ACS Publications. Most Trusted. Most Cited. Most Read
Early Diagenesis of Lacustrine Carbonates in Volcanic Settings: The Role of Magmatic CO2 (Lake Dziani Dzaha, Mayotte, Indian Ocean)
My Activity

Figure 1Loading Img
    Article

    Early Diagenesis of Lacustrine Carbonates in Volcanic Settings: The Role of Magmatic CO2 (Lake Dziani Dzaha, Mayotte, Indian Ocean)
    Click to copy article linkArticle link copied!

    • Vincent P. Milesi*
      Vincent P. Milesi
      Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
      *E-mail: [email protected]
    • Mathieu Debure
      Mathieu Debure
      BRGM, French Geological Survey, 45060 Orléans Cedex 2, France
    • Nicolas C. M. Marty
      Nicolas C. M. Marty
      BRGM, French Geological Survey, 45060 Orléans Cedex 2, France
    • Manuela Capano
      Manuela Capano
      Collège de France, CEREGE, 13545 Aix en Provence Cedex 4, France
    • Didier Jézéquel
      Didier Jézéquel
      Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
    • Carl Steefel
      Carl Steefel
      Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
      More by Carl Steefel
    • Virgile Rouchon
      Virgile Rouchon
      IFP Energies Nouvelles, Direction Géosciences, 92852 Rueil-Malmaison, France
    • Patrick Albéric
      Patrick Albéric
      Institut des Sciences de la Terre d’Orléans, 45100 Orléans, France
    • Edouard Bard
      Edouard Bard
      Collège de France, CEREGE, 13545 Aix en Provence Cedex 4, France
      More by Edouard Bard
    • Gérard Sarazin
      Gérard Sarazin
      Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
    • François Guyot
      François Guyot
      IMPMC, Sorbonne Université, MNHN, 75005 Paris, France
    • Aurélien Virgone
      Aurélien Virgone
      Total, EP CSTJF, 64018 Pau, France
    • Éric C. Gaucher
      Éric C. Gaucher
      Total, EP CSTJF, 64018 Pau, France
    • Magali Ader
      Magali Ader
      Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
      More by Magali Ader
    Other Access OptionsSupporting Information (1)

    ACS Earth and Space Chemistry

    Cite this: ACS Earth Space Chem. 2020, 4, 3, 363–378
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsearthspacechem.9b00279
    Published February 11, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Lacustrine carbonates formed in rift settings are increasingly studied not only as archives of Earth chemical and climatic history but also as potential hydrocarbon source rocks and/or reservoirs. The role of magmatic gases in their formation and diagenetic evolution, hence in their reservoir properties, remains unclear. We studied the first meter of carbonate sediment of the Dziani Dzaha volcanic crater lake (Mayotte Island) and developed a reactive-transport model with CrunchFlow software that allows the quantification of diagenetic reactions by considering depth-dependent burial rates and sediment compaction. The model is constrained by the previously documented solid-phase compositions of the lake sediment and new data consisting of 14C dating of plant macroremains to characterize the sediment age model, chemical composition of sediment pore waters, and chemical and isotopic composition of gases dissolved and bubbling through the lake. These new data reveal a massive magmatic CO2 contribution to the dissolved inorganic carbon of the lake, which fuels the primary productivity and carbonate formation. A pH value of 9 in the surface sediment pore waters induces supersaturation relative to aragonite, hydromagnesite, and saponite. At 1 m depth in the sediment, our model predicts that magmatic CO2 inflows and organic matter degradation account for 22 and 2 mol % dissolved inorganic carbon, respectively. The magmatic CO2 inflows result in a pH decrease at depth, leading to the destabilization of hydromagnesite, while saponite and aragonite remain stable. These results demonstrate the role of magmatic CO2 in fueling carbonate production and controlling the diagenetic evolution of sediment mineralogy.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsearthspacechem.9b00279.

    • Cl and Br concentrations of Dziani Dzaha water column; list of sampled sediment cores, lake water, and bubbling gases; concentration of dissolved methane and CO2 in the water column; carbon and hydrogen isotope compositions of dissolved CH4 and CO2 in pore water; porosity values in core C12; pH, alkalinity, and major cation concentrations of pore water; stoichiometry and thermodynamic properties of saponite of Thermoddem database and Dziani Dzaha (DZ-saponite) (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 19 publications.

    1. Shaul Hurwitz, Andri Stefánsson, Everett L. Shock, Barbara I. Kleine-Marshall. The geochemistry of continental hydrothermal systems. 2025, 301-345. https://doi.org/10.1016/B978-0-323-99762-1.00036-X
    2. Adrien Vigneron, Lilian A. Cloarec, Hélène Agogué, Cécile Bernard, Sébastien Duperron, Christophe Leboulanger, Claire Carré, Patrice Got, Cécile Roques, Marc Troussellier, Didier Jézéquel, Alexis Groleau, Magali Ader, Philipe M. Oger, Mylène Hugoni. Seismic events as potential drivers of the microbial community structure and evolution in a paleo-ocean analog. Communications Earth & Environment 2024, 5 (1) https://doi.org/10.1038/s43247-024-01615-0
    3. Chao Liang, Junran Wang, Yingchang Cao, Zhouhai Xiong, Keyu Liu, Fang Hao, Wanlu Han. Authigenic calcite in shales: Implications for tracing burial processes and diagenetic fluid evolution in sedimentary basins. Earth-Science Reviews 2024, 258 , 104935. https://doi.org/10.1016/j.earscirev.2024.104935
    4. Manon Mastin, Cécile Cathalot, Olivia Fandino, Thomas Giunta, Jean-Pierre Donval, Vivien Guyader, Yoan Germain, Carla Scalabrin, Sébastien Dehez, Stéphane Jouenne, Eric C. Gaucher, Olivier Rouxel, Emmanuel Rinnert. Strong geochemical anomalies following active submarine eruption offshore Mayotte. Chemical Geology 2023, 640 , 121739. https://doi.org/10.1016/j.chemgeo.2023.121739
    5. Pei Guo, Huaguo Wen, Changzhi Li, Hailong He, Mónica Sánchez-Román. Lacustrine dolomite in deep time: What really matters in early dolomite formation and accumulation?. Earth-Science Reviews 2023, 246 , 104575. https://doi.org/10.1016/j.earscirev.2023.104575
    6. Elodie Muller, William Rapin, Jeanne Caumartin, Didier Jézéquel, Alexis De Wever, Christophe Thomazo, Robin Havas, Purificación López‐García, David Moreira, Rozaluz Tavera, Karim Benzerara. Diagenetic formation of stevensite by replacement of diatom frustules in the sediments of the alkaline Lake Alchichica (Mexico). Sedimentology 2023, 70 (4) , 1013-1038. https://doi.org/10.1111/sed.13069
    7. Nicholas J. Tosca, Benjamin M. Tutolo. How to Make an Alkaline Lake: Fifty Years of Chemical Divides. Elements 2023, 19 (1) , 15-21. https://doi.org/10.2138/gselements.19.1.15
    8. Catherine Lerouge, Mathieu Debure, Ana-Maria Fernández, Philippe Négrel, Benoit Madé, Nicolas Maubec, Christine Fléhoc, Catherine Guerrot, Michaela Blessing, Benoit Henry, Jean-Charles Robinet. Hydrogeochemical processes of critical zone developed in Tégulines Clay, Paris Basin: Hydrogeochemical and multi-isotopic approach (δ13C, δD, δ18O, 87Sr/86Sr and 14C). Journal of Hydrology 2023, 617 , 129077. https://doi.org/10.1016/j.jhydrol.2023.129077
    9. Robin Havas, Christophe Thomazo, Miguel Iniesto, Didier Jézéquel, David Moreira, Rosaluz Tavera, Jeanne Caumartin, Elodie Muller, Purificación López-García, Karim Benzerara. Biogeochemical processes captured by carbon isotopes in redox-stratified water columns: a comparative study of four modern stratified lakes along an alkalinity gradient. Biogeosciences 2023, 20 (12) , 2347-2367. https://doi.org/10.5194/bg-20-2347-2023
    10. Pierre Cadeau, Pierre Cartigny, Christophe Thomazo, Didier Jézéquel, Christophe Leboulanger, Gérard Sarazin, Magali Ader. The Dziani Dzaha Lake: A long‐awaited modern analogue for superheavy pyrites. Geobiology 2022, 20 (3) , 444-461. https://doi.org/10.1111/gbi.12486
    11. V. Paul Wright, . The mantle, CO 2 and the giant Aptian chemogenic lacustrine carbonate factory of the South Atlantic: Some carbonates are made, not born. Sedimentology 2022, 69 (1) , 47-73. https://doi.org/10.1111/sed.12835
    12. Marco Liuzzo, Andrea Di Muro, Andrea Luca Rizzo, Fausto Grassa, Massimo Coltorti, Magali Ader. The composition of gas emissions at Petite Terre (Mayotte, Comoros): inference on magmatic fingerprints. Comptes Rendus. Géoscience 2022, 354 (S2) , 275-298. https://doi.org/10.5802/crgeos.148
    13. Pierre Cadeau, Didier Jézéquel, Alexis Groleau, Andrea Di Muro, Magali Ader. Impact of the seismo-volcanic crisis offshore Mayotte on the Dziani Dzaha Lake. Comptes Rendus. Géoscience 2022, 354 (S2) , 299-316. https://doi.org/10.5802/crgeos.172
    14. Pierre Cadeau, Magali Ader, Didier Jézéquel, Carine Chaduteau, Gérard Sarazin, Cécile Bernard, Christophe Leboulanger. Nitrogen Isotope Discrepancy Between Primary Producers and Sediments in an Anoxic and Alkaline Lake. Frontiers in Earth Science 2021, 9 https://doi.org/10.3389/feart.2021.787386
    15. Marco Liuzzo, Andrea Di Muro, Andrea Luca Rizzo, Antonio Caracausi, Fausto Grassa, Nicolas Fournier, Bafakih Shafik, Guillaume Boudoire, Massimo Coltorti, Manuel Moreira, Francesco Italiano. Gas Geochemistry at Grande Comore and Mayotte Volcanic Islands (Comoros Archipelago), Indian Ocean. Geochemistry, Geophysics, Geosystems 2021, 22 (8) https://doi.org/10.1029/2021GC009870
    16. Nina Zeyen, Karim Benzerara, Olivier Beyssac, Damien Daval, Elodie Muller, Christophe Thomazo, Rosaluz Tavera, Purificación López-García, David Moreira, Elodie Duprat. Integrative analysis of the mineralogical and chemical composition of modern microbialites from ten Mexican lakes: What do we learn about their formation?. Geochimica et Cosmochimica Acta 2021, 305 , 148-184. https://doi.org/10.1016/j.gca.2021.04.030
    17. Mathieu Debure, Catherine Lerouge, Fabienne Warmont, Laura Bocher, Mélanie Lundy, Benoît Madé, Sylvain Grangeon. On the interaction between calcite and dolomite: Insights from gas and aqueous geochemistry and mineralogical characterization. Chemical Geology 2021, 559 , 119921. https://doi.org/10.1016/j.chemgeo.2020.119921
    18. Pierre Cadeau, Didier Jézéquel, Christophe Leboulanger, Eric Fouilland, Emilie Le Floc’h, Carine Chaduteau, Vincent Milesi, Julia Guélard, Gérard Sarazin, Amandine Katz, Sophie d’Amore, Cécile Bernard, Magali Ader. Carbon isotope evidence for large methane emissions to the Proterozoic atmosphere. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-75100-x
    19. I. Jovovic, V. Grossi, P. Adam, L. Simon, I. Antheaume, F. Gelin, M. Ader, P. Cartigny. Quantitative and specific recovery of natural organic and mineral sulfur for (multi-)isotope analysis. Organic Geochemistry 2020, 146 , 104055. https://doi.org/10.1016/j.orggeochem.2020.104055

    ACS Earth and Space Chemistry

    Cite this: ACS Earth Space Chem. 2020, 4, 3, 363–378
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsearthspacechem.9b00279
    Published February 11, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    639

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.