.org/10.2903/j.efsa.2020.6297
    36. Nicole L Nuckolls, Anthony C Mok, Jeffrey J Lange, Kexi Yi, Tejbir S Kandola, Andrew M Hunn, Scott McCroskey, Julia L Snyder, María Angélica Bravo Núñez, Melainia McClain, Sean A McKinney, Christopher Wood, Randal Halfmann, Sarah E Zanders. The wtf4 meiotic driver utilizes controlled protein aggregation to generate selective cell death. eLife 2020, 9 https://doi.org/10.7554/eLife.55694
    37. Bhaskar Chandra Mohan Ramisetty, Pavithra Anantharaman Sudhakari. ‘Bacterial Programmed Cell Death’: cellular altruism or genetic selfism?. FEMS Microbiology Letters 2020, 367 (16) https://doi.org/10.1093/femsle/fnaa141
    38. Ananya Nidamangala Srinivasa, Sarah E. Zanders. Meiotic drive. Current Biology 2020, 30 (11) , R627-R629. https://doi.org/10.1016/j.cub.2020.04.023
    39. Marion Dolezel, Christoph Lüthi, Helmut Gaugitsch. Beyond limits – the pitfalls of global gene drives for environmental risk assessment in the European Union. BioRisk 2020, 15 , 1-29. https://doi.org/10.3897/biorisk.15.49297
    40. Bettina Couderc. George Lucas : Prophète du transhumanisme ?. médecine/sciences 2020, 36 (3) , 264-270. https://doi.org/10.1051/medsci/2020021
    41. David A. O’Brochta, Willy K. Tonui, Brinda Dass, Stephanie James. A Cross-Sectional Survey of Biosafety Professionals Regarding Genetically Modified Insects. Applied Biosafety 2020, 25 (1) , 19-27. https://doi.org/10.1177/1535676019888047
    42. Thomas A. Miller. GM Insect Biodiversity and Ecological Interactions. 2020, 175-192. https://doi.org/10.1007/978-3-030-53183-6_8
    43. Zahra Meghani. Autonomy of Nations and Indigenous Peoples and the Environmental Release of Genetically Engineered Animals with Gene Drives. Global Policy 2019, 10 (4) , 554-568. https://doi.org/10.1111/1758-5899.12699
    44. , , , . Genetic frontiers for conservation: an assessment of synthetic biology and biodiversity conservation: technical assessment. 2019https://doi.org/10.2305/IUCN.CH.2019.05.en
    45. Annabel T. Olson, Zhigang Wang, Amber B. Rico, Matthew S. Wiebe, . A poxvirus pseudokinase represses viral DNA replication via a pathway antagonized by its paralog kinase. PLOS Pathogens 2019, 15 (2) , e1007608. https://doi.org/10.1371/journal.ppat.1007608
    46. Stephanie James, Karen Tountas. Using Gene Drive Technologies to Control Vector-Borne Infectious Diseases. Sustainability 2018, 10 (12) , 4789. https://doi.org/10.3390/su10124789
    47. Yao Yan, Gregory C. Finnigan. Development of a multi-locus CRISPR gene drive system in budding yeast. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-34909-3
    48. S. Mason Dambrot. ReGene: Blockchain backup of genome data and restoration of pre-engineered expressed phenotype. 2018, 945-950. https://doi.org/10.1109/UEMCON.2018.8796768
    49. Larisa Rudenko, Megan J. Palmer, Kenneth Oye. Considerations for the governance of gene drive organisms. Pathogens and Global Health 2018, 112 (4) , 162-181. https://doi.org/10.1080/20477724.2018.1478776
    • Abstract

    • References

      ARTICLE SECTIONS
      Jump To

      This article references 58 other publications.

      1. 1
        Burt, A. and Trivers, R. (2006) Genes in Conflict: the Biology of Selfish Genetic Elements, Belknap Press of Harvard University Press, Cambridge.
