Not Just a Mood Disorder─Is Depression a Neurodevelopmental, Cognitive Disorder? Focus on Prefronto-Thalamic CircuitsClick to copy article linkArticle link copied!
- Nina Nitzan SotoNina Nitzan SotoICM−Paris Brain Institute, CNRS, INSERM, Sorbonne Université, 47 Boulevard de l’Hopital, 75013 Paris, FranceMore by Nina Nitzan Soto
- Patricia GasparPatricia GasparICM−Paris Brain Institute, CNRS, INSERM, Sorbonne Université, 47 Boulevard de l’Hopital, 75013 Paris, FranceMore by Patricia Gaspar
- Alberto Bacci*Alberto Bacci*Email: [email protected]ICM−Paris Brain Institute, CNRS, INSERM, Sorbonne Université, 47 Boulevard de l’Hopital, 75013 Paris, FranceMore by Alberto Bacci
Abstract
Depression is one of the most burdensome psychiatric disorders, affecting hundreds of millions of people worldwide. The disease is characterized not only by severe emotional and affective impairments, but also by disturbed vegetative and cognitive functions. Although many candidate mechanisms have been proposed to cause the disease, the pathophysiology of cognitive impairments in depression remains unclear. In this article, we aim to assess the link between cognitive alterations in depression and possible developmental changes in neuronal circuit wiring during critical periods of susceptibility. We review the existing literature and propose a role of serotonin signaling during development in shaping the functional states of prefrontal neuronal circuits and prefronto-thalamic loops. We discuss how early life insults affecting the serotonergic system could be important in the alterations of these local and long-range circuits, thus favoring the emergence of neurodevelopmental disorders, such as depression.
This publication is licensed under
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
Special Issue
Published as part of ACS Chemical Neuroscience virtual special issue “Serotonin Research 2023”.
Neurobiology of Depression─Genetic Factors, Circuitry, and Treatment
Prefronto-Thalamic Loops in Depression
Anatomy of the MD
Connectivity of the MD
Depression─A Developmental Disorder?
What is the Significance of This Developmental Window Leading to Maldevelopment of Neural Circuits Involved in Neuropsychiatric Disorders as Depression?
Conclusions and Future Directions
Acknowledgments
NS is supported by the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 953327; Serotonin & Beyond). We thank Angela Michela De Stasi for her insightful comments on a previous version of this manuscript. We also thank Neta Soto and Ana Marta Capaz for their help in creating the graphic which accompanies this manuscript.
References
This article references 112 other publications.
- 1World Health Organization (WHO). The ICD-10 Classification of Mental and Behavioural Disorders; World Health Organization, 2023.Google ScholarThere is no corresponding record for this reference.
- 2American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association Publishing, 2013; Vol. 5.Google ScholarThere is no corresponding record for this reference.
- 3Conradi, H. J.; Ormel, J.; de Jonge, P. Presence of Individual (Residual) Symptoms during Depressive Episodes and Periods of Remission: A 3-Year Prospective Study. Psychological Medicine 2011, 41 (6), 1165– 1174, DOI: 10.1017/S0033291710001911Google ScholarThere is no corresponding record for this reference.
- 4Romera, I.; Perez, V.; Menchón, J. M.; Delgado-Cohen, H.; Polavieja, P.; Gilaberte, I. Social and Occupational Functioning Impairment in Patients in Partial versus Complete Remission of a Major Depressive Disorder Episode. A Six-Month Prospective Epidemiological Study. European Psychiatry 2010, 25 (1), 58– 65, DOI: 10.1016/j.eurpsy.2009.02.007Google ScholarThere is no corresponding record for this reference.
- 5Paykel, E. S. Partial Remission, Residual Symptoms, and Relapse in Depression. Dialogues in Clinical Neuroscience 2008, 10 (4), 431– 437, DOI: 10.31887/DCNS.2008.10.4/espaykelGoogle ScholarThere is no corresponding record for this reference.
- 6Souery, D.; Rivelli, S. K.; Mendlewicz, J. Molecular Genetic and Family Studies in Affective Disorders: State of the Art. Journal of Affective Disorders 2001, 62 (1), 45– 55, DOI: 10.1016/S0165-0327(00)00350-5Google ScholarThere is no corresponding record for this reference.
- 7Malhi, G. S.; Moore, J.; McGuffin, P. The Genetics of Major Depressive Disorder. Curr. Psychiatry Rep 2000, 2 (2), 165– 169, DOI: 10.1007/s11920-000-0062-yGoogle ScholarThere is no corresponding record for this reference.
- 8Fava, M.; Kendler, K. S. Major Depressive Disorder. Neuron 2000, 28 (2), 335– 341, DOI: 10.1016/S0896-6273(00)00112-4Google ScholarThere is no corresponding record for this reference.
- 9Ho, L. W.; Furlong, R. A.; Rubinsztein, J. S.; Walsh, C.; Paykel, E. S.; Rubinsztein, D. C. Genetic Associations with Clinical Characteristics in Bipolar Affective Disorder and Recurrent Unipolar Depressive Disorder. American Journal of Medical Genetics 2000, 96 (1), 36– 42, DOI: 10.1002/(SICI)1096-8628(20000207)96:1<36::AID-AJMG8>3.0.CO;2-6Google ScholarThere is no corresponding record for this reference.
- 10Brigitta, B. Pathophysiology of Depression and Mechanisms of Treatment. Dialogues in Clinical Neuroscience 2002, 4 (1), 7– 20, DOI: 10.31887/DCNS.2002.4.1/bbondyGoogle ScholarThere is no corresponding record for this reference.
- 11Lesch, K.-P.; Balling, U.; Gross, J.; Strauss, K.; Wolozin, B. L.; Murphy, D. L.; Riederer, P. Organization of the Human Serotonin Transporter Gene. J. Neural Transmission 1994, 95 (2), 157– 162, DOI: 10.1007/BF01276434Google ScholarThere is no corresponding record for this reference.
- 12Lesch, K. P.; Meyer, J.; Glatz, K.; Flügge, G.; Hinney, A.; Hebebrand, J.; Klauck, S. M.; Poustka, A.; Poustka, F.; Bengel, D.; Mössner, R.; Riederer, P.; Heils, A. The 5-HT Transporter Gene-Linked Polymorphic Region (5-HTTLPR) in Evolutionary Perspective: Alternative Biallelic Variation in Rhesus Monkeys. J. Neural Transmission 1997, 104 (11), 1259– 1266, DOI: 10.1007/BF01294726Google ScholarThere is no corresponding record for this reference.
- 13Ogilvie, A. D.; Battersby, S.; Fink, G.; Harmar, A. J.; Goodwin, G. M.; Bubb, V. J.; Dale Smith, C. A. Polymorphism in Serotonin Transporter Gene Associated with Susceptibility to Major Depression. Lancet 1996, 347 (9003), 731– 733, DOI: 10.1016/S0140-6736(96)90079-3Google ScholarThere is no corresponding record for this reference.
- 14Heinz, A.; Braus, D. F.; Smolka, M. N.; Wrase, J.; Puls, I.; Hermann, D.; Klein, S.; Grüsser, S. M.; Flor, H.; Schumann, G.; Mann, K.; Büchel, C. Amygdala-Prefrontal Coupling Depends on a Genetic Variation of the Serotonin Transporter. Nat. Neurosci 2005, 8 (1), 20– 21, DOI: 10.1038/nn1366Google ScholarThere is no corresponding record for this reference.
- 15Lesch, K. P. Gene-Environment Interaction and the Genetics of Depression. Journal of Psychiatry and Neuroscience 2004, 29 (3), 174– 184Google ScholarThere is no corresponding record for this reference.
- 16Caspi, A.; Sugden, K.; Moffitt, T. E.; Taylor, A.; Craig, I. W.; Harrington, H.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; Poulton, R. Influence of Life Stress on Depression: Moderation by a Polymorphism in the 5-HTT Gene. Science 2003, 301 (5631), 386– 389, DOI: 10.1126/science.1083968Google ScholarThere is no corresponding record for this reference.
- 17Sjöberg, R. L.; Nilsson, K. W.; Nordquist, N.; Öhrvik, J.; Leppert, J.; Lindström, L.; Oreland, L. Development of Depression: Sex and the Interaction between Environment and a Promoter Polymorphism of the Serotonin Transporter Gene. International Journal of Neuropsychopharmacology 2006, 9 (4), 443– 449, DOI: 10.1017/S1461145705005936Google ScholarThere is no corresponding record for this reference.
- 18Palma-Gudiel, H.; Fañanás, L. An Integrative Review of Methylation at the Serotonin Transporter Gene and Its Dialogue with Environmental Risk Factors, Psychopathology and 5-HTTLPR. Neuroscience & Biobehavioral Reviews 2017, 72, 190– 209, DOI: 10.1016/j.neubiorev.2016.11.011Google ScholarThere is no corresponding record for this reference.
- 19Rebello, T. J.; Yu, Q.; Goodfellow, N. M.; Caffrey Cagliostro, M. K.; Teissier, A.; Morelli, E.; Demireva, E. Y.; Chemiakine, A.; Rosoklija, G. B.; Dwork, A. J.; Lambe, E. K.; Gingrich, J. A.; Ansorge, M. S. Postnatal Day 2 to 11 Constitutes a 5-HT-Sensitive Period Impacting Adult mPFC Function. J. Neurosci. 2014, 34 (37), 12379– 12393, DOI: 10.1523/JNEUROSCI.1020-13.2014Google Scholar19https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXhs1yjs7jK&md5=5c2aec59dd3e9c1d2b865d6e0d5ef4b0Postnatal day 2 to 11 constitutes a 5-HT-sensitive period impacting adult mPFC functionRebello, Tahilia J.; Yu, Qinghui; Goodfellow, Nathalie M.; Cagliostro, Martha K. Caffrey; Teissier, Anne; Morelli, Emanuela; Demireva, Elena Y.; Chemiakine, Alexei; Rosoklija, Gorazd B.; Dwork, Andrew J.; Lambe, Evelyn K.; Gingrich, Jay A.; Ansorge, Mark S.Journal of Neuroscience (2014), 34 (37), 12379-12393, 15 pp.CODEN: JNRSDS; ISSN:0270-6474. (Society for Neuroscience)Early-life serotonin [5-hydroxytryptamine (5-HT)] signaling modulates brain development, which impacts adult behavior, but 5-HT-sensitive periods, neural substrates, and behavioral consequences remain poorly understood. Here we identify the period ranging from postnatal day 2 (P2) to P11 as 5-HT sensitive, with 5-HT transporter (5-HTT) blockade increasing anxiety- and depression-like behavior, and impairing fear extinction learning and memory in adult mice. Concomitantly, P2-P11 5-HTT blockade causes dendritic hypotrophy and reduced excitability of infralimbic (IL) cortex pyramidal neurons that normally promote fear extinction. By contrast, the neighboring prelimbic (PL) pyramidal neurons, which normally inhibit fear extinction, become more excitable. Excitotoxic IL but not PL lesions in adult control mice reproduce the anxiety-related phenotypes. These findings suggest that increased 5-HT signaling during P2-P11 alters adult medial prefrontal cortex (mPFC) function to increase anxiety and impair fear extinction, and imply a differential role for IL and PL neurons in regulating affective behaviors. Together, our results support a developmental mechanism for the etiol. and pathophysiol. of affective disorders and fear-related behaviors.
- 20Gaspar, P.; Cases, O.; Maroteaux, L. The Developmental Role of Serotonin: News from Mouse Molecular Genetics. Nat. Rev. Neurosci 2003, 4 (12), 1002– 1012, DOI: 10.1038/nrn1256Google Scholar20https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3sXovFeit7s%253D&md5=069949035d1130ebbd687327ad31dd76The developmental role of serotonin: News from mouse molecular geneticsGaspar, Patricia; Cases, Olivier; Maroteaux, LucNature Reviews Neuroscience (2003), 4 (12), 1002-1012CODEN: NRNAAN; ISSN:1471-003X. (Nature Publishing Group)A review. New genetic models that target the serotonin system show that transient alterations in serotonin homeostasis cause permanent changes to adult behavior and modify the fine wiring of brain connections. These findings have revived a long-standing interest in the developmental role of serotonin. Mol. genetic approaches are now showing the authors that different serotonin receptors, acting at different developmental stages, modulate different developmental processes such as neurogenesis, apoptosis, axon branching and dendritogenesis. The authors' understanding of the specification of the serotonergic phenotype is improving. In addn., studies have revealed that serotonergic traits are dissociable, as there are populations of neurons that contain serotonin but do not synthesize it.
- 21Drevets, W. C. Neuroimaging and Neuropathological Studies of Depression: Implications for the Cognitive-Emotional Features of Mood Disorders. Current Opinion in Neurobiology 2001, 11 (2), 240– 249, DOI: 10.1016/S0959-4388(00)00203-8Google ScholarThere is no corresponding record for this reference.
- 22Drevets, W. C.; Price, J. L.; Furey, M. L. Brain Structural and Functional Abnormalities in Mood Disorders: Implications for Neurocircuitry Models of Depression. Brain Struct Funct 2008, 213 (1), 93– 118, DOI: 10.1007/s00429-008-0189-xGoogle ScholarThere is no corresponding record for this reference.
