ACS Publications. Most Trusted. Most Cited. Most Read
Broad Tunability of Carrier Effective Masses in Two-Dimensional Halide Perovskites
My Activity

Figure 1Loading Img
    Letter

    Broad Tunability of Carrier Effective Masses in Two-Dimensional Halide Perovskites
    Click to copy article linkArticle link copied!

    • Mateusz Dyksik
      Mateusz Dyksik
      Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, Grenoble and Toulouse, France
      Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
    • Herman Duim
      Herman Duim
      Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
      More by Herman Duim
    • Xiangzhou Zhu
      Xiangzhou Zhu
      Department of Physics, Technical University of Munich, 85748 Garching, Germany
    • Zhuo Yang
      Zhuo Yang
      The Institute for Solid State Physics, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba, Japan
      More by Zhuo Yang
    • Masaki Gen
      Masaki Gen
      The Institute for Solid State Physics, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba, Japan
      More by Masaki Gen
    • Yoshimitsu Kohama
      Yoshimitsu Kohama
      The Institute for Solid State Physics, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba, Japan
    • Sampson Adjokatse
      Sampson Adjokatse
      Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
    • Duncan K. Maude
      Duncan K. Maude
      Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, Grenoble and Toulouse, France
    • Maria Antonietta Loi*
      Maria Antonietta Loi
      Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
      *[email protected]
    • David A. Egger*
      David A. Egger
      Department of Physics, Technical University of Munich, 85748 Garching, Germany
      *[email protected]
    • Michal Baranowski*
      Michal Baranowski
      Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
      *[email protected]
    • Paulina Plochocka*
      Paulina Plochocka
      Laboratoire National des Champs Magnétiques Intenses, UPR 3228, CNRS-UGA-UPS-INSA, Grenoble and Toulouse, France
      Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
      *[email protected]
    Other Access OptionsSupporting Information (1)

    ACS Energy Letters

    Cite this: ACS Energy Lett. 2020, 5, 11, 3609–3616
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsenergylett.0c01758
    Published October 27, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The effective mass of charge carriers is a crucial parameter for the design of any optoelectronic device. The estimated values of the effective mass of 2D halide perovskites currently span a broad range, providing an unwelcome source of confusion in this promising material system. Here we highlight how the distortion imposed by the organic spacers, and orbital hybridization effects by the metal cation, govern the effective mass. As a result, the effective mass in 2D halide perovskites can be easily tailored over a wide range. To demonstrate this, we have directly measured the reduced effective mass of charge carriers in phenethylamine (PEA)-based 2D halide perovskites. Combining the experimental results with electronic band-structure calculations, we propose a scaling diagram for the effective mass value versus the distortion of the octahedra imposed by the organic cations.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsenergylett.0c01758.

    • Transmission spectra of (PEA)2SnI4 in magnetic field, band gap determination for (PEA)2SnI4 and (PEA)2PbI4, reflection spectra of FASnI3 in magnetic field, and temperature dependence of transmission spectra of (PEA)2SnI4 and (PEA)2PbI4 (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 74 publications.

