Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Photovoltaic Anodes for Enhanced Thermionic Energy Conversion

  • A. Bellucci
    A. Bellucci
    Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 00015 Rome, Italy
    More by A. Bellucci
  • M. Mastellone
    M. Mastellone
    Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 00015 Rome, Italy
  • V. Serpente
    V. Serpente
    Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 00015 Rome, Italy
    More by V. Serpente
  • M. Girolami
    M. Girolami
    Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 00015 Rome, Italy
    More by M. Girolami
  • S. Kaciulis
    S. Kaciulis
    Istituto di Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 00015 Rome, Italy
    More by S. Kaciulis
  • A. Mezzi
    A. Mezzi
    Istituto di Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 00015 Rome, Italy
    More by A. Mezzi
  • D. M. Trucchi*
    D. M. Trucchi
    Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, 00015 Rome, Italy
    *[email protected]
  • E. Antolín
    E. Antolín
    Instituto de Energı́a Solar, Universidad Politécnica de Madrid, 28040 Madrid, Spain
    More by E. Antolín
  • J. Villa
    J. Villa
    Instituto de Energı́a Solar, Universidad Politécnica de Madrid, 28040 Madrid, Spain
    More by J. Villa
  • P. G. Linares
    P. G. Linares
    Instituto de Energı́a Solar, Universidad Politécnica de Madrid, 28040 Madrid, Spain
  • A. Martí
    A. Martí
    Instituto de Energı́a Solar, Universidad Politécnica de Madrid, 28040 Madrid, Spain
    More by A. Martí
  • , and 
  • A. Datas*
    A. Datas
    Instituto de Energı́a Solar, Universidad Politécnica de Madrid, 28040 Madrid, Spain
    *[email protected]
    More by A. Datas
Cite this: ACS Energy Lett. 2020, 5, 5, 1364–1370
Publication Date (Web):March 24, 2020
https://doi.org/10.1021/acsenergylett.0c00022
Copyright © 2020 American Chemical Society

    Article Views

    883

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Thermionic energy converters are heat engines based on the direct emission of electrons from a hot cathode toward a colder anode. Because the thermionic emission is unavoidably accompanied by photonic emission, radiative energy transfer is a significant source of losses in these devices. In this Letter, we provide the experimental demonstration of a hybrid thermionic–photovoltaic device that is able to produce electricity not only from the electrons but also from the photons that are emitted by the cathode. Thermionic electrons are injected in the valence band of a gallium arsenide semiconducting anode, then pumped to the conduction band by the photovoltaic effect, and finally extracted from the conduction band to produce useful energy before they are reinjected in the cathode. We show that such a hybrid device produces a voltage boost of ∼1 V with respect to a reference thermionic device made of the same materials and operating under the same conditions. This proof of concept paves the way to the development of efficient thermionic and photovoltaic devices for the direct conversion of heat into electricity.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsenergylett.0c00022.

    • Additional data on (i) the methodology for fabricating and characterizing PV cells; (ii) the experimental method used for ultrahigh vacuum and high-temperature thermionic characterization; (iii) sensitivity of the electric IV characteristics on the interelectrode distance; (iv) the methodology and errors related the cathode temperature measurement; (v) material characterization of anode surface properties, including XRD, AFM, and UPS; and (vi) additional thermionic IV measurements with cesiated nonphotovoltaic anodes (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 37 publications.