      2. 2
        Werren, J. H., Nur, U., and Wu, C. I. (1988) Selfish genetic elements Trends Ecol. Evol. 3, 297 302 DOI: 10.1016/0169-5347(88)90105-X
      3. 3
        McLaughlin, R. N. and Malik, H. S. (2017) Genetic conflicts: the usual suspects and beyond J. Exp. Biol. 220, 6 17 DOI: 10.1242/jeb.148148
      4. 4
        Werren, J. H. (2011) Selfish genetic elements, genetic conflict, and evolutionary innovation Proc. Natl. Acad. Sci. U. S. A. 108, 10863 10870 DOI: 10.1073/pnas.1102343108
      5. 5
        Craig, G. B., Jr., Hickey, W. A., and VandeHey, R. C. (1960) An inherited male-producing factor in Science 132, 1887 1889 DOI: 10.1126/science.132.3443.1887
      6. 6
        Curtis, C. F. (1968) Possible uses of translocations to fix desirable genes in insect pest populations Nature 218, 368 369 DOI: 10.1038/218368a0
      7. 7
        Curtis, C. F., Grover, K. K., Suguna, S. G., Uppal, D. K., Dietz, K., Agarwal, H. V., and Kazmi, S. J. (1976) Comparative field cage tests of population suppressing efficiency of 3 genetic-control systems for Heredity 36, 11 29 DOI: 10.1038/hdy.1976.2
      8. 8
        Hickey, W. A. and Craig, G. B., Jr. (1966) Distortion of sex ratio in populations of Aedes aegypti Can. J. Genet. Cytol. 8, 260 278 DOI: 10.1139/g66-033
      9. 9
        Hickey, W. A. and Craig, G. B., Jr. (1966) Genetic distortion of sex ratio in a mosquito Aedes aegypti Genetics 53, 1177 96
      10. 10
        Sinkins, S. P. and Gould, F. (2006) Gene drive systems for insect disease vectors Nat. Rev. Genet. 7, 427 435 DOI: 10.1038/nrg1870
      11. 11
        Adelman, Z. N. (2016) Genetic Control of Malaria and Dengue, Academic Press, London.
      12. 12
        Champer, J., Buchman, A., and Akbari, O. S. (2016) Cheating evolution: engineering gene drives to manipulate the fate of wild populations Nat. Rev. Genet. 17, 146 159 DOI: 10.1038/nrg.2015.34
      13. 13
        NASEM. (2016) Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values, The National Academies Press, Washington, DC.
      14. 14
        Adelman, Z. N., Basu, S., and Myles, K. M. (2016) Engineering pathogen resistance in mosquitoes, in Genetic Control of Malaria and Dengue (Adelman, Z. N., Ed.), pp 277 304, Academic Press, London.
      15. 15
        Marshall, J. M. and Akbari, O. S. (2016) Gene drive strategies for population replacement, in Genetic Control of Malaria and Dengue (Adelman, Z. N., Ed.), pp 169 200, Academic Press, London.