- 23Liotti, M.; Mayberg, H. S. The Role of Functional Neuroimaging in the Neuropsychology of Depression. Journal of Clinical and Experimental Neuropsychology 2001, 23 (1), 121– 136, DOI: 10.1076/jcen.23.1.121.1223Google ScholarThere is no corresponding record for this reference.
- 24Rajkowska, G. Histopathology of the Prefrontal Cortex in Major Depression: What Does It Tell Us about Dysfunctional Monoaminergic Circuits?. Progress in Brain Research 2000, 126, 397– 412, DOI: 10.1016/S0079-6123(00)26026-3Google ScholarThere is no corresponding record for this reference.
- 25Moriguchi, S.; Yamada, M.; Takano, H.; Nagashima, T.; Takahata, K.; Yokokawa, K.; Ito, T.; Ishii, T.; Kimura, Y.; Zhang, M.-R.; Mimura, M.; Suhara, T. Norepinephrine Transporter in Major Depressive Disorder: A PET Study. AJP 2017, 174 (1), 36– 41, DOI: 10.1176/appi.ajp.2016.15101334Google ScholarThere is no corresponding record for this reference.
- 26Young, K. A.; Holcomb, L. A.; Yazdani, U.; Hicks, P. B.; German, D. C. Elevated Neuron Number in the Limbic Thalamus in Major Depression. AJP 2004, 161 (7), 1270– 1277, DOI: 10.1176/appi.ajp.161.7.1270Google ScholarThere is no corresponding record for this reference.
- 27Willard, S. L.; Riddle, D. R.; Forbes, M. E.; Shively, C. A. Cell Number and Neuropil Alterations in Subregions of the Anterior Hippocampus in a Female Monkey Model of Depression. Biol. Psychiatry 2013, 74 (12), 890– 897, DOI: 10.1016/j.biopsych.2013.03.013Google ScholarThere is no corresponding record for this reference.
- 28Ayuob, N. N.; Balgoon, M. J. Histological and Molecular Techniques Utilized to Investigate Animal Models of Depression. An Updated Review. Microscopy Research and Technique 2018, 81 (10), 1143– 1153, DOI: 10.1002/jemt.23105Google ScholarThere is no corresponding record for this reference.
- 29Aten, S.; Du, Y.; Taylor, O.; Dye, C.; Collins, K.; Thomas, M.; Kiyoshi, C.; Zhou, M. Chronic Stress Impairs the Structure and Function of Astrocyte Networks in an Animal Model of Depression. Neurochem. Res. 2023, 48 (4), 1191– 1210, DOI: 10.1007/s11064-022-03663-4Google ScholarThere is no corresponding record for this reference.
- 30Höflich, A.; Michenthaler, P.; Kasper, S.; Lanzenberger, R. Circuit Mechanisms of Reward, Anhedonia, and Depression. International Journal of Neuropsychopharmacology 2019, 22 (2), 105– 118, DOI: 10.1093/ijnp/pyy081Google ScholarThere is no corresponding record for this reference.
- 31Bao, A.-M.; Swaab, D. F. The Human Hypothalamus in Mood Disorders: The HPA Axis in the Center. IBRO Reports 2019, 6, 45– 53, DOI: 10.1016/j.ibror.2018.11.008Google ScholarThere is no corresponding record for this reference.
- 32Ouhaz, Z.; Fleming, H.; Mitchell, A. S. Cognitive Functions and Neurodevelopmental Disorders Involving the Prefrontal Cortex and Mediodorsal Thalamus. Frontiers in Neuroscience 2018, 12, 33, DOI: 10.3389/fnins.2018.00033Google ScholarThere is no corresponding record for this reference.
- 33Chancellor, D. The Depression Market. Nat. Rev. Drug Discovery 2011, 10 (11), 809– 810, DOI: 10.1038/nrd3585Google Scholar33https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3MXhtlyisL%252FK&md5=5bd5c30aaa7a962c83f812dcfb8724ecThe depression marketChancellor, DanielNature Reviews Drug Discovery (2011), 10 (11), 809-810CODEN: NRDDAG; ISSN:1474-1776. (Nature Publishing Group)There is no expanded citation for this reference.
- 34Krishnan, V.; Nestler, E. J. The Molecular Neurobiology of Depression. Nature 2008, 455 (7215), 894– 902, DOI: 10.1038/nature07455Google Scholar34https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1cXht1GgurrE&md5=bed2e4ae1259f3670459ddaf2dbd3057The molecular neurobiology of depressionKrishnan, Vaishnav; Nestler, Eric J.Nature (London, United Kingdom) (2008), 455 (7215), 894-902CODEN: NATUAS; ISSN:0028-0836. (Nature Publishing Group)A review. Unraveling the pathophysiol. of depression is a unique challenge. Not only are depressive syndromes heterogeneous and their etiologies diverse, but symptoms such as guilt and suicidality are impossible to reproduce in animal models. Nevertheless, other symptoms have been accurately modeled, and these, together with clin. data, are providing insight into the neurobiol. of depression. Recent studies combining behavioral, mol. and electrophysiol. techniques reveal that certain aspects of depression result from maladaptive stress-induced neuroplastic changes in specific neural circuits. They also show that understanding the mechanisms of resilience to stress offers a crucial new dimension for the development of fundamentally novel antidepressant treatments.
- 35Schildkraut, J. J. The Catecholamine Hypothesis of Affective Disorders: A Review of Supporting Evidence. Am. J. Psychiatry 1965, 122 (5), 509– 522, DOI: 10.1176/ajp.122.5.509Google Scholar35https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADyaF28%252FhvFCgsg%253D%253D&md5=855a2c1958f76fcadbb05c946a26f06fThe catecholamine hypothesis of affective disorders: a review of supporting evidenceSchildkraut J JThe American journal of psychiatry (1965), 122 (5), 509-22 ISSN:0002-953X.There is no expanded citation for this reference.
- 36Woolley, D. W.; Shaw, E. A Biochemical and Pharmacological Suggestion about Certain Mental Disorders. Proc. Natl. Acad. Sci. U. S. A. 1954, 40 (4), 228– 231, DOI: 10.1073/pnas.40.4.228Google ScholarThere is no corresponding record for this reference.
- 37Mendels, J.; Stinnett, J. L.; Burns, D.; Frazer, A. Amine Precursors and Depression. Arch Gen Psychiatry 1975, 32 (1), 22– 30, DOI: 10.1001/archpsyc.1975.01760190024002Google ScholarThere is no corresponding record for this reference.
- 38Salomon, R. M.; Miller, H. L.; Krystal, J. H.; Heninger, G. R.; Charney, D. S. Lack of Behavioral Effects of Monoamine Depletion in Healthy Subjects. Biol. Psychiatry 1997, 41 (1), 58– 64, DOI: 10.1016/0006-3223(95)00670-2Google ScholarThere is no corresponding record for this reference.
- 39Moncrieff, J.; Cooper, R. E.; Stockmann, T.; Amendola, S.; Hengartner, M. P.; Horowitz, M. A. The Serotonin Theory of Depression: A Systematic Umbrella Review of the Evidence. Mol. Psychiatry 2023, 28, 1– 14, DOI: 10.1038/s41380-022-01661-0Google ScholarThere is no corresponding record for this reference.
- 40Jauhar, S.; Arnone, D.; Baldwin, D. S.; Bloomfield, M.; Browning, M.; Cleare, A. J.; Corlett, P.; Deakin, J. F. W.; Erritzoe, D.; Fu, C.; Fusar-Poli, P.; Goodwin, G. M.; Hayes, J.; Howard, R.; Howes, O. D.; Juruena, M. F.; Lam, R. W.; Lawrie, S. M.; McAllister-Williams, H.; Marwaha, S.; Matuskey, D.; McCutcheon, R. A.; Nutt, D. J.; Pariante, C.; Pillinger, T.; Radhakrishnan, R.; Rucker, J.; Selvaraj, S.; Stokes, P.; Upthegrove, R.; Yalin, N.; Yatham, L.; Young, A. H.; Zahn, R.; Cowen, P. J. A Leaky Umbrella Has Little Value: Evidence Clearly Indicates the Serotonin System Is Implicated in Depression. Mol. Psychiatry 2023, 28 (8), 1– 4, DOI: 10.1038/s41380-023-02095-yGoogle ScholarThere is no corresponding record for this reference.
- 41Koch, J. M.; Hinze-Selch, D.; Stingele, K.; Huchzermeier, C.; Göder, R.; Seeck-Hirschner, M.; Aldenhoff, J. B. Changes in CREB Phosphorylation and BDNF Plasma Levels during Psychotherapy of Depression. Psychotherapy and Psychosomatics 2009, 78 (3), 187– 192, DOI: 10.1159/000209350Google ScholarThere is no corresponding record for this reference.
- 42Blendy, J. A. The Role of CREB in Depression and Antidepressant Treatment. Biol. Psychiatry 2006, 59 (12), 1144– 1150, DOI: 10.1016/j.biopsych.2005.11.003Google ScholarThere is no corresponding record for this reference.
- 43Arosio, B.; Guerini, F. R.; Voshaar, R. C. O.; Aprahamian, I. Blood Brain-Derived Neurotrophic Factor (BDNF) and Major Depression: Do We Have a Translational Perspective?. Frontiers in Behavioral Neuroscience 2021, 15, 626906, DOI: 10.3389/fnbeh.2021.626906Google ScholarThere is no corresponding record for this reference.
- 44Thompson, S. M.; Kallarackal, A. J.; Kvarta, M. D.; Van Dyke, A. M.; LeGates, T. A.; Cai, X. An Excitatory Synapse Hypothesis of Depression. Trends in Neurosciences 2015, 38 (5), 279– 294, DOI: 10.1016/j.tins.2015.03.003Google ScholarThere is no corresponding record for this reference.
- 45Kaster, M. P.; Moretti, M.; Cunha, M. P.; Rodrigues, A. L. S. Novel Approaches for the Management of Depressive Disorders. Eur. J. Pharmacol. 2016, 771, 236– 240, DOI: 10.1016/j.ejphar.2015.12.029Google ScholarThere is no corresponding record for this reference.
- 46Salahudeen, M. S.; Wright, C. M.; Peterson, G. M. Esketamine: New Hope for the Treatment of Treatment-Resistant Depression? A Narrative Review. Therapeutic Advances in Drug Safety 2020, 11, 204209862093789, DOI: 10.1177/2042098620937899Google ScholarThere is no corresponding record for this reference.
- 47Fava, G. A.; Grandi, S.; Canestrari, R.; Molnar, G. Prodromal Symptoms in Primary Major Depressive Disorder. Journal of Affective Disorders 1990, 19 (2), 149– 152, DOI: 10.1016/0165-0327(90)90020-9Google ScholarThere is no corresponding record for this reference.
- 48Fava, G. A.; Tossani, E. Prodromal Stage of Major Depression. Early Intervention in Psychiatry 2007, 1 (1), 9– 18, DOI: 10.1111/j.1751-7893.2007.00005.xGoogle ScholarThere is no corresponding record for this reference.
- 49Kovacs, M.; Lopez-Duran, N. Prodromal Symptoms and Atypical Affectivity as Predictors of Major Depression in Juveniles: Implications for Prevention. Journal of Child Psychology and Psychiatry 2010, 51 (4), 472– 496, DOI: 10.1111/j.1469-7610.2010.02230.xGoogle ScholarThere is no corresponding record for this reference.
- 50Benasi, G.; Fava, G. A.; Guidi, J. Prodromal Symptoms in Depression: A Systematic Review. PPS 2021, 90 (6), 365– 372, DOI: 10.1159/000517953Google ScholarThere is no corresponding record for this reference.
- 51Benassi, M.; Garofalo, S.; Vitali, L.; Orsoni, M.; Sant’Angelo, R.; Raggini, R.; Piraccini, G. Bayesian Models to Explain Autistic Traits in Psychiatric Population. European Psychiatry 2021, 64 (S1), S239– S240, DOI: 10.1192/j.eurpsy.2021.642Google ScholarThere is no corresponding record for this reference.
- 52Birmaher, B.; Ryan, N. D.; Williamson, D. E.; Brent, D. A.; Kaufman, J.; Dahl, R. E.; Perel, J.; Nelson, B. Childhood and Adolescent Depression: A Review of the Past 10 Years. Part I. J. Am. Acad. Child Adolesc Psychiatry 1996, 35 (11), 1427– 1439, DOI: 10.1097/00004583-199611000-00011Google ScholarThere is no corresponding record for this reference.
- 53Turgay, A.; Ansari, R. Major Depression with ADHD. Psychiatry (Edgmont) 2006, 3 (4), 20– 32Google ScholarThere is no corresponding record for this reference.
- 54Biederman, J.; Ball, S. W.; Monuteaux, M. C.; Mick, E.; Spencer, T. J.; McCREARY, M.; Cote, M.; Faraone, S. V. New Insights Into the Comorbidity Between ADHD and Major Depression in Adolescent and Young Adult Females. Journal of the American Academy of Child & Adolescent Psychiatry 2008, 47 (4), 426– 434, DOI: 10.1097/CHI.0b013e31816429d3Google ScholarThere is no corresponding record for this reference.
- 55Beck, A. T. Cognitive Models of Depression. Journal of Cognitive Psychotherapy 1987, 1, 5– 37Google ScholarThere is no corresponding record for this reference.
- 56Beck, A. T. The Evolution of the Cognitive Model of Depression and Its Neurobiological Correlates. AJP 2008, 165 (8), 969– 977, DOI: 10.1176/appi.ajp.2008.08050721Google ScholarThere is no corresponding record for this reference.
