Electrocatalytic Reduction of Low Concentrations of CO2 Gas in a Membrane Electrode Assembly ElectrolyzerClick to copy article linkArticle link copied!
- Dongjin KimDongjin KimClean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of KoreaDepartment of Materials Science and Engineering, Korea University, Seoul 02841, Republic of KoreaMore by Dongjin Kim
- Woong ChoiWoong ChoiClean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of KoreaMore by Woong Choi
- Hee Won LeeHee Won LeeClean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of KoreaDivision of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of KoreaMore by Hee Won Lee
- Si Young LeeSi Young LeeDepartment of Chemistry, Seoul National University, Seoul 08826, Republic of KoreaCenter for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of KoreaMore by Si Young Lee
- Yongjun ChoiYongjun ChoiClean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of KoreaDivision of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of KoreaMore by Yongjun Choi
- Dong Ki LeeDong Ki LeeClean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of KoreaDivision of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of KoreaGraduate School of Energy and Environment (Green School), Korea University, Seoul 02841, Republic of KoreaMore by Dong Ki Lee
- Woong KimWoong KimDepartment of Materials Science and Engineering, Korea University, Seoul 02841, Republic of KoreaMore by Woong Kim
- Jonggeol NaJonggeol NaDepartment of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of KoreaMore by Jonggeol Na
- Ung Lee*Ung Lee*Email for U.L.: [email protected]Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of KoreaDivision of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of KoreaGraduate School of Energy and Environment (Green School), Korea University, Seoul 02841, Republic of KoreaMore by Ung Lee
- Yun Jeong Hwang*Yun Jeong Hwang*Email for Y.J.H.: [email protected]Department of Chemistry, Seoul National University, Seoul 08826, Republic of KoreaCenter for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of KoreaMore by Yun Jeong Hwang
- Da Hye Won*Da Hye Won*Email for D.H.W.: [email protected]Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of KoreaDivision of Energy and Environmental Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of KoreaMore by Da Hye Won
Abstract
The direct conversion of low concentrations of CO2 is an essential approach, considering the expensive gas conditioning process for pure CO2, but has not yet been intensely studied in a membrane electrode assembly (MEA) electrolyzer. Herein, we explored the CO2 reduction with various CO2 concentrations in a zero-gap MEA electrolyzer and found that suppressing the hydrogen evolution reaction (HER) became more critical at low concentrations of CO2. We demonstrate that a Ni single-atom (Ni-N/C) catalyst exhibits a high tolerance toward low CO2 partial pressure (PCO2) because of the intrinsically large activation energy of the HER. Ni-N/C outperformed the CO productivity of Ag nanoparticles, especially at low concentrations of CO2 in the zero-gap MEA. When the PCO2 was lowered from 1.0 to 0.1 atm, Ni-N/C maintained >93% of CO Faradaic efficiency (FECO), but Ag nanoparticles showed a decrease in FECO from 94% to 40%. Furthermore, on the basis of a computational fluid dynamics simulation, we developed extrinsic operating conditions controlling the water transfer from the anolyte to the catalyst layer and improved CO selectivity at low CO2 concentrations in the MEA electrolyzer.
Cited By
This article is cited by 40 publications.
- Hojeong Lee, Seontaek Kwon, Namgyoo Park, Sun Gwan Cha, Eunyoung Lee, Tae-Hoon Kong, Jihoo Cha, Youngkook Kwon. Scalable Low-Temperature CO2 Electrolysis: Current Status and Outlook. JACS Au 2024, 4