    1. Claudio Quarti, Régis Gautier, Marios Zacharias, Axel Gansmuller, Claudine Katan. Nuclear Quadrupolar Resonance Structural Characterization of Halide Perovskites and Perovskitoids: A Roadmap from Electronic Structure Calculations for Lead–Iodide-Based Compounds. Journal of the American Chemical Society 2025, 147 (1) , 278-291. https://doi.org/10.1021/jacs.4c09877
    2. Shahar Zuri, Leeor Kronik, Efrat Lifshitz. Intrinsic Rashba Effect in Stable Configurations of Two-Dimensional (PEA)2PbI4. The Journal of Physical Chemistry Letters 2024, 15 (46) , 11637-11642. https://doi.org/10.1021/acs.jpclett.4c02222
    3. Paulina Peksa, Arthur Maufort, Michał Baranowski, Alessandro Surrente, Laurence Lutsen, Paulina Płochocka, Wouter T. M. Van Gompel, Mateusz Dyksik. Engineering the Effective Mass in 2D Perovskites via Octahedral Distortion. The Journal of Physical Chemistry C 2024, 128 (42) , 17984-17989. https://doi.org/10.1021/acs.jpcc.4c05300
    4. Yilin Jiang, Jinlin Yin, Guohui Zhao, Kaifeng Wu, Honghan Fei. Suppressing Room-Temperature Carrier Self-Trapping by an Ultrastable Lead Iodide Ortho-Dicarboxylate Hybrid. ACS Sustainable Chemistry & Engineering 2024, 12 (32) , 12178-12187. https://doi.org/10.1021/acssuschemeng.4c04166
    5. Shuanglong Wang, Mukunda Mandal, Heng Zhang, Dag W. Breiby, Okan Yildiz, Zhitian Ling, George Floudas, Mischa Bonn, Denis Andrienko, Hai I. Wang, Paul W. M. Blom, Wojciech Pisula, Tomasz Marszalek. Odd–Even Alkyl Chain Effects on the Structure and Charge Carrier Transport of Two-Dimensional Sn-Based Perovskite Semiconductors. Journal of the American Chemical Society 2024, 146 (28) , 19128-19136. https://doi.org/10.1021/jacs.4c03936
    6. Lucas Scalon, Arianne New, Ziyuan Ge, Navendu Mondal, Raquel Dantas Campos, Claudio Quarti, David Beljonne, Ana Flávia Nogueira, Artem A. Bakulin, Yana Vaynzof. Understanding and Controlling the Photoluminescence Line Shapes of 2D Perovskites with Chiral Methylbenzylammonium-Based Cations. Chemistry of Materials 2024, 36 (9) , 4331-4342. https://doi.org/10.1021/acs.chemmater.3c03234
    7. Ting Zhang, Zhipeng Miao, Rudai Zhao, Fangfang Yuan, Sihui Peng, Yuncai Liang, He Zhu, Yunhang Xie, Wenlong Liang, Pengwei Li, Yiqiang Zhang, Yanlin Song. Optimization Charge-Carrier Properties of 2D Ruddlesden–Popper Perovskite for Solar Cells. ACS Energy Letters 2024, 9 (5) , 2248-2256. https://doi.org/10.1021/acsenergylett.4c00724
    8. Kameron R. Hansen, C. Emma McClure, Mary Alice Parker, Zhuyun Xie, Wanyi Nie, John S. Colton, Luisa Whittaker-Brooks. Stochastic Charge-Transfer Excitons in 2D Metal-Halide Perovskites. ACS Energy Letters 2024, 9 (4) , 1645-1653. https://doi.org/10.1021/acsenergylett.3c02738
    9. Larissa J. M. van de Ven, Eelco K. Tekelenburg, Matteo Pitaro, Jacopo Pinna, Maria A. Loi. Cation Influence on Hot-Carrier Relaxation in Tin Triiodide Perovskite Thin Films. ACS Energy Letters 2024, 9 (3) , 992-999. https://doi.org/10.1021/acsenergylett.4c00055
    10. Katarzyna Posmyk, Natalia Zawadzka, Łucja Kipczak, Mateusz Dyksik, Alessandro Surrente, Duncan K. Maude, Tomasz Kazimierczuk, Adam Babiński, Maciej R. Molas, Wakul Bumrungsan, Chanisara Chooseng, Watcharaphol Paritmongkol, William A. Tisdale, Michał Baranowski, Paulina Plochocka. Bright Excitonic Fine Structure in Metal-Halide Perovskites: From Two-Dimensional to Bulk. Journal of the American Chemical Society 2024, 146 (7) , 4687-4694. https://doi.org/10.1021/jacs.3c11957