    1. Thomas Bone, Raymond Sedwick. Bremsstrahlung power conversion for fusion power and propulsion in space. Acta Astronautica 2024, 220 , 356-366. https://doi.org/10.1016/j.actaastro.2024.04.040
    2. Weiting Sun, Haoran Xu, Hao Qiu, Gang Xiao. Theoretical study on the Cs/Cs-O adsorbed graphene/semiconductor heterojunction anode for thermionic converters. Waste Disposal & Sustainable Energy 2024, 238 https://doi.org/10.1007/s42768-024-00191-5
    3. Guanghua Zheng, Yikang Chen, Ning Ding, Jiangrong Xu. Inner-cascaded photovoltaic-thermionic-thermoradiative conversion for concentrated solar power. Solar Energy 2023, 264 , 112063. https://doi.org/10.1016/j.solener.2023.112063
    4. Guanghua Zheng, Yan Liu, Jiangrong Xu. Thermoradiative anode for enhanced thermionic energy conversion. Applied Thermal Engineering 2023, 235 , 121449. https://doi.org/10.1016/j.applthermaleng.2023.121449
    5. Xin-Bo Zhang, Cheng-Long Zhou, Feng Gu, Xiao-Ping Luo, Yong Zhang, Hong-Liang Yi. Medium-Bridge Near-Field Thermophotovoltaic System. Nanoscale and Microscale Thermophysical Engineering 2023, 27 (3-4) , 195-207. https://doi.org/10.1080/15567265.2023.2202699
    6. Cong Ji, Fan Gu. Influence of Thermionic Emission on He Ionization and Plasma Enhancement in Thermionic Energy Conversion. Energies 2023, 16 (18) , 6435. https://doi.org/10.3390/en16186435
    7. Raphaël Poulain. How flat is the flatband potential?. Journal of Materials Chemistry A 2023, 11 (33) , 17787-17796. https://doi.org/10.1039/D3TA03621A
    8. Yuan Wang, Aoao Ding, Haidong Li, Shaohui Liu, Qianhui Mao, Zhimin Yang, Shanhe Su. Performance analysis of photon-enhanced thermionic emission systems mediated by quantum tunneling. Journal of Applied Physics 2023, 134 (3) https://doi.org/10.1063/5.0155524
    9. Cristina Artini, Giovanni Pennelli, Patrizio Graziosi, Zhen Li, Neophytos Neophytou, Claudio Melis, Luciano Colombo, Eleonora Isotta, Ketan Lohani, Paolo Scardi, Alberto Castellero, Marcello Baricco, Mauro Palumbo, Silvia Casassa, Lorenzo Maschio, Marcella Pani, Giovanna Latronico, Paolo Mele, Francesca Di Benedetto, Gaetano Contento, Maria Federica De Riccardis, Raffaele Fucci, Barbara Palazzo, Antonella Rizzo, Valeria Demontis, Domenic Prete, Muhammad Isram, Francesco Rossella, Alberto Ferrario, Alvise Miozzo, Stefano Boldrini, Elisabetta Dimaggio, Marcello Franzini, Simone Galliano, Claudia Barolo, Saeed Mardi, Andrea Reale, Bruno Lorenzi, Dario Narducci, Vanira Trifiletti, Silvia Milita, Alessandro Bellucci, Daniele M Trucchi. Roadmap on thermoelectricity. Nanotechnology 2023, 34 (29) , 292001. https://doi.org/10.1088/1361-6528/acca88
    10. A. Bellucci, B. Pede, M. Mastellone, V. Valentini, R. Polini, D.M. Trucchi. Thermionic performance of nanocrystalline diamond/silicon structures under concentrated solar radiation. Ceramics International 2023, 49 (14) , 24351-24355. https://doi.org/10.1016/j.ceramint.2022.10.200
    11. Eleonora Bolli, Alessio Mezzi, Saulius Kaciulis, Valerio Serpente, Alessandro Bellucci, Daniele M. Trucchi. Temperature dependence of the work function in barium fluoride ultra‐thin films on semiconductors for hybrid thermionic converters studied by ultraviolet photoelectron spectroscopy. Surface and Interface Analysis 2023, 55 (6-7) , 541-547. https://doi.org/10.1002/sia.7182
    12. Hao Qiu, Haoran Xu, Gang Xiao. Hybrid photon-enhanced thermionic emission and photovoltaic converter with concentrated solar power. Solar Energy Materials and Solar Cells 2023, 254 , 112279. https://doi.org/10.1016/j.solmat.2023.112279