- 57Miller, E. K.; Cohen, J. D. An Integrative Theory of Prefrontal Cortex Function. Annu. Rev. Neurosci. 2001, 24, 167– 202, DOI: 10.1146/annurev.neuro.24.1.167Google Scholar57https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3MXls1Shsro%253D&md5=a39ef06c1a11a94a0ff37aeebaf6e036An integrative theory of prefrontal cortex functionMiller, Earl K.; Cohen, Jonathan D.Annual Review of Neuroscience (2001), 24 (), 167-202CODEN: ARNSD5; ISSN:0147-006X. (Annual Reviews Inc.)The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task. We review neurophysiol., neurobiol., neuroimaging, and computational studies that support this theory and discuss its implications as well as further issues to be addressed.
- 58Mitchell, A. S. The Mediodorsal Thalamus as a Higher Order Thalamic Relay Nucleus Important for Learning and Decision-Making. Neuroscience & Biobehavioral Reviews 2015, 54, 76– 88, DOI: 10.1016/j.neubiorev.2015.03.001Google ScholarThere is no corresponding record for this reference.
- 59Mitchell, A.; Chakraborty, S. What Does the Mediodorsal Thalamus Do?. Frontiers in Systems Neuroscience 2013, 7, 37, DOI: 10.3389/fnsys.2013.00037Google ScholarThere is no corresponding record for this reference.
- 60Collins, D. P.; Anastasiades, P. G.; Marlin, J. J.; Carter, A. G. Reciprocal Circuits Linking the Prefrontal Cortex with Dorsal and Ventral Thalamic Nuclei. Neuron 2018, 98 (2), 366– 379, DOI: 10.1016/j.neuron.2018.03.024Google ScholarThere is no corresponding record for this reference.
- 61Halassa, M. M.; Kastner, S. Thalamic Functions in Distributed Cognitive Control. Nat. Neurosci 2017, 20 (12), 1669– 1679, DOI: 10.1038/s41593-017-0020-1Google ScholarThere is no corresponding record for this reference.
- 62Menon, V.; D’Esposito, M. The Role of PFC Networks in Cognitive Control and Executive Function. Neuropsychopharmacol. 2022, 47 (1), 90– 103, DOI: 10.1038/s41386-021-01152-wGoogle ScholarThere is no corresponding record for this reference.
- 63Hwang, K.; Bertolero, M. A.; Liu, W. B.; D’Esposito, M. The Human Thalamus Is an Integrative Hub for Functional Brain Networks. J. Neurosci. 2017, 37 (23), 5594– 5607, DOI: 10.1523/JNEUROSCI.0067-17.2017Google ScholarThere is no corresponding record for this reference.
- 64Mitchell, A. S.; Gaffan, D. The Magnocellular Mediodorsal Thalamus Is Necessary for Memory Acquisition, But Not Retrieval. J. Neurosci. 2008, 28 (1), 258– 263, DOI: 10.1523/JNEUROSCI.4922-07.2008Google ScholarThere is no corresponding record for this reference.
- 65Georgescu, I. A.; Popa, D.; Zagrean, L. The Anatomical and Functional Heterogeneity of the Mediodorsal Thalamus. Brain Sci. 2020, 10 (9), 624, DOI: 10.3390/brainsci10090624Google ScholarThere is no corresponding record for this reference.
- 66Morel, A.; Magnin, M.; Jeanmonod, D. Multiarchitectonic and Stereotactic Atlas of the Human Thalamus. J. Comp Neurol 1997, 387 (4), 588– 630, DOI: 10.1002/(SICI)1096-9861(19971103)387:4<588::AID-CNE8>3.0.CO;2-ZGoogle ScholarThere is no corresponding record for this reference.
- 67Ray, J. P.; Price, J. L. The Organization of Projections from the Mediodorsal Nucleus of the Thalamus to Orbital and Medial Prefrontal Cortex in Macaque Monkeys. Journal of Comparative Neurology 1993, 337 (1), 1– 31, DOI: 10.1002/cne.903370102Google ScholarThere is no corresponding record for this reference.
- 68Yuan, R.; Di, X.; Taylor, P. A.; Gohel, S.; Tsai, Y.-H.; Biswal, B. B. Functional Topography of the Thalamocortical System in Human. Brain Struct Funct 2016, 221 (4), 1971– 1984, DOI: 10.1007/s00429-015-1018-7Google ScholarThere is no corresponding record for this reference.
- 69Wolff, M.; Vann, S. D. The Cognitive Thalamus as a Gateway to Mental Representations. J. Neurosci. 2019, 39 (1), 3– 14, DOI: 10.1523/JNEUROSCI.0479-18.2018Google ScholarThere is no corresponding record for this reference.
- 70Schmitt, L. I.; Wimmer, R. D.; Nakajima, M.; Happ, M.; Mofakham, S.; Halassa, M. M. Thalamic Amplification of Cortical Connectivity Sustains Attentional Control. Nature 2017, 545 (7653), 219– 223, DOI: 10.1038/nature22073Google ScholarThere is no corresponding record for this reference.
- 71Groenewegen, H. J.; Berendse, H. W.; Wolters, J. G.; Lohman, A. H. The Anatomical Relationship of the Prefrontal Cortex with the Striatopallidal System, the Thalamus and the Amygdala: Evidence for a Parallel Organization. Prog. Brain Res. 1991, 85, 95– 116, DOI: 10.1016/S0079-6123(08)62677-1Google ScholarThere is no corresponding record for this reference.
- 72Halassa, M. M.; Sherman, S. M. Thalamocortical Circuit Motifs: A General Framework. Neuron 2019, 103 (5), 762– 770, DOI: 10.1016/j.neuron.2019.06.005Google ScholarThere is no corresponding record for this reference.
- 73Miyamoto, Y.; Jinnai, K. The Inhibitory Input from the Substantia Nigra to the Mediodorsal Nucleus Neurons Projecting to the Prefrontal Cortex in the Cat. Brain Res. 1994, 649 (1), 313– 318, DOI: 10.1016/0006-8993(94)91079-0Google ScholarThere is no corresponding record for this reference.
- 74Pergola, G.; Danet, L.; Pitel, A.-L.; Carlesimo, G. A.; Segobin, S.; Pariente, J.; Suchan, B.; Mitchell, A. S.; Barbeau, E. J. The Regulatory Role of the Human Mediodorsal Thalamus. Trends in Cognitive Sciences 2018, 22 (11), 1011– 1025, DOI: 10.1016/j.tics.2018.08.006Google ScholarThere is no corresponding record for this reference.
- 75Négyessy, L.; Hámori, J.; Bentivoglio, M. Contralateral Cortical Projection to the Mediodorsal Thalamic Nucleus: Origin and Synaptic Organization in the Rat. Neuroscience 1998, 84 (3), 741– 753, DOI: 10.1016/S0306-4522(97)00559-9Google ScholarThere is no corresponding record for this reference.
- 76Sherman, S. M.; Guillery, R. W. On the Actions That One Nerve Cell Can Have on Another: Distinguishing “Drivers” from “Modulators.. Proc. Natl. Acad. Sci. U. S. A. 1998, 95 (12), 7121– 7126, DOI: 10.1073/pnas.95.12.7121Google ScholarThere is no corresponding record for this reference.
- 77Sherman, S. M.; Guillery, R. W. Functional Connections of Cortical Areas: A New View from the Thalamus; MIT Press, 2013.Google ScholarThere is no corresponding record for this reference.
- 78Sherman, S. M.; Guillery, R. W. Exploring the Thalamus; Elsevier, 2001.Google ScholarThere is no corresponding record for this reference.
- 79Schwartz, M. L.; Dekker, J. J.; Goldman-Rakic, P. S. Dual Mode of Corticothalamic Synaptic Termination in the Mediodorsal Nucleus of the Rhesus Monkey. Journal of Comparative Neurology 1991, 309 (3), 289– 304, DOI: 10.1002/cne.903090302Google ScholarThere is no corresponding record for this reference.
- 80Crick, F. Function of the Thalamic Reticular Complex: The Searchlight Hypothesis. Proc. Natl. Acad. Sci. U. S. A. 1984, 81 (14), 4586– 4590, DOI: 10.1073/pnas.81.14.4586Google ScholarThere is no corresponding record for this reference.
- 81Wimmer, R. D.; Schmitt, L. I.; Davidson, T. J.; Nakajima, M.; Deisseroth, K.; Halassa, M. M. Thalamic Control of Sensory Selection in Divided Attention. Nature 2015, 526 (7575), 705– 709, DOI: 10.1038/nature15398Google ScholarThere is no corresponding record for this reference.
- 82Anastasiades, P. G.; Carter, A. G. Circuit Organization of the Rodent Medial Prefrontal Cortex. Trends in Neurosciences 2021, 44 (7), 550– 563, DOI: 10.1016/j.tins.2021.03.006Google ScholarThere is no corresponding record for this reference.
- 83Kuramoto, E.; Pan, S.; Furuta, T.; Tanaka, Y. R.; Iwai, H.; Yamanaka, A.; Ohno, S.; Kaneko, T.; Goto, T.; Hioki, H. Individual Mediodorsal Thalamic Neurons Project to Multiple Areas of the Rat Prefrontal Cortex: A Single Neuron-Tracing Study Using Virus Vectors. J. Comp Neurol 2017, 525 (1), 166– 185, DOI: 10.1002/cne.24054Google Scholar83https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADC%252BC2s%252FnsFKmtg%253D%253D&md5=05e4b6c87715b95c8f3550ebf1a7d56bIndividual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectorsKuramoto Eriko; Iwai Haruki; Yamanaka Atsushi; Goto Tetsuya; Pan Shixiu; Furuta Takahiro; Kaneko Takeshi; Hioki Hiroyuki; Tanaka Yasuhiro R; Ohno SachiThe Journal of comparative neurology (2017), 525 (1), 166-185 ISSN:.The prefrontal cortex has an important role in a variety of cognitive and executive processes, and is generally defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD). The rat MD is mainly subdivided into three segments, the medial (MDm), central (MDc), and lateral (MDl) divisions, on the basis of the cytoarchitecture and chemoarchitecture. The MD segments are known to topographically project to multiple prefrontal areas at the population level: the MDm mainly to the prelimbic, infralimbic, and agranular insular areas; the MDc to the orbital and agranular insular areas; and the MDl to the prelimbic and anterior cingulate areas. However, it is unknown whether individual MD neurons project to single or multiple prefrontal cortical areas. In the present study, we visualized individual MD neurons with Sindbis virus vectors, and reconstructed whole structures of MD neurons. While the main cortical projection targets of MDm, MDc, and MDl neurons were generally consistent with those of previous results, it was found that individual MD neurons sent their axon fibers to multiple prefrontal areas, and displayed various projection patterns in the target areas. Furthermore, the axons of single MD neurons were not homogeneously spread, but were rather distributed to form patchy axon arbors approximately 1 mm in diameter. The multiple-area projections and patchy axon arbors of single MD neurons might be able to coactivate cortical neuron groups in distant prefrontal areas simultaneously. Furthermore, considerable heterogeneity of the projection patterns is likely, to recruit the different sets of cortical neurons, and thus contributes to a variety of prefrontal functions. J. Comp. Neurol. 525:166-185, 2017. © 2016 Wiley Periodicals, Inc.
- 84Rotaru, D. C.; Barrionuevo, G.; Sesack, S. R. Mediodorsal Thalamic Afferents to Layer III of the Rat Prefrontal Cortex: Synaptic Relationships to Subclasses of Interneurons. Journal of Comparative Neurology 2005, 490 (3), 220– 238, DOI: 10.1002/cne.20661Google ScholarThere is no corresponding record for this reference.
- 85Van der Werf, Y. D.; Witter, M. P.; Groenewegen, H. J. The Intralaminar and Midline Nuclei of the Thalamus. Anatomical and Functional Evidence for Participation in Processes of Arousal and Awareness. Brain Research Reviews 2002, 39 (2), 107– 140, DOI: 10.1016/S0165-0173(02)00181-9Google ScholarThere is no corresponding record for this reference.
- 86Pepin, E. P.; Auray-Pepin, L. Selective Dorsolateral Frontal Lobe Dysfunction Associated with Diencephalic Amnesia. Neurology 1993, 43 (4), 733– 733, DOI: 10.1212/WNL.43.4.733Google ScholarThere is no corresponding record for this reference.
- 87McGilchrist, I.; Goldstein, L. H.; Jadresic, D.; Fenwick, P. Thalamo-Frontal Psychosis. British Journal of Psychiatry 1993, 163 (1), 113– 115, DOI: 10.1192/bjp.163.1.113Google ScholarThere is no corresponding record for this reference.
- 88Mitchell, A. S.; Baxter, M. G.; Gaffan, D. Dissociable Performance on Scene Learning and Strategy Implementation after Lesions to Magnocellular Mediodorsal Thalamic Nucleus. J. Neurosci. 2007, 27 (44), 11888– 11895, DOI: 10.1523/JNEUROSCI.1835-07.2007Google ScholarThere is no corresponding record for this reference.
- 89Parnaudeau, S.; O’Neill, P.-K.; Bolkan, S. S.; Ward, R. D.; Abbas, A. I.; Roth, B. L.; Balsam, P. D.; Gordon, J. A.; Kellendonk, C. Inhibition of Mediodorsal Thalamus Disrupts Thalamofrontal Connectivity and Cognition. Neuron 2013, 77 (6), 1151– 1162, DOI: 10.1016/j.neuron.2013.01.038Google ScholarThere is no corresponding record for this reference.