    11. Junke Jiang, Jiaxue You, Shengzhong Frank Liu, Jun Xi. Scale-up Solutions of 2D Perovskite Photovoltaics: Insights of Multiscale Structures. ACS Energy Letters 2024, 9 (1) , 17-29. https://doi.org/10.1021/acsenergylett.3c02009
    12. Zachary T. Armstrong, Kristel M. Forlano, Chris R. Roy, Miriam Bohlmann Kunz, Kieran Farrell, Dongxu Pan, John C. Wright, Song Jin, Martin T. Zanni. Spatial Heterogeneity of Biexcitons in Two-Dimensional Ruddlesden–Popper Lead Iodide Perovskites. Journal of the American Chemical Society 2023, 145 (33) , 18568-18577. https://doi.org/10.1021/jacs.3c05533
    13. Shahar Zuri, Arthur Shapiro, Leeor Kronik, Efrat Lifshitz. Uncovering Multiple Intrinsic Chiral Phases in (PEA)2PbI4 Halide Perovskites. The Journal of Physical Chemistry Letters 2023, 14 (21) , 4901-4907. https://doi.org/10.1021/acs.jpclett.3c00685
    14. Alla Skorokhod, Claudio Quarti, Alexandre Abhervé, Magali Allain, Jacky Even, Claudine Katan, Nicolas Mercier. Halide Containing Short Organic Monocations in n = 1–4 2D Multilayered Halide Perovskite Thin Films and Crystals. Chemistry of Materials 2023, 35 (7) , 2873-2883. https://doi.org/10.1021/acs.chemmater.2c03718
    15. Erik Kirstein, Evgeny A. Zhukov, Dmitri R. Yakovlev, Nataliia E. Kopteva, Carolin Harkort, Dennis Kudlacik, Oleh Hordiichuk, Maksym V. Kovalenko, Manfred Bayer. Coherent Spin Dynamics of Electrons in Two-Dimensional (PEA)2PbI4 Perovskites. Nano Letters 2023, 23 (1) , 205-212. https://doi.org/10.1021/acs.nanolett.2c03975
    16. Robert Stanton, Dhara J. Trivedi. Atomistic Description of the Impact of Spacer Selection on Two-Dimensional (2D) Perovskites: A Case Study of 2D Ruddlesden–Popper CsPbI3 Analogues. The Journal of Physical Chemistry Letters 2022, 13 (51) , 12090-12098. https://doi.org/10.1021/acs.jpclett.2c03463
    17. Hardik L. Kagdada, Shovit Bhattacharya, Arnulf Materny, Dheeraj K. Singh. Two-Dimensional Halide Perovskite Materials Featuring 2-(Methylthio)ethylamine Organic Spacers for Efficient Solar and Thermal Energy Harvesting. The Journal of Physical Chemistry C 2022, 126 (50) , 21518-21526. https://doi.org/10.1021/acs.jpcc.2c07738
    18. Jonas D. Ziegler, Kai-Qiang Lin, Barbara Meisinger, Xiangzhou Zhu, Manuel Kober-Czerny, Pabitra K. Nayak, Cecilia Vona, Takashi Taniguchi, Kenji Watanabe, Claudia Draxl, Henry J. Snaith, John M. Lupton, David A. Egger, Alexey Chernikov. Excitons at the Phase Transition of 2D Hybrid Perovskites. ACS Photonics 2022, 9 (11) , 3609-3616. https://doi.org/10.1021/acsphotonics.2c01035
    19. Marina R. Filip, Diana Y. Qiu, Mauro Del Ben, Jeffrey B. Neaton. Screening of Excitons by Organic Cations in Quasi-Two-Dimensional Organic–Inorganic Lead-Halide Perovskites. Nano Letters 2022, 22 (12) , 4870-4878. https://doi.org/10.1021/acs.nanolett.2c01306
    20. Katarzyna Posmyk, Natalia Zawadzka, Mateusz Dyksik, Alessandro Surrente, Duncan K. Maude, Tomasz Kazimierczuk, Adam Babiński, Maciej R. Molas, Watcharaphol Paritmongkol, Mirosław Mączka, William A. Tisdale, Paulina Płochocka, Michał Baranowski. Quantification of Exciton Fine Structure Splitting in a Two-Dimensional Perovskite Compound. The Journal of Physical Chemistry Letters 2022, 13 (20) , 4463-4469. https://doi.org/10.1021/acs.jpclett.2c00942
    21. Ji-Young Go, Huihui Zhu, Youjin Reo, Hyunjun Kim, Ao Liu, Yong-Young Noh. Sodium Incorporation for Enhanced Performance of Two-Dimensional Sn-Based Perovskite Transistors. ACS Applied Materials & Interfaces 2022, 14 (7) , 9363-9367. https://doi.org/10.1021/acsami.1c19368
