Reactivity and Evolution of Ionic Phases in the Lithium Solid–Electrolyte InterphaseClick to copy article linkArticle link copied!
- Rui GuoRui GuoDepartment of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United StatesMore by Rui Guo
- Dongniu WangDongniu WangCanadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, CanadaMore by Dongniu Wang
- Lucia ZuinLucia ZuinCanadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, CanadaMore by Lucia Zuin
- Betar M. Gallant*Betar M. Gallant*E-mail: [email protected]Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United StatesMore by Betar M. Gallant
Abstract
The unstable solid–electrolyte interphase (SEI) on Li anodes is the origin of major performance challenges in Li batteries, namely, insufficient Coulombic efficiency (CE) and cycle life. While it is known that the SEI participates in aging processes, pinpointing the chemical origins by tracing them to specific SEI phases has been experimentally challenging. Here, we formed single-phase, thin (<50 nm) interfaces of Li2O or LiF—the two most common ionic SEI phases—on Li and investigated their stability upon immersion in ether- or carbonate-based electrolytes. Contrary to some conventional wisdom that ionic phases are stable, we find by electrochemical impedance and X-ray spectroscopy that ionic SEI|electrolyte interfaces can undergo significant chemical evolution. While DOL/DME electrolytes impart minimal changes, organic/F-rich layers evolve at interfaces between Li2O or LiF and carbonate electrolyte containing LiPF6 salt, exacerbating subsequent plating overpotentials. The results suggest that electrolyte selection is important to improve transport in ionic-rich Li interfaces.
Cited By
This article is cited by 27 publications.
- Yuan Wang, Yiqing Dong, Wanxia Li, Fanyang Huang, Yulin Jie, Yawei Chen, Zhanwu Lei, Xingbao Zhu, Ruiguo Cao, Shuhong Jiao. In Situ/Operando Spectroscopic Techniques for Nonaqueous Lithium-Based Batteries. The Journal of Physical Chemistry C 2024, 128
(49)
, 20693-20719. https://doi.org/10.1021/acs.jpcc.4c05893
- Chao Li, Zhenye Liang, Lina Wang, Daofan Cao, Yun-Chao Yin, Daxian Zuo, Jian Chang, Jun Wang, Ke Liu, Xing Li, Guangfu Luo, Yonghong Deng, Jiayu Wan. Superwettable Electrolyte Engineering for Fast Charging Li-Ion Batteries. ACS Energy Letters 2024, 9
(3)
, 1295-1304. https://doi.org/10.1021/acsenergylett.3c02572
- Adrian J. Sanchez, Neil P. Dasgupta. Lithium Metal Anodes: Advancing our Mechanistic Understanding of Cycling Phenomena in Liquid and Solid Electrolytes. Journal of the American Chemical Society 2024, 146
(7)
, 4282-4300. https://doi.org/10.1021/jacs.3c05715
- Aashutosh Mistry, Zhou Yu, Brandon L. Peters, Chao Fang, Rui Wang, Larry A. Curtiss, Nitash P. Balsara, Lei Cheng, Venkat Srinivasan. Toward Bottom-Up Understanding of Transport in Concentrated Battery Electrolytes. ACS Central Science 2022, 8
(7)
, 880-890. https://doi.org/10.1021/acscentsci.2c00348
- Kevin Leung, Laura C. Merrill, Katharine L. Harrison. Galvanic Corrosion and Electric Field in Lithium Anode Passivation Films: Effects on Self-Discharge. The Journal of Physical Chemistry C 2022, 126
(20)
, 8565-8580. https://doi.org/10.1021/acs.jpcc.1c10602