      16. 16
        Burt, A. (2003) Site-specific selfish genes as tools for the control and genetic engineering of natural populations Proc. R. Soc. London, Ser. B 270, 921 928 DOI: 10.1098/rspb.2002.2319
      17. 17
        Burt, A. (2014) Heritable strategies for controlling insect vectors of disease Philos. Trans. R. Soc., B 369, 20130432 DOI: 10.1098/rstb.2013.0432
      18. 18
        Larracuente, A. M. and Presgraves, D. C. (2012) The selfish Segregation Distorter gene complex of Drosophila melanogaster Genetics 192, 33 53 DOI: 10.1534/genetics.112.141390
      19. 19
        Lyon, M. F. (2003) Transmission ratio distortion in mice Annu. Rev. Genet. 37, 393 408 DOI: 10.1146/annurev.genet.37.110801.143030
      20. 20
        Beeman, R. W., Friesen, K. S., and Denell, R. E. (1992) Maternal-effect selfish genes in flour beetles Science 256, 89 92 DOI: 10.1126/science.1566060
      21. 21
        Lorenzen, M. D., Gnirke, A., Margolis, J., Garnes, J., Campbell, M., Stuart, J. J., Aggarwal, R., Richards, S., Park, Y., and Beeman, R. W. (2008) The maternal-effect, selfish genetic element Medea is associated with a composite Tc1 transposon Proc. Natl. Acad. Sci. U. S. A. 105, 10085 10089 DOI: 10.1073/pnas.0800444105
      22. 22
        Chen, C. H., Huang, H. X., Ward, C. M., Su, J. T., Schaeffer, L. V., Guo, M., and Hay, B. A. (2007) A synthetic maternal-effect selfish genetic element drives population replacement in Drosophila Science 316, 597 600 DOI: 10.1126/science.1138595
      23. 23
        Akbari, O. S., Chen, C.-H., Marshall, J. M., Huang, H., Antoshechkin, I., and Hay, B. A. (2014) Novel synthetic medea selfish genetic elements drive population replacement in Drosophila; a theoretical exploration of medea-dependent population suppression ACS Synth. Biol. 3, 915 928 DOI: 10.1021/sb300079h
      24. 24
        Akbari, O. S., Matzen, K. D., Marshall, J. M., Huang, H., Ward, C. M., and Hay, B. A. (2013) A synthetic gene drive system for local, reversible modification and suppression of insect populations Curr. Biol. 23, 671 677 DOI: 10.1016/j.cub.2013.02.059
      25. 25
        Ben-David, E., Burga, A., and Kruglyak, L. (2017) A maternal-effect selfish genetic element in Caenorhabditis elegans Science 356, 1051 1055 DOI: 10.1126/science.aan0621
      26. 26
        Grognet, P., Lalucque, H., Malagnac, F., and Silar, P. (2014) Genes that bias Mendelian segregation PLoS Genet. 10, e1004387 DOI: 10.1371/journal.pgen.1004387
      27. 27
        Hammond, T. M., Rehard, D. G., Xiao, H., and Shiu, P. K. T. (2012) Molecular dissection of Neurospora Spore killer meiotic drive elements Proc. Natl. Acad. Sci. U. S. A. 109, 12093 12098 DOI: 10.1073/pnas.1203267109
      28. 28
        Hu, W., Jiang, Z. D., Suo, F., Zheng, J. X., He, W. Z., and Du, L. L. (2017) A large gene family in fission yeast encodes spore killers that subvert Mendel’s law eLife 6, e26057 DOI: 10.7554/eLife.26057
      29. 29
        Nuckolls, N. L., Bravo Nunez, M. A., Eickbush, M. T., Young, J. M., Lange, J. J., Yu, J. S., Smith, G. R., Jaspersen, S. L., Malik, H. S., and Zanders, S. E. (2017) wtf genes are prolific dual poison-antidote meiotic drivers eLife 6, e26033 DOI: 10.7554/eLife.26033
      30. 30
        Seidel, H. S., Ailion, M., Li, J. L., van Oudenaarden, A., Rockman, M. V., and Kruglyak, L. (2011) A novel sperm-delivered toxin causes late-stage embryo lethality and transmission ratio distortion in C. elegans PLoS Biol. 9, e1001115 DOI: 10.1371/journal.pbio.1001115
      31. 31
        Yang, J. Y., Zhao, X. B., Cheng, K., Du, H. Y., Ouyang, Y. D., Chen, J. J., Qiu, S. Q., Huang, J. Y., Jiang, Y. H., Jiang, L. W., Ding, J. H., Wang, J., Xu, C. G., Li, X. H., and Zhang, Q. F. (2012) A killer-protector system regulates both hybrid sterility and segregation distortion in rice Science 337, 1336 1340 DOI: 10.1126/science.1223702
      32. 32
        Buchman, A. B., Ivy, T., Marshall, J. M., Akbari, O., and Hay, B. A. (2016) Engineered reciprocal chromosome translocations drive high threshold, reversible population replacement in Drosophila, bioRxiv, DOI:  DOI: 10.1101/088393 .
      33. 33
        Wood, R. J. and Newton, M. E. (1991) Sex-ratio distortion caused by meiotic drive in mosquitos Am. Nat. 137, 379 391 DOI: 10.1086/285171
      34. 34
        Newton, M. E., Wood, R. J., and Southern, D. I. (1976) Cytogenetic analysis of meiotic drive in mosquito, Aedes aegypti (L) Genetica 46, 297 318 DOI: 10.1007/BF00055473
      35. 35
        Sweeny, T. L. and Barr, A. R. (1978) Sex-ratio distortion caused by meiotic drive in a mosquito, Culex pipiens L Genetics 88, 427 446
      36. 36
        Windbichler, N., Papathanos, P. A., Catteruccia, F., Ranson, H., Burt, A., and Crisanti, A. (2007) Homing endonuclease mediated gene targeting in Anopheles gambiae cells and embryos Nucleic Acids Res. 35, 5922 5933 DOI: 10.1093/nar/gkm632
      37. 37
        Galizi, R., Doyle, L. A., Menichelli, M., Bernardini, F., Deredec, A., Burt, A., Stoddard, B. L., Windbichler, N., and Crisanti, A. (2014) A synthetic sex ratio distortion system for the control of the human malaria mosquito Nat. Commun. 5, 3977 DOI: 10.1038/ncomms4977
      38. 38
        Galizi, R., Hammond, A., Kyrou, K., Taxiarchi, C., Bernardini, F., O’Loughlin, S. M., Papathanos, P. A., Nolan, T., Windbichler, N., and Crisanti, A. (2016) A CRISPR-Cas9 sex-ratio distortion system for genetic control Sci. Rep. 6, 31139 DOI: 10.1038/srep31139
      39. 39
        Deredec, A., Godfray, H. C. J., and Burt, A. (2011) Requirements for effective malaria control with homing endonuclease genes Proc. Natl. Acad. Sci. U. S. A. 108, E874 E880 DOI: 10.1073/pnas.1110717108
      40. 40
        Bernardini, F., Galizi, R., Menichelli, M., Papathanos, P. A., Dritsou, V., Marois, E., Crisanti, A., and Windbichler, N. (2014) Site-specific genetic engineering of the Anopheles gambiae Y chromosome Proc. Natl. Acad. Sci. U. S. A. 111, 7600 7605 DOI: 10.1073/pnas.1404996111
      41. 41
        Hall, A. B., Papathanos, P. A., Sharma, A., Cheng, C. D., Akbari, O. S., Assour, L., Bergman, N. H., Cagnetti, A., Crisanti, A., Dottorini, T., Fiorentini, E., Galizi, R., Hnath, J., Jiang, X. F., Koren, S., Nolan, T., Radune, D., Sharakhova, M. V., Steele, A., Timoshevskiy, V. A., Windbichler, N., Zhang, S. M., Hahn, M. W., Phillippy, A. M., Emrich, S. J., Sharakhov, I. V., Tu, Z. J., and Besansky, N. J. (2016) Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes Proc. Natl. Acad. Sci. U. S. A. 113, E2114 E2123 DOI: 10.1073/pnas.1525164113
      42. 42
        Colleaux, L., D'Auriol, L., Betermier, M., Cottarel, G., Jacquier, A., Galibert, F., and Dujon, B. (1986) Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into Escherichia coli as a specific double strand endonuclease Cell 44, 521 533 DOI: 10.1016/0092-8674(86)90262-X
      43. 43
        Dujon, B. (1989) Group I introns as mobile genetic elements – facts and mechanistic speculations – a review Gene 82, 91 114 DOI: 10.1016/0378-1119(89)90034-6
      44. 44
        Chan, Y.-S., Huen, D. S., Glauert, R., Whiteway, E., and Russell, S. (2013) Optimising homing endonuclease gene drive performance in a semi-refractory species: the Drosophila melanogaster experience PLoS One 8, e54130 DOI: 10.1371/journal.pone.0054130
      45. 45
        Chan, Y.-S., Naujoks, D. A., Huen, D. S., and Russell, S. (2011) Insect population control by homing endonuclease-based gene drive: an evaluation in Drosophila melanogaster Genetics 188, 33 44 DOI: 10.1534/genetics.111.127506