    22. Watcharaphol Paritmongkol, Woo Seok Lee, Wenbi Shcherbakov-Wu, Seung Kyun Ha, Tomoaki Sakurada, Soong Ju Oh, William A. Tisdale. Morphological Control of 2D Hybrid Organic–Inorganic Semiconductor AgSePh. ACS Nano 2022, 16 (2) , 2054-2065. https://doi.org/10.1021/acsnano.1c07498
    23. Martina Pantaler, Valentin Diez-Cabanes, Valentin I. E. Queloz, Albertus Sutanto, Pascal Alexander Schouwink, Mariachiara Pastore, Inés García-Benito, Mohammad Khaja Nazeeruddin, David Beljonne, Doru C. Lupascu, Claudio Quarti, Giulia Grancini. Revealing Weak Dimensional Confinement Effects in Excitonic Silver/Bismuth Double Perovskites. JACS Au 2022, 2 (1) , 136-149. https://doi.org/10.1021/jacsau.1c00429
    24. Miriam Karpińska, Minpeng Liang, Roman Kempt, Kati Finzel, Machteld Kamminga, Mateusz Dyksik, Nan Zhang, Catherine Knodlseder, Duncan K. Maude, Michał Baranowski, Łukasz Kłopotowski, Jianting Ye, Agnieszka Kuc, Paulina Plochocka. Nonradiative Energy Transfer and Selective Charge Transfer in a WS2/(PEA)2PbI4 Heterostructure. ACS Applied Materials & Interfaces 2021, 13 (28) , 33677-33684. https://doi.org/10.1021/acsami.1c08377
    25. Eugenia S. Vasileiadou, Ido Hadar, Mikaël Kepenekian, Jacky Even, Qing Tu, Christos D. Malliakas, Daniel Friedrich, Ioannis Spanopoulos, Justin M. Hoffman, Vinayak P. Dravid, Mercouri G. Kanatzidis. Shedding Light on the Stability and Structure–Property Relationships of Two-Dimensional Hybrid Lead Bromide Perovskites. Chemistry of Materials 2021, 33 (13) , 5085-5107. https://doi.org/10.1021/acs.chemmater.1c01129
    26. Mateusz Dyksik, Shuli Wang, Watcharaphol Paritmongkol, Duncan K. Maude, William A. Tisdale, Michal Baranowski, Paulina Plochocka. Tuning the Excitonic Properties of the 2D (PEA)2(MA)n−1PbnI3n+1 Perovskite Family via Quantum Confinement. The Journal of Physical Chemistry Letters 2021, 12 (6) , 1638-1643. https://doi.org/10.1021/acs.jpclett.0c03731
    27. Sabrina Djeradi, Tahar Dahame, Mohamed Abdelilah Fadla. Computational design of lead halide perovskite heterostructures through iodide and bromide alloying. Computational Condensed Matter 2025, 43 , e01015. https://doi.org/10.1016/j.cocom.2025.e01015
    28. Yong Wang, Yu Wang, Tiarnan A. S. Doherty, Samuel D. Stranks, Feng Gao, Deren Yang. Octahedral units in halide perovskites. Nature Reviews Chemistry 2025, 9 (4) , 261-277. https://doi.org/10.1038/s41570-025-00687-6
    29. Lan-Sheng Yang, Chun-Yao Huang, Chin-An Hsu, Sih-Tong Lin, Yun-Shan Hsu, Chia-Hsiang Chuang, Pei-Hsuan Lo, Yu-Chiang Chao. Solution-processed spin organic light-emitting diodes based on antisolvent-treated 2D chiral perovskites with strong spin-dependent carrier transport. Materials Horizons 2025, 12 (6) , 1863-1877. https://doi.org/10.1039/D4MH01371A
    30. Haritha Sindhu Rajeev, Xiao Hu, Wei-Liang Chen, Depei Zhang, Tianran Chen, Maiko Kofu, Ryoichi Kajimoto, Mitsutaka Nakamura, Alexander Z. Chen, Grayson C. Johnson, Mina Yoon, Yu-Ming Chang, Diane A. Dickie, Joshua J. Choi, Seung-Hun Lee. The Influence of Structural Dynamics in Two-Dimensional Hybrid Organic–Inorganic Perovskites on Their Photoluminescence Efficiency — Neutron Scattering Analysis. Journal of the Physical Society of Japan 2025, 94 (3) https://doi.org/10.7566/JPSJ.94.034602
    31. Mateusz Dyksik, Michal Baranowski, Joshua J. P. Thompson, Zhuo Yang, Martha Rivera Medina, Maria Antonietta Loi, Ermin Malic, Paulina Plochocka. Steric Engineering of Exciton Fine Structure in 2D Perovskites. Advanced Energy Materials 2025, 15 (9) https://doi.org/10.1002/aenm.202404769
    32. Junke Jiang, Tammo van der Heide, Simon Thébaud, Carlos Raúl Lien-Medrano, Arnaud Fihey, Laurent Pedesseau, Claudio Quarti, Marios Zacharias, George Volonakis, Mikael Kepenekian, Bálint Aradi, Michael A. Sentef, Jacky Even, Claudine Katan. Flexible and efficient semiempirical DFTB parameters for electronic structure prediction of 3D, 2D iodide perovskites and heterostructures. Physical Review Materials 2025, 9 (2) https://doi.org/10.1103/PhysRevMaterials.9.023803
    33. Thomas John Sheehan, Seryio Saris, William A. Tisdale. Exciton Transport in Perovskite Materials. Advanced Materials 2024, 2 https://doi.org/10.1002/adma.202415757
    34. Xinyao Yan, Rui Cao, Ruxi Zhang, Haotian Gao, Yin Xiao. Mixed‐Ligand Chiral Quasi‐2D Perovskites for Standard and Deep Blue CP‐LEDs. Advanced Functional Materials 2024, 34 (51) https://doi.org/10.1002/adfm.202410012
    35. Hongzhi Zhou, Qingjie Feng, Cheng Sun, Yahui Li, Weijian Tao, Wei Tang, Linjun Li, Enzheng Shi, Guangjun Nan, Haiming Zhu. Robust excitonic light emission in 2D tin halide perovskites by weak excited state polaronic effect. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-52952-9
    36. Andrea Zanetta, Valentina Larini, Vikram, Francesco Toniolo, Badri Vishal, Karim A. Elmestekawy, Jiaxing Du, Alice Scardina, Fabiola Faini, Giovanni Pica, Valentina Pirota, Matteo Pitaro, Sergio Marras, Changzeng Ding, Bumin K. Yildirim, Maxime Babics, Esma Ugur, Erkan Aydin, Chang-Qi Ma, Filippo Doria, Maria Antonietta Loi, Michele De Bastiani, Laura M. Herz, Giuseppe Portale, Stefaan De Wolf, M. Saiful Islam, Giulia Grancini. Vertically oriented low-dimensional perovskites for high-efficiency wide band gap perovskite solar cells. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-53339-6
    37. Marina R Filip, Linn Leppert. Halide perovskites from first principles: from fundamental optoelectronic properties to the impact of structural and chemical heterogeneity. Electronic Structure 2024, 6 (3) , 033002. https://doi.org/10.1088/2516-1075/ad5898
    38. Ying Lu, Qian Wang, Lei Han, Yuzhen Zhao, Zemin He, Wenqi Song, Cheng Song, Zongcheng Miao. Spintronic Phenomena and Applications in Hybrid Organic–Inorganic Perovskites. Advanced Functional Materials 2024, 34 (27) https://doi.org/10.1002/adfm.202314427
    39. Haotian Gao, Yu Chen, Ruxi Zhang, Rui Cao, Yong Wang, Yunfei Tian, Yin Xiao. Dual-ligand quasi-2D perovskites with chiral-induced spin selectivity for room temperature spin-LEDs. Materials Horizons 2024, 11 (12) , 2906-2913. https://doi.org/10.1039/D3MH02029K
    40. Yin Ren, Yunfei He, Sisi Li, Yahong Wang, Lin He, Peng Ye, Luming Zhou, Rongli Gao, Gang Chen, Wei Cai, Chunlin Fu. A new type of core-shell nanowire array structured quantum dot-composite perovskite solar cell with near full-spectrum absorption. Physica E: Low-dimensional Systems and Nanostructures 2024, 160 , 115937. https://doi.org/10.1016/j.physe.2024.115937
    41. Vishwadeepa Hazra, Arnab Mandal, Sayan Bhattacharyya. Optoelectronic insights of lead-free layered halide perovskites. Chemical Science 2024, 15 (20) , 7374-7393. https://doi.org/10.1039/D4SC01429D
    42. Wei Shen, Jiayu Jiang, Yanxing He, Zhihua Chen, Yue Qiu, Hao Cui, Yanfeng Chen, Lihui Liu, Gang Cheng, Shufen Chen. Two-dimensional Cs 3 Sb 2 Br 9 inducing transformation of three-dimensional CsPbBr 3 to nanoplates. Chemical Communications 2024, 60 (30) , 4044-4047. https://doi.org/10.1039/D4CC00117F
    43. Claudio Quarti, Giacomo Giorgi, Claudine Katan, Jacky Even, Maurizia Palummo. Exciton Ground State Fine Structure and Excited States Landscape in Layered Halide Perovskites from Combined BSE Simulations and Symmetry Analysis. Advanced Optical Materials 2024, 12 (8) https://doi.org/10.1002/adom.202202801
    44. Katarzyna Posmyk, Mateusz Dyksik, Alessandro Surrente, Duncan K. Maude, Natalia Zawadzka, Adam Babiński, Maciej R. Molas, Watcharaphol Paritmongkol, Mirosław Mączka, William A. Tisdale, Paulina Plochocka, Michał Baranowski. Exciton Fine Structure in 2D Perovskites: The Out‐of‐Plane Excitonic State. Advanced Optical Materials 2024, 12 (8) https://doi.org/10.1002/adom.202300877
    45. Mateusz Dyksik, Dorian Beret, Michal Baranowski, Herman Duim, Sébastien Moyano, Katarzyna Posmyk, Adnen Mlayah, Sampson Adjokatse, Duncan K. Maude, Maria Antonietta Loi, Pascal Puech, Paulina Plochocka. Polaron Vibronic Progression Shapes the Optical Response of 2D Perovskites. Advanced Science 2024, 11 (7) https://doi.org/10.1002/advs.202305182
    46. Maria Maniadi, Nicolas Mercier, Alla Skorokhod, Maroua Ben Haj Salah, Pierre Bidaud, Piétrick Hudhomme, Claudio Quarti, Wei Li, David Beljonne, Jacky Even, Claudine Katan, Constantinos C. Stoumpos. Quasi 3D electronic structures of Dion–Jacobson layered perovskites with exceptional short interlayer distances. Journal of Materials Chemistry C 2024, 12 (3) , 1061-1068. https://doi.org/10.1039/D3TC03807F
    47. Kameron R. Hansen, John S. Colton, Luisa Whittaker‐Brooks. Measuring the Exciton Binding Energy: Learning from a Decade of Measurements on Halide Perovskites and Transition Metal Dichalcogenides. Advanced Optical Materials 2024, 12 (3) https://doi.org/10.1002/adom.202301659
    48. Yan Lv, Yuxiao Wang, Xueying Ma, Yao Xu, Lin Wang, Xiaoyong Wang, Min Xiao, Chunfeng Zhang. Magneto-optical effects in lead halide perovskites. Advances in Physics: X 2023, 8 (1) https://doi.org/10.1080/23746149.2023.2258951
    49. Feng Jiang, Zhennan Wu, Min Lu, Yanbo Gao, Xin Li, Xue Bai, Yuan Ji, Yu Zhang. Broadband Emission Origin in Metal Halide Perovskites: Are Self‐Trapped Excitons or Ions?. Advanced Materials 2023, 35 (51) https://doi.org/10.1002/adma.202211088
    50. Nima Fathalizadeh, Saeid Shojaei, Sohrab Ahmadi-Kandjani. Electronic and optical properties of two-dimensional perovskite materials in DJ and RP phases: density functional theory approach. Optical and Quantum Electronics 2023, 55 (11) https://doi.org/10.1007/s11082-023-05241-6
    51. Jakhangirkhodja A. Tulyagankhodjaev, Petra Shih, Jessica Yu, Jake C. Russell, Daniel G. Chica, Michelle E. Reynoso, Haowen Su, Athena C. Stenor, Xavier Roy, Timothy C. Berkelbach, Milan Delor. Room-temperature wavelike exciton transport in a van der Waals superatomic semiconductor. Science 2023, 382 (6669) , 438-442. https://doi.org/10.1126/science.adf2698
    52. Mohammad Moaddeli, Mansour Kanani, Anna Grünebohm. Electronic and structural properties of mixed-cation hybrid perovskites studied using an efficient spin–orbit included DFT-1/2 approach. Physical Chemistry Chemical Physics 2023, 25 (37) , 25511-25525. https://doi.org/10.1039/D3CP02472E
    53. Chuang Zhang, Xiaomei Jiang, Peter C. Sercel, Haipeng Lu, Matthew C. Beard, Stephen McGill, Dmitry Semenov, Z. Valy Vardeny. Dark Exciton in 2D Hybrid Halide Perovskite Films Revealed by Magneto‐Photoluminescence at High Magnetic Field. Advanced Optical Materials 2023, 11 (18) https://doi.org/10.1002/adom.202300436
    54. Carolin Harkort, Dennis Kudlacik, Natalia E. Kopteva, Dmitri R. Yakovlev, Marek Karzel, Erik Kirstein, Oleh Hordiichuk, Maksym V. Kovalenko, Manfred Bayer. Spin‐Flip Raman Scattering on Electrons and Holes in Two‐Dimensional (PEA) 2 PbI 4 Perovskites. Small 2023, 19 (32) https://doi.org/10.1002/smll.202300988
    55. Jonas D. Ziegler, Yeongsu Cho, Sophia Terres, Matan Menahem, Takashi Taniguchi, Kenji Watanabe, Omer Yaffe, Timothy C. Berkelbach, Alexey Chernikov. Mobile Trions in Electrically Tunable 2D Hybrid Perovskites. Advanced Materials 2023, 35 (18) https://doi.org/10.1002/adma.202210221
    56. Hua-Li Liu, Hua-Yang Ru, Meng-En Sun, Zhao-Yang Wang, Shuang-Quan Zang. Mixed-cation chiral perovskites displaying warm-white circularly polarized luminescence. Science China Chemistry 2023, 66 (5) , 1425-1434. https://doi.org/10.1007/s11426-022-1531-9
    57. Hongyu Ji, Xin Liu, Longtao Li, Fan Zhang, Liang Qin, Zhidong Lou, Dan Li, Yufeng Hu, Yanbing Hou, Feng Teng. Two-dimensional layered Dion–Jacobson phase organic–inorganic tin iodide perovskite field-effect transistors. Journal of Materials Chemistry A 2023, 11 (14) , 7767-7779. https://doi.org/10.1039/D3TA00084B
    58. Giulia Folpini, Maurizia Palummo, Daniele Cortecchia, Luca Moretti, Giulio Cerullo, Annamaria Petrozza, Giacomo Giorgi, Ajay Ram Srimath Kandada. Plurality of excitons in Ruddlesden–Popper metal halides and the role of the B-site metal cation. Materials Advances 2023, 4 (7) , 1720-1730. https://doi.org/10.1039/D2MA00136E
    59. Weihua Lin, Mingli Liang, Yuran Niu, Zhesheng Chen, Marie Cherasse, Jie Meng, Xianshao Zou, Qian Zhao, Huifang Geng, Evangelos Papalazarou, Marino Marsi, Luca Perfetti, Sophie E. Canton, Kaibo Zheng, Tönu Pullerits. Combining two-photon photoemission and transient absorption spectroscopy to resolve hot carrier cooling in 2D perovskite single crystals: the effect of surface layer. Journal of Materials Chemistry C 2022, 10 (44) , 16751-16760. https://doi.org/10.1039/D2TC03111F
    60. Yongping Fu. The chemistry and physics of organic—inorganic hybrid perovskite quantum wells. Science China Chemistry 2022, 65 (11) , 2058-2076. https://doi.org/10.1007/s11426-022-1389-6
    61. Shuanglong Wang, Sabine Frisch, Heng Zhang, Okan Yildiz, Mukunda Mandal, Naz Ugur, Beomjin Jeong, Charusheela Ramanan, Denis Andrienko, Hai I. Wang, Mischa Bonn, Paul W. M. Blom, Milan Kivala, Wojciech Pisula, Tomasz Marszalek. Grain engineering for improved charge carrier transport in two-dimensional lead-free perovskite field-effect transistors. Materials Horizons 2022, 9 (10) , 2633-2643. https://doi.org/10.1039/D2MH00632D
    62. Mateusz Dyksik. Using the Diamagnetic Coefficients to Estimate the Reduced Effective Mass in 2D Layered Perovskites: New Insight from High Magnetic Field Spectroscopy. International Journal of Molecular Sciences 2022, 23 (20) , 12531. https://doi.org/10.3390/ijms232012531
    63. Hardik L. Kagdada, Sanjeev K. Gupta, Satyaprakash Sahoo, Dheeraj K. Singh. Mobility driven thermoelectric and optical properties of two-dimensional halide-based hybrid perovskites: impact of organic cation rotation. Physical Chemistry Chemical Physics 2022, 24 (15) , 8867-8880. https://doi.org/10.1039/D1CP05724C
    64. Kameron R. Hansen, C. Emma McClure, John S. Colton, Luisa Whittaker-Brooks. Franz-Keldysh and Stark Effects in Two-Dimensional Metal Halide Perovskites. PRX Energy 2022, 1 (1) https://doi.org/10.1103/PRXEnergy.1.013001
    65. Eti Mahal, Shyama Charan Mandal, Biswarup Pathak. Understanding the role of spacer cation in 2D layered halide perovskites to achieve stable perovskite solar cells. Materials Advances 2022, 3 (5) , 2464-2474. https://doi.org/10.1039/D1MA01135A
