Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Halide Double-Perovskite Semiconductors beyond Photovoltaics

Cite this: ACS Energy Lett. 2022, 7, 6, 2128–2135
Publication Date (Web):May 31, 2022
https://doi.org/10.1021/acsenergylett.2c00811

Copyright © 2022 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0.
  • Open Access

Article Views

10506

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (2 MB)

Abstract

Halide double perovskites, A2MIMIIIX6, offer a vast chemical space for obtaining unexplored materials with exciting properties for a wide range of applications. The photovoltaic performance of halide double perovskites has been limited due to the large and/or indirect bandgap of the presently known materials. However, their applications extend beyond outdoor photovoltaics, as halide double perovskites exhibit properties suitable for memory devices, indoor photovoltaics, X-ray detectors, light-emitting diodes, temperature and humidity sensors, photocatalysts, and many more. This Perspective highlights challenges associated with the synthesis and characterization of halide double perovskites and offers an outlook on the potential use of some of the properties exhibited by this so far underexplored class of materials.

This publication is licensed under

CC-BY 4.0.
  • cc licence
  • by licence

Halide double perovskites, officially called elpasolites, constitute a class of quaternary materials sharing the general formula A2MIMIIIX6 and have been known for more than a century. This class of materials has recently gained new interest when researchers from the halide perovskite community proposed the semiconductor Cs2AgBiBr6 as an alternative material with reduced toxicity compared to widely investigated lead-based perovskites such as MAPbI3 (MA = methylammonium) or CsPbBr3. (1−3) Another advantage of halide double perovskites over common lead halide perovskites is their higher stability under ambient conditions and high-intensity illumination. (4) The elpasolite crystal structure is similar to the perovskite lattice (Figure 1a) but contains octahedra with a monovalent MI (1+) and a trivalent MIII (3+) cation instead of Pb2+, which are ordered in an alternating fashion. A related crystal structure is the so-called vacancy-ordered perovskite, alternating a quadrivalent (4+) cation and a vacancy at the M-site. Given that the halide double perovskites contain two metals instead of one, this class of materials offers a huge variety of compositions, (5−7) where in principle any combination should be possible, provided that the tolerance factor and the octahedral factor are satisfied. (8) However, satisfying the geometrical constraints of the tolerance and the octahedral factor alone does not ensure thermodynamic stability against decomposition. High-throughput first-principles calculations (9) of the convex hull energy (i.e., Gibbs free energy of the compounds at zero temperature) of halide double perovskites with respect to decomposition products reveal that the predicted stability of a composition against its decomposition in byproducts is heavily affected by the size of A, X, and MI elements, with minor effects from the size of MIII. Higher stability can be achieved using larger A+ cations (e.g., Cs+ is preferred over Li+) and smaller halides (e.g., F is preferred over I), as predicted from calculations on the lead-based counterpart. The stability trend as a function of the MI size varies with the group of the periodic table (e.g., Ag+ is preferred over Cu+). These calculations do not account for geometrical factors and do not include the effects of entropy and pressure. However, estimating the formation energy (consisting of the atomization enthalpy, the ionization enthalpy, and the lattice enthalpy) of the desired composition is a powerful approach to predict its thermodynamic stability against phase decomposition into other compounds. (10) For the lead-based perovskites, the stability of a composition increases when moving from iodide to chloride due to an increase in the ionization energy of the [PbX6] inorganic cage, (11) similarly to the trend of the