- Kie Hankins, Venkateshkumar Prabhakaran, Sungun Wi, Vaithiyalingam Shutthanandan, Grant E. Johnson, Swadipta Roy, Hui Wang, Yuyan Shao, Suntharampillai Thevuthasan, Perla B. Balbuena, Karl T. Mueller, Vijayakumar Murugesan. Role of Polysulfide Anions in Solid-Electrolyte Interphase Formation at the Lithium Metal Surface in Li–S Batteries. The Journal of Physical Chemistry Letters 2021, 12
(38)
, 9360-9367. https://doi.org/10.1021/acs.jpclett.1c01930
- Léa Droguet, Gustavo M. Hobold, Marie Francine Lagadec, Rui Guo, Christophe Lethien, Maxime Hallot, Olivier Fontaine, Jean-Marie Tarascon, Betar M. Gallant, Alexis Grimaud. Can an Inorganic Coating Serve as Stable SEI for Aqueous Superconcentrated Electrolytes?. ACS Energy Letters 2021, 6
(7)
, 2575-2583. https://doi.org/10.1021/acsenergylett.1c01097
- Shumin Wu, Yulong Zhang, Hongcheng Liang, Hongji Pan, Lu Chen, Yanxin Jiang, Hao Ding, Peng Wang, Dongni Zhao, Qing Zhang, Lin Zeng, Shiyou Li, Yiju Li. In-Situ Electrochemical Customization of Solid Electrolyte Interphase for Fast-Charging and Long-Cycle-Life Graphite Anodes. Energy Storage Materials 2025, 50 , 104024. https://doi.org/10.1016/j.ensm.2025.104024
- Xintong Yuan, Dongfang Cheng, Bo Liu, Kaiyan Liang, Keyue Liang, Jiayi Yu, Matthew Mecklenburg, Philippe Sautet, Yuzhang Li. Engineering battery corrosion films by tuning electrical double layer composition. Joule 2024, 8
(11)
, 3038-3053. https://doi.org/10.1016/j.joule.2024.07.011
- Katherine Steinberg, Betar M. Gallant. Revealing the Role of Lithium Carbonate at Lithium Metal Anodes Through Study of Gas-Reacted Interphases. Journal of The Electrochemical Society 2024, 171
(8)
, 080530. https://doi.org/10.1149/1945-7111/ad6d92
- Jing Long, Jiafang Huang, Yuhui Miao, Huiting Huang, Xiaochuan Chen, Junxiong Wu, Xiaoyan Li, Yuming Chen. A multi-functional electrolyte additive for fast-charging and flame-retardant lithium-ion batteries. Journal of Materials Chemistry A 2024, 12
(28)
, 17306-17314. https://doi.org/10.1039/D4TA02153C
- Feiyue Zhai, Xiayu Zhu, Wenfeng Zhang, Gaoping Cao, Huimin Zhang, Yalan Xing, Yu Xiang, Shichao Zhang. Insight of the evolution of structure and energy storage mechanism of (FeCoNiCrMn)3O4 spinel high entropy oxide in life-cycle span as lithium-ion battery anode. Journal of Power Sources 2024, 603 , 234418. https://doi.org/10.1016/j.jpowsour.2024.234418
- Guangzhao Zhang, Jiawei Li, Shang‐Sen Chi, Jun Wang, Qingrong Wang, Ruohong Ke, Zhongbo Liu, Hui Wang, Chaoyang Wang, Jian Chang, Yonghong Deng, Jun Lu. Molecular Design of Competitive Solvation Electrolytes for Practical High‐Energy and Long‐Cycling Lithium‐Metal Batteries. Advanced Functional Materials 2024, 34
(13)
https://doi.org/10.1002/adfm.202312413
- Yaohui Huang, Jiarun Geng, Tong Zhang, Zhuoliang Jiang, Hengyi Fang, Wei Hu, Fujun Li. Interfacial chemistry regulation using functional frameworks for stable metal batteries. Journal of Materials Chemistry A 2024, 12
(9)
, 5080-5099. https://doi.org/10.1039/D3TA07229K
- Yue Chen, Wenkai Wu, Sergio Gonzalez-Munoz, Leonardo Forcieri, Charlie Wells, Samuel P. Jarvis, Fangling Wu, Robert Young, Avishek Dey, Mark Isaacs, Mangayarkarasi Nagarathinam, Robert G. Palgrave, Nuria Tapia-Ruiz, Oleg V. Kolosov. Nanoarchitecture factors of solid electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy. Nature Communications 2023, 14
(1)
https://doi.org/10.1038/s41467-023-37033-7
- Ben Jagger, Mauro Pasta. Solid electrolyte interphases in lithium metal batteries. Joule 2023, 7
(10)
, 2228-2244. https://doi.org/10.1016/j.joule.2023.08.007
- Venkateshkumar Prabhakaran, Grant E. Johnson, Julia Laskin. Ion soft landing: A unique tool for understanding electrochemical processes. Current Opinion in Electrochemistry 2023, 40 , 101310. https://doi.org/10.1016/j.coelec.2023.101310
- Yaohui Huang, Jiarun Geng, Zhuoliang Jiang, Meng Ren, Bo Wen, Jun Chen, Fujun Li. Solvation Structure with Enhanced Anionic Coordination for Stable Anodes in Lithium‐Oxygen Batteries. Angewandte Chemie 2023, 135
(30)
https://doi.org/10.1002/ange.202306236
- Yaohui Huang, Jiarun Geng, Zhuoliang Jiang, Meng Ren, Bo Wen, Jun Chen, Fujun Li. Solvation Structure with Enhanced Anionic Coordination for Stable Anodes in Lithium‐Oxygen Batteries. Angewandte Chemie International Edition 2023, 62
(30)
https://doi.org/10.1002/anie.202306236
- Cancan Peng, Chao Yang, Peng Chen, Ya-Jun Cheng, Jianfeng Xia, Kunkun Guo. Mesoporous carbons and Fe collectively boost the capacity increases upon Long-term cycling of Ni/Fe/NiFe2O4@C anode for Lithium-ion batteries. Applied Surface Science 2023, 623 , 156994. https://doi.org/10.1016/j.apsusc.2023.156994
- Song Xue, Yunchang Liang, Shujin Hou, Yajing Zhang, Heqing Jiang. Alpha‐Nickel Hydroxide Coating of Metallic Nickel for Enhanced Alkaline Hydrogen Evolution. ChemSusChem 2022, 15
(18)
https://doi.org/10.1002/cssc.202201072
- Jiyuan Liang, Runming Tao, Ji Tu, Chi Guo, Kang Du, Rui Guo, Wang Zhang, Xiaolang Liu, Pingmei Guo, Deyu Wang, Sheng Dai, Xiao-Guang Sun. Design of a multi-functional gel polymer electrolyte with a 3D compact stacked polymer micro-sphere matrix for high-performance lithium metal batteries. Journal of Materials Chemistry A 2022, 10
(23)
, 12563-12574. https://doi.org/10.1039/D2TA02085H
- Patrick Bonnick, John Muldoon. The quest for the holy grail of solid-state lithium batteries. Energy & Environmental Science 2022, 15
(5)
, 1840-1860. https://doi.org/10.1039/D2EE00842D
- Xinpeng Han, Xin Li, Yiming Zhang, Shaojie Zhang, Jie Sun. Bridging Evolution of the Solvation Sheath to Rigid‐Soft Coupling and Low‐Resistance Solid Electrolyte Interface for Fast‐Charging and Ultrastable Bi Anode. Advanced Functional Materials 2022, 32
(22)
https://doi.org/10.1002/adfm.202111074
- Nan Qin, Liming Jin, Yanyan Lu, Qiang Wu, Junsheng Zheng, Cunman Zhang, Zonghai Chen, Jim P. Zheng. Over‐Potential Tailored Thin and Dense Lithium Carbonate Growth in Solid Electrolyte Interphase for Advanced Lithium Ion Batteries. Advanced Energy Materials 2022, 12
(15)
https://doi.org/10.1002/aenm.202103402
- Rui Guo, Gustavo M. Hobold, Betar M. Gallant. The ionic interphases of the lithium anode in solid state batteries. Current Opinion in Solid State and Materials Science 2022, 26
(1)
, 100973. https://doi.org/10.1016/j.cossms.2021.100973
- Stefany Angarita-Gomez, Perla B. Balbuena. Understanding Solid Electrolyte Interphase Nucleation and Growth on Lithium Metal Surfaces. Batteries 2021, 7
(4)
, 73. https://doi.org/10.3390/batteries7040073
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.