    66. Michal Baranowski, Alessandro Surrente, Paulina Plochocka. Two Dimensional Perovskites/Transition Metal Dichalcogenides Heterostructures: Puzzles and Challenges. Israel Journal of Chemistry 2022, 62 (3-4) https://doi.org/10.1002/ijch.202100120
    67. Matteo Pitaro, Eelco Kinsa Tekelenburg, Shuyan Shao, Maria Antonietta Loi. Tin Halide Perovskites: From Fundamental Properties to Solar Cells. Advanced Materials 2022, 34 (1) https://doi.org/10.1002/adma.202105844
    68. Mateusz Dyksik, Herman Duim, Duncan K. Maude, Michal Baranowski, Maria Antonietta Loi, Paulina Plochocka. Brightening of dark excitons in 2D perovskites. Science Advances 2021, 7 (46) https://doi.org/10.1126/sciadv.abk0904
    69. Simon Kahmann, Herman Duim, Hong‐Hua Fang, Mateusz Dyksik, Sampson Adjokatse, Martha Rivera Medina, Matteo Pitaro, Paulina Plochocka, Maria A. Loi. Photophysics of Two‐Dimensional Perovskites—Learning from Metal Halide Substitution. Advanced Functional Materials 2021, 31 (46) https://doi.org/10.1002/adfm.202103778
    70. Guangren Na, Yawen Li, Bangyu Xing, Yilin Zhang, Xin He, Wissam A. Saidi, Lijun Zhang. Stability and electronic properties of two-dimensional metal–organic perovskites in Janus phase. APL Materials 2021, 9 (11) https://doi.org/10.1063/5.0067656
    71. Lukas Schmidt-Mende, Vladimir Dyakonov, Selina Olthof, Feray Ünlü, Khan Moritz Trong Lê, Sanjay Mathur, Andrei D. Karabanov, Doru C. Lupascu, Laura M. Herz, Alexander Hinderhofer, Frank Schreiber, Alexey Chernikov, David A. Egger, Oleksandra Shargaieva, Caterina Cocchi, Eva Unger, Michael Saliba, Mahdi Malekshahi Byranvand, Martin Kroll, Frederik Nehm, Karl Leo, Alex Redinger, Julian Höcker, Thomas Kirchartz, Jonathan Warby, Emilio Gutierrez-Partida, Dieter Neher, Martin Stolterfoht, Uli Würfel, Moritz Unmüssig, Jan Herterich, Clemens Baretzky, John Mohanraj, Mukundan Thelakkat, Clément Maheu, Wolfram Jaegermann, Thomas Mayer, Janek Rieger, Thomas Fauster, Daniel Niesner, Fengjiu Yang, Steve Albrecht, Thomas Riedl, Azhar Fakharuddin, Maria Vasilopoulou, Yana Vaynzof, Davide Moia, Joachim Maier, Marius Franckevičius, Vidmantas Gulbinas, Ross A. Kerner, Lianfeng Zhao, Barry P. Rand, Nadja Glück, Thomas Bein, Fabio Matteocci, Luigi Angelo Castriotta, Aldo Di Carlo, Matthias Scheffler, Claudia Draxl. Roadmap on organic–inorganic hybrid perovskite semiconductors and devices. APL Materials 2021, 9 (10) https://doi.org/10.1063/5.0047616
    72. Zhuo Yang, Xueting Wang, James Felton, Zakhar Kudrynskyi, Masaki Gen, Toshihiro Nomura, Xinjiang Wang, Laurence Eaves, Zakhar D. Kovalyuk, Yoshimitsu Kohama, Lijun Zhang, Amalia Patanè. Heavy carrier effective masses in van der Waals semiconductor Sn(SeS) revealed by high magnetic fields up to 150 T. Physical Review B 2021, 104 (8) https://doi.org/10.1103/PhysRevB.104.085206
    73. Leonardo R. V. Buizza, Laura M. Herz. Polarons and Charge Localization in Metal‐Halide Semiconductors for Photovoltaic and Light‐Emitting Devices. Advanced Materials 2021, 33 (24) https://doi.org/10.1002/adma.202007057
    74. Alessandro Surrente, Michał Baranowski, Paulina Plochocka. Perspective on the physics of two-dimensional perovskites in high magnetic field. Applied Physics Letters 2021, 118 (17) https://doi.org/10.1063/5.0048490

    ACS Energy Letters

    Cite this: ACS Energy Lett. 2020, 5, 11, 3609–3616
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsenergylett.0c01758
    Published October 27, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    3794

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.