    13. Alessio Mezzi, Eleonora Bolli, Saulius Kaciulis, Alessandro Bellucci, Barbara Paci, Amanda Generosi, Matteo Mastellone, Valerio Serpente, Daniele Maria Trucchi. Multi-Technique Approach for Work Function Exploration of Sc2O3 Thin Films. Nanomaterials 2023, 13 (8) , 1430. https://doi.org/10.3390/nano13081430
    14. Rohith Mittapally, Ayan Majumder, Pramod Reddy, Edgar Meyhofer. Near-Field Thermophotovoltaic Energy Conversion: Progress and Opportunities. Physical Review Applied 2023, 19 (3) https://doi.org/10.1103/PhysRevApplied.19.037002
    15. Liubing Xie, Ning Yang, Pingan Wang, Yanpeng Xu, Huan He, Xiaoming Shen, Yuechun Fu. Theoretical research and simulation of GaAs nanowire arrays in reflection-type photon-enhanced thermionic emission solar converters. Solar Energy 2023, 251 , 295-305. https://doi.org/10.1016/j.solener.2023.01.025
    16. Alessandro Bellucci, Gianluca Caposciutti, Marco Antonelli, Daniele Maria Trucchi. Techno-Economic Evaluation of Future Thermionic Generators for Small-Scale Concentrated Solar Power Systems. Energies 2023, 16 (3) , 1190. https://doi.org/10.3390/en16031190
    17. Guanghua Zheng, Yikang Chen, Guanqing Wang, Xuefeng Huang, Jiangrong Xu. N-p junction to enhance solar thermionic energy conversion: From a thermodynamic point of view. Energy Conversion and Management 2023, 277 , 116645. https://doi.org/10.1016/j.enconman.2022.116645
    18. A.N.M. Taufiq Elahi, Keunhan Park. Near-field energy harvesting. 2023, 443-470. https://doi.org/10.1016/B978-0-323-99901-4.00024-X
    19. Hao Qiu, Shisheng Lin, Haoran Xu, Guanghui Hao, Gang Xiao. Experimental and theoretical study on hybrid thermionic-photovoltaic energy converters with graphene/semiconductor Schottky junction. Energy Conversion and Management 2023, 276 , 116584. https://doi.org/10.1016/j.enconman.2022.116584
    20. Tao Liang, Jingyi Chen, Xiaohang Chen, Shanhe Su, Jincan Chen. Trade-off between the near-field heat transfer and the space charge effect in graphene-anode thermionic energy converters. Energy 2022, 260 , 125174. https://doi.org/10.1016/j.energy.2022.125174
    21. Hao Qiu, Haoran Xu, Mingjiang Ni, Gang Xiao. Photo-thermo-electric modeling of photon-enhanced thermionic emission with concentrated solar power. Solar Energy Materials and Solar Cells 2022, 246 , 111922. https://doi.org/10.1016/j.solmat.2022.111922
    22. Ehsanur Rahman, Alireza Nojeh. The effects of electronic and photonic coupling on the performance of a photothermionic-photovoltaic hybrid solar device. Solar Energy Materials and Solar Cells 2022, 247 , 111945. https://doi.org/10.1016/j.solmat.2022.111945
    23. Hao Qiu, Shisheng Lin, Haoran Xu, Guanghui Hao, Gang Xiao. Hybrid thermionic-photovoltaic converter with graphene-on-semiconductor heterojunction anode for efficient electricity generation. iScience 2022, 25 (10) , 105051. https://doi.org/10.1016/j.isci.2022.105051
    24. Alessandro Bellucci, Pablo García‐Linares, Antonio Martí, Daniele Maria Trucchi, Alejandro Datas. A Three‐Terminal Hybrid Thermionic‐Photovoltaic Energy Converter. Advanced Energy Materials 2022, 12 (20) https://doi.org/10.1002/aenm.202200357
    25. A. Bellucci, P.G. Linares, J. Villa, A. Martí, A. Datas, D.M. Trucchi. Hybrid thermionic-photovoltaic converter with an In0.53Ga0.47As anode. Solar Energy Materials and Solar Cells 2022, 238 , 111588. https://doi.org/10.1016/j.solmat.2022.111588