- 90Floresco, S. B.; Braaksma, D. N.; Phillips, A. G. Thalamic-Cortical-Striatal Circuitry Subserves Working Memory during Delayed Responding on a Radial Arm Maze. J. Neurosci. 1999, 19 (24), 11061– 11071, DOI: 10.1523/JNEUROSCI.19-24-11061.1999Google ScholarThere is no corresponding record for this reference.
- 91Ferguson, B. R.; Gao, W.-J. Development of Thalamocortical Connections between the Mediodorsal Thalamus and the Prefrontal Cortex and Its Implication in Cognition. Frontiers in Human Neuroscience 2015, 8, 1027, DOI: 10.3389/fnhum.2014.01027Google ScholarThere is no corresponding record for this reference.
- 92Vitalis, T.; Parnavelas, J. G. The Role of Serotonin in Early Cortical Development. Developmental Neuroscience 2003, 25 (2–4), 245– 256, DOI: 10.1159/000072272Google ScholarThere is no corresponding record for this reference.
- 93Lebrand, C.; Cases, O.; Adelbrecht, C.; Doye, A.; Alvarez, C.; El Mestikawy, S.; Seif, I.; Gaspar, P. Transient Uptake and Storage of Serotonin in Developing Thalamic Neurons. Neuron 1996, 17 (5), 823– 835, DOI: 10.1016/S0896-6273(00)80215-9Google ScholarThere is no corresponding record for this reference.
- 94Homberg, J. R.; Schubert, D.; Gaspar, P. New Perspectives on the Neurodevelopmental Effects of SSRIs. Trends Pharmacol. Sci. 2010, 31 (2), 60– 65, DOI: 10.1016/j.tips.2009.11.003Google ScholarThere is no corresponding record for this reference.
- 95Narboux-Nême, N.; Pavone, L. M.; Avallone, L.; Zhuang, X.; Gaspar, P. Serotonin Transporter Transgenic (SERTcre) Mouse Line Reveals Developmental Targets of Serotonin Specific Reuptake Inhibitors (SSRIs). Neuropharmacology 2008, 55 (6), 994– 1005, DOI: 10.1016/j.neuropharm.2008.08.020Google Scholar95https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1cXht1Knu7jL&md5=ded07278a4828aa53684c3a706049d07Serotonin transporter transgenic (SERTcre) mouse line reveals developmental targets of serotonin specific reuptake inhibitors (SSRIs)Narboux-Neme, Nicolas; Pavone, Luigi Michele; Avallone, Luigi; Zhuang, Xiaoxi; Gaspar, PatriciaNeuropharmacology (2008), 55 (6), 994-1005CODEN: NEPHBW; ISSN:0028-3908. (Elsevier B.V.)The serotonin transporter gene (SLC6A4; synonyms, SERT, 5-HTT) is expressed much more broadly during development than in adulthood. To obtain a full picture of all sites of SERT expression during development we used a new mouse model where Cre recombinase was inserted into the gene encoding the serotonin transporter. Two reporter mouse lines, ROSA26R and the TaumGFP, allowed to map all the cells that express SERT at any point during development. Combined LacZ histochem. and GFP immunolabelling showed neuronal cell bodies and axon fiber tracts. Earliest recombination in embryos was visible in the periphery in the heart and liver by E10.5 followed by recombination in the brain in raphe serotonergic neurons by E12.5. Further, recombination in non-serotonin neurons was visible in the choroid plexus, roof plate, and neural crest derivs.; by E15.5, recombination was found in the dorsal thalamus, cingulate cortex, CA3 field of the hippocampus, retinal ganglion cells, superior olivary nucleus and cochlear nucleus. Postnatally, SERT mediated recombination was visible in the medial prefrontal cortex and layer VI neurons in the isocortex. Recombined cells were co-labeled with Neu-N, but not with GAD67, and were characterized by long range projections (corpus callosum, fornix, thalamocortical). This fate map of serotonin transporter expressing cells emphasizes the broad expression of SERT in non-serotonin neurons during development and clarifies the localization of SERT expression in the hippocampus and limbic cortex. The identification of targets of SSRIs and serotonin releasers during embryonic and early postnatal life helps understanding the very diverse physiol. consequences of administration of these drugs during development.
- 96Lebrand, C.; Cases, O.; Wehrlé, R.; Blakely, R. D.; Edwards, R. H.; Gaspar, P. Transient Developmental Expression of Monoamine Transporters in the Rodent Forebrain. Journal of Comparative Neurology 1998, 401 (4), 506– 524, DOI: 10.1002/(SICI)1096-9861(19981130)401:4<506::AID-CNE5>3.0.CO;2-#Google ScholarThere is no corresponding record for this reference.
- 97Soiza-Reilly, M.; Meye, F. J.; Olusakin, J.; Telley, L.; Petit, E.; Chen, X.; Mameli, M.; Jabaudon, D.; Sze, J.-Y.; Gaspar, P. SSRIs Target Prefrontal to Raphe Circuits during Development Modulating Synaptic Connectivity and Emotional Behavior. Mol. Psychiatry 2019, 24 (5), 726– 745, DOI: 10.1038/s41380-018-0260-9Google Scholar97https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC1cXhvVCqt7jM&md5=af431ad4d76e27c5c77d2f096e61b8e6SSRIs target prefrontal to raphe circuits during development modulating synaptic connectivity and emotional behaviorSoiza-Reilly, M.; Meye, F. J.; Olusakin, J.; Telley, L.; Petit, E.; Chen, X.; Mameli, M.; Jabaudon, D.; Sze, J.-Y.; Gaspar, P.Molecular Psychiatry (2019), 24 (5), 726-745CODEN: MOPSFQ; ISSN:1359-4184. (Nature Research)Antidepressants that block the serotonin transporter, (Slc6a4/SERT), selective serotonin reuptake inhibitors (SSRIs) improve mood in adults but have paradoxical long-term effects when administered during perinatal periods, increasing the risk to develop anxiety and depression. The basis for this developmental effect is not known. Here, we show that during an early postnatal period in mice (P0-P10), Slc6a4/SERT is transiently expressed in a subset of layer 5-6 pyramidal neurons of the prefrontal cortex (PFC). PFC-SERT+ neurons establish glutamatergic synapses with subcortical targets, including the serotonin (5-HT) and GABA neurons of the dorsal raphe nucleus (DRN). PFC-to-DRN circuits develop postnatally, coinciding with the period of PFC Slc6a4/SERT expression. Complete or cortex-specific ablation of SERT increases the no. of functional PFC glutamate synapses on both 5-HT and GABA neurons in the DRN. This PFC-to-DRN hyperinnervation is replicated by early-life exposure to the SSRI, fluoxetine (from P2 to P14), that also causes anxiety/depressive-like symptoms. We show that pharmacogenetic manipulation of PFC-SERT+ neuron activity bidirectionally modulates these symptoms, suggesting that PFC hypofunctionality has a causal role in these altered responses to stress. Overall, our data identify specific PFC descending circuits that are targets of antidepressant drugs during development. We demonstrate that developmental expression of SERT in this subset of PFC neurons controls synaptic maturation of PFC-to-DRN circuits, and that remodeling of these circuits in early life modulates behavioral responses to stress in adulthood.
- 98Verney, C.; Lebrand, C.; Gaspar, P. Changing Distribution of Monoaminergic Markers in the Developing Human Cerebral Cortex with Special Emphasis on the Serotonin Transporter. Anatomical Record 2002, 267 (2), 87– 93, DOI: 10.1002/ar.10089Google ScholarThere is no corresponding record for this reference.
- 99Olusakin, J.; Moutkine, I.; Dumas, S.; Ponimaskin, E.; Paizanis, E.; Soiza-Reilly, M.; Gaspar, P. Implication of 5-HT7 Receptor in Prefrontal Circuit Assembly and Detrimental Emotional Effects of SSRIs during Development. Neuropsychopharmacol. 2020, 45 (13), 2267– 2277, DOI: 10.1038/s41386-020-0775-zGoogle ScholarThere is no corresponding record for this reference.
- 100Chen, X.; Petit, E. I.; Dobrenis, K.; Sze, J. Y. Spatiotemporal SERT Expression in Cortical Map Development. Neurochem. Int. 2016, 98, 129– 137, DOI: 10.1016/j.neuint.2016.05.010Google ScholarThere is no corresponding record for this reference.
- 101Cases, O.; Vitalis, T.; Seif, I.; De Maeyer, E.; Sotelo, C.; Gaspar, P. Lack of Barrels in the Somatosensory Cortex of Monoamine Oxidase A-Deficient Mice: Role of a Serotonin Excess during the Critical Period. Neuron 1996, 16 (2), 297– 307, DOI: 10.1016/S0896-6273(00)80048-3Google ScholarThere is no corresponding record for this reference.
- 102van Kleef, E. S. B.; Gaspar, P.; Bonnin, A. Insights into the Complex Influence of 5-HT Signaling on Thalamocortical Axonal System Development. Eur. J. Neurosci 2012, 35 (10), 1563– 1572, DOI: 10.1111/j.1460-9568.2012.8096.xGoogle ScholarThere is no corresponding record for this reference.
- 103Marek, G. J.; Wright, R. A.; Gewirtz, J. C.; Schoepp, D. D. A Major Role for Thalamocortical Afferents in Serotonergic Hallucinogen Receptor Function in the Rat Neocortex. Neuroscience 2001, 105 (2), 379– 392, DOI: 10.1016/S0306-4522(01)00199-3Google ScholarThere is no corresponding record for this reference.
- 104Barre, A.; Berthoux, C.; De Bundel, D.; Valjent, E.; Bockaert, J.; Marin, P.; Bécamel, C. Presynaptic Serotonin 2A Receptors Modulate Thalamocortical Plasticity and Associative Learning. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (10), E1382-E1391 DOI: 10.1073/pnas.1525586113Google ScholarThere is no corresponding record for this reference.
- 105Martín-Ruiz, R.; Puig, M. V.; Celada, P.; Shapiro, D. A.; Roth, B. L.; Mengod, G.; Artigas, F. Control of Serotonergic Function in Medial Prefrontal Cortex by Serotonin-2A Receptors through a Glutamate-Dependent Mechanism. J. Neurosci. 2001, 21 (24), 9856– 9866, DOI: 10.1523/JNEUROSCI.21-24-09856.2001Google ScholarThere is no corresponding record for this reference.
- 106Ouhaz, Z.; Ba-M’hamed, S.; Mitchell, A. S.; Elidrissi, A.; Bennis, M. Behavioral and Cognitive Changes after Early Postnatal Lesions of the Rat Mediodorsal Thalamus. Behavioural Brain Research 2015, 292, 219– 232, DOI: 10.1016/j.bbr.2015.06.017Google ScholarThere is no corresponding record for this reference.
- 107Ouhaz, Z.; Ba-M’hamed, S.; Bennis, M. Morphological, Structural, and Functional Alterations of the Prefrontal Cortex and the Basolateral Amygdala after Early Lesion of the Rat Mediodorsal Thalamus. Brain Struct Funct 2017, 222 (6), 2527– 2545, DOI: 10.1007/s00429-016-1354-2Google ScholarThere is no corresponding record for this reference.
- 108Ansorge, M. S.; Zhou, M.; Lira, A.; Hen, R.; Gingrich, J. A. Early-Life Blockade of the 5-HT Transporter Alters Emotional Behavior in Adult Mice. Science 2004, 306 (5697), 879– 881, DOI: 10.1126/science.1101678Google Scholar108https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2cXovFamsbw%253D&md5=4b6f3b812d2002dfc88dd6d2e0ea1645Early-Life Blockade of the 5-HT Transporter Alters Emotional Behavior in Adult MiceAnsorge, Mark S.; Zhou, Mingming; Lira, Alena; Hen, Rene; Gingrich, Jay A.Science (Washington, DC, United States) (2004), 306 (5697), 879-881CODEN: SCIEAS; ISSN:0036-8075. (American Association for the Advancement of Science)Reduced serotonin transporter (5-HTT) expression is assocd. with abnormal affective and anxiety-like symptoms in humans and rodents, but the mechanism of this effect is unknown. Transient inhibition of 5-HTT during early development with fluoxetine, a commonly used serotonin selective reuptake inhibitor, produced abnormal emotional behaviors in adult mice. This effect mimicked the behavioral phenotype of mice genetically deficient in 5-HTT expression. These findings indicate a crit. role of serotonin in the maturation of brain systems that modulate emotional function in the adult and suggest a developmental mechanism to explain how low-expressing 5-HTT promoter alleles increase vulnerability to psychiatric disorders.
- 109Teissier, A.; Le Magueresse, C.; Olusakin, J.; Andrade da Costa, B. L. S.; De Stasi, A. M.; Bacci, A.; Imamura Kawasawa, Y.; Vaidya, V. A.; Gaspar, P. Early-Life Stress Impairs Postnatal Oligodendrogenesis and Adult Emotional Behaviour through Activity-Dependent Mechanisms. Mol. Psychiatry 2020, 25 (6), 1159– 1174, DOI: 10.1038/s41380-019-0493-2Google ScholarThere is no corresponding record for this reference.
- 110Kiser, D.; Steemers, B.; Branchi, I.; Homberg, J. R. The Reciprocal Interaction between Serotonin and Social Behaviour. Neuroscience & Biobehavioral Reviews 2012, 36 (2), 786– 798, DOI: 10.1016/j.neubiorev.2011.12.009Google ScholarThere is no corresponding record for this reference.
- 111Canli, T.; Lesch, K.-P. Long Story Short: The Serotonin Transporter in Emotion Regulation and Social Cognition. Nat. Neurosci 2007, 10 (9), 1103– 1109, DOI: 10.1038/nn1964Google Scholar111https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2sXps1Sgu7w%253D&md5=9463255f6ce11bedd4f9f1eeb8423f99Long story short: the serotonin transporter in emotion regulation and social cognitionCanli, Turhan; Lesch, Klaus-PeterNature Neuroscience (2007), 10 (9), 1103-1109CODEN: NANEFN; ISSN:1097-6256. (Nature Publishing Group)A review. The gene encoding the serotonin transporter (5-HTT) contains a regulatory variation that has been assocd. with anxiety-related traits and susceptibility for depression. Here we highlight recent discoveries related to allelic variation of 5-HTT function with respect to emotion regulation and social behavior, drawing from an interdisciplinary perspective of behavioral genetics and cognitive neuroscience. Following a reductionistic path that leads from gene-behavior assocn. studies to neuro-imaging and epigenetic studies, we compare two models of 5-HTT-dependent modulation of brain activity and discuss the role of life stress experience in modifying 5-HTT function in the brain. Integration of these findings suggests that the impact of the 5-HTT gene on behavior is much broader than is commonly appreciated and may have a role in social cognition.
- 112Homberg, J. R.; Schiepers, O. J. G.; Schoffelmeer, A. N. M.; Cuppen, E.; Vanderschuren, L. J. M. J. Acute and Constitutive Increases in Central Serotonin Levels Reduce Social Play Behaviour in Peri-Adolescent Rats. Psychopharmacology 2007, 195 (2), 175– 182, DOI: 10.1007/s00213-007-0895-8Google ScholarThere is no corresponding record for this reference.
Cited By
This article has not yet been cited by other publications.
Article Views
Altmetric
Citations
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
References
This article references 112 other publications.
- 1World Health Organization (WHO). The ICD-10 Classification of Mental and Behavioural Disorders; World Health Organization, 2023.There is no corresponding record for this reference.
- 2American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association Publishing, 2013; Vol. 5.There is no corresponding record for this reference.
- 3Conradi, H. J.; Ormel, J.; de Jonge, P. Presence of Individual (Residual) Symptoms during Depressive Episodes and Periods of Remission: A 3-Year Prospective Study. Psychological Medicine 2011, 41 (6), 1165– 1174, DOI: 10.1017/S0033291710001911There is no corresponding record for this reference.
- 4Romera, I.; Perez, V.; Menchón, J. M.; Delgado-Cohen, H.; Polavieja, P.; Gilaberte, I. Social and Occupational Functioning Impairment in Patients in Partial versus Complete Remission of a Major Depressive Disorder Episode. A Six-Month Prospective Epidemiological Study. European Psychiatry 2010, 25 (1), 58– 65, DOI: 10.1016/j.eurpsy.2009.02.007There is no corresponding record for this reference.
- 5Paykel, E. S. Partial Remission, Residual Symptoms, and Relapse in Depression. Dialogues in Clinical Neuroscience 2008, 10 (4), 431– 437, DOI: 10.31887/DCNS.2008.10.4/espaykelThere is no corresponding record for this reference.
- 6Souery, D.; Rivelli, S. K.; Mendlewicz, J. Molecular Genetic and Family Studies in Affective Disorders: State of the Art. Journal of Affective Disorders 2001, 62 (1), 45– 55, DOI: 10.1016/S0165-0327(00)00350-5There is no corresponding record for this reference.
- 7Malhi, G. S.; Moore, J.; McGuffin, P. The Genetics of Major Depressive Disorder. Curr. Psychiatry Rep 2000, 2 (2), 165– 169, DOI: 10.1007/s11920-000-0062-yThere is no corresponding record for this reference.
- 8Fava, M.; Kendler, K. S. Major Depressive Disorder. Neuron 2000, 28 (2), 335– 341, DOI: 10.1016/S0896-6273(00)00112-4There is no corresponding record for this reference.
- 9Ho, L. W.; Furlong, R. A.; Rubinsztein, J. S.; Walsh, C.; Paykel, E. S.; Rubinsztein, D. C. Genetic Associations with Clinical Characteristics in Bipolar Affective Disorder and Recurrent Unipolar Depressive Disorder. American Journal of Medical Genetics 2000, 96 (1), 36– 42, DOI: 10.1002/(SICI)1096-8628(20000207)96:1<36::AID-AJMG8>3.0.CO;2-6There is no corresponding record for this reference.
- 10Brigitta, B. Pathophysiology of Depression and Mechanisms of Treatment. Dialogues in Clinical Neuroscience 2002, 4 (1), 7– 20, DOI: 10.31887/DCNS.2002.4.1/bbondyThere is no corresponding record for this reference.
- 11Lesch, K.-P.; Balling, U.; Gross, J.; Strauss, K.; Wolozin, B. L.; Murphy, D. L.; Riederer, P. Organization of the Human Serotonin Transporter Gene. J. Neural Transmission 1994, 95 (2), 157– 162, DOI: 10.1007/BF01276434There is no corresponding record for this reference.
- 12Lesch, K. P.; Meyer, J.; Glatz, K.; Flügge, G.; Hinney, A.; Hebebrand, J.; Klauck, S. M.; Poustka, A.; Poustka, F.; Bengel, D.; Mössner, R.; Riederer, P.; Heils, A. The 5-HT Transporter Gene-Linked Polymorphic Region (5-HTTLPR) in Evolutionary Perspective: Alternative Biallelic Variation in Rhesus Monkeys. J. Neural Transmission 1997, 104 (11), 1259– 1266, DOI: 10.1007/BF01294726There is no corresponding record for this reference.
- 13Ogilvie, A. D.; Battersby, S.; Fink, G.; Harmar, A. J.; Goodwin, G. M.; Bubb, V. J.; Dale Smith, C. A. Polymorphism in Serotonin Transporter Gene Associated with Susceptibility to Major Depression. Lancet 1996, 347 (9003), 731– 733, DOI: 10.1016/S0140-6736(96)90079-3There is no corresponding record for this reference.
- 14Heinz, A.; Braus, D. F.; Smolka, M. N.; Wrase, J.; Puls, I.; Hermann, D.; Klein, S.; Grüsser, S. M.; Flor, H.; Schumann, G.; Mann, K.; Büchel, C. Amygdala-Prefrontal Coupling Depends on a Genetic Variation of the Serotonin Transporter. Nat. Neurosci 2005, 8 (1), 20– 21, DOI: 10.1038/nn1366There is no corresponding record for this reference.
- 15Lesch, K. P. Gene-Environment Interaction and the Genetics of Depression. Journal of Psychiatry and Neuroscience 2004, 29 (3), 174– 184There is no corresponding record for this reference.
- 16Caspi, A.; Sugden, K.; Moffitt, T. E.; Taylor, A.; Craig, I. W.; Harrington, H.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; Poulton, R. Influence of Life Stress on Depression: Moderation by a Polymorphism in the 5-HTT Gene. Science 2003, 301 (5631), 386– 389, DOI: 10.1126/science.1083968There is no corresponding record for this reference.
- 17Sjöberg, R. L.; Nilsson, K. W.; Nordquist, N.; Öhrvik, J.; Leppert, J.; Lindström, L.; Oreland, L. Development of Depression: Sex and the Interaction between Environment and a Promoter Polymorphism of the Serotonin Transporter Gene. International Journal of Neuropsychopharmacology 2006, 9 (4), 443– 449, DOI: 10.1017/S1461145705005936There is no corresponding record for this reference.
- 18Palma-Gudiel, H.; Fañanás, L. An Integrative Review of Methylation at the Serotonin Transporter Gene and Its Dialogue with Environmental Risk Factors, Psychopathology and 5-HTTLPR. Neuroscience & Biobehavioral Reviews 2017, 72, 190– 209, DOI: 10.1016/j.neubiorev.2016.11.011There is no corresponding record for this reference.
- 19Rebello, T. J.; Yu, Q.; Goodfellow, N. M.; Caffrey Cagliostro, M. K.; Teissier, A.; Morelli, E.; Demireva, E. Y.; Chemiakine, A.; Rosoklija, G. B.; Dwork, A. J.; Lambe, E. K.; Gingrich, J. A.; Ansorge, M. S. Postnatal Day 2 to 11 Constitutes a 5-HT-Sensitive Period Impacting Adult mPFC Function. J. Neurosci. 2014, 34 (37), 12379– 12393, DOI: 10.1523/JNEUROSCI.1020-13.201419https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC2cXhs1yjs7jK&md5=5c2aec59dd3e9c1d2b865d6e0d5ef4b0Postnatal day 2 to 11 constitutes a 5-HT-sensitive period impacting adult mPFC functionRebello, Tahilia J.; Yu, Qinghui; Goodfellow, Nathalie M.; Cagliostro, Martha K. Caffrey; Teissier, Anne; Morelli, Emanuela; Demireva, Elena Y.; Chemiakine, Alexei; Rosoklija, Gorazd B.; Dwork, Andrew J.; Lambe, Evelyn K.; Gingrich, Jay A.; Ansorge, Mark S.Journal of Neuroscience (2014), 34 (37), 12379-12393, 15 pp.CODEN: JNRSDS; ISSN:0270-6474. (Society for Neuroscience)Early-life serotonin [5-hydroxytryptamine (5-HT)] signaling modulates brain development, which impacts adult behavior, but 5-HT-sensitive periods, neural substrates, and behavioral consequences remain poorly understood. Here we identify the period ranging from postnatal day 2 (P2) to P11 as 5-HT sensitive, with 5-HT transporter (5-HTT) blockade increasing anxiety- and depression-like behavior, and impairing fear extinction learning and memory in adult mice. Concomitantly, P2-P11 5-HTT blockade causes dendritic hypotrophy and reduced excitability of infralimbic (IL) cortex pyramidal neurons that normally promote fear extinction. By contrast, the neighboring prelimbic (PL) pyramidal neurons, which normally inhibit fear extinction, become more excitable. Excitotoxic IL but not PL lesions in adult control mice reproduce the anxiety-related phenotypes. These findings suggest that increased 5-HT signaling during P2-P11 alters adult medial prefrontal cortex (mPFC) function to increase anxiety and impair fear extinction, and imply a differential role for IL and PL neurons in regulating affective behaviors. Together, our results support a developmental mechanism for the etiol. and pathophysiol. of affective disorders and fear-related behaviors.
- 20Gaspar, P.; Cases, O.; Maroteaux, L. The Developmental Role of Serotonin: News from Mouse Molecular Genetics. Nat. Rev. Neurosci 2003, 4 (12), 1002– 1012, DOI: 10.1038/nrn125620https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3sXovFeit7s%253D&md5=069949035d1130ebbd687327ad31dd76The developmental role of serotonin: News from mouse molecular geneticsGaspar, Patricia; Cases, Olivier; Maroteaux, LucNature Reviews Neuroscience (2003), 4 (12), 1002-1012CODEN: NRNAAN; ISSN:1471-003X. (Nature Publishing Group)A review. New genetic models that target the serotonin system show that transient alterations in serotonin homeostasis cause permanent changes to adult behavior and modify the fine wiring of brain connections. These findings have revived a long-standing interest in the developmental role of serotonin. Mol. genetic approaches are now showing the authors that different serotonin receptors, acting at different developmental stages, modulate different developmental processes such as neurogenesis, apoptosis, axon branching and dendritogenesis. The authors' understanding of the specification of the serotonergic phenotype is improving. In addn., studies have revealed that serotonergic traits are dissociable, as there are populations of neurons that contain serotonin but do not synthesize it.
- 21Drevets, W. C. Neuroimaging and Neuropathological Studies of Depression: Implications for the Cognitive-Emotional Features of Mood Disorders. Current Opinion in Neurobiology 2001, 11 (2), 240– 249, DOI: 10.1016/S0959-4388(00)00203-8There is no corresponding record for this reference.
- 22Drevets, W. C.; Price, J. L.; Furey, M. L. Brain Structural and Functional Abnormalities in Mood Disorders: Implications for Neurocircuitry Models of Depression. Brain Struct Funct 2008, 213 (1), 93– 118, DOI: 10.1007/s00429-008-0189-xThere is no corresponding record for this reference.
- 23Liotti, M.; Mayberg, H. S. The Role of Functional Neuroimaging in the Neuropsychology of Depression. Journal of Clinical and Experimental Neuropsychology 2001, 23 (1), 121– 136, DOI: 10.1076/jcen.23.1.121.1223There is no corresponding record for this reference.
- 24Rajkowska, G. Histopathology of the Prefrontal Cortex in Major Depression: What Does It Tell Us about Dysfunctional Monoaminergic Circuits?. Progress in Brain Research 2000, 126, 397– 412, DOI: 10.1016/S0079-6123(00)26026-3There is no corresponding record for this reference.
- 25Moriguchi, S.; Yamada, M.; Takano, H.; Nagashima, T.; Takahata, K.; Yokokawa, K.; Ito, T.; Ishii, T.; Kimura, Y.; Zhang, M.-R.; Mimura, M.; Suhara, T. Norepinephrine Transporter in Major Depressive Disorder: A PET Study. AJP 2017, 174 (1), 36– 41, DOI: 10.1176/appi.ajp.2016.15101334There is no corresponding record for this reference.
- 26Young, K. A.; Holcomb, L. A.; Yazdani, U.; Hicks, P. B.; German, D. C. Elevated Neuron Number in the Limbic Thalamus in Major Depression. AJP 2004, 161 (7), 1270– 1277, DOI: 10.1176/appi.ajp.161.7.1270There is no corresponding record for this reference.
- 27Willard, S. L.; Riddle, D. R.; Forbes, M. E.; Shively, C. A. Cell Number and Neuropil Alterations in Subregions of the Anterior Hippocampus in a Female Monkey Model of Depression. Biol. Psychiatry 2013, 74 (12), 890– 897, DOI: 10.1016/j.biopsych.2013.03.013There is no corresponding record for this reference.
- 28Ayuob, N. N.; Balgoon, M. J. Histological and Molecular Techniques Utilized to Investigate Animal Models of Depression. An Updated Review. Microscopy Research and Technique 2018, 81 (10), 1143– 1153, DOI: 10.1002/jemt.23105There is no corresponding record for this reference.
- 29Aten, S.; Du, Y.; Taylor, O.; Dye, C.; Collins, K.; Thomas, M.; Kiyoshi, C.; Zhou, M. Chronic Stress Impairs the Structure and Function of Astrocyte Networks in an Animal Model of Depression. Neurochem. Res. 2023, 48 (4), 1191– 1210, DOI: 10.1007/s11064-022-03663-4There is no corresponding record for this reference.
- 30Höflich, A.; Michenthaler, P.; Kasper, S.; Lanzenberger, R. Circuit Mechanisms of Reward, Anhedonia, and Depression. International Journal of Neuropsychopharmacology 2019, 22 (2), 105– 118, DOI: 10.1093/ijnp/pyy081There is no corresponding record for this reference.
- 31Bao, A.-M.; Swaab, D. F. The Human Hypothalamus in Mood Disorders: The HPA Axis in the Center. IBRO Reports 2019, 6, 45– 53, DOI: 10.1016/j.ibror.2018.11.008There is no corresponding record for this reference.
- 32Ouhaz, Z.; Fleming, H.; Mitchell, A. S. Cognitive Functions and Neurodevelopmental Disorders Involving the Prefrontal Cortex and Mediodorsal Thalamus. Frontiers in Neuroscience 2018, 12, 33, DOI: 10.3389/fnins.2018.00033There is no corresponding record for this reference.
- 33Chancellor, D. The Depression Market. Nat. Rev. Drug Discovery 2011, 10 (11), 809– 810, DOI: 10.1038/nrd358533https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC3MXhtlyisL%252FK&md5=5bd5c30aaa7a962c83f812dcfb8724ecThe depression marketChancellor, DanielNature Reviews Drug Discovery (2011), 10 (11), 809-810CODEN: NRDDAG; ISSN:1474-1776. (Nature Publishing Group)There is no expanded citation for this reference.
- 34Krishnan, V.; Nestler, E. J. The Molecular Neurobiology of Depression. Nature 2008, 455 (7215), 894– 902, DOI: 10.1038/nature0745534https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1cXht1GgurrE&md5=bed2e4ae1259f3670459ddaf2dbd3057The molecular neurobiology of depressionKrishnan, Vaishnav; Nestler, Eric J.Nature (London, United Kingdom) (2008), 455 (7215), 894-902CODEN: NATUAS; ISSN:0028-0836. (Nature Publishing Group)A review. Unraveling the pathophysiol. of depression is a unique challenge. Not only are depressive syndromes heterogeneous and their etiologies diverse, but symptoms such as guilt and suicidality are impossible to reproduce in animal models. Nevertheless, other symptoms have been accurately modeled, and these, together with clin. data, are providing insight into the neurobiol. of depression. Recent studies combining behavioral, mol. and electrophysiol. techniques reveal that certain aspects of depression result from maladaptive stress-induced neuroplastic changes in specific neural circuits. They also show that understanding the mechanisms of resilience to stress offers a crucial new dimension for the development of fundamentally novel antidepressant treatments.
- 35Schildkraut, J. J. The Catecholamine Hypothesis of Affective Disorders: A Review of Supporting Evidence. Am. J. Psychiatry 1965, 122 (5), 509– 522, DOI: 10.1176/ajp.122.5.50935https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADyaF28%252FhvFCgsg%253D%253D&md5=855a2c1958f76fcadbb05c946a26f06fThe catecholamine hypothesis of affective disorders: a review of supporting evidenceSchildkraut J JThe American journal of psychiatry (1965), 122 (5), 509-22 ISSN:0002-953X.There is no expanded citation for this reference.
- 36Woolley, D. W.; Shaw, E. A Biochemical and Pharmacological Suggestion about Certain Mental Disorders. Proc. Natl. Acad. Sci. U. S. A. 1954, 40 (4), 228– 231, DOI: 10.1073/pnas.40.4.228There is no corresponding record for this reference.
- 37Mendels, J.; Stinnett, J. L.; Burns, D.; Frazer, A. Amine Precursors and Depression. Arch Gen Psychiatry 1975, 32 (1), 22– 30, DOI: 10.1001/archpsyc.1975.01760190024002There is no corresponding record for this reference.
- 38Salomon, R. M.; Miller, H. L.; Krystal, J. H.; Heninger, G. R.; Charney, D. S. Lack of Behavioral Effects of Monoamine Depletion in Healthy Subjects. Biol. Psychiatry 1997, 41 (1), 58– 64, DOI: 10.1016/0006-3223(95)00670-2There is no corresponding record for this reference.
- 39Moncrieff, J.; Cooper, R. E.; Stockmann, T.; Amendola, S.; Hengartner, M. P.; Horowitz, M. A. The Serotonin Theory of Depression: A Systematic Umbrella Review of the Evidence. Mol. Psychiatry 2023, 28, 1– 14, DOI: 10.1038/s41380-022-01661-0There is no corresponding record for this reference.
- 40Jauhar, S.; Arnone, D.; Baldwin, D. S.; Bloomfield, M.; Browning, M.; Cleare, A. J.; Corlett, P.; Deakin, J. F. W.; Erritzoe, D.; Fu, C.; Fusar-Poli, P.; Goodwin, G. M.; Hayes, J.; Howard, R.; Howes, O. D.; Juruena, M. F.; Lam, R. W.; Lawrie, S. M.; McAllister-Williams, H.; Marwaha, S.; Matuskey, D.; McCutcheon, R. A.; Nutt, D. J.; Pariante, C.; Pillinger, T.; Radhakrishnan, R.; Rucker, J.; Selvaraj, S.; Stokes, P.; Upthegrove, R.; Yalin, N.; Yatham, L.; Young, A. H.; Zahn, R.; Cowen, P. J. A Leaky Umbrella Has Little Value: Evidence Clearly Indicates the Serotonin System Is Implicated in Depression. Mol. Psychiatry 2023, 28 (8), 1– 4, DOI: 10.1038/s41380-023-02095-yThere is no corresponding record for this reference.
- 41Koch, J. M.; Hinze-Selch, D.; Stingele, K.; Huchzermeier, C.; Göder, R.; Seeck-Hirschner, M.; Aldenhoff, J. B. Changes in CREB Phosphorylation and BDNF Plasma Levels during Psychotherapy of Depression. Psychotherapy and Psychosomatics 2009, 78 (3), 187– 192, DOI: 10.1159/000209350There is no corresponding record for this reference.
- 42Blendy, J. A. The Role of CREB in Depression and Antidepressant Treatment. Biol. Psychiatry 2006, 59 (12), 1144– 1150, DOI: 10.1016/j.biopsych.2005.11.003There is no corresponding record for this reference.
- 43Arosio, B.; Guerini, F. R.; Voshaar, R. C. O.; Aprahamian, I. Blood Brain-Derived Neurotrophic Factor (BDNF) and Major Depression: Do We Have a Translational Perspective?. Frontiers in Behavioral Neuroscience 2021, 15, 626906, DOI: 10.3389/fnbeh.2021.626906There is no corresponding record for this reference.
- 44Thompson, S. M.; Kallarackal, A. J.; Kvarta, M. D.; Van Dyke, A. M.; LeGates, T. A.; Cai, X. An Excitatory Synapse Hypothesis of Depression. Trends in Neurosciences 2015, 38 (5), 279– 294, DOI: 10.1016/j.tins.2015.03.003There is no corresponding record for this reference.
- 45Kaster, M. P.; Moretti, M.; Cunha, M. P.; Rodrigues, A. L. S. Novel Approaches for the Management of Depressive Disorders. Eur. J. Pharmacol. 2016, 771, 236– 240, DOI: 10.1016/j.ejphar.2015.12.029There is no corresponding record for this reference.
- 46Salahudeen, M. S.; Wright, C. M.; Peterson, G. M. Esketamine: New Hope for the Treatment of Treatment-Resistant Depression? A Narrative Review. Therapeutic Advances in Drug Safety 2020, 11, 204209862093789, DOI: 10.1177/2042098620937899There is no corresponding record for this reference.
- 47Fava, G. A.; Grandi, S.; Canestrari, R.; Molnar, G. Prodromal Symptoms in Primary Major Depressive Disorder. Journal of Affective Disorders 1990, 19 (2), 149– 152, DOI: 10.1016/0165-0327(90)90020-9There is no corresponding record for this reference.
- 48Fava, G. A.; Tossani, E. Prodromal Stage of Major Depression. Early Intervention in Psychiatry 2007, 1 (1), 9– 18, DOI: 10.1111/j.1751-7893.2007.00005.xThere is no corresponding record for this reference.
- 49Kovacs, M.; Lopez-Duran, N. Prodromal Symptoms and Atypical Affectivity as Predictors of Major Depression in Juveniles: Implications for Prevention. Journal of Child Psychology and Psychiatry 2010, 51 (4), 472– 496, DOI: 10.1111/j.1469-7610.2010.02230.xThere is no corresponding record for this reference.
- 50Benasi, G.; Fava, G. A.; Guidi, J. Prodromal Symptoms in Depression: A Systematic Review. PPS 2021, 90 (6), 365– 372, DOI: 10.1159/000517953There is no corresponding record for this reference.
- 51Benassi, M.; Garofalo, S.; Vitali, L.; Orsoni, M.; Sant’Angelo, R.; Raggini, R.; Piraccini, G. Bayesian Models to Explain Autistic Traits in Psychiatric Population. European Psychiatry 2021, 64 (S1), S239– S240, DOI: 10.1192/j.eurpsy.2021.642There is no corresponding record for this reference.
- 52Birmaher, B.; Ryan, N. D.; Williamson, D. E.; Brent, D. A.; Kaufman, J.; Dahl, R. E.; Perel, J.; Nelson, B. Childhood and Adolescent Depression: A Review of the Past 10 Years. Part I. J. Am. Acad. Child Adolesc Psychiatry 1996, 35 (11), 1427– 1439, DOI: 10.1097/00004583-199611000-00011There is no corresponding record for this reference.
- 53Turgay, A.; Ansari, R. Major Depression with ADHD. Psychiatry (Edgmont) 2006, 3 (4), 20– 32There is no corresponding record for this reference.
- 54Biederman, J.; Ball, S. W.; Monuteaux, M. C.; Mick, E.; Spencer, T. J.; McCREARY, M.; Cote, M.; Faraone, S. V. New Insights Into the Comorbidity Between ADHD and Major Depression in Adolescent and Young Adult Females. Journal of the American Academy of Child & Adolescent Psychiatry 2008, 47 (4), 426– 434, DOI: 10.1097/CHI.0b013e31816429d3There is no corresponding record for this reference.
- 55Beck, A. T. Cognitive Models of Depression. Journal of Cognitive Psychotherapy 1987, 1, 5– 37There is no corresponding record for this reference.
- 56Beck, A. T. The Evolution of the Cognitive Model of Depression and Its Neurobiological Correlates. AJP 2008, 165 (8), 969– 977, DOI: 10.1176/appi.ajp.2008.08050721There is no corresponding record for this reference.
- 57Miller, E. K.; Cohen, J. D. An Integrative Theory of Prefrontal Cortex Function. Annu. Rev. Neurosci. 2001, 24, 167– 202, DOI: 10.1146/annurev.neuro.24.1.16757https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD3MXls1Shsro%253D&md5=a39ef06c1a11a94a0ff37aeebaf6e036An integrative theory of prefrontal cortex functionMiller, Earl K.; Cohen, Jonathan D.Annual Review of Neuroscience (2001), 24 (), 167-202CODEN: ARNSD5; ISSN:0147-006X. (Annual Reviews Inc.)The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task. We review neurophysiol., neurobiol., neuroimaging, and computational studies that support this theory and discuss its implications as well as further issues to be addressed.
- 58Mitchell, A. S. The Mediodorsal Thalamus as a Higher Order Thalamic Relay Nucleus Important for Learning and Decision-Making. Neuroscience & Biobehavioral Reviews 2015, 54, 76– 88, DOI: 10.1016/j.neubiorev.2015.03.001There is no corresponding record for this reference.
- 59Mitchell, A.; Chakraborty, S. What Does the Mediodorsal Thalamus Do?. Frontiers in Systems Neuroscience 2013, 7, 37, DOI: 10.3389/fnsys.2013.00037There is no corresponding record for this reference.