(9)
, 3383-3399. https://doi.org/10.1021/jacsau.4c00583
- Danielle A. Henckel, Prantik Saha, Sunil Rajana, Carlos Baez-Cotto, Audrey K. Taylor, Zengcai Liu, Michael G. Resch, Richard I. Masel, K. C. Neyerlin. Understanding Limitations in Electrochemical Conversion to CO at Low CO2 Concentrations. ACS Energy Letters 2024, 9
(7)
, 3433-3439. https://doi.org/10.1021/acsenergylett.4c01224
- Zhen-Hua Zhao, Jia-Run Huang, Da-Shuai Huang, Hao-Lin Zhu, Pei-Qin Liao, Xiao-Ming Chen. Efficient Capture and Electroreduction of Dilute CO2 into Highly Pure and Concentrated Formic Acid Aqueous Solution. Journal of the American Chemical Society 2024, 146
(20)
, 14349-14356. https://doi.org/10.1021/jacs.4c04841
- Colin P. O’Brien, Rui Kai Miao, Ali Shayesteh Zeraati, Geonhui Lee, Edward H. Sargent, David Sinton. CO2 Electrolyzers. Chemical Reviews 2024, 124
(7)
, 3648-3693. https://doi.org/10.1021/acs.chemrev.3c00206
- Bingyu Chen, Youwen Rong, Xiang Li, Jiaqi Sang, Pengfei Wei, Qingda An, Dunfeng Gao, Guoxiong Wang. Molecular Enhancement of Direct Electrolysis of Dilute CO2. ACS Energy Letters 2024, 9
(3)
, 911-918. https://doi.org/10.1021/acsenergylett.3c02812
- Tianqi Gao, Baokai Xia, Kang Yang, Di Li, Tianye Shao, Sheng Chen, Qiang Li, Jingjing Duan. Techno-economic Analysis and Carbon Footprint Accounting for Industrial CO2 Electrolysis Systems. Energy & Fuels 2023, 37
(23)
, 17997-18008. https://doi.org/10.1021/acs.energyfuels.3c01581
- Seok Hwan Yang, Wonsang Jung, Hyeonggeon Lee, Sang-Hun Shin, Seung Jae Lee, Min Suc Cha, Woong Choi, Seong-Geun Oh, Ki Bong Lee, Ung Lee, Da Hye Won, Jang Yong Lee. Membrane Engineering Reveals Descriptors of CO2 Electroreduction in an Electrolyzer. ACS Energy Letters 2023, 8
(4)
, 1976-1984. https://doi.org/10.1021/acsenergylett.3c00420
- Yingying Cheng, Wenjing Xu, Jing Hou, Peng Kang. Temperature-Dependent Electrosynthesis of C2 Oxygenates from Oxalic Acid Using Gallium Tin Oxides. ACS Catalysis 2023, 13
(6)
, 3676-3683. https://doi.org/10.1021/acscatal.2c06120
- Hoeun Seong, Minji Choi, Sojung Park, Hyun-woo Kim, Jiyoung Kim, Wooyul Kim, Jong Suk Yoo, Dongil Lee. Promoting CO2-to-CO Electroreduction via the Active-Site Engineering of Atomically Precise Silver Nanoclusters. ACS Energy Letters 2022, 7
(12)
, 4177-4184. https://doi.org/10.1021/acsenergylett.2c02018
- Hengzhou Liu, Yifu Chen, Jungkuk Lee, Shuang Gu, Wenzhen Li. Ammonia-Mediated CO2 Capture and Direct Electroreduction to Formate. ACS Energy Letters 2022, 7
(12)
, 4483-4489. https://doi.org/10.1021/acsenergylett.2c02247
- Junhyeong Kim, Wenwu Guo, Hedam Kim, Seonghyun Choe, Soo Young Kim, Sang Hyun Ahn. Gaseous CO2 Electrolysis: Progress, Challenges, and Prospects. ACS Sustainable Chemistry & Engineering 2022, 10
(43)
, 14092-14111. https://doi.org/10.1021/acssuschemeng.2c04501
- Prashant Kamat, (Editor-in-Chief, ACS Energy Letters)Phillip Christopher (Senior Editor, ACS Energy Letters). Gas Diffusion Electrodes for CO2 and N2 Reduction: A Virtual Issue. ACS Energy Letters 2022, 7
(4)
, 1469-1472. https://doi.org/10.1021/acsenergylett.2c00606
- Joon Woo Park, Woong Choi, Juhwan Noh, Woonghyeon Park, Geun Ho Gu, Jonghyeok Park, Yousung Jung, Hyunjoon Song. Bimetallic Gold–Silver Nanostructures Drive Low Overpotentials for Electrochemical Carbon Dioxide Reduction. ACS Applied Materials & Interfaces 2022, 14
(5)
, 6604-6614. https://doi.org/10.1021/acsami.1c20852
- Ádám Vass, Attila Kormányos, Zsófia Kószó, Balázs Endrődi, Csaba Janáky. Anode Catalysts in CO2 Electrolysis: Challenges and Untapped Opportunities. ACS Catalysis 2022, 12
(2)
, 1037-1051. https://doi.org/10.1021/acscatal.1c04978
- Jian Zhao, Honghong Lyu, Zhiqiang Wang, Chunlu Ma, Shuna Jia, Wenwen Kong, Boxiong Shen. Phthalocyanine and porphyrin catalysts for electrocatalytic reduction of carbon dioxide: Progress in regulation strategies and applications. Separation and Purification Technology 2023, 312 , 123404. https://doi.org/10.1016/j.seppur.2023.123404
- Xianyun Peng, Libin Zeng, Dashuai Wang, Zhibin Liu, Yan Li, Zhongjian Li, Bin Yang, Lecheng Lei, Liming Dai, Yang Hou. Electrochemical C–N coupling of CO
2
and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds. Chemical Society Reviews 2023, 52
(6)
, 2193-2237. https://doi.org/10.1039/D2CS00381C
- Weixuan Nie, Gavin P. Heim, Nicholas B. Watkins, Theodor Agapie, Jonas C. Peters. Organic Additive‐derived Films on Cu Electrodes Promote Electrochemical CO
2
Reduction to C
2+
Products Under Strongly Acidic Conditions. Angewandte Chemie 2023, 135
(12)
https://doi.org/10.1002/ange.202216102
- Weixuan Nie, Gavin P. Heim, Nicholas B. Watkins, Theodor Agapie, Jonas C. Peters. Organic Additive‐derived Films on Cu Electrodes Promote Electrochemical CO
2
Reduction to C
2+
Products Under Strongly Acidic Conditions. Angewandte Chemie International Edition 2023, 62
(12)
https://doi.org/10.1002/anie.202216102
- Tao Yan, Hui Pan, Zhikun Liu, Peng Kang. Phase‐Inversion Induced 3D Electrode for Direct Acidic Electroreduction CO
2
to Formic acid. Small 2023, 28 , 2207650. https://doi.org/10.1002/smll.202207650
- Lei Yuan, Shaojuan Zeng, Xiangping Zhang, Xiaoyan Ji, Suojiang Zhang. Advances and challenges of electrolyzers for large-scale CO2 electroreduction. Materials Reports: Energy 2023, 3
(1)
, 100177. https://doi.org/10.1016/j.matre.2023.100177
- Qiucheng Xu, Aoni Xu, Sahil Garg, Asger B. Moss, Ib Chorkendorff, Thomas Bligaard, Brian Seger. Enriching Surface‐Accessible CO
2
in the Zero‐Gap Anion‐Exchange‐Membrane‐Based CO
2
Electrolyzer. Angewandte Chemie 2023, 135
(3)
https://doi.org/10.1002/ange.202214383
- Qiucheng Xu, Aoni Xu, Sahil Garg, Asger B. Moss, Ib Chorkendorff, Thomas Bligaard, Brian Seger. Enriching Surface‐Accessible CO
2
in the Zero‐Gap Anion‐Exchange‐Membrane‐Based CO
2
Electrolyzer. Angewandte Chemie International Edition 2023, 62
(3)
https://doi.org/10.1002/anie.202214383
- Debabrata Bagchi, Soumyabrata Roy, Saurav Ch. Sarma, Sebastian C. Peter. Toward Unifying the Mechanistic Concepts in Electrochemical CO
2
Reduction from an Integrated Material Design and Catalytic Perspective. Advanced Functional Materials 2022, 32
(51)
, 2209023. https://doi.org/10.1002/adfm.202209023
- Bo Zhang, Yunzhen Wu, Panlong Zhai, Chen Wang, Licheng Sun, Jungang Hou. Rational design of bismuth-based catalysts for electrochemical CO2 reduction. Chinese Journal of Catalysis 2022, 43
(12)
, 3062-3088. https://doi.org/10.1016/S1872-2067(22)64132-9
- Kezia Megagita Gerby Langie, Kyungjae Tak, Changsoo Kim, Hee Won Lee, Kwangho Park, Dongjin Kim, Wonsang Jung, Chan Woo Lee, Hyung-Suk Oh, Dong Ki Lee, Jai Hyun Koh, Byoung Koun Min, Da Hye Won, Ung Lee. Toward economical application of carbon capture and utilization technology with near-zero carbon emission. Nature Communications 2022, 13
(1)
https://doi.org/10.1038/s41467-022-35239-9
- Jie Yang, Han Yang, Renjie Zhang, Guangying Zhou, Hongping Li, Dexin Yang. Electroreduction of CO
2
to CO over wide potential window by
in situ
electrodeposited CdCO
3
/Cd-CP electrocatalysts. Journal of Materials Chemistry A 2022, 10
(43)
, 23028-23036. https://doi.org/10.1039/D2TA06309C
- Xinxin Zhang, Zhiheng Wang, Zhipeng Chen, Yuxiao Zhu, Ziyong Liu, Fuli Li, Wei Zhou, Zichao Dong, Jingxin Fan, Licheng Liu. Molecular trapdoor mechanism of In-SSZ-13(MP) holds promise for selective electrochemical reduction of CO2 at low concentrations. Applied Catalysis B: Environmental 2022, 317 , 121771. https://doi.org/10.1016/j.apcatb.2022.121771
- Sam Van Daele, Lieven Hintjens, Järi Van den Hoek, Sander Neukermans, Nick Daems, Jonas Hereijgers, Tom Breugelmans. Influence of the target product on the electrochemical reduction of diluted CO2 in a continuous flow cell. Journal of CO2 Utilization 2022, 65 , 102210. https://doi.org/10.1016/j.jcou.2022.102210
- Jae Hyung Kim, Hyunsung Jang, Gwangsu Bak, Woong Choi, Hyewon Yun, Eunchong Lee, Dongjin Kim, Jiwon Kim, Si Young Lee, Yun Jeong Hwang. The insensitive cation effect on a single atom Ni catalyst allows selective electrochemical conversion of captured CO
2
in universal media. Energy & Environmental Science 2022, 15
(10)
, 4301-4312. https://doi.org/10.1039/D2EE01825J
- Shuvojit Mandal, Dibyendu Ghosh, Praveen Kumar. Recent advancement in heterogeneous CO
2
reduction processes in aqueous electrolyte. Journal of Materials Chemistry A 2022, 10
(39)
, 20667-20706. https://doi.org/10.1039/D2TA03441G
- Man Ho Han, Dongjin Kim, Sangkuk Kim, Seung‐Ho Yu, Da Hye Won, Byoung Koun Min, Keun Hwa Chae, Woong Hee Lee, Hyung‐Suk Oh. Real‐Time Mimicking the Electronic Structure of N‐Coordinated Ni Single Atoms: NiS‐Enabled Electrochemical Reduction of CO
2
to CO. Advanced Energy Materials 2022, 12
(35)
, 2201843. https://doi.org/10.1002/aenm.202201843
- Mengran Li, Kailun Yang, Maryam Abdinejad, Chuan Zhao, Thomas Burdyny. Advancing integrated CO
2
electrochemical conversion with amine-based CO
2
capture: a review. Nanoscale 2022, 14
(33)
, 11892-11908. https://doi.org/10.1039/D2NR03310K
- Shuguang Wang, Zhengyi Qian, Qizheng Huang, Yingjun Tan, Fan Lv, Lingyou Zeng, Changshuai Shang, Kai Wang, Guoqing Wang, Yandong Mao, Yan Wang, Qinghua Zhang, Lin Gu, Shaojun Guo. Industrial‐Level CO
2
Electroreduction Using Solid‐Electrolyte Devices Enabled by High‐Loading Nickel Atomic Site Catalysts. Advanced Energy Materials 2022, 12
(31)
, 2201278. https://doi.org/10.1002/aenm.202201278
- Yangshen Chen, Miao Kan, Shuai Yan, Junbo Zhang, Kunhao Liu, Yaqin Yan, Anxiang Guan, Ximeng Lv, Linping Qian, Gengfeng Zheng. Electroreduction of air-level CO2 with high conversion efficiency. Chinese Journal of Catalysis 2022, 43
(7)
, 1703-1709. https://doi.org/10.1016/S1872-2067(21)63988-8
- Qian Sun, Chen Jia, Yong Zhao, Chuan Zhao. Single atom-based catalysts for electrochemical CO2 reduction. Chinese Journal of Catalysis 2022, 43
(7)
, 1547-1597. https://doi.org/10.1016/S1872-2067(21)64000-7
- Xinyi Tan, Jens Nielsen. The integration of bio-catalysis and electrocatalysis to produce fuels and chemicals from carbon dioxide. Chemical Society Reviews 2022, 51
(11)
, 4763-4785. https://doi.org/10.1039/D2CS00309K
- Sheng Chu, Roksana Tonny Rashid, Yuyang Pan, Xintie Wang, Huiyan Zhang, Rui Xiao. The impact of flue gas impurities and concentrations on the photoelectrochemical CO2 reduction. Journal of CO2 Utilization 2022, 60 , 101993. https://doi.org/10.1016/j.jcou.2022.101993
- Wen-bin Li, Chang Yu, Xin-yi Tan, Song Cui, Ya-fang Zhang, Jie-shan Qiu. Recent advances in the electroreduction of carbon dioxide to formic acid over carbon-based materials. New Carbon Materials 2022, 37
(2)
, 277-287. https://doi.org/10.1016/S1872-5805(22)60592-4
- Kayo KOIKE, Miyuki NARA, Minori FUKUSHIMA, Hyojung BAE, Jun-Seok HA, Katsushi FUJII, Satoshi WADA. Effects of Ag Nanoparticle Coated Metal Electrodes on Electrochemical CO2 Reduction in Aqueous KHCO3. Electrochemistry 2022, 90
(3)
, 037009-037009. https://doi.org/10.5796/electrochemistry.21-00133
- Zuolong Chen, Xiyang Wang, Joel P. Mills, Cheng Du, Jintae Kim, John Wen, Yimin A. Wu. Two-dimensional materials for electrochemical CO
2
reduction: materials,
in situ
/
operando
characterizations, and perspective. Nanoscale 2021, 13
(47)
, 19712-19739. https://doi.org/10.1039/D1NR06196H
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.