    26. Xin Zhang, Yi Xiong, Yee Sin Ang, Lay Kee Ang, Juncheng Guo. High-Performance Thermionic Energy Converters Based on Cd 3 As 2 Anode. IEEE Transactions on Electron Devices 2022, 69 (5) , 2637-2643. https://doi.org/10.1109/TED.2022.3159265
    27. Mansur Mohammed Ali Gamel, Hui Jing Lee, Wan Emilin Suliza Wan Abdul Rashid, Pin Jern Ker, Lau Kuen Yau, Mahammad A. Hannan, Md. Zaini Jamaludin. A Review on Thermophotovoltaic Cell and Its Applications in Energy Conversion: Issues and Recommendations. Materials 2021, 14 (17) , 4944. https://doi.org/10.3390/ma14174944
    28. A. Bellucci, M. Mastellone, M. Girolami, V. Serpente, E. Sani, D. Sciti, D.M. Trucchi. Thermionic emission measurement of sintered lanthanum hexaboride discs and modelling of their solar energy conversion performance. Ceramics International 2021, 47 (14) , 20736-20739. https://doi.org/10.1016/j.ceramint.2021.04.079
    29. Matthew F. Campbell, Thomas J. Celenza, Felix Schmitt, Jared W. Schwede, Igor Bargatin. Progress Toward High Power Output in Thermionic Energy Converters. Advanced Science 2021, 8 (9) https://doi.org/10.1002/advs.202003812
    30. SuSu Qiu, ZeMin Ding, LinGen Chen, YanLin Ge. Performance optimization of thermionic refrigerators based on van der Waals heterostructures. Science China Technological Sciences 2021, 64 (5) , 1007-1016. https://doi.org/10.1007/s11431-020-1749-9
    31. A. Bellucci, M. Girolami, M. Mastellone, V. Serpente, D.M. Trucchi. Upgrade and present limitations of solar thermionic-thermoelectric technology up to 1000 K. Solar Energy Materials and Solar Cells 2021, 223 , 110982. https://doi.org/10.1016/j.solmat.2021.110982
    32. Cong Hu, Tao Liang, Xiaohang Chen, Shanhe Su, Jincan Chen. Graphene-anode thermionic converter demonstrating total photon reflection. Applied Physics Letters 2021, 118 (8) https://doi.org/10.1063/5.0039113
    33. Panagiotis Stamatopoulos, Myrto Zeneli, Aristeidis Nikolopoulos, Alessandro Bellucci, Daniele M. Trucchi, Nikos Nikolopoulos. Introducing a 1D numerical model for the simulation of PN junctions of varying spectral material properties and operating conditions. Energy Conversion and Management 2021, 230 , 113819. https://doi.org/10.1016/j.enconman.2020.113819
    34. A Bellucci, M Girolami, M Mastellone, S Orlando, R Polini, A Santagata, V Serpente, V Valentini, D M Trucchi. Novel concepts and nanostructured materials for thermionic-based solar and thermal energy converters. Nanotechnology 2021, 32 (2) , 024002. https://doi.org/10.1088/1361-6528/abba57
    35. Alessandro Bellucci, Gianfranco Sabbatella, Marco Girolami, Matteo Mastellone, Valerio Serpente, Alessio Mezzi, Saulius Kaciulis, Barbara Paci, Amanda Generosi, Riccardo Polini, Aniello Vitulano, Ilaria Vivaldi, Marco Antonelli, Daniele M. Trucchi. Dielectric Micro‐ and Sub‐Micrometric Spacers for High‐Temperature Energy Converters. Energy Technology 2021, 9 (1) https://doi.org/10.1002/ente.202000788
    36. Alejandro Datas, Rodolphe Vaillon. Thermophotovoltaic energy conversion. 2021, 285-308. https://doi.org/10.1016/B978-0-12-819955-8.00011-9
    37. Alessandro Bellucci, Stefano Orlando, Marco Girolami, Matteo Mastellone, Valerio Serpente, Barbara Paci, Amanda Generosi, Alessio Mezzi, Saulius Kaciulis, Riccardo Polini, Daniele M. Trucchi. Aluminum (Oxy)nitride thin films grown by fs-PLD as electron emitters for thermionic applications. 2021, 020004. https://doi.org/10.1063/5.0068496