- 60Collins, D. P.; Anastasiades, P. G.; Marlin, J. J.; Carter, A. G. Reciprocal Circuits Linking the Prefrontal Cortex with Dorsal and Ventral Thalamic Nuclei. Neuron 2018, 98 (2), 366– 379, DOI: 10.1016/j.neuron.2018.03.024There is no corresponding record for this reference.
- 61Halassa, M. M.; Kastner, S. Thalamic Functions in Distributed Cognitive Control. Nat. Neurosci 2017, 20 (12), 1669– 1679, DOI: 10.1038/s41593-017-0020-1There is no corresponding record for this reference.
- 62Menon, V.; D’Esposito, M. The Role of PFC Networks in Cognitive Control and Executive Function. Neuropsychopharmacol. 2022, 47 (1), 90– 103, DOI: 10.1038/s41386-021-01152-wThere is no corresponding record for this reference.
- 63Hwang, K.; Bertolero, M. A.; Liu, W. B.; D’Esposito, M. The Human Thalamus Is an Integrative Hub for Functional Brain Networks. J. Neurosci. 2017, 37 (23), 5594– 5607, DOI: 10.1523/JNEUROSCI.0067-17.2017There is no corresponding record for this reference.
- 64Mitchell, A. S.; Gaffan, D. The Magnocellular Mediodorsal Thalamus Is Necessary for Memory Acquisition, But Not Retrieval. J. Neurosci. 2008, 28 (1), 258– 263, DOI: 10.1523/JNEUROSCI.4922-07.2008There is no corresponding record for this reference.
- 65Georgescu, I. A.; Popa, D.; Zagrean, L. The Anatomical and Functional Heterogeneity of the Mediodorsal Thalamus. Brain Sci. 2020, 10 (9), 624, DOI: 10.3390/brainsci10090624There is no corresponding record for this reference.
- 66Morel, A.; Magnin, M.; Jeanmonod, D. Multiarchitectonic and Stereotactic Atlas of the Human Thalamus. J. Comp Neurol 1997, 387 (4), 588– 630, DOI: 10.1002/(SICI)1096-9861(19971103)387:4<588::AID-CNE8>3.0.CO;2-ZThere is no corresponding record for this reference.
- 67Ray, J. P.; Price, J. L. The Organization of Projections from the Mediodorsal Nucleus of the Thalamus to Orbital and Medial Prefrontal Cortex in Macaque Monkeys. Journal of Comparative Neurology 1993, 337 (1), 1– 31, DOI: 10.1002/cne.903370102There is no corresponding record for this reference.
- 68Yuan, R.; Di, X.; Taylor, P. A.; Gohel, S.; Tsai, Y.-H.; Biswal, B. B. Functional Topography of the Thalamocortical System in Human. Brain Struct Funct 2016, 221 (4), 1971– 1984, DOI: 10.1007/s00429-015-1018-7There is no corresponding record for this reference.
- 69Wolff, M.; Vann, S. D. The Cognitive Thalamus as a Gateway to Mental Representations. J. Neurosci. 2019, 39 (1), 3– 14, DOI: 10.1523/JNEUROSCI.0479-18.2018There is no corresponding record for this reference.
- 70Schmitt, L. I.; Wimmer, R. D.; Nakajima, M.; Happ, M.; Mofakham, S.; Halassa, M. M. Thalamic Amplification of Cortical Connectivity Sustains Attentional Control. Nature 2017, 545 (7653), 219– 223, DOI: 10.1038/nature22073There is no corresponding record for this reference.
- 71Groenewegen, H. J.; Berendse, H. W.; Wolters, J. G.; Lohman, A. H. The Anatomical Relationship of the Prefrontal Cortex with the Striatopallidal System, the Thalamus and the Amygdala: Evidence for a Parallel Organization. Prog. Brain Res. 1991, 85, 95– 116, DOI: 10.1016/S0079-6123(08)62677-1There is no corresponding record for this reference.
- 72Halassa, M. M.; Sherman, S. M. Thalamocortical Circuit Motifs: A General Framework. Neuron 2019, 103 (5), 762– 770, DOI: 10.1016/j.neuron.2019.06.005There is no corresponding record for this reference.
- 73Miyamoto, Y.; Jinnai, K. The Inhibitory Input from the Substantia Nigra to the Mediodorsal Nucleus Neurons Projecting to the Prefrontal Cortex in the Cat. Brain Res. 1994, 649 (1), 313– 318, DOI: 10.1016/0006-8993(94)91079-0There is no corresponding record for this reference.
- 74Pergola, G.; Danet, L.; Pitel, A.-L.; Carlesimo, G. A.; Segobin, S.; Pariente, J.; Suchan, B.; Mitchell, A. S.; Barbeau, E. J. The Regulatory Role of the Human Mediodorsal Thalamus. Trends in Cognitive Sciences 2018, 22 (11), 1011– 1025, DOI: 10.1016/j.tics.2018.08.006There is no corresponding record for this reference.
- 75Négyessy, L.; Hámori, J.; Bentivoglio, M. Contralateral Cortical Projection to the Mediodorsal Thalamic Nucleus: Origin and Synaptic Organization in the Rat. Neuroscience 1998, 84 (3), 741– 753, DOI: 10.1016/S0306-4522(97)00559-9There is no corresponding record for this reference.
- 76Sherman, S. M.; Guillery, R. W. On the Actions That One Nerve Cell Can Have on Another: Distinguishing “Drivers” from “Modulators.. Proc. Natl. Acad. Sci. U. S. A. 1998, 95 (12), 7121– 7126, DOI: 10.1073/pnas.95.12.7121There is no corresponding record for this reference.
- 77Sherman, S. M.; Guillery, R. W. Functional Connections of Cortical Areas: A New View from the Thalamus; MIT Press, 2013.There is no corresponding record for this reference.
- 78Sherman, S. M.; Guillery, R. W. Exploring the Thalamus; Elsevier, 2001.There is no corresponding record for this reference.
- 79Schwartz, M. L.; Dekker, J. J.; Goldman-Rakic, P. S. Dual Mode of Corticothalamic Synaptic Termination in the Mediodorsal Nucleus of the Rhesus Monkey. Journal of Comparative Neurology 1991, 309 (3), 289– 304, DOI: 10.1002/cne.903090302There is no corresponding record for this reference.
- 80Crick, F. Function of the Thalamic Reticular Complex: The Searchlight Hypothesis. Proc. Natl. Acad. Sci. U. S. A. 1984, 81 (14), 4586– 4590, DOI: 10.1073/pnas.81.14.4586There is no corresponding record for this reference.
- 81Wimmer, R. D.; Schmitt, L. I.; Davidson, T. J.; Nakajima, M.; Deisseroth, K.; Halassa, M. M. Thalamic Control of Sensory Selection in Divided Attention. Nature 2015, 526 (7575), 705– 709, DOI: 10.1038/nature15398There is no corresponding record for this reference.
- 82Anastasiades, P. G.; Carter, A. G. Circuit Organization of the Rodent Medial Prefrontal Cortex. Trends in Neurosciences 2021, 44 (7), 550– 563, DOI: 10.1016/j.tins.2021.03.006There is no corresponding record for this reference.
- 83Kuramoto, E.; Pan, S.; Furuta, T.; Tanaka, Y. R.; Iwai, H.; Yamanaka, A.; Ohno, S.; Kaneko, T.; Goto, T.; Hioki, H. Individual Mediodorsal Thalamic Neurons Project to Multiple Areas of the Rat Prefrontal Cortex: A Single Neuron-Tracing Study Using Virus Vectors. J. Comp Neurol 2017, 525 (1), 166– 185, DOI: 10.1002/cne.2405483https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A280%3ADC%252BC2s%252FnsFKmtg%253D%253D&md5=05e4b6c87715b95c8f3550ebf1a7d56bIndividual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectorsKuramoto Eriko; Iwai Haruki; Yamanaka Atsushi; Goto Tetsuya; Pan Shixiu; Furuta Takahiro; Kaneko Takeshi; Hioki Hiroyuki; Tanaka Yasuhiro R; Ohno SachiThe Journal of comparative neurology (2017), 525 (1), 166-185 ISSN:.The prefrontal cortex has an important role in a variety of cognitive and executive processes, and is generally defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD). The rat MD is mainly subdivided into three segments, the medial (MDm), central (MDc), and lateral (MDl) divisions, on the basis of the cytoarchitecture and chemoarchitecture. The MD segments are known to topographically project to multiple prefrontal areas at the population level: the MDm mainly to the prelimbic, infralimbic, and agranular insular areas; the MDc to the orbital and agranular insular areas; and the MDl to the prelimbic and anterior cingulate areas. However, it is unknown whether individual MD neurons project to single or multiple prefrontal cortical areas. In the present study, we visualized individual MD neurons with Sindbis virus vectors, and reconstructed whole structures of MD neurons. While the main cortical projection targets of MDm, MDc, and MDl neurons were generally consistent with those of previous results, it was found that individual MD neurons sent their axon fibers to multiple prefrontal areas, and displayed various projection patterns in the target areas. Furthermore, the axons of single MD neurons were not homogeneously spread, but were rather distributed to form patchy axon arbors approximately 1 mm in diameter. The multiple-area projections and patchy axon arbors of single MD neurons might be able to coactivate cortical neuron groups in distant prefrontal areas simultaneously. Furthermore, considerable heterogeneity of the projection patterns is likely, to recruit the different sets of cortical neurons, and thus contributes to a variety of prefrontal functions. J. Comp. Neurol. 525:166-185, 2017. © 2016 Wiley Periodicals, Inc.
- 84Rotaru, D. C.; Barrionuevo, G.; Sesack, S. R. Mediodorsal Thalamic Afferents to Layer III of the Rat Prefrontal Cortex: Synaptic Relationships to Subclasses of Interneurons. Journal of Comparative Neurology 2005, 490 (3), 220– 238, DOI: 10.1002/cne.20661There is no corresponding record for this reference.
- 85Van der Werf, Y. D.; Witter, M. P.; Groenewegen, H. J. The Intralaminar and Midline Nuclei of the Thalamus. Anatomical and Functional Evidence for Participation in Processes of Arousal and Awareness. Brain Research Reviews 2002, 39 (2), 107– 140, DOI: 10.1016/S0165-0173(02)00181-9There is no corresponding record for this reference.
- 86Pepin, E. P.; Auray-Pepin, L. Selective Dorsolateral Frontal Lobe Dysfunction Associated with Diencephalic Amnesia. Neurology 1993, 43 (4), 733– 733, DOI: 10.1212/WNL.43.4.733There is no corresponding record for this reference.
- 87McGilchrist, I.; Goldstein, L. H.; Jadresic, D.; Fenwick, P. Thalamo-Frontal Psychosis. British Journal of Psychiatry 1993, 163 (1), 113– 115, DOI: 10.1192/bjp.163.1.113There is no corresponding record for this reference.
- 88Mitchell, A. S.; Baxter, M. G.; Gaffan, D. Dissociable Performance on Scene Learning and Strategy Implementation after Lesions to Magnocellular Mediodorsal Thalamic Nucleus. J. Neurosci. 2007, 27 (44), 11888– 11895, DOI: 10.1523/JNEUROSCI.1835-07.2007There is no corresponding record for this reference.
- 89Parnaudeau, S.; O’Neill, P.-K.; Bolkan, S. S.; Ward, R. D.; Abbas, A. I.; Roth, B. L.; Balsam, P. D.; Gordon, J. A.; Kellendonk, C. Inhibition of Mediodorsal Thalamus Disrupts Thalamofrontal Connectivity and Cognition. Neuron 2013, 77 (6), 1151– 1162, DOI: 10.1016/j.neuron.2013.01.038There is no corresponding record for this reference.
- 90Floresco, S. B.; Braaksma, D. N.; Phillips, A. G. Thalamic-Cortical-Striatal Circuitry Subserves Working Memory during Delayed Responding on a Radial Arm Maze. J. Neurosci. 1999, 19 (24), 11061– 11071, DOI: 10.1523/JNEUROSCI.19-24-11061.1999There is no corresponding record for this reference.
- 91Ferguson, B. R.; Gao, W.-J. Development of Thalamocortical Connections between the Mediodorsal Thalamus and the Prefrontal Cortex and Its Implication in Cognition. Frontiers in Human Neuroscience 2015, 8, 1027, DOI: 10.3389/fnhum.2014.01027There is no corresponding record for this reference.
- 92Vitalis, T.; Parnavelas, J. G. The Role of Serotonin in Early Cortical Development. Developmental Neuroscience 2003, 25 (2–4), 245– 256, DOI: 10.1159/000072272There is no corresponding record for this reference.
- 93Lebrand, C.; Cases, O.; Adelbrecht, C.; Doye, A.; Alvarez, C.; El Mestikawy, S.; Seif, I.; Gaspar, P. Transient Uptake and Storage of Serotonin in Developing Thalamic Neurons. Neuron 1996, 17 (5), 823– 835, DOI: 10.1016/S0896-6273(00)80215-9There is no corresponding record for this reference.
- 94Homberg, J. R.; Schubert, D.; Gaspar, P. New Perspectives on the Neurodevelopmental Effects of SSRIs. Trends Pharmacol. Sci. 2010, 31 (2), 60– 65, DOI: 10.1016/j.tips.2009.11.003There is no corresponding record for this reference.
- 95Narboux-Nême, N.; Pavone, L. M.; Avallone, L.; Zhuang, X.; Gaspar, P. Serotonin Transporter Transgenic (SERTcre) Mouse Line Reveals Developmental Targets of Serotonin Specific Reuptake Inhibitors (SSRIs). Neuropharmacology 2008, 55 (6), 994– 1005, DOI: 10.1016/j.neuropharm.2008.08.02095https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD1cXht1Knu7jL&md5=ded07278a4828aa53684c3a706049d07Serotonin transporter transgenic (SERTcre) mouse line reveals developmental targets of serotonin specific reuptake inhibitors (SSRIs)Narboux-Neme, Nicolas; Pavone, Luigi Michele; Avallone, Luigi; Zhuang, Xiaoxi; Gaspar, PatriciaNeuropharmacology (2008), 55 (6), 994-1005CODEN: NEPHBW; ISSN:0028-3908. (Elsevier B.V.)The serotonin transporter gene (SLC6A4; synonyms, SERT, 5-HTT) is expressed much more broadly during development than in adulthood. To obtain a full picture of all sites of SERT expression during development we used a new mouse model where Cre recombinase was inserted into the gene encoding the serotonin transporter. Two reporter mouse lines, ROSA26R and the TaumGFP, allowed to map all the cells that express SERT at any point during development. Combined LacZ histochem. and GFP immunolabelling showed neuronal cell bodies and axon fiber tracts. Earliest recombination in embryos was visible in the periphery in the heart and liver by E10.5 followed by recombination in the brain in raphe serotonergic neurons by E12.5. Further, recombination in non-serotonin neurons was visible in the choroid plexus, roof plate, and neural crest derivs.; by E15.5, recombination was found in the dorsal thalamus, cingulate cortex, CA3 field of the hippocampus, retinal ganglion cells, superior olivary nucleus and cochlear nucleus. Postnatally, SERT mediated recombination was visible in the medial prefrontal cortex and layer VI neurons in the isocortex. Recombined cells were co-labeled with Neu-N, but not with GAD67, and were characterized by long range projections (corpus callosum, fornix, thalamocortical). This fate map of serotonin transporter expressing cells emphasizes the broad expression of SERT in non-serotonin neurons during development and clarifies the localization of SERT expression in the hippocampus and limbic cortex. The identification of targets of SSRIs and serotonin releasers during embryonic and early postnatal life helps understanding the very diverse physiol. consequences of administration of these drugs during development.
- 96Lebrand, C.; Cases, O.; Wehrlé, R.; Blakely, R. D.; Edwards, R. H.; Gaspar, P. Transient Developmental Expression of Monoamine Transporters in the Rodent Forebrain. Journal of Comparative Neurology 1998, 401 (4), 506– 524, DOI: 10.1002/(SICI)1096-9861(19981130)401:4<506::AID-CNE5>3.0.CO;2-#There is no corresponding record for this reference.
- 97Soiza-Reilly, M.; Meye, F. J.; Olusakin, J.; Telley, L.; Petit, E.; Chen, X.; Mameli, M.; Jabaudon, D.; Sze, J.-Y.; Gaspar, P. SSRIs Target Prefrontal to Raphe Circuits during Development Modulating Synaptic Connectivity and Emotional Behavior. Mol. Psychiatry 2019, 24 (5), 726– 745, DOI: 10.1038/s41380-018-0260-997https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BC1cXhvVCqt7jM&md5=af431ad4d76e27c5c77d2f096e61b8e6SSRIs target prefrontal to raphe circuits during development modulating synaptic connectivity and emotional behaviorSoiza-Reilly, M.; Meye, F. J.; Olusakin, J.; Telley, L.; Petit, E.; Chen, X.; Mameli, M.; Jabaudon, D.; Sze, J.-Y.; Gaspar, P.Molecular Psychiatry (2019), 24 (5), 726-745CODEN: MOPSFQ; ISSN:1359-4184. (Nature Research)Antidepressants that block the serotonin transporter, (Slc6a4/SERT), selective serotonin reuptake inhibitors (SSRIs) improve mood in adults but have paradoxical long-term effects when administered during perinatal periods, increasing the risk to develop anxiety and depression. The basis for this developmental effect is not known. Here, we show that during an early postnatal period in mice (P0-P10), Slc6a4/SERT is transiently expressed in a subset of layer 5-6 pyramidal neurons of the prefrontal cortex (PFC). PFC-SERT+ neurons establish glutamatergic synapses with subcortical targets, including the serotonin (5-HT) and GABA neurons of the dorsal raphe nucleus (DRN). PFC-to-DRN circuits develop postnatally, coinciding with the period of PFC Slc6a4/SERT expression. Complete or cortex-specific ablation of SERT increases the no. of functional PFC glutamate synapses on both 5-HT and GABA neurons in the DRN. This PFC-to-DRN hyperinnervation is replicated by early-life exposure to the SSRI, fluoxetine (from P2 to P14), that also causes anxiety/depressive-like symptoms. We show that pharmacogenetic manipulation of PFC-SERT+ neuron activity bidirectionally modulates these symptoms, suggesting that PFC hypofunctionality has a causal role in these altered responses to stress. Overall, our data identify specific PFC descending circuits that are targets of antidepressant drugs during development. We demonstrate that developmental expression of SERT in this subset of PFC neurons controls synaptic maturation of PFC-to-DRN circuits, and that remodeling of these circuits in early life modulates behavioral responses to stress in adulthood.
- 98Verney, C.; Lebrand, C.; Gaspar, P. Changing Distribution of Monoaminergic Markers in the Developing Human Cerebral Cortex with Special Emphasis on the Serotonin Transporter. Anatomical Record 2002, 267 (2), 87– 93, DOI: 10.1002/ar.10089There is no corresponding record for this reference.
- 99Olusakin, J.; Moutkine, I.; Dumas, S.; Ponimaskin, E.; Paizanis, E.; Soiza-Reilly, M.; Gaspar, P. Implication of 5-HT7 Receptor in Prefrontal Circuit Assembly and Detrimental Emotional Effects of SSRIs during Development. Neuropsychopharmacol. 2020, 45 (13), 2267– 2277, DOI: 10.1038/s41386-020-0775-zThere is no corresponding record for this reference.
- 100Chen, X.; Petit, E. I.; Dobrenis, K.; Sze, J. Y. Spatiotemporal SERT Expression in Cortical Map Development. Neurochem. Int. 2016, 98, 129– 137, DOI: 10.1016/j.neuint.2016.05.010There is no corresponding record for this reference.
- 101Cases, O.; Vitalis, T.; Seif, I.; De Maeyer, E.; Sotelo, C.; Gaspar, P. Lack of Barrels in the Somatosensory Cortex of Monoamine Oxidase A-Deficient Mice: Role of a Serotonin Excess during the Critical Period. Neuron 1996, 16 (2), 297– 307, DOI: 10.1016/S0896-6273(00)80048-3There is no corresponding record for this reference.
- 102van Kleef, E. S. B.; Gaspar, P.; Bonnin, A. Insights into the Complex Influence of 5-HT Signaling on Thalamocortical Axonal System Development. Eur. J. Neurosci 2012, 35 (10), 1563– 1572, DOI: 10.1111/j.1460-9568.2012.8096.xThere is no corresponding record for this reference.
- 103Marek, G. J.; Wright, R. A.; Gewirtz, J. C.; Schoepp, D. D. A Major Role for Thalamocortical Afferents in Serotonergic Hallucinogen Receptor Function in the Rat Neocortex. Neuroscience 2001, 105 (2), 379– 392, DOI: 10.1016/S0306-4522(01)00199-3There is no corresponding record for this reference.
- 104Barre, A.; Berthoux, C.; De Bundel, D.; Valjent, E.; Bockaert, J.; Marin, P.; Bécamel, C. Presynaptic Serotonin 2A Receptors Modulate Thalamocortical Plasticity and Associative Learning. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (10), E1382-E1391 DOI: 10.1073/pnas.1525586113There is no corresponding record for this reference.
- 105Martín-Ruiz, R.; Puig, M. V.; Celada, P.; Shapiro, D. A.; Roth, B. L.; Mengod, G.; Artigas, F. Control of Serotonergic Function in Medial Prefrontal Cortex by Serotonin-2A Receptors through a Glutamate-Dependent Mechanism. J. Neurosci. 2001, 21 (24), 9856– 9866, DOI: 10.1523/JNEUROSCI.21-24-09856.2001There is no corresponding record for this reference.
- 106Ouhaz, Z.; Ba-M’hamed, S.; Mitchell, A. S.; Elidrissi, A.; Bennis, M. Behavioral and Cognitive Changes after Early Postnatal Lesions of the Rat Mediodorsal Thalamus. Behavioural Brain Research 2015, 292, 219– 232, DOI: 10.1016/j.bbr.2015.06.017There is no corresponding record for this reference.
- 107Ouhaz, Z.; Ba-M’hamed, S.; Bennis, M. Morphological, Structural, and Functional Alterations of the Prefrontal Cortex and the Basolateral Amygdala after Early Lesion of the Rat Mediodorsal Thalamus. Brain Struct Funct 2017, 222 (6), 2527– 2545, DOI: 10.1007/s00429-016-1354-2There is no corresponding record for this reference.
- 108Ansorge, M. S.; Zhou, M.; Lira, A.; Hen, R.; Gingrich, J. A. Early-Life Blockade of the 5-HT Transporter Alters Emotional Behavior in Adult Mice. Science 2004, 306 (5697), 879– 881, DOI: 10.1126/science.1101678108https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2cXovFamsbw%253D&md5=4b6f3b812d2002dfc88dd6d2e0ea1645Early-Life Blockade of the 5-HT Transporter Alters Emotional Behavior in Adult MiceAnsorge, Mark S.; Zhou, Mingming; Lira, Alena; Hen, Rene; Gingrich, Jay A.Science (Washington, DC, United States) (2004), 306 (5697), 879-881CODEN: SCIEAS; ISSN:0036-8075. (American Association for the Advancement of Science)Reduced serotonin transporter (5-HTT) expression is assocd. with abnormal affective and anxiety-like symptoms in humans and rodents, but the mechanism of this effect is unknown. Transient inhibition of 5-HTT during early development with fluoxetine, a commonly used serotonin selective reuptake inhibitor, produced abnormal emotional behaviors in adult mice. This effect mimicked the behavioral phenotype of mice genetically deficient in 5-HTT expression. These findings indicate a crit. role of serotonin in the maturation of brain systems that modulate emotional function in the adult and suggest a developmental mechanism to explain how low-expressing 5-HTT promoter alleles increase vulnerability to psychiatric disorders.
- 109Teissier, A.; Le Magueresse, C.; Olusakin, J.; Andrade da Costa, B. L. S.; De Stasi, A. M.; Bacci, A.; Imamura Kawasawa, Y.; Vaidya, V. A.; Gaspar, P. Early-Life Stress Impairs Postnatal Oligodendrogenesis and Adult Emotional Behaviour through Activity-Dependent Mechanisms. Mol. Psychiatry 2020, 25 (6), 1159– 1174, DOI: 10.1038/s41380-019-0493-2There is no corresponding record for this reference.
- 110Kiser, D.; Steemers, B.; Branchi, I.; Homberg, J. R. The Reciprocal Interaction between Serotonin and Social Behaviour. Neuroscience & Biobehavioral Reviews 2012, 36 (2), 786– 798, DOI: 10.1016/j.neubiorev.2011.12.009There is no corresponding record for this reference.
- 111Canli, T.; Lesch, K.-P. Long Story Short: The Serotonin Transporter in Emotion Regulation and Social Cognition. Nat. Neurosci 2007, 10 (9), 1103– 1109, DOI: 10.1038/nn1964111https://chemport.cas.org/services/resolver?origin=ACS&resolution=options&coi=1%3ACAS%3A528%3ADC%252BD2sXps1Sgu7w%253D&md5=9463255f6ce11bedd4f9f1eeb8423f99Long story short: the serotonin transporter in emotion regulation and social cognitionCanli, Turhan; Lesch, Klaus-PeterNature Neuroscience (2007), 10 (9), 1103-1109CODEN: NANEFN; ISSN:1097-6256. (Nature Publishing Group)A review. The gene encoding the serotonin transporter (5-HTT) contains a regulatory variation that has been assocd. with anxiety-related traits and susceptibility for depression. Here we highlight recent discoveries related to allelic variation of 5-HTT function with respect to emotion regulation and social behavior, drawing from an interdisciplinary perspective of behavioral genetics and cognitive neuroscience. Following a reductionistic path that leads from gene-behavior assocn. studies to neuro-imaging and epigenetic studies, we compare two models of 5-HTT-dependent modulation of brain activity and discuss the role of life stress experience in modifying 5-HTT function in the brain. Integration of these findings suggests that the impact of the 5-HTT gene on behavior is much broader than is commonly appreciated and may have a role in social cognition.
- 112Homberg, J. R.; Schiepers, O. J. G.; Schoffelmeer, A. N. M.; Cuppen, E.; Vanderschuren, L. J. M. J. Acute and Constitutive Increases in Central Serotonin Levels Reduce Social Play Behaviour in Peri-Adolescent Rats. Psychopharmacology 2007, 195 (2), 175– 182, DOI: 10.1007/s00213-007-0895-8There is no corresponding record for this reference.