      46. 46
        Chan, Y.-S., Takeuchi, R., Jarjour, J., Huen, D. S., Stoddard, B. L., and Russell, S. (2013) The design and in vivo evaluation of engineered I-OnuI-based enzymes for HEG gene drive PLoS One 8, e74254 DOI: 10.1371/journal.pone.0074254
      47. 47
        Windbichler, N., Menichelli, M., Papathanos, P. A., Thyme, S. B., Li, H., Ulge, U. Y., Hovde, B. T., Baker, D., Monnat, R. J., Jr., Burt, A., and Crisanti, A. (2011) A synthetic homing endonuclease-based gene drive system in the human malaria mosquito Nature 473, 212 215 DOI: 10.1038/nature09937
      48. 48
        Simoni, A., Siniscalchi, C., Chan, Y.-S., Huen, D. S., Russell, S., Windbichler, N., and Crisanti, A. (2014) Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster Nucleic Acids Res. 42, 7461 7472 DOI: 10.1093/nar/gku387
      49. 49
        Gantz, V. M. and Bier, E. (2015) The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations Science 348, 442 444 DOI: 10.1126/science.aaa5945
      50. 50
        Gantz, V. M., Jasinskiene, N., Tatarenkova, O., Fazekas, A., Macias, V. M., Bier, E., and James, A. A. (2015) Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi Proc. Natl. Acad. Sci. U. S. A. 112, E6736 E6743 DOI: 10.1073/pnas.1521077112
      51. 51
        Hammond, A., Galizi, R., Kyrou, K., Simoni, A., Siniscalchi, C., Katsanos, D., Gribble, M., Baker, D., Marois, E., Russell, S., Burt, A., Windbichler, N., Crisanti, A., and Nolan, T. (2016) A CRISPR-Cas9 gene drive system-targeting female reproduction in the malaria mosquito vector Anopheles gambiae Nat. Biotechnol. 34, 78 83 DOI: 10.1038/nbt.3439
      52. 52
        Eckhoff, P. A., Wenger, E. A., Godfray, H. C. J., and Burt, A. (2017) Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics Proc. Natl. Acad. Sci. U. S. A. 114, E255 E264 DOI: 10.1073/pnas.1611064114
      53. 53
        Godfray, H. C. J., North, A., and Burt, A. (2017) How driving endonuclease genes can be used to combat pests and disease vectors BMC Biol. 15, 81 DOI: 10.1186/s12915-017-0420-4
      54. 54
        Beaghton, A., Beaghton, P. J., and Burt, A. (2017) Vector control with driving Y chromosomes: modelling the evolution of resistance Malar. J. 16, 286 DOI: 10.1186/s12936-017-1932-7
      55. 55
        Beaghton, A., Hammond, A., Nolan, T., Crisanti, A., Godfray, H. C. J., and Burt, A. (2017) Requirements for driving antipathogen effector genes into populations of disease vectors by homing Genetics 205, 1587 1596 DOI: 10.1534/genetics.116.197632
      56. 56
        Champer, J., Reeves, R., Oh, S. Y., Liu, C., Liu, J. X., Clark, A. G., and Messer, P. W. (2017) Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations PLoS Genet. 13, e1006796 DOI: 10.1371/journal.pgen.1006796
      57. 57
        Hammond, A. M., Kyrou, K., Bruttini, M., North, A., Galizi, R., Karlsson, X., Kranjc, N., Carpi, F. M., D’Aurizio, R., Crisanti, A., and Nolan, T. (2017) The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito PLoS Genet. 13, e1007039 DOI: 10.1371/journal.pgen.1007039
      58. 58
        WHO Vector-borne diseases. http://www.who.int/mediacentre/factsheets/fs387/en/ (accessed Nov 26, 2017) .

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect