Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Not Just a Mood Disorder─Is Depression a Neurodevelopmental, Cognitive Disorder? Focus on Prefronto-Thalamic Circuits
My Activity

Figure 1Loading Img
  • Open Access
Review

Not Just a Mood Disorder─Is Depression a Neurodevelopmental, Cognitive Disorder? Focus on Prefronto-Thalamic Circuits
Click to copy article linkArticle link copied!

  • Nina Nitzan Soto
    Nina Nitzan Soto
    ICM−Paris Brain Institute, CNRS, INSERM, Sorbonne Université, 47 Boulevard de l’Hopital, 75013 Paris, France
  • Patricia Gaspar
    Patricia Gaspar
    ICM−Paris Brain Institute, CNRS, INSERM, Sorbonne Université, 47 Boulevard de l’Hopital, 75013 Paris, France
  • Alberto Bacci*
    Alberto Bacci
    ICM−Paris Brain Institute, CNRS, INSERM, Sorbonne Université, 47 Boulevard de l’Hopital, 75013 Paris, France
    *Email: [email protected]
Open PDF

ACS Chemical Neuroscience

Cite this: ACS Chem. Neurosci. 2024, 15, 8, 1611–1618
Click to copy citationCitation copied!
https://doi.org/10.1021/acschemneuro.3c00828
Published April 5, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY-NC-ND 4.0 .

Abstract

Click to copy section linkSection link copied!

Depression is one of the most burdensome psychiatric disorders, affecting hundreds of millions of people worldwide. The disease is characterized not only by severe emotional and affective impairments, but also by disturbed vegetative and cognitive functions. Although many candidate mechanisms have been proposed to cause the disease, the pathophysiology of cognitive impairments in depression remains unclear. In this article, we aim to assess the link between cognitive alterations in depression and possible developmental changes in neuronal circuit wiring during critical periods of susceptibility. We review the existing literature and propose a role of serotonin signaling during development in shaping the functional states of prefrontal neuronal circuits and prefronto-thalamic loops. We discuss how early life insults affecting the serotonergic system could be important in the alterations of these local and long-range circuits, thus favoring the emergence of neurodevelopmental disorders, such as depression.

This publication is licensed under

CC-BY-NC-ND 4.0 .
  • cc licence
  • by licence
  • nc licence
  • nd licence
Copyright © 2024 The Authors. Published by American Chemical Society

Special Issue

Published as part of ACS Chemical Neuroscience virtual special issue “Serotonin Research 2023”.

Depression is an affective disorder characterized by persistent depressed mood, pervasive feeling of hopelessness, and diminished interest in pleasurable activities. (1,2) As one of the most burdensome psychiatric disorders, afflicting hundreds of millions of people worldwide each year, it is not surprising that the study of depression has become a major interest of national healthcare systems and the international research community. The intense alterations of affective and emotional behavior have been the predominant focus of depression research. Yet, vegetative and cognitive functions are also significantly impaired in nearly all forms of depression, and in several forms of chronic depression, they remain dysfunctional during the remission phase. (3−5) Decades of depression research have yielded little insight into the pathophysiology of the disease, leading to questions like: What happens in a brain predisposed for depression? Are emotional and cognitive impairments of depression relying on alterations of the same brain circuits? And what are the circuits involved?
In this review, we discuss another aspect of serotonin in the pathophysiology of depression: the role of the serotonin transporter (SERT) during development in the maturation of excitatory synapses in specific brain circuits. In addition, we examine the link between depression and specific cognitive pathways in the brain. We approach the idea of depression as a neurodevelopmental disorder, wherein select cognitive and emotional networks involving prefrontal cortex (PFC), and the mediodorsal nucleus of the thalamus (MD), among others, are impaired. We highlight how altered serotonin signaling during specific developmental periods may catalyze these disease-promoting circuit alterations. Thus, we believe that expanding the focus to other dimensions of the disease will provide a deeper understanding of this complex disorder, as well as improve therapeutic strategies.

Neurobiology of Depression─Genetic Factors, Circuitry, and Treatment

Click to copy section linkSection link copied!

There is a large body of evidence from epidemiological and clinical studies that the risk for developing mood disorders and particularly depression is largely linked to the patients’ genetics (up to 40% heritability in unipolar depression). (6−9) However, as with most complex disorders, depression has not been linked to a single gene abnormality or polymorphism, and genetic studies failed to identify a single target gene. (6) Because of the serotonin hypothesis of depression, candidate genes of different monoamines (MAs), specifically the serotonergic system, including the serotonin transporter (SERT), serotonin receptor 5HT-2C, and the rate-limiting factor in the synthesis of serotonin, tryptophan hydroxylase (TPH), have been under particular scrutiny in genetic studies. (6,10) For example, genetic polymorphisms of SERT such as allele-dependent transcription (short vs long allele) and number of tandem repeats (VNTR), have been associated with affective disorders and increased amygdala activity in response to aversive stimuli. (11−14) However, other studies on SERT polymorphism and depression yielded conflicting results. (15) The high variability in results in SERT and other serotonin-related genes have been explained by various factors such as sex (16,17) and stressful life events. (18) Thus, the current view of the genetics of depression, is that the focus should be placed on interaction between some genetic predisposition and environmental risk factors. Environmental factors such as early life stress and other adversities have been linked to the pathophysiology of depression in human studies (8) as well as in animal models of depression, (19,20) and were shown to have a multiscale effect, including neurotransmitter systems, brain regions, and behaviors associated with depression.
Similar to genetic variability in depression, there has been lack of consensus concerning the neural circuits underlying depression. This lack of consensus likely originates from the complexity of the disorder and the subtlety of anatomical, genetic, and physiological changes in specific brain structures of depressed patients. It has been suggested that many brain regions likely play a role in the clinical manifestation of depression. Neuroimaging (21−23) and anatomical investigations in humans, (21,24−26) as well as animal studies, (27−29) found volumetric (e.g., reduction) and histological changes in areas including but not limited to the prefrontal (PFC) and anterior cingulate cortices (ACC), the hippocampus, amygdala, striatum, lateral habenula, thalamus, and hypothalamic areas. Amygdala, habenula and striatal connections are important for emotional regulation, fear response, and reward, and thus likely mediate symptoms such as anhedonia, anxiety and risk aversive behavior, reduced motivation, and bias toward negative stimuli. (30) Changes of hypothalamic nuclei have mostly been linked to neurovegetative symptoms of depression, such as disrupted circadian rhythms, changes in appetite and body weight, and decreased energy. (31) Lastly, changes of cortical (prefrontal, hippocampus) and medial thalamic nuclei are thought to underlie cognitive symptoms such as executive functions, cognitive flexibility, attention, and memory problems. (32)
Identification of the neural circuitry of depression is important not only for understanding the etiology of the disorder, but also for developing symptom-specific treatments and reduce adverse effects of existing therapeutic approaches. Historically, monoamine transmission enhancers are considered state of the art in treating depression. (33,34) These drugs do so by either blocking the reuptake of monoamines, in particular serotonin (selective serotonin reuptake inhibitors, SSRIs), or by delaying their degradation by monoamine oxidase (MAOIs). The relief of depressive symptoms by the drug-induced increases in serotonin transmission stem from the monoamine hypothesis of depression, according to which depression is caused by deficiency of monoamines, particularly serotonin, in the brain. (35,36) The monoamine/serotonin hypothesis of depression provided a fruitful ground for studying the molecular basis of this disease, and SSRI effectiveness is one of the reasons for the popularity of serotonin in depression research. However, numerous studies failed to prove that depression is caused solely by monoamines imbalance. (37,38) For further review of the debate on the validity of the monoamine hypothesis of depression, see refs (39and40). In addition to monoamines, other candidate mechanisms have received special attention with respect to depression, including the transcription factor CREB (41,42) and the neurotrophic factor BDNF and its receptor TrkB. (43) More recently, the excitatory neurotransmitter glutamate was suggested to lie at the core of the pathophysiology of depression. (44) According to this hypothesis, depression is caused by dysfunctional excitatory synaptic transmission, particularly in brain areas linked to emotional and cognitive processing. The glutamatergic hypothesis of depression recently led to the development of a new treatment regime for depression using the NMDA antagonists ketamine (45) and esketamine (46)

Prefronto-Thalamic Loops in Depression

Click to copy section linkSection link copied!

While nonaffective symptoms were thought to be secondary to depression, there is mounting evidence that it may be the reversed. Neurovegetative and cognitive symptoms not only persist between episodes, but they were also reported during the prodromal phase of depression. (47−51) In some forms of depression, prodromal cognitive symptoms have been reported during the weeks preceding depressive episodes, (47,48) as well as years prior to first onset in adolescence and childhood. (49,52−54) These findings suggest that, similar to bipolar disorder and schizophrenia, the prodromal phase of depression might inform about the etiology of the disorder and shift our attention toward the cognitive aspect of depression. While cognitive impairment in depression is not a novel concept to clinicians and psychologists, (55,56) the lack of preclinical studies that address cognitive functions in animal models hindered our understanding of the (mal)development of the underlying neural circuits at a network, cellular, and molecular level. Animal models allow for manipulation of specific targets of interest in disease studies. By addressing targeted cognitive impairments using, e.g., rodent models of depression, we may gain important insight into the neural correlates of distinct symptoms, their origin, and their role in the genesis of depression.
Cognitive control, goal-oriented behaviors, and behavioral regulation are mostly associated with the PFC. (57) The PFC is not acting alone, but rather, it is considered the hub of multiple cognitive circuits, due to its numerous reciprocal connections with cortical and subcortical brain structures. Among the various structures interacting with the PFC, the mediodorsal nucleus of the thalamus (MD) has received growing attention in recent decades. (32,58−64) Interaction between the MD and the PFC is critical for cognitive functions in rodents, nonhuman primates, and humans. (32,59,65)

Anatomy of the MD

Click to copy section linkSection link copied!

The MD is a high-order nucleus within the medial thalamus. It is the biggest midline thalamic nucleus and the main subcortical region projecting to the PFC. While the general cytoarchitecture of the MD is heavily conserved across mammalian species, some variations are observed. In rodents, the MD is composed of 3 subnuclei: the central (MDc), lateral (MDl), and medial (MDm), which overlap widely with its subdivisions in primates. The primates’ magnocellular MD (MDmc) is analogous to the MDm, the parvocellular MD (MDpc) corresponds to MDc, and the densocellular MD (MDdc) and multiform MD (MDmf) form a lateral grouping of the MD, which here will be referred to as MDl for simplicity and comparability across species. (58,66) In primates, a fourth subdivision, the caudodorsal MD is sometimes considered (32,67,68) (MDcd). Thus, the evolution of the mediodorsal thalamus goes hand in hand with cortical evolution in mammals, and as such, MD complexity reflects prefrontal complexity. The different subdivisions differ in their gene expression, connectivity, and cortical targets, and serve a distinct role in mediating cognitive and goal-directed activity. (61,69,70)

Connectivity of the MD

Click to copy section linkSection link copied!

The MD receives projections from deep brain structures such as the inhibitory and monoaminergic afferents from the brainstem (dopamine, serotonin, and noradrenalin) and peptidergic and excitatory afferents from the hypothalamus, which are important for the default mode network, reward circuitry, and decision making. (59,71−73) In addition, forebrain structures such as the amygdala and hippocampus project to the MD. (59) Nevertheless, the most prominent connections of the MD are with the PFC, forming a robust and evolutionary conserved thalamocortical loop, (58,74) to the extent that MD-PFC connections have become a marker for identifying the PFC in mammalian species, and one of the argumentations for the existence of the PFC in the rodent brain. (58,75)
While all thalamic nuclei receive cortical input from layer VI, (32) high-order nuclei, including the MD, receive additional inputs from layer V. Corticothalamic inputs coming from layer V and layer VI differ in their morpho-functional properties, such as bouton size, the dendritic segment they contact, as well as the information they carry. (32,76−79) Unlike cortical neurons, MD neurons do not form local excitatory connections among themselves. (61) The lack of thalamic microcircuits within the MD, together with the distinct input types from layers V and VI point to the role of the MD in orchestrating and sustaining PFC activity via changes in long-range inputs and/or outputs. Thalamocortical neurons in the MD receive inhibitory inputs predominantly from the reticular thalamic nucleus (RTN (61)). The RTN is composed of inhibitory neurons surrounding the other thalamic nuclei as a thin sheath of cells. (80) All reciprocal connections between the cortex and the thalamus pass through the RTN; thus, in cognitive control, the RTN is acting as a gate, which is critical for controlling thalamic output in a behavior-dependent manner, such as suppressing task-irrelevant sensory stimuli. (61,80,81)
Most outputs of the MD are to the medial and lateral PFC, and to the anterior cingulate and orbitofrontal cortex (58) (ACC, OFC). Projection targets depend on MD subdivisions: in rodents, MDm neurons mostly target the prelimbic and infralimbic cortices. MDc neurons project to the orbital and agranular insular cortices; and the MDl neurons target the prelimbic and anterior cingulate cortex. This connectivity overlaps MD-connectivity found in primates, with the MDmc and dMDl projecting vastly to the DLPFC and OFC. (58,61) Here, we focus on MD inputs to the medial PFC (mPFC), that predominantly innervate the middle (LII/III) and superficial (LI) layers, and, to a lesser extent, layer V (LV) neurons (59,82−84) (Figure 1). In the superficial layer (LI), thalamic axons target the distal dendrites of pyramidal neurons (whose cell bodies reside in other layers, LII/III and LV), as well as LI inhibitory neurons. In LII/III, MD axons form direct synaptic connections with both pyramidal and inhibitory neurons (84) (mainly parvalbumin (PV)-expressing neurons). PV neurons are known for their fast firing rate and for inhibiting the somas of pyramidal neurons, so when a thalamocortical input arrives in LII/III, both PV and pyramidal neurons are excited, forming a feed-forward inhibitory circuit that shapes the temporal precision of the output firing of excited pyramidal neurons. These LII/III PNs in turn project further to deep PFC layers and to other cortical targets. (60,82) Lastly, the deep-layer pyramidal neurons of the PFC project back to the MD.

Figure 1

Figure 1. Prefronto-thalamic projections. (a) Schematic overview of MD–PFC inputs. MD neurons predominantly project to superficial layers, and, to a lesser extent, to deep layers of the PFC. MD projections to layer I mostly target distal dendrites of PNs located in other layers. In layer II/III, MD neurons project to both PNs and interneurons. Interneurons excited by MD axons form a feedforward inhibitory microcircuit. Layer II/III PNs project to neurons in other layers or the contralateral hemisphere. MD neurons also project to layer V pyramidal neurons. Layers V and VI are the main output-generating layers in the PFC and project it to the MD. Inputs from layers V and VI differ in their morpho-functional properties. Colors of triangles represent subpopulations of pyramidal neurons residing in different layers. Round PFC neurons represent PV IN. Oval-shaped MD neurons represent a thalamic excitatory neuron. (b) Projection of MD axons to the PFC. Micrograph illustrating infection of AAV-ChR2-mCherry in the MD. mCherry-positive fibers can be detected in medial PFC. MD axons project both to superficial and deep layers. Note the dense accumulation of fibers in superficial and middle layers of the mPFC.

Given the unique interaction and network architecture between the MD and PFC, the question arises, what is the role of the MD-PFC connectivity in higher cognitive functions? As elaborated above, the MD is thought to contribute to and shape PFC activity. Through contacts with distant frontal subregions and recruitment of both excitatory and inhibitory PFC neurons, the MD coordinates oscillatory cortical activity to support processes such as activity-dependent synaptic plasticity and memory encoding to optimize task performance. (32,77,83) It is therefore not surprising that lesions of the MD (experimental or clinical) result in impairments similar to those observed after PFC lesions. In humans, patients with damaged MD show severe cognitive deficits, including executive dysfunction, memory problems, attention deficits, and disinhibitory syndrome, among others. (85−87) Experimental lesions in nonhuman primates resulted in similar, yet more subtle, changes. Moreover, experimental lesions to specific subregions of the MD resulted in different cognitive impairments, thereby linking reported impairments with mediodorsal subregions. For example, nonhuman primates with lesions in the MDmc indicated that this subdivision is important for encoding task information during learning and updating choice strategy, but not in retrieving prelesion encoded information. (64,88) These findings, not only highlight the significance of the MD in learning and memory, but also shed light on short-term, working memory encoding pathways.
Other than primates, rodent studies provided instrumental evidence for the role of the MD in cognitive functioning. Decreasing MD activity resulted in cognitive impairments and disruption of the MD-PFC beta-range synchrony during task performance, similar to the connectivity and behavioral changes observed in schizophrenia. (89) More recently, Schmitt and colleagues (2017) revealed that the MD plays a crucial role in sustaining cortical representations of different rules, and that rule encoding is improved with enhanced MD activity. (1,2) In rats, bilateral and unilateral MD lesions resulted in impaired performance in a delayed spatial navigation task but not a nondelayed task. (90)

Depression─A Developmental Disorder?

Click to copy section linkSection link copied!

Regarding developmental milestones of prefronto-thalamo-prefrontal interactions, it was shown that cortical architecture of the PFC is affected by MD lesions occurring only in the early postnatal phase (91) (P4 to P7). It has been speculated that these architectural cortical changes are due to interference with E/I-balance and decreased spontaneous GABAergic activity in the PFC during development, which the MD is thought to facilitate. (91) Behavioral implications of early life lesions included deficits in recognition memory, cognitive, and social behaviors, (32) like those observed in schizophrenia, depression, and other neuropsychiatric disorders. This suggests that the early postnatal period is important for prefronto-thalamic maturation, and maldevelopment of these structures occurring during early development might be a potential cause for neurodevelopmental disorders. Indeed, early life insults have been linked to various neuropsychiatric disorders, such as schizophrenia, depression, and autism, and a closer look into the circuits orchestrating common symptoms shared between these disorders might elaborate our understanding of their pathogenesis.

What is the Significance of This Developmental Window Leading to Maldevelopment of Neural Circuits Involved in Neuropsychiatric Disorders as Depression?

Click to copy section linkSection link copied!

Aside from being highly associated with mood, emotional regulation, as well as neurovegetative functions, the serotonergic system plays an important role in brain development, including neuronal growth, migration, guidance, and synaptogenesis. (20,92) Most of these roles of the serotonergic system are assigned to serotonin-producing neurons originating from the raphe nucleus, the primary CNS region containing serotonergic neurons. However, a subset of deep-layer pyramidal neurons in the PFC transiently expressing SERT during early developmental periods has been associated with cortical network maturation (Figures 2a and b). These serotonin “absorbing” neurons were first discovered in sensory thalamic nuclei in the rat (93) and later in other cortical and subcortical regions such as the prefrontal cortex, and limbic system. (20,94−97) The transient expression of SERT is highly conserved across species from rodents to humans, as well as the developmental stage at which SERT is expressed, respective to each species. (98) In mice, SERT is expressed in nonserotonergic neurons between E15 and P10. (96,97,99) SERT-positive neurons in the mouse’s PFC are densely located in LVI and sparsely in LV, (97) which are known to send projections to the medial thalamus, thus playing a key role within the prefronto-thalamic loop. Indeed, SERT-expressing neurons in the PFC were found to innervate cortical regions as the amygdala and subcortical areas such as the MD, striatum, periaqueductal gray (PAG), and the dorsal raphe nucleus (97) (DRN).

Figure 2

Figure 2. Developmental axis of the PFC and MD. (a) In-situ hybridization at P4, 7, 10, and 14 shows time-sensitive, transient SERT expression in the PFC during early postnatal development. (b) SERT+ pyramidal neurons in the PFC are located in layers V and VI but not in superficial layers. Immunolabeling against Ctip2 (red, layer V marker), Foxp2 (purple, layer VI marker), and GFP (green, SERTCre/+) in the PFC. Panels a and b modified with permission from ref (97). Copyright 2019 Springer Nature Limited. (https://creativecommons.org/licenses/by/4.0/) (c) Developmental timeline of the MD and PFC in the rodent brain. Panel reproduced from ref (91). Copyright 2015 Ferguson and Gao.

A closer investigation of the link between serotonin signaling and thalamocortical development in sensory cortices revealed that altering serotonin signaling during development resulted in developmental impairments of thalamic innervation of the barrel cortex (S1), with associated malformations of cortical maps. (100−102) While such investigations have not been carried out in higher-order cognitive pathways such as the prefronto-thalamic loop, several lines of evidence point to the possibility that such altered serotonin signaling may result in similar alterations. Experimental evidence in adult rats indicates that there is a cross-talk of thalamocortical and serotonin inputs in the prefrontal cortex. The dense serotonin input from the DRN to the PFC controls the excitability of PFC pyramidal neurons, namely by enhancing glutamatergic release from MD thalamic neurons; (103,104) conversely, stimulation of MD thalamocortical neurons resulted in increased serotonin release in the PFC, similar to the effect of local application of the hallucinogen 4-iodo-2,5-dimethoxyamphetamine, a 5-HT2A-C agonist. (105) More recently, early lesions (P4) in the rodent MD result in reduced social interaction, locomotor activity, and increased anxiety-like behaviors in adults (32,106,107) that are reminiscent of the effects of early developmental exposure to SSRIs and other early life insults such as maternal separation. (19,99,108,109) Social and affective behaviors are impaired in most psychiatric disorders, including depression, and have been specifically linked to serotonin function. (110−112) Thus, there seems to be a link between the prefronto-thalamic loop and serotonin signaling at different developmental stages and up to adulthood.
Importantly, a thorough behavioral characterization of early life exposure to SSRIs, showed that blocking SERT specifically during the critical first two postnatal weeks resulted in strong emotional impairments in adult mice. (19,108) These effects did not occur when mice were exposed to SSRIs outside this developmental stage, emphasizing the importance SERT action during this period. (19) At the morphological level, SERT blockade resulted in decreased number of secondary dendrites of pyramidal neurons and maldevelopment of synapses. (19,100) However, the mechanisms at the synaptic and circuit levels remain unknown.
Taken together, these findings suggest that alterations of serotonin levels by blocking SERT in early postnatal development affects PFC maturation. The overlap with MD development (Figure 2c), critical early life MD lesions, and their behavioral outcomes places SERT as a central candidate in shaping network architecture in physiological conditions as well as in the pathophysiology of neuropsychiatric disorders, like depression.

Conclusions and Future Directions

Click to copy section linkSection link copied!

Decades of depression research have yielded multiple theories, spanning from single molecules to neurotransmitter systems, but to date the origin and mechanisms underlying depression remain unresolved. Given that most studies on depression have focused on emotional impairments, it might be critical to change our perspective and incorporate other aspects affected in depression into clinical assessments, research objectives, and animal models. Cognitive functions compromised in depression are associated with the PFC, as it is the primary structure thought to orchestrate most high-order cognitive abilities. Indeed, clinical evidence described above reported some structural changes in the PFC in depressed patients and confirmed that artificially enhancing PFC activity overcomes some depressive symptoms. However, it is important to identify specific PFC-related subnetworks whose maldevelopment might alter global cortical activity as seen in neuropsychiatric disorders. We suggest the MD–PFC interaction as a potential candidate for such network.
The MD acts as a mediator between subcortical and prefrontal activity, which can be flexibly modulated during behavior. In addition, because damage to the MD has direct consequences on PFC activity and cognitive functions, studying this structure in the context of depression might explain at least a subset of depressive symptoms that have been widely overlooked in current models of the disorder. Another advantage of prefronto-thalamic network is the evolutionary overlap between mammalian species. While PFC subdivisions vary enormously between species, MD–PFC connectivity is vastly conserved. This might make it easier to study these structures in model organisms such as rodent models of depression and increase the translational value of such models.
The tools available today in rodents (particularly mice) allow us to study corticothalamic circuits as well as cortical microcircuits with unprecedented detail. The use of anatomical labeling and transgenic mouse lines can illuminate specific neurons affected by early life insults. Combining these methods with opto- and/or pharmacogenetic approaches may help establish a causal link between environmental risk factors and maladaptation of these circuits. The evolutionary analogy of the prefronto-thalamic network is not only structural, but also functional, and developmental. MD development occurs during critical periods of susceptibility, during which environmental insults result in impaired emotional and cognitive behaviors associated with neuropsychiatric disorders such as depression. Since MD lesions occurring during the same time were found to alter the same behaviors and cortical cytoarchitecture, studying the potential link between these processes is inevitable. Animal models enable studying the role of these circuits from the synapse- to behavioral levels. In our context, it will allow us to identify basic principles of cognitive alterations and their MD–PFC correlations in a recognized model of depression after an early-life insult. Looking into the effect of such insults such as altered serotonin signaling on the MD might help us understand the chronology of depression and other related neurodevelopmental disorders.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
  • Authors
    • Nina Nitzan Soto - ICM−Paris Brain Institute, CNRS, INSERM, Sorbonne Université, 47 Boulevard de l’Hopital, 75013 Paris, France
    • Patricia Gaspar - ICM−Paris Brain Institute, CNRS, INSERM, Sorbonne Université, 47 Boulevard de l’Hopital, 75013 Paris, France
  • Author Contributions

    NS wrote, edited and conceptualized the manuscript, PG edited the manuscript, AB edited and conceptualized the manuscript.

  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

NS is supported by the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 953327; Serotonin & Beyond). We thank Angela Michela De Stasi for her insightful comments on a previous version of this manuscript. We also thank Neta Soto and Ana Marta Capaz for their help in creating the graphic which accompanies this manuscript.

References

Click to copy section linkSection link copied!

This article references 112 other publications.

  1. 1
    World Health Organization (WHO). The ICD-10 Classification of Mental and Behavioural Disorders; World Health Organization, 2023.
  2. 2
    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association Publishing, 2013; Vol. 5.
  3. 3
    Conradi, H. J.; Ormel, J.; de Jonge, P. Presence of Individual (Residual) Symptoms during Depressive Episodes and Periods of Remission: A 3-Year Prospective Study. Psychological Medicine 2011, 41 (6), 11651174,  DOI: 10.1017/S0033291710001911
  4. 4
    Romera, I.; Perez, V.; Menchón, J. M.; Delgado-Cohen, H.; Polavieja, P.; Gilaberte, I. Social and Occupational Functioning Impairment in Patients in Partial versus Complete Remission of a Major Depressive Disorder Episode. A Six-Month Prospective Epidemiological Study. European Psychiatry 2010, 25 (1), 5865,  DOI: 10.1016/j.eurpsy.2009.02.007
  5. 5
    Paykel, E. S. Partial Remission, Residual Symptoms, and Relapse in Depression. Dialogues in Clinical Neuroscience 2008, 10 (4), 431437,  DOI: 10.31887/DCNS.2008.10.4/espaykel
  6. 6
    Souery, D.; Rivelli, S. K.; Mendlewicz, J. Molecular Genetic and Family Studies in Affective Disorders: State of the Art. Journal of Affective Disorders 2001, 62 (1), 4555,  DOI: 10.1016/S0165-0327(00)00350-5
  7. 7
    Malhi, G. S.; Moore, J.; McGuffin, P. The Genetics of Major Depressive Disorder. Curr. Psychiatry Rep 2000, 2 (2), 165169,  DOI: 10.1007/s11920-000-0062-y
  8. 8
    Fava, M.; Kendler, K. S. Major Depressive Disorder. Neuron 2000, 28 (2), 335341,  DOI: 10.1016/S0896-6273(00)00112-4
  9. 9
    Ho, L. W.; Furlong, R. A.; Rubinsztein, J. S.; Walsh, C.; Paykel, E. S.; Rubinsztein, D. C. Genetic Associations with Clinical Characteristics in Bipolar Affective Disorder and Recurrent Unipolar Depressive Disorder. American Journal of Medical Genetics 2000, 96 (1), 3642,  DOI: 10.1002/(SICI)1096-8628(20000207)96:1<36::AID-AJMG8>3.0.CO;2-6
  10. 10
    Brigitta, B. Pathophysiology of Depression and Mechanisms of Treatment. Dialogues in Clinical Neuroscience 2002, 4 (1), 720,  DOI: 10.31887/DCNS.2002.4.1/bbondy
  11. 11
    Lesch, K.-P.; Balling, U.; Gross, J.; Strauss, K.; Wolozin, B. L.; Murphy, D. L.; Riederer, P. Organization of the Human Serotonin Transporter Gene. J. Neural Transmission 1994, 95 (2), 157162,  DOI: 10.1007/BF01276434
  12. 12
    Lesch, K. P.; Meyer, J.; Glatz, K.; Flügge, G.; Hinney, A.; Hebebrand, J.; Klauck, S. M.; Poustka, A.; Poustka, F.; Bengel, D.; Mössner, R.; Riederer, P.; Heils, A. The 5-HT Transporter Gene-Linked Polymorphic Region (5-HTTLPR) in Evolutionary Perspective: Alternative Biallelic Variation in Rhesus Monkeys. J. Neural Transmission 1997, 104 (11), 12591266,  DOI: 10.1007/BF01294726
  13. 13
    Ogilvie, A. D.; Battersby, S.; Fink, G.; Harmar, A. J.; Goodwin, G. M.; Bubb, V. J.; Dale Smith, C. A. Polymorphism in Serotonin Transporter Gene Associated with Susceptibility to Major Depression. Lancet 1996, 347 (9003), 731733,  DOI: 10.1016/S0140-6736(96)90079-3
  14. 14
    Heinz, A.; Braus, D. F.; Smolka, M. N.; Wrase, J.; Puls, I.; Hermann, D.; Klein, S.; Grüsser, S. M.; Flor, H.; Schumann, G.; Mann, K.; Büchel, C. Amygdala-Prefrontal Coupling Depends on a Genetic Variation of the Serotonin Transporter. Nat. Neurosci 2005, 8 (1), 2021,  DOI: 10.1038/nn1366
  15. 15
    Lesch, K. P. Gene-Environment Interaction and the Genetics of Depression. Journal of Psychiatry and Neuroscience 2004, 29 (3), 174184
  16. 16
    Caspi, A.; Sugden, K.; Moffitt, T. E.; Taylor, A.; Craig, I. W.; Harrington, H.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; Poulton, R. Influence of Life Stress on Depression: Moderation by a Polymorphism in the 5-HTT Gene. Science 2003, 301 (5631), 386389,  DOI: 10.1126/science.1083968
  17. 17
    Sjöberg, R. L.; Nilsson, K. W.; Nordquist, N.; Öhrvik, J.; Leppert, J.; Lindström, L.; Oreland, L. Development of Depression: Sex and the Interaction between Environment and a Promoter Polymorphism of the Serotonin Transporter Gene. International Journal of Neuropsychopharmacology 2006, 9 (4), 443449,  DOI: 10.1017/S1461145705005936
  18. 18
    Palma-Gudiel, H.; Fañanás, L. An Integrative Review of Methylation at the Serotonin Transporter Gene and Its Dialogue with Environmental Risk Factors, Psychopathology and 5-HTTLPR. Neuroscience & Biobehavioral Reviews 2017, 72, 190209,  DOI: 10.1016/j.neubiorev.2016.11.011
  19. 19
    Rebello, T. J.; Yu, Q.; Goodfellow, N. M.; Caffrey Cagliostro, M. K.; Teissier, A.; Morelli, E.; Demireva, E. Y.; Chemiakine, A.; Rosoklija, G. B.; Dwork, A. J.; Lambe, E. K.; Gingrich, J. A.; Ansorge, M. S. Postnatal Day 2 to 11 Constitutes a 5-HT-Sensitive Period Impacting Adult mPFC Function. J. Neurosci. 2014, 34 (37), 1237912393,  DOI: 10.1523/JNEUROSCI.1020-13.2014
  20. 20
    Gaspar, P.; Cases, O.; Maroteaux, L. The Developmental Role of Serotonin: News from Mouse Molecular Genetics. Nat. Rev. Neurosci 2003, 4 (12), 10021012,  DOI: 10.1038/nrn1256
  21. 21
    Drevets, W. C. Neuroimaging and Neuropathological Studies of Depression: Implications for the Cognitive-Emotional Features of Mood Disorders. Current Opinion in Neurobiology 2001, 11 (2), 240249,  DOI: 10.1016/S0959-4388(00)00203-8
  22. 22
    Drevets, W. C.; Price, J. L.; Furey, M. L. Brain Structural and Functional Abnormalities in Mood Disorders: Implications for Neurocircuitry Models of Depression. Brain Struct Funct 2008, 213 (1), 93118,  DOI: 10.1007/s00429-008-0189-x
  23. 23
    Liotti, M.; Mayberg, H. S. The Role of Functional Neuroimaging in the Neuropsychology of Depression. Journal of Clinical and Experimental Neuropsychology 2001, 23 (1), 121136,  DOI: 10.1076/jcen.23.1.121.1223
  24. 24
    Rajkowska, G. Histopathology of the Prefrontal Cortex in Major Depression: What Does It Tell Us about Dysfunctional Monoaminergic Circuits?. Progress in Brain Research 2000, 126, 397412,  DOI: 10.1016/S0079-6123(00)26026-3
  25. 25
    Moriguchi, S.; Yamada, M.; Takano, H.; Nagashima, T.; Takahata, K.; Yokokawa, K.; Ito, T.; Ishii, T.; Kimura, Y.; Zhang, M.-R.; Mimura, M.; Suhara, T. Norepinephrine Transporter in Major Depressive Disorder: A PET Study. AJP 2017, 174 (1), 3641,  DOI: 10.1176/appi.ajp.2016.15101334
  26. 26
    Young, K. A.; Holcomb, L. A.; Yazdani, U.; Hicks, P. B.; German, D. C. Elevated Neuron Number in the Limbic Thalamus in Major Depression. AJP 2004, 161 (7), 12701277,  DOI: 10.1176/appi.ajp.161.7.1270
  27. 27
    Willard, S. L.; Riddle, D. R.; Forbes, M. E.; Shively, C. A. Cell Number and Neuropil Alterations in Subregions of the Anterior Hippocampus in a Female Monkey Model of Depression. Biol. Psychiatry 2013, 74 (12), 890897,  DOI: 10.1016/j.biopsych.2013.03.013
  28. 28
    Ayuob, N. N.; Balgoon, M. J. Histological and Molecular Techniques Utilized to Investigate Animal Models of Depression. An Updated Review. Microscopy Research and Technique 2018, 81 (10), 11431153,  DOI: 10.1002/jemt.23105
  29. 29
    Aten, S.; Du, Y.; Taylor, O.; Dye, C.; Collins, K.; Thomas, M.; Kiyoshi, C.; Zhou, M. Chronic Stress Impairs the Structure and Function of Astrocyte Networks in an Animal Model of Depression. Neurochem. Res. 2023, 48 (4), 11911210,  DOI: 10.1007/s11064-022-03663-4
  30. 30
    Höflich, A.; Michenthaler, P.; Kasper, S.; Lanzenberger, R. Circuit Mechanisms of Reward, Anhedonia, and Depression. International Journal of Neuropsychopharmacology 2019, 22 (2), 105118,  DOI: 10.1093/ijnp/pyy081
  31. 31
    Bao, A.-M.; Swaab, D. F. The Human Hypothalamus in Mood Disorders: The HPA Axis in the Center. IBRO Reports 2019, 6, 4553,  DOI: 10.1016/j.ibror.2018.11.008
  32. 32
    Ouhaz, Z.; Fleming, H.; Mitchell, A. S. Cognitive Functions and Neurodevelopmental Disorders Involving the Prefrontal Cortex and Mediodorsal Thalamus. Frontiers in Neuroscience 2018, 12, 33,  DOI: 10.3389/fnins.2018.00033
  33. 33
    Chancellor, D. The Depression Market. Nat. Rev. Drug Discovery 2011, 10 (11), 809810,  DOI: 10.1038/nrd3585
  34. 34
    Krishnan, V.; Nestler, E. J. The Molecular Neurobiology of Depression. Nature 2008, 455 (7215), 894902,  DOI: 10.1038/nature07455
  35. 35
    Schildkraut, J. J. The Catecholamine Hypothesis of Affective Disorders: A Review of Supporting Evidence. Am. J. Psychiatry 1965, 122 (5), 509522,  DOI: 10.1176/ajp.122.5.509
  36. 36
    Woolley, D. W.; Shaw, E. A Biochemical and Pharmacological Suggestion about Certain Mental Disorders. Proc. Natl. Acad. Sci. U. S. A. 1954, 40 (4), 228231,  DOI: 10.1073/pnas.40.4.228
  37. 37
    Mendels, J.; Stinnett, J. L.; Burns, D.; Frazer, A. Amine Precursors and Depression. Arch Gen Psychiatry 1975, 32 (1), 2230,  DOI: 10.1001/archpsyc.1975.01760190024002
  38. 38
    Salomon, R. M.; Miller, H. L.; Krystal, J. H.; Heninger, G. R.; Charney, D. S. Lack of Behavioral Effects of Monoamine Depletion in Healthy Subjects. Biol. Psychiatry 1997, 41 (1), 5864,  DOI: 10.1016/0006-3223(95)00670-2
  39. 39
    Moncrieff, J.; Cooper, R. E.; Stockmann, T.; Amendola, S.; Hengartner, M. P.; Horowitz, M. A. The Serotonin Theory of Depression: A Systematic Umbrella Review of the Evidence. Mol. Psychiatry 2023, 28, 114,  DOI: 10.1038/s41380-022-01661-0
  40. 40
    Jauhar, S.; Arnone, D.; Baldwin, D. S.; Bloomfield, M.; Browning, M.; Cleare, A. J.; Corlett, P.; Deakin, J. F. W.; Erritzoe, D.; Fu, C.; Fusar-Poli, P.; Goodwin, G. M.; Hayes, J.; Howard, R.; Howes, O. D.; Juruena, M. F.; Lam, R. W.; Lawrie, S. M.; McAllister-Williams, H.; Marwaha, S.; Matuskey, D.; McCutcheon, R. A.; Nutt, D. J.; Pariante, C.; Pillinger, T.; Radhakrishnan, R.; Rucker, J.; Selvaraj, S.; Stokes, P.; Upthegrove, R.; Yalin, N.; Yatham, L.; Young, A. H.; Zahn, R.; Cowen, P. J. A Leaky Umbrella Has Little Value: Evidence Clearly Indicates the Serotonin System Is Implicated in Depression. Mol. Psychiatry 2023, 28 (8), 14,  DOI: 10.1038/s41380-023-02095-y
  41. 41
    Koch, J. M.; Hinze-Selch, D.; Stingele, K.; Huchzermeier, C.; Göder, R.; Seeck-Hirschner, M.; Aldenhoff, J. B. Changes in CREB Phosphorylation and BDNF Plasma Levels during Psychotherapy of Depression. Psychotherapy and Psychosomatics 2009, 78 (3), 187192,  DOI: 10.1159/000209350
  42. 42
    Blendy, J. A. The Role of CREB in Depression and Antidepressant Treatment. Biol. Psychiatry 2006, 59 (12), 11441150,  DOI: 10.1016/j.biopsych.2005.11.003
  43. 43
    Arosio, B.; Guerini, F. R.; Voshaar, R. C. O.; Aprahamian, I. Blood Brain-Derived Neurotrophic Factor (BDNF) and Major Depression: Do We Have a Translational Perspective?. Frontiers in Behavioral Neuroscience 2021, 15, 626906,  DOI: 10.3389/fnbeh.2021.626906
  44. 44
    Thompson, S. M.; Kallarackal, A. J.; Kvarta, M. D.; Van Dyke, A. M.; LeGates, T. A.; Cai, X. An Excitatory Synapse Hypothesis of Depression. Trends in Neurosciences 2015, 38 (5), 279294,  DOI: 10.1016/j.tins.2015.03.003
  45. 45
    Kaster, M. P.; Moretti, M.; Cunha, M. P.; Rodrigues, A. L. S. Novel Approaches for the Management of Depressive Disorders. Eur. J. Pharmacol. 2016, 771, 236240,  DOI: 10.1016/j.ejphar.2015.12.029
  46. 46
    Salahudeen, M. S.; Wright, C. M.; Peterson, G. M. Esketamine: New Hope for the Treatment of Treatment-Resistant Depression? A Narrative Review. Therapeutic Advances in Drug Safety 2020, 11, 204209862093789,  DOI: 10.1177/2042098620937899
  47. 47
    Fava, G. A.; Grandi, S.; Canestrari, R.; Molnar, G. Prodromal Symptoms in Primary Major Depressive Disorder. Journal of Affective Disorders 1990, 19 (2), 149152,  DOI: 10.1016/0165-0327(90)90020-9
  48. 48
    Fava, G. A.; Tossani, E. Prodromal Stage of Major Depression. Early Intervention in Psychiatry 2007, 1 (1), 918,  DOI: 10.1111/j.1751-7893.2007.00005.x
  49. 49
    Kovacs, M.; Lopez-Duran, N. Prodromal Symptoms and Atypical Affectivity as Predictors of Major Depression in Juveniles: Implications for Prevention. Journal of Child Psychology and Psychiatry 2010, 51 (4), 472496,  DOI: 10.1111/j.1469-7610.2010.02230.x
  50. 50
    Benasi, G.; Fava, G. A.; Guidi, J. Prodromal Symptoms in Depression: A Systematic Review. PPS 2021, 90 (6), 365372,  DOI: 10.1159/000517953
  51. 51
    Benassi, M.; Garofalo, S.; Vitali, L.; Orsoni, M.; Sant’Angelo, R.; Raggini, R.; Piraccini, G. Bayesian Models to Explain Autistic Traits in Psychiatric Population. European Psychiatry 2021, 64 (S1), S239S240,  DOI: 10.1192/j.eurpsy.2021.642
  52. 52
    Birmaher, B.; Ryan, N. D.; Williamson, D. E.; Brent, D. A.; Kaufman, J.; Dahl, R. E.; Perel, J.; Nelson, B. Childhood and Adolescent Depression: A Review of the Past 10 Years. Part I. J. Am. Acad. Child Adolesc Psychiatry 1996, 35 (11), 14271439,  DOI: 10.1097/00004583-199611000-00011
  53. 53
    Turgay, A.; Ansari, R. Major Depression with ADHD. Psychiatry (Edgmont) 2006, 3 (4), 2032
  54. 54
    Biederman, J.; Ball, S. W.; Monuteaux, M. C.; Mick, E.; Spencer, T. J.; McCREARY, M.; Cote, M.; Faraone, S. V. New Insights Into the Comorbidity Between ADHD and Major Depression in Adolescent and Young Adult Females. Journal of the American Academy of Child & Adolescent Psychiatry 2008, 47 (4), 426434,  DOI: 10.1097/CHI.0b013e31816429d3
  55. 55
    Beck, A. T. Cognitive Models of Depression. Journal of Cognitive Psychotherapy 1987, 1, 537
  56. 56
    Beck, A. T. The Evolution of the Cognitive Model of Depression and Its Neurobiological Correlates. AJP 2008, 165 (8), 969977,  DOI: 10.1176/appi.ajp.2008.08050721
  57. 57
    Miller, E. K.; Cohen, J. D. An Integrative Theory of Prefrontal Cortex Function. Annu. Rev. Neurosci. 2001, 24, 167202,  DOI: 10.1146/annurev.neuro.24.1.167
  58. 58
    Mitchell, A. S. The Mediodorsal Thalamus as a Higher Order Thalamic Relay Nucleus Important for Learning and Decision-Making. Neuroscience & Biobehavioral Reviews 2015, 54, 7688,  DOI: 10.1016/j.neubiorev.2015.03.001
  59. 59
    Mitchell, A.; Chakraborty, S. What Does the Mediodorsal Thalamus Do?. Frontiers in Systems Neuroscience 2013, 7, 37,  DOI: 10.3389/fnsys.2013.00037
  60. 60
    Collins, D. P.; Anastasiades, P. G.; Marlin, J. J.; Carter, A. G. Reciprocal Circuits Linking the Prefrontal Cortex with Dorsal and Ventral Thalamic Nuclei. Neuron 2018, 98 (2), 366379,  DOI: 10.1016/j.neuron.2018.03.024
  61. 61
    Halassa, M. M.; Kastner, S. Thalamic Functions in Distributed Cognitive Control. Nat. Neurosci 2017, 20 (12), 16691679,  DOI: 10.1038/s41593-017-0020-1
  62. 62
    Menon, V.; D’Esposito, M. The Role of PFC Networks in Cognitive Control and Executive Function. Neuropsychopharmacol. 2022, 47 (1), 90103,  DOI: 10.1038/s41386-021-01152-w
  63. 63
    Hwang, K.; Bertolero, M. A.; Liu, W. B.; D’Esposito, M. The Human Thalamus Is an Integrative Hub for Functional Brain Networks. J. Neurosci. 2017, 37 (23), 55945607,  DOI: 10.1523/JNEUROSCI.0067-17.2017
  64. 64
    Mitchell, A. S.; Gaffan, D. The Magnocellular Mediodorsal Thalamus Is Necessary for Memory Acquisition, But Not Retrieval. J. Neurosci. 2008, 28 (1), 258263,  DOI: 10.1523/JNEUROSCI.4922-07.2008
  65. 65
    Georgescu, I. A.; Popa, D.; Zagrean, L. The Anatomical and Functional Heterogeneity of the Mediodorsal Thalamus. Brain Sci. 2020, 10 (9), 624,  DOI: 10.3390/brainsci10090624
  66. 66
    Morel, A.; Magnin, M.; Jeanmonod, D. Multiarchitectonic and Stereotactic Atlas of the Human Thalamus. J. Comp Neurol 1997, 387 (4), 588630,  DOI: 10.1002/(SICI)1096-9861(19971103)387:4<588::AID-CNE8>3.0.CO;2-Z
  67. 67
    Ray, J. P.; Price, J. L. The Organization of Projections from the Mediodorsal Nucleus of the Thalamus to Orbital and Medial Prefrontal Cortex in Macaque Monkeys. Journal of Comparative Neurology 1993, 337 (1), 131,  DOI: 10.1002/cne.903370102
  68. 68
    Yuan, R.; Di, X.; Taylor, P. A.; Gohel, S.; Tsai, Y.-H.; Biswal, B. B. Functional Topography of the Thalamocortical System in Human. Brain Struct Funct 2016, 221 (4), 19711984,  DOI: 10.1007/s00429-015-1018-7
  69. 69
    Wolff, M.; Vann, S. D. The Cognitive Thalamus as a Gateway to Mental Representations. J. Neurosci. 2019, 39 (1), 314,  DOI: 10.1523/JNEUROSCI.0479-18.2018
  70. 70
    Schmitt, L. I.; Wimmer, R. D.; Nakajima, M.; Happ, M.; Mofakham, S.; Halassa, M. M. Thalamic Amplification of Cortical Connectivity Sustains Attentional Control. Nature 2017, 545 (7653), 219223,  DOI: 10.1038/nature22073
  71. 71
    Groenewegen, H. J.; Berendse, H. W.; Wolters, J. G.; Lohman, A. H. The Anatomical Relationship of the Prefrontal Cortex with the Striatopallidal System, the Thalamus and the Amygdala: Evidence for a Parallel Organization. Prog. Brain Res. 1991, 85, 95116,  DOI: 10.1016/S0079-6123(08)62677-1
  72. 72
    Halassa, M. M.; Sherman, S. M. Thalamocortical Circuit Motifs: A General Framework. Neuron 2019, 103 (5), 762770,  DOI: 10.1016/j.neuron.2019.06.005
  73. 73
    Miyamoto, Y.; Jinnai, K. The Inhibitory Input from the Substantia Nigra to the Mediodorsal Nucleus Neurons Projecting to the Prefrontal Cortex in the Cat. Brain Res. 1994, 649 (1), 313318,  DOI: 10.1016/0006-8993(94)91079-0
  74. 74
    Pergola, G.; Danet, L.; Pitel, A.-L.; Carlesimo, G. A.; Segobin, S.; Pariente, J.; Suchan, B.; Mitchell, A. S.; Barbeau, E. J. The Regulatory Role of the Human Mediodorsal Thalamus. Trends in Cognitive Sciences 2018, 22 (11), 10111025,  DOI: 10.1016/j.tics.2018.08.006
  75. 75
    Négyessy, L.; Hámori, J.; Bentivoglio, M. Contralateral Cortical Projection to the Mediodorsal Thalamic Nucleus: Origin and Synaptic Organization in the Rat. Neuroscience 1998, 84 (3), 741753,  DOI: 10.1016/S0306-4522(97)00559-9
  76. 76
    Sherman, S. M.; Guillery, R. W. On the Actions That One Nerve Cell Can Have on Another: Distinguishing “Drivers” from “Modulators.. Proc. Natl. Acad. Sci. U. S. A. 1998, 95 (12), 71217126,  DOI: 10.1073/pnas.95.12.7121
  77. 77
    Sherman, S. M.; Guillery, R. W. Functional Connections of Cortical Areas: A New View from the Thalamus; MIT Press, 2013.
  78. 78
    Sherman, S. M.; Guillery, R. W. Exploring the Thalamus; Elsevier, 2001.
  79. 79
    Schwartz, M. L.; Dekker, J. J.; Goldman-Rakic, P. S. Dual Mode of Corticothalamic Synaptic Termination in the Mediodorsal Nucleus of the Rhesus Monkey. Journal of Comparative Neurology 1991, 309 (3), 289304,  DOI: 10.1002/cne.903090302
  80. 80
    Crick, F. Function of the Thalamic Reticular Complex: The Searchlight Hypothesis. Proc. Natl. Acad. Sci. U. S. A. 1984, 81 (14), 45864590,  DOI: 10.1073/pnas.81.14.4586
  81. 81
    Wimmer, R. D.; Schmitt, L. I.; Davidson, T. J.; Nakajima, M.; Deisseroth, K.; Halassa, M. M. Thalamic Control of Sensory Selection in Divided Attention. Nature 2015, 526 (7575), 705709,  DOI: 10.1038/nature15398
  82. 82
    Anastasiades, P. G.; Carter, A. G. Circuit Organization of the Rodent Medial Prefrontal Cortex. Trends in Neurosciences 2021, 44 (7), 550563,  DOI: 10.1016/j.tins.2021.03.006
  83. 83
    Kuramoto, E.; Pan, S.; Furuta, T.; Tanaka, Y. R.; Iwai, H.; Yamanaka, A.; Ohno, S.; Kaneko, T.; Goto, T.; Hioki, H. Individual Mediodorsal Thalamic Neurons Project to Multiple Areas of the Rat Prefrontal Cortex: A Single Neuron-Tracing Study Using Virus Vectors. J. Comp Neurol 2017, 525 (1), 166185,  DOI: 10.1002/cne.24054
  84. 84
    Rotaru, D. C.; Barrionuevo, G.; Sesack, S. R. Mediodorsal Thalamic Afferents to Layer III of the Rat Prefrontal Cortex: Synaptic Relationships to Subclasses of Interneurons. Journal of Comparative Neurology 2005, 490 (3), 220238,  DOI: 10.1002/cne.20661
  85. 85
    Van der Werf, Y. D.; Witter, M. P.; Groenewegen, H. J. The Intralaminar and Midline Nuclei of the Thalamus. Anatomical and Functional Evidence for Participation in Processes of Arousal and Awareness. Brain Research Reviews 2002, 39 (2), 107140,  DOI: 10.1016/S0165-0173(02)00181-9
  86. 86
    Pepin, E. P.; Auray-Pepin, L. Selective Dorsolateral Frontal Lobe Dysfunction Associated with Diencephalic Amnesia. Neurology 1993, 43 (4), 733733,  DOI: 10.1212/WNL.43.4.733
  87. 87
    McGilchrist, I.; Goldstein, L. H.; Jadresic, D.; Fenwick, P. Thalamo-Frontal Psychosis. British Journal of Psychiatry 1993, 163 (1), 113115,  DOI: 10.1192/bjp.163.1.113
  88. 88
    Mitchell, A. S.; Baxter, M. G.; Gaffan, D. Dissociable Performance on Scene Learning and Strategy Implementation after Lesions to Magnocellular Mediodorsal Thalamic Nucleus. J. Neurosci. 2007, 27 (44), 1188811895,  DOI: 10.1523/JNEUROSCI.1835-07.2007
  89. 89
    Parnaudeau, S.; O’Neill, P.-K.; Bolkan, S. S.; Ward, R. D.; Abbas, A. I.; Roth, B. L.; Balsam, P. D.; Gordon, J. A.; Kellendonk, C. Inhibition of Mediodorsal Thalamus Disrupts Thalamofrontal Connectivity and Cognition. Neuron 2013, 77 (6), 11511162,  DOI: 10.1016/j.neuron.2013.01.038
  90. 90
    Floresco, S. B.; Braaksma, D. N.; Phillips, A. G. Thalamic-Cortical-Striatal Circuitry Subserves Working Memory during Delayed Responding on a Radial Arm Maze. J. Neurosci. 1999, 19 (24), 1106111071,  DOI: 10.1523/JNEUROSCI.19-24-11061.1999
  91. 91
    Ferguson, B. R.; Gao, W.-J. Development of Thalamocortical Connections between the Mediodorsal Thalamus and the Prefrontal Cortex and Its Implication in Cognition. Frontiers in Human Neuroscience 2015, 8, 1027,  DOI: 10.3389/fnhum.2014.01027
  92. 92
    Vitalis, T.; Parnavelas, J. G. The Role of Serotonin in Early Cortical Development. Developmental Neuroscience 2003, 25 (2–4), 245256,  DOI: 10.1159/000072272
  93. 93
    Lebrand, C.; Cases, O.; Adelbrecht, C.; Doye, A.; Alvarez, C.; El Mestikawy, S.; Seif, I.; Gaspar, P. Transient Uptake and Storage of Serotonin in Developing Thalamic Neurons. Neuron 1996, 17 (5), 823835,  DOI: 10.1016/S0896-6273(00)80215-9
  94. 94
    Homberg, J. R.; Schubert, D.; Gaspar, P. New Perspectives on the Neurodevelopmental Effects of SSRIs. Trends Pharmacol. Sci. 2010, 31 (2), 6065,  DOI: 10.1016/j.tips.2009.11.003
  95. 95
    Narboux-Nême, N.; Pavone, L. M.; Avallone, L.; Zhuang, X.; Gaspar, P. Serotonin Transporter Transgenic (SERTcre) Mouse Line Reveals Developmental Targets of Serotonin Specific Reuptake Inhibitors (SSRIs). Neuropharmacology 2008, 55 (6), 9941005,  DOI: 10.1016/j.neuropharm.2008.08.020
  96. 96
    Lebrand, C.; Cases, O.; Wehrlé, R.; Blakely, R. D.; Edwards, R. H.; Gaspar, P. Transient Developmental Expression of Monoamine Transporters in the Rodent Forebrain. Journal of Comparative Neurology 1998, 401 (4), 506524,  DOI: 10.1002/(SICI)1096-9861(19981130)401:4<506::AID-CNE5>3.0.CO;2-#
  97. 97
    Soiza-Reilly, M.; Meye, F. J.; Olusakin, J.; Telley, L.; Petit, E.; Chen, X.; Mameli, M.; Jabaudon, D.; Sze, J.-Y.; Gaspar, P. SSRIs Target Prefrontal to Raphe Circuits during Development Modulating Synaptic Connectivity and Emotional Behavior. Mol. Psychiatry 2019, 24 (5), 726745,  DOI: 10.1038/s41380-018-0260-9
  98. 98
    Verney, C.; Lebrand, C.; Gaspar, P. Changing Distribution of Monoaminergic Markers in the Developing Human Cerebral Cortex with Special Emphasis on the Serotonin Transporter. Anatomical Record 2002, 267 (2), 8793,  DOI: 10.1002/ar.10089
  99. 99
    Olusakin, J.; Moutkine, I.; Dumas, S.; Ponimaskin, E.; Paizanis, E.; Soiza-Reilly, M.; Gaspar, P. Implication of 5-HT7 Receptor in Prefrontal Circuit Assembly and Detrimental Emotional Effects of SSRIs during Development. Neuropsychopharmacol. 2020, 45 (13), 22672277,  DOI: 10.1038/s41386-020-0775-z
  100. 100
    Chen, X.; Petit, E. I.; Dobrenis, K.; Sze, J. Y. Spatiotemporal SERT Expression in Cortical Map Development. Neurochem. Int. 2016, 98, 129137,  DOI: 10.1016/j.neuint.2016.05.010
  101. 101
    Cases, O.; Vitalis, T.; Seif, I.; De Maeyer, E.; Sotelo, C.; Gaspar, P. Lack of Barrels in the Somatosensory Cortex of Monoamine Oxidase A-Deficient Mice: Role of a Serotonin Excess during the Critical Period. Neuron 1996, 16 (2), 297307,  DOI: 10.1016/S0896-6273(00)80048-3
  102. 102
    van Kleef, E. S. B.; Gaspar, P.; Bonnin, A. Insights into the Complex Influence of 5-HT Signaling on Thalamocortical Axonal System Development. Eur. J. Neurosci 2012, 35 (10), 15631572,  DOI: 10.1111/j.1460-9568.2012.8096.x
  103. 103
    Marek, G. J.; Wright, R. A.; Gewirtz, J. C.; Schoepp, D. D. A Major Role for Thalamocortical Afferents in Serotonergic Hallucinogen Receptor Function in the Rat Neocortex. Neuroscience 2001, 105 (2), 379392,  DOI: 10.1016/S0306-4522(01)00199-3
  104. 104
    Barre, A.; Berthoux, C.; De Bundel, D.; Valjent, E.; Bockaert, J.; Marin, P.; Bécamel, C. Presynaptic Serotonin 2A Receptors Modulate Thalamocortical Plasticity and Associative Learning. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (10), E1382-E1391  DOI: 10.1073/pnas.1525586113
  105. 105
    Martín-Ruiz, R.; Puig, M. V.; Celada, P.; Shapiro, D. A.; Roth, B. L.; Mengod, G.; Artigas, F. Control of Serotonergic Function in Medial Prefrontal Cortex by Serotonin-2A Receptors through a Glutamate-Dependent Mechanism. J. Neurosci. 2001, 21 (24), 98569866,  DOI: 10.1523/JNEUROSCI.21-24-09856.2001
  106. 106
    Ouhaz, Z.; Ba-M’hamed, S.; Mitchell, A. S.; Elidrissi, A.; Bennis, M. Behavioral and Cognitive Changes after Early Postnatal Lesions of the Rat Mediodorsal Thalamus. Behavioural Brain Research 2015, 292, 219232,  DOI: 10.1016/j.bbr.2015.06.017
  107. 107
    Ouhaz, Z.; Ba-M’hamed, S.; Bennis, M. Morphological, Structural, and Functional Alterations of the Prefrontal Cortex and the Basolateral Amygdala after Early Lesion of the Rat Mediodorsal Thalamus. Brain Struct Funct 2017, 222 (6), 25272545,  DOI: 10.1007/s00429-016-1354-2
  108. 108
    Ansorge, M. S.; Zhou, M.; Lira, A.; Hen, R.; Gingrich, J. A. Early-Life Blockade of the 5-HT Transporter Alters Emotional Behavior in Adult Mice. Science 2004, 306 (5697), 879881,  DOI: 10.1126/science.1101678
  109. 109
    Teissier, A.; Le Magueresse, C.; Olusakin, J.; Andrade da Costa, B. L. S.; De Stasi, A. M.; Bacci, A.; Imamura Kawasawa, Y.; Vaidya, V. A.; Gaspar, P. Early-Life Stress Impairs Postnatal Oligodendrogenesis and Adult Emotional Behaviour through Activity-Dependent Mechanisms. Mol. Psychiatry 2020, 25 (6), 11591174,  DOI: 10.1038/s41380-019-0493-2
  110. 110
    Kiser, D.; Steemers, B.; Branchi, I.; Homberg, J. R. The Reciprocal Interaction between Serotonin and Social Behaviour. Neuroscience & Biobehavioral Reviews 2012, 36 (2), 786798,  DOI: 10.1016/j.neubiorev.2011.12.009
  111. 111
    Canli, T.; Lesch, K.-P. Long Story Short: The Serotonin Transporter in Emotion Regulation and Social Cognition. Nat. Neurosci 2007, 10 (9), 11031109,  DOI: 10.1038/nn1964
  112. 112
    Homberg, J. R.; Schiepers, O. J. G.; Schoffelmeer, A. N. M.; Cuppen, E.; Vanderschuren, L. J. M. J. Acute and Constitutive Increases in Central Serotonin Levels Reduce Social Play Behaviour in Peri-Adolescent Rats. Psychopharmacology 2007, 195 (2), 175182,  DOI: 10.1007/s00213-007-0895-8

Cited By

Click to copy section linkSection link copied!

This article has not yet been cited by other publications.

Open PDF

ACS Chemical Neuroscience

Cite this: ACS Chem. Neurosci. 2024, 15, 8, 1611–1618
Click to copy citationCitation copied!
https://doi.org/10.1021/acschemneuro.3c00828
Published April 5, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY-NC-ND 4.0 .

Article Views

1530

Altmetric

-

Citations

-
Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Prefronto-thalamic projections. (a) Schematic overview of MD–PFC inputs. MD neurons predominantly project to superficial layers, and, to a lesser extent, to deep layers of the PFC. MD projections to layer I mostly target distal dendrites of PNs located in other layers. In layer II/III, MD neurons project to both PNs and interneurons. Interneurons excited by MD axons form a feedforward inhibitory microcircuit. Layer II/III PNs project to neurons in other layers or the contralateral hemisphere. MD neurons also project to layer V pyramidal neurons. Layers V and VI are the main output-generating layers in the PFC and project it to the MD. Inputs from layers V and VI differ in their morpho-functional properties. Colors of triangles represent subpopulations of pyramidal neurons residing in different layers. Round PFC neurons represent PV IN. Oval-shaped MD neurons represent a thalamic excitatory neuron. (b) Projection of MD axons to the PFC. Micrograph illustrating infection of AAV-ChR2-mCherry in the MD. mCherry-positive fibers can be detected in medial PFC. MD axons project both to superficial and deep layers. Note the dense accumulation of fibers in superficial and middle layers of the mPFC.

    Figure 2

    Figure 2. Developmental axis of the PFC and MD. (a) In-situ hybridization at P4, 7, 10, and 14 shows time-sensitive, transient SERT expression in the PFC during early postnatal development. (b) SERT+ pyramidal neurons in the PFC are located in layers V and VI but not in superficial layers. Immunolabeling against Ctip2 (red, layer V marker), Foxp2 (purple, layer VI marker), and GFP (green, SERTCre/+) in the PFC. Panels a and b modified with permission from ref (97). Copyright 2019 Springer Nature Limited. (https://creativecommons.org/licenses/by/4.0/) (c) Developmental timeline of the MD and PFC in the rodent brain. Panel reproduced from ref (91). Copyright 2015 Ferguson and Gao.

  • References


    This article references 112 other publications.

    1. 1
      World Health Organization (WHO). The ICD-10 Classification of Mental and Behavioural Disorders; World Health Organization, 2023.
    2. 2
      American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association Publishing, 2013; Vol. 5.
    3. 3
      Conradi, H. J.; Ormel, J.; de Jonge, P. Presence of Individual (Residual) Symptoms during Depressive Episodes and Periods of Remission: A 3-Year Prospective Study. Psychological Medicine 2011, 41 (6), 11651174,  DOI: 10.1017/S0033291710001911
    4. 4
      Romera, I.; Perez, V.; Menchón, J. M.; Delgado-Cohen, H.; Polavieja, P.; Gilaberte, I. Social and Occupational Functioning Impairment in Patients in Partial versus Complete Remission of a Major Depressive Disorder Episode. A Six-Month Prospective Epidemiological Study. European Psychiatry 2010, 25 (1), 5865,  DOI: 10.1016/j.eurpsy.2009.02.007
    5. 5
      Paykel, E. S. Partial Remission, Residual Symptoms, and Relapse in Depression. Dialogues in Clinical Neuroscience 2008, 10 (4), 431437,  DOI: 10.31887/DCNS.2008.10.4/espaykel
    6. 6
      Souery, D.; Rivelli, S. K.; Mendlewicz, J. Molecular Genetic and Family Studies in Affective Disorders: State of the Art. Journal of Affective Disorders 2001, 62 (1), 4555,  DOI: 10.1016/S0165-0327(00)00350-5
    7. 7
      Malhi, G. S.; Moore, J.; McGuffin, P. The Genetics of Major Depressive Disorder. Curr. Psychiatry Rep 2000, 2 (2), 165169,  DOI: 10.1007/s11920-000-0062-y
    8. 8
      Fava, M.; Kendler, K. S. Major Depressive Disorder. Neuron 2000, 28 (2), 335341,  DOI: 10.1016/S0896-6273(00)00112-4
    9. 9
      Ho, L. W.; Furlong, R. A.; Rubinsztein, J. S.; Walsh, C.; Paykel, E. S.; Rubinsztein, D. C. Genetic Associations with Clinical Characteristics in Bipolar Affective Disorder and Recurrent Unipolar Depressive Disorder. American Journal of Medical Genetics 2000, 96 (1), 3642,  DOI: 10.1002/(SICI)1096-8628(20000207)96:1<36::AID-AJMG8>3.0.CO;2-6
    10. 10
      Brigitta, B. Pathophysiology of Depression and Mechanisms of Treatment. Dialogues in Clinical Neuroscience 2002, 4 (1), 720,  DOI: 10.31887/DCNS.2002.4.1/bbondy
    11. 11
      Lesch, K.-P.; Balling, U.; Gross, J.; Strauss, K.; Wolozin, B. L.; Murphy, D. L.; Riederer, P. Organization of the Human Serotonin Transporter Gene. J. Neural Transmission 1994, 95 (2), 157162,  DOI: 10.1007/BF01276434
    12. 12
      Lesch, K. P.; Meyer, J.; Glatz, K.; Flügge, G.; Hinney, A.; Hebebrand, J.; Klauck, S. M.; Poustka, A.; Poustka, F.; Bengel, D.; Mössner, R.; Riederer, P.; Heils, A. The 5-HT Transporter Gene-Linked Polymorphic Region (5-HTTLPR) in Evolutionary Perspective: Alternative Biallelic Variation in Rhesus Monkeys. J. Neural Transmission 1997, 104 (11), 12591266,  DOI: 10.1007/BF01294726
    13. 13
      Ogilvie, A. D.; Battersby, S.; Fink, G.; Harmar, A. J.; Goodwin, G. M.; Bubb, V. J.; Dale Smith, C. A. Polymorphism in Serotonin Transporter Gene Associated with Susceptibility to Major Depression. Lancet 1996, 347 (9003), 731733,  DOI: 10.1016/S0140-6736(96)90079-3
    14. 14
      Heinz, A.; Braus, D. F.; Smolka, M. N.; Wrase, J.; Puls, I.; Hermann, D.; Klein, S.; Grüsser, S. M.; Flor, H.; Schumann, G.; Mann, K.; Büchel, C. Amygdala-Prefrontal Coupling Depends on a Genetic Variation of the Serotonin Transporter. Nat. Neurosci 2005, 8 (1), 2021,  DOI: 10.1038/nn1366
    15. 15
      Lesch, K. P. Gene-Environment Interaction and the Genetics of Depression. Journal of Psychiatry and Neuroscience 2004, 29 (3), 174184
    16. 16
      Caspi, A.; Sugden, K.; Moffitt, T. E.; Taylor, A.; Craig, I. W.; Harrington, H.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; Poulton, R. Influence of Life Stress on Depression: Moderation by a Polymorphism in the 5-HTT Gene. Science 2003, 301 (5631), 386389,  DOI: 10.1126/science.1083968
    17. 17
      Sjöberg, R. L.; Nilsson, K. W.; Nordquist, N.; Öhrvik, J.; Leppert, J.; Lindström, L.; Oreland, L. Development of Depression: Sex and the Interaction between Environment and a Promoter Polymorphism of the Serotonin Transporter Gene. International Journal of Neuropsychopharmacology 2006, 9 (4), 443449,  DOI: 10.1017/S1461145705005936
    18. 18
      Palma-Gudiel, H.; Fañanás, L. An Integrative Review of Methylation at the Serotonin Transporter Gene and Its Dialogue with Environmental Risk Factors, Psychopathology and 5-HTTLPR. Neuroscience & Biobehavioral Reviews 2017, 72, 190209,  DOI: 10.1016/j.neubiorev.2016.11.011
    19. 19
      Rebello, T. J.; Yu, Q.; Goodfellow, N. M.; Caffrey Cagliostro, M. K.; Teissier, A.; Morelli, E.; Demireva, E. Y.; Chemiakine, A.; Rosoklija, G. B.; Dwork, A. J.; Lambe, E. K.; Gingrich, J. A.; Ansorge, M. S. Postnatal Day 2 to 11 Constitutes a 5-HT-Sensitive Period Impacting Adult mPFC Function. J. Neurosci. 2014, 34 (37), 1237912393,  DOI: 10.1523/JNEUROSCI.1020-13.2014
    20. 20
      Gaspar, P.; Cases, O.; Maroteaux, L. The Developmental Role of Serotonin: News from Mouse Molecular Genetics. Nat. Rev. Neurosci 2003, 4 (12), 10021012,  DOI: 10.1038/nrn1256
    21. 21
      Drevets, W. C. Neuroimaging and Neuropathological Studies of Depression: Implications for the Cognitive-Emotional Features of Mood Disorders. Current Opinion in Neurobiology 2001, 11 (2), 240249,  DOI: 10.1016/S0959-4388(00)00203-8
    22. 22
      Drevets, W. C.; Price, J. L.; Furey, M. L. Brain Structural and Functional Abnormalities in Mood Disorders: Implications for Neurocircuitry Models of Depression. Brain Struct Funct 2008, 213 (1), 93118,  DOI: 10.1007/s00429-008-0189-x
    23. 23
      Liotti, M.; Mayberg, H. S. The Role of Functional Neuroimaging in the Neuropsychology of Depression. Journal of Clinical and Experimental Neuropsychology 2001, 23 (1), 121136,  DOI: 10.1076/jcen.23.1.121.1223
    24. 24
      Rajkowska, G. Histopathology of the Prefrontal Cortex in Major Depression: What Does It Tell Us about Dysfunctional Monoaminergic Circuits?. Progress in Brain Research 2000, 126, 397412,  DOI: 10.1016/S0079-6123(00)26026-3
    25. 25
      Moriguchi, S.; Yamada, M.; Takano, H.; Nagashima, T.; Takahata, K.; Yokokawa, K.; Ito, T.; Ishii, T.; Kimura, Y.; Zhang, M.-R.; Mimura, M.; Suhara, T. Norepinephrine Transporter in Major Depressive Disorder: A PET Study. AJP 2017, 174 (1), 3641,  DOI: 10.1176/appi.ajp.2016.15101334
    26. 26
      Young, K. A.; Holcomb, L. A.; Yazdani, U.; Hicks, P. B.; German, D. C. Elevated Neuron Number in the Limbic Thalamus in Major Depression. AJP 2004, 161 (7), 12701277,  DOI: 10.1176/appi.ajp.161.7.1270
    27. 27
      Willard, S. L.; Riddle, D. R.; Forbes, M. E.; Shively, C. A. Cell Number and Neuropil Alterations in Subregions of the Anterior Hippocampus in a Female Monkey Model of Depression. Biol. Psychiatry 2013, 74 (12), 890897,  DOI: 10.1016/j.biopsych.2013.03.013
    28. 28
      Ayuob, N. N.; Balgoon, M. J. Histological and Molecular Techniques Utilized to Investigate Animal Models of Depression. An Updated Review. Microscopy Research and Technique 2018, 81 (10), 11431153,  DOI: 10.1002/jemt.23105
    29. 29
      Aten, S.; Du, Y.; Taylor, O.; Dye, C.; Collins, K.; Thomas, M.; Kiyoshi, C.; Zhou, M. Chronic Stress Impairs the Structure and Function of Astrocyte Networks in an Animal Model of Depression. Neurochem. Res. 2023, 48 (4), 11911210,  DOI: 10.1007/s11064-022-03663-4
    30. 30
      Höflich, A.; Michenthaler, P.; Kasper, S.; Lanzenberger, R. Circuit Mechanisms of Reward, Anhedonia, and Depression. International Journal of Neuropsychopharmacology 2019, 22 (2), 105118,  DOI: 10.1093/ijnp/pyy081
    31. 31
      Bao, A.-M.; Swaab, D. F. The Human Hypothalamus in Mood Disorders: The HPA Axis in the Center. IBRO Reports 2019, 6, 4553,  DOI: 10.1016/j.ibror.2018.11.008
    32. 32
      Ouhaz, Z.; Fleming, H.; Mitchell, A. S. Cognitive Functions and Neurodevelopmental Disorders Involving the Prefrontal Cortex and Mediodorsal Thalamus. Frontiers in Neuroscience 2018, 12, 33,  DOI: 10.3389/fnins.2018.00033
    33. 33
      Chancellor, D. The Depression Market. Nat. Rev. Drug Discovery 2011, 10 (11), 809810,  DOI: 10.1038/nrd3585
    34. 34
      Krishnan, V.; Nestler, E. J. The Molecular Neurobiology of Depression. Nature 2008, 455 (7215), 894902,  DOI: 10.1038/nature07455
    35. 35
      Schildkraut, J. J. The Catecholamine Hypothesis of Affective Disorders: A Review of Supporting Evidence. Am. J. Psychiatry 1965, 122 (5), 509522,  DOI: 10.1176/ajp.122.5.509
    36. 36
      Woolley, D. W.; Shaw, E. A Biochemical and Pharmacological Suggestion about Certain Mental Disorders. Proc. Natl. Acad. Sci. U. S. A. 1954, 40 (4), 228231,  DOI: 10.1073/pnas.40.4.228
    37. 37
      Mendels, J.; Stinnett, J. L.; Burns, D.; Frazer, A. Amine Precursors and Depression. Arch Gen Psychiatry 1975, 32 (1), 2230,  DOI: 10.1001/archpsyc.1975.01760190024002
    38. 38
      Salomon, R. M.; Miller, H. L.; Krystal, J. H.; Heninger, G. R.; Charney, D. S. Lack of Behavioral Effects of Monoamine Depletion in Healthy Subjects. Biol. Psychiatry 1997, 41 (1), 5864,  DOI: 10.1016/0006-3223(95)00670-2
    39. 39
      Moncrieff, J.; Cooper, R. E.; Stockmann, T.; Amendola, S.; Hengartner, M. P.; Horowitz, M. A. The Serotonin Theory of Depression: A Systematic Umbrella Review of the Evidence. Mol. Psychiatry 2023, 28, 114,  DOI: 10.1038/s41380-022-01661-0
    40. 40
      Jauhar, S.; Arnone, D.; Baldwin, D. S.; Bloomfield, M.; Browning, M.; Cleare, A. J.; Corlett, P.; Deakin, J. F. W.; Erritzoe, D.; Fu, C.; Fusar-Poli, P.; Goodwin, G. M.; Hayes, J.; Howard, R.; Howes, O. D.; Juruena, M. F.; Lam, R. W.; Lawrie, S. M.; McAllister-Williams, H.; Marwaha, S.; Matuskey, D.; McCutcheon, R. A.; Nutt, D. J.; Pariante, C.; Pillinger, T.; Radhakrishnan, R.; Rucker, J.; Selvaraj, S.; Stokes, P.; Upthegrove, R.; Yalin, N.; Yatham, L.; Young, A. H.; Zahn, R.; Cowen, P. J. A Leaky Umbrella Has Little Value: Evidence Clearly Indicates the Serotonin System Is Implicated in Depression. Mol. Psychiatry 2023, 28 (8), 14,  DOI: 10.1038/s41380-023-02095-y
    41. 41
      Koch, J. M.; Hinze-Selch, D.; Stingele, K.; Huchzermeier, C.; Göder, R.; Seeck-Hirschner, M.; Aldenhoff, J. B. Changes in CREB Phosphorylation and BDNF Plasma Levels during Psychotherapy of Depression. Psychotherapy and Psychosomatics 2009, 78 (3), 187192,  DOI: 10.1159/000209350
    42. 42
      Blendy, J. A. The Role of CREB in Depression and Antidepressant Treatment. Biol. Psychiatry 2006, 59 (12), 11441150,  DOI: 10.1016/j.biopsych.2005.11.003
    43. 43
      Arosio, B.; Guerini, F. R.; Voshaar, R. C. O.; Aprahamian, I. Blood Brain-Derived Neurotrophic Factor (BDNF) and Major Depression: Do We Have a Translational Perspective?. Frontiers in Behavioral Neuroscience 2021, 15, 626906,  DOI: 10.3389/fnbeh.2021.626906
    44. 44
      Thompson, S. M.; Kallarackal, A. J.; Kvarta, M. D.; Van Dyke, A. M.; LeGates, T. A.; Cai, X. An Excitatory Synapse Hypothesis of Depression. Trends in Neurosciences 2015, 38 (5), 279294,  DOI: 10.1016/j.tins.2015.03.003
    45. 45
      Kaster, M. P.; Moretti, M.; Cunha, M. P.; Rodrigues, A. L. S. Novel Approaches for the Management of Depressive Disorders. Eur. J. Pharmacol. 2016, 771, 236240,  DOI: 10.1016/j.ejphar.2015.12.029
    46. 46
      Salahudeen, M. S.; Wright, C. M.; Peterson, G. M. Esketamine: New Hope for the Treatment of Treatment-Resistant Depression? A Narrative Review. Therapeutic Advances in Drug Safety 2020, 11, 204209862093789,  DOI: 10.1177/2042098620937899
    47. 47
      Fava, G. A.; Grandi, S.; Canestrari, R.; Molnar, G. Prodromal Symptoms in Primary Major Depressive Disorder. Journal of Affective Disorders 1990, 19 (2), 149152,  DOI: 10.1016/0165-0327(90)90020-9
    48. 48
      Fava, G. A.; Tossani, E. Prodromal Stage of Major Depression. Early Intervention in Psychiatry 2007, 1 (1), 918,  DOI: 10.1111/j.1751-7893.2007.00005.x
    49. 49
      Kovacs, M.; Lopez-Duran, N. Prodromal Symptoms and Atypical Affectivity as Predictors of Major Depression in Juveniles: Implications for Prevention. Journal of Child Psychology and Psychiatry 2010, 51 (4), 472496,  DOI: 10.1111/j.1469-7610.2010.02230.x
    50. 50
      Benasi, G.; Fava, G. A.; Guidi, J. Prodromal Symptoms in Depression: A Systematic Review. PPS 2021, 90 (6), 365372,  DOI: 10.1159/000517953
    51. 51
      Benassi, M.; Garofalo, S.; Vitali, L.; Orsoni, M.; Sant’Angelo, R.; Raggini, R.; Piraccini, G. Bayesian Models to Explain Autistic Traits in Psychiatric Population. European Psychiatry 2021, 64 (S1), S239S240,  DOI: 10.1192/j.eurpsy.2021.642
    52. 52
      Birmaher, B.; Ryan, N. D.; Williamson, D. E.; Brent, D. A.; Kaufman, J.; Dahl, R. E.; Perel, J.; Nelson, B. Childhood and Adolescent Depression: A Review of the Past 10 Years. Part I. J. Am. Acad. Child Adolesc Psychiatry 1996, 35 (11), 14271439,  DOI: 10.1097/00004583-199611000-00011
    53. 53
      Turgay, A.; Ansari, R. Major Depression with ADHD. Psychiatry (Edgmont) 2006, 3 (4), 2032
    54. 54
      Biederman, J.; Ball, S. W.; Monuteaux, M. C.; Mick, E.; Spencer, T. J.; McCREARY, M.; Cote, M.; Faraone, S. V. New Insights Into the Comorbidity Between ADHD and Major Depression in Adolescent and Young Adult Females. Journal of the American Academy of Child & Adolescent Psychiatry 2008, 47 (4), 426434,  DOI: 10.1097/CHI.0b013e31816429d3
    55. 55
      Beck, A. T. Cognitive Models of Depression. Journal of Cognitive Psychotherapy 1987, 1, 537
    56. 56
      Beck, A. T. The Evolution of the Cognitive Model of Depression and Its Neurobiological Correlates. AJP 2008, 165 (8), 969977,  DOI: 10.1176/appi.ajp.2008.08050721
    57. 57
      Miller, E. K.; Cohen, J. D. An Integrative Theory of Prefrontal Cortex Function. Annu. Rev. Neurosci. 2001, 24, 167202,  DOI: 10.1146/annurev.neuro.24.1.167
    58. 58
      Mitchell, A. S. The Mediodorsal Thalamus as a Higher Order Thalamic Relay Nucleus Important for Learning and Decision-Making. Neuroscience & Biobehavioral Reviews 2015, 54, 7688,  DOI: 10.1016/j.neubiorev.2015.03.001
    59. 59
      Mitchell, A.; Chakraborty, S. What Does the Mediodorsal Thalamus Do?. Frontiers in Systems Neuroscience 2013, 7, 37,  DOI: 10.3389/fnsys.2013.00037
    60. 60
      Collins, D. P.; Anastasiades, P. G.; Marlin, J. J.; Carter, A. G. Reciprocal Circuits Linking the Prefrontal Cortex with Dorsal and Ventral Thalamic Nuclei. Neuron 2018, 98 (2), 366379,  DOI: 10.1016/j.neuron.2018.03.024
    61. 61
      Halassa, M. M.; Kastner, S. Thalamic Functions in Distributed Cognitive Control. Nat. Neurosci 2017, 20 (12), 16691679,  DOI: 10.1038/s41593-017-0020-1
    62. 62
      Menon, V.; D’Esposito, M. The Role of PFC Networks in Cognitive Control and Executive Function. Neuropsychopharmacol. 2022, 47 (1), 90103,  DOI: 10.1038/s41386-021-01152-w
    63. 63
      Hwang, K.; Bertolero, M. A.; Liu, W. B.; D’Esposito, M. The Human Thalamus Is an Integrative Hub for Functional Brain Networks. J. Neurosci. 2017, 37 (23), 55945607,  DOI: 10.1523/JNEUROSCI.0067-17.2017
    64. 64
      Mitchell, A. S.; Gaffan, D. The Magnocellular Mediodorsal Thalamus Is Necessary for Memory Acquisition, But Not Retrieval. J. Neurosci. 2008, 28 (1), 258263,  DOI: 10.1523/JNEUROSCI.4922-07.2008
    65. 65
      Georgescu, I. A.; Popa, D.; Zagrean, L. The Anatomical and Functional Heterogeneity of the Mediodorsal Thalamus. Brain Sci. 2020, 10 (9), 624,  DOI: 10.3390/brainsci10090624
    66. 66
      Morel, A.; Magnin, M.; Jeanmonod, D. Multiarchitectonic and Stereotactic Atlas of the Human Thalamus. J. Comp Neurol 1997, 387 (4), 588630,  DOI: 10.1002/(SICI)1096-9861(19971103)387:4<588::AID-CNE8>3.0.CO;2-Z
    67. 67
      Ray, J. P.; Price, J. L. The Organization of Projections from the Mediodorsal Nucleus of the Thalamus to Orbital and Medial Prefrontal Cortex in Macaque Monkeys. Journal of Comparative Neurology 1993, 337 (1), 131,  DOI: 10.1002/cne.903370102
    68. 68
      Yuan, R.; Di, X.; Taylor, P. A.; Gohel, S.; Tsai, Y.-H.; Biswal, B. B. Functional Topography of the Thalamocortical System in Human. Brain Struct Funct 2016, 221 (4), 19711984,  DOI: 10.1007/s00429-015-1018-7
    69. 69
      Wolff, M.; Vann, S. D. The Cognitive Thalamus as a Gateway to Mental Representations. J. Neurosci. 2019, 39 (1), 314,  DOI: 10.1523/JNEUROSCI.0479-18.2018
    70. 70
      Schmitt, L. I.; Wimmer, R. D.; Nakajima, M.; Happ, M.; Mofakham, S.; Halassa, M. M. Thalamic Amplification of Cortical Connectivity Sustains Attentional Control. Nature 2017, 545 (7653), 219223,  DOI: 10.1038/nature22073
    71. 71
      Groenewegen, H. J.; Berendse, H. W.; Wolters, J. G.; Lohman, A. H. The Anatomical Relationship of the Prefrontal Cortex with the Striatopallidal System, the Thalamus and the Amygdala: Evidence for a Parallel Organization. Prog. Brain Res. 1991, 85, 95116,  DOI: 10.1016/S0079-6123(08)62677-1
    72. 72
      Halassa, M. M.; Sherman, S. M. Thalamocortical Circuit Motifs: A General Framework. Neuron 2019, 103 (5), 762770,  DOI: 10.1016/j.neuron.2019.06.005
    73. 73
      Miyamoto, Y.; Jinnai, K. The Inhibitory Input from the Substantia Nigra to the Mediodorsal Nucleus Neurons Projecting to the Prefrontal Cortex in the Cat. Brain Res. 1994, 649 (1), 313318,  DOI: 10.1016/0006-8993(94)91079-0
    74. 74
      Pergola, G.; Danet, L.; Pitel, A.-L.; Carlesimo, G. A.; Segobin, S.; Pariente, J.; Suchan, B.; Mitchell, A. S.; Barbeau, E. J. The Regulatory Role of the Human Mediodorsal Thalamus. Trends in Cognitive Sciences 2018, 22 (11), 10111025,  DOI: 10.1016/j.tics.2018.08.006
    75. 75
      Négyessy, L.; Hámori, J.; Bentivoglio, M. Contralateral Cortical Projection to the Mediodorsal Thalamic Nucleus: Origin and Synaptic Organization in the Rat. Neuroscience 1998, 84 (3), 741753,  DOI: 10.1016/S0306-4522(97)00559-9
    76. 76
      Sherman, S. M.; Guillery, R. W. On the Actions That One Nerve Cell Can Have on Another: Distinguishing “Drivers” from “Modulators.. Proc. Natl. Acad. Sci. U. S. A. 1998, 95 (12), 71217126,  DOI: 10.1073/pnas.95.12.7121
    77. 77
      Sherman, S. M.; Guillery, R. W. Functional Connections of Cortical Areas: A New View from the Thalamus; MIT Press, 2013.
    78. 78
      Sherman, S. M.; Guillery, R. W. Exploring the Thalamus; Elsevier, 2001.
    79. 79
      Schwartz, M. L.; Dekker, J. J.; Goldman-Rakic, P. S. Dual Mode of Corticothalamic Synaptic Termination in the Mediodorsal Nucleus of the Rhesus Monkey. Journal of Comparative Neurology 1991, 309 (3), 289304,  DOI: 10.1002/cne.903090302
    80. 80
      Crick, F. Function of the Thalamic Reticular Complex: The Searchlight Hypothesis. Proc. Natl. Acad. Sci. U. S. A. 1984, 81 (14), 45864590,  DOI: 10.1073/pnas.81.14.4586
    81. 81
      Wimmer, R. D.; Schmitt, L. I.; Davidson, T. J.; Nakajima, M.; Deisseroth, K.; Halassa, M. M. Thalamic Control of Sensory Selection in Divided Attention. Nature 2015, 526 (7575), 705709,  DOI: 10.1038/nature15398
    82. 82
      Anastasiades, P. G.; Carter, A. G. Circuit Organization of the Rodent Medial Prefrontal Cortex. Trends in Neurosciences 2021, 44 (7), 550563,  DOI: 10.1016/j.tins.2021.03.006
    83. 83
      Kuramoto, E.; Pan, S.; Furuta, T.; Tanaka, Y. R.; Iwai, H.; Yamanaka, A.; Ohno, S.; Kaneko, T.; Goto, T.; Hioki, H. Individual Mediodorsal Thalamic Neurons Project to Multiple Areas of the Rat Prefrontal Cortex: A Single Neuron-Tracing Study Using Virus Vectors. J. Comp Neurol 2017, 525 (1), 166185,  DOI: 10.1002/cne.24054
    84. 84
      Rotaru, D. C.; Barrionuevo, G.; Sesack, S. R. Mediodorsal Thalamic Afferents to Layer III of the Rat Prefrontal Cortex: Synaptic Relationships to Subclasses of Interneurons. Journal of Comparative Neurology 2005, 490 (3), 220238,  DOI: 10.1002/cne.20661
    85. 85
      Van der Werf, Y. D.; Witter, M. P.; Groenewegen, H. J. The Intralaminar and Midline Nuclei of the Thalamus. Anatomical and Functional Evidence for Participation in Processes of Arousal and Awareness. Brain Research Reviews 2002, 39 (2), 107140,  DOI: 10.1016/S0165-0173(02)00181-9
    86. 86
      Pepin, E. P.; Auray-Pepin, L. Selective Dorsolateral Frontal Lobe Dysfunction Associated with Diencephalic Amnesia. Neurology 1993, 43 (4), 733733,  DOI: 10.1212/WNL.43.4.733
    87. 87
      McGilchrist, I.; Goldstein, L. H.; Jadresic, D.; Fenwick, P. Thalamo-Frontal Psychosis. British Journal of Psychiatry 1993, 163 (1), 113115,  DOI: 10.1192/bjp.163.1.113
    88. 88
      Mitchell, A. S.; Baxter, M. G.; Gaffan, D. Dissociable Performance on Scene Learning and Strategy Implementation after Lesions to Magnocellular Mediodorsal Thalamic Nucleus. J. Neurosci. 2007, 27 (44), 1188811895,  DOI: 10.1523/JNEUROSCI.1835-07.2007
    89. 89
      Parnaudeau, S.; O’Neill, P.-K.; Bolkan, S. S.; Ward, R. D.; Abbas, A. I.; Roth, B. L.; Balsam, P. D.; Gordon, J. A.; Kellendonk, C. Inhibition of Mediodorsal Thalamus Disrupts Thalamofrontal Connectivity and Cognition. Neuron 2013, 77 (6), 11511162,  DOI: 10.1016/j.neuron.2013.01.038
    90. 90
      Floresco, S. B.; Braaksma, D. N.; Phillips, A. G. Thalamic-Cortical-Striatal Circuitry Subserves Working Memory during Delayed Responding on a Radial Arm Maze. J. Neurosci. 1999, 19 (24), 1106111071,  DOI: 10.1523/JNEUROSCI.19-24-11061.1999
    91. 91
      Ferguson, B. R.; Gao, W.-J. Development of Thalamocortical Connections between the Mediodorsal Thalamus and the Prefrontal Cortex and Its Implication in Cognition. Frontiers in Human Neuroscience 2015, 8, 1027,  DOI: 10.3389/fnhum.2014.01027
    92. 92
      Vitalis, T.; Parnavelas, J. G. The Role of Serotonin in Early Cortical Development. Developmental Neuroscience 2003, 25 (2–4), 245256,  DOI: 10.1159/000072272
    93. 93
      Lebrand, C.; Cases, O.; Adelbrecht, C.; Doye, A.; Alvarez, C.; El Mestikawy, S.; Seif, I.; Gaspar, P. Transient Uptake and Storage of Serotonin in Developing Thalamic Neurons. Neuron 1996, 17 (5), 823835,  DOI: 10.1016/S0896-6273(00)80215-9
    94. 94
      Homberg, J. R.; Schubert, D.; Gaspar, P. New Perspectives on the Neurodevelopmental Effects of SSRIs. Trends Pharmacol. Sci. 2010, 31 (2), 6065,  DOI: 10.1016/j.tips.2009.11.003
    95. 95
      Narboux-Nême, N.; Pavone, L. M.; Avallone, L.; Zhuang, X.; Gaspar, P. Serotonin Transporter Transgenic (SERTcre) Mouse Line Reveals Developmental Targets of Serotonin Specific Reuptake Inhibitors (SSRIs). Neuropharmacology 2008, 55 (6), 9941005,  DOI: 10.1016/j.neuropharm.2008.08.020
    96. 96
      Lebrand, C.; Cases, O.; Wehrlé, R.; Blakely, R. D.; Edwards, R. H.; Gaspar, P. Transient Developmental Expression of Monoamine Transporters in the Rodent Forebrain. Journal of Comparative Neurology 1998, 401 (4), 506524,  DOI: 10.1002/(SICI)1096-9861(19981130)401:4<506::AID-CNE5>3.0.CO;2-#
    97. 97
      Soiza-Reilly, M.; Meye, F. J.; Olusakin, J.; Telley, L.; Petit, E.; Chen, X.; Mameli, M.; Jabaudon, D.; Sze, J.-Y.; Gaspar, P. SSRIs Target Prefrontal to Raphe Circuits during Development Modulating Synaptic Connectivity and Emotional Behavior. Mol. Psychiatry 2019, 24 (5), 726745,  DOI: 10.1038/s41380-018-0260-9
    98. 98
      Verney, C.; Lebrand, C.; Gaspar, P. Changing Distribution of Monoaminergic Markers in the Developing Human Cerebral Cortex with Special Emphasis on the Serotonin Transporter. Anatomical Record 2002, 267 (2), 8793,  DOI: 10.1002/ar.10089
    99. 99
      Olusakin, J.; Moutkine, I.; Dumas, S.; Ponimaskin, E.; Paizanis, E.; Soiza-Reilly, M.; Gaspar, P. Implication of 5-HT7 Receptor in Prefrontal Circuit Assembly and Detrimental Emotional Effects of SSRIs during Development. Neuropsychopharmacol. 2020, 45 (13), 22672277,  DOI: 10.1038/s41386-020-0775-z
    100. 100
      Chen, X.; Petit, E. I.; Dobrenis, K.; Sze, J. Y. Spatiotemporal SERT Expression in Cortical Map Development. Neurochem. Int. 2016, 98, 129137,  DOI: 10.1016/j.neuint.2016.05.010
    101. 101
      Cases, O.; Vitalis, T.; Seif, I.; De Maeyer, E.; Sotelo, C.; Gaspar, P. Lack of Barrels in the Somatosensory Cortex of Monoamine Oxidase A-Deficient Mice: Role of a Serotonin Excess during the Critical Period. Neuron 1996, 16 (2), 297307,  DOI: 10.1016/S0896-6273(00)80048-3
    102. 102
      van Kleef, E. S. B.; Gaspar, P.; Bonnin, A. Insights into the Complex Influence of 5-HT Signaling on Thalamocortical Axonal System Development. Eur. J. Neurosci 2012, 35 (10), 15631572,  DOI: 10.1111/j.1460-9568.2012.8096.x
    103. 103
      Marek, G. J.; Wright, R. A.; Gewirtz, J. C.; Schoepp, D. D. A Major Role for Thalamocortical Afferents in Serotonergic Hallucinogen Receptor Function in the Rat Neocortex. Neuroscience 2001, 105 (2), 379392,  DOI: 10.1016/S0306-4522(01)00199-3
    104. 104
      Barre, A.; Berthoux, C.; De Bundel, D.; Valjent, E.; Bockaert, J.; Marin, P.; Bécamel, C. Presynaptic Serotonin 2A Receptors Modulate Thalamocortical Plasticity and Associative Learning. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (10), E1382-E1391  DOI: 10.1073/pnas.1525586113
    105. 105
      Martín-Ruiz, R.; Puig, M. V.; Celada, P.; Shapiro, D. A.; Roth, B. L.; Mengod, G.; Artigas, F. Control of Serotonergic Function in Medial Prefrontal Cortex by Serotonin-2A Receptors through a Glutamate-Dependent Mechanism. J. Neurosci. 2001, 21 (24), 98569866,  DOI: 10.1523/JNEUROSCI.21-24-09856.2001
    106. 106
      Ouhaz, Z.; Ba-M’hamed, S.; Mitchell, A. S.; Elidrissi, A.; Bennis, M. Behavioral and Cognitive Changes after Early Postnatal Lesions of the Rat Mediodorsal Thalamus. Behavioural Brain Research 2015, 292, 219232,  DOI: 10.1016/j.bbr.2015.06.017
    107. 107
      Ouhaz, Z.; Ba-M’hamed, S.; Bennis, M. Morphological, Structural, and Functional Alterations of the Prefrontal Cortex and the Basolateral Amygdala after Early Lesion of the Rat Mediodorsal Thalamus. Brain Struct Funct 2017, 222 (6), 25272545,  DOI: 10.1007/s00429-016-1354-2
    108. 108
      Ansorge, M. S.; Zhou, M.; Lira, A.; Hen, R.; Gingrich, J. A. Early-Life Blockade of the 5-HT Transporter Alters Emotional Behavior in Adult Mice. Science 2004, 306 (5697), 879881,  DOI: 10.1126/science.1101678
    109. 109
      Teissier, A.; Le Magueresse, C.; Olusakin, J.; Andrade da Costa, B. L. S.; De Stasi, A. M.; Bacci, A.; Imamura Kawasawa, Y.; Vaidya, V. A.; Gaspar, P. Early-Life Stress Impairs Postnatal Oligodendrogenesis and Adult Emotional Behaviour through Activity-Dependent Mechanisms. Mol. Psychiatry 2020, 25 (6), 11591174,  DOI: 10.1038/s41380-019-0493-2
    110. 110
      Kiser, D.; Steemers, B.; Branchi, I.; Homberg, J. R. The Reciprocal Interaction between Serotonin and Social Behaviour. Neuroscience & Biobehavioral Reviews 2012, 36 (2), 786798,  DOI: 10.1016/j.neubiorev.2011.12.009
    111. 111
      Canli, T.; Lesch, K.-P. Long Story Short: The Serotonin Transporter in Emotion Regulation and Social Cognition. Nat. Neurosci 2007, 10 (9), 11031109,  DOI: 10.1038/nn1964
    112. 112
      Homberg, J. R.; Schiepers, O. J. G.; Schoffelmeer, A. N. M.; Cuppen, E.; Vanderschuren, L. J. M. J. Acute and Constitutive Increases in Central Serotonin Levels Reduce Social Play Behaviour in Peri-Adolescent Rats. Psychopharmacology 2007, 195 (2), 175182,  DOI: 10.1007/s00213-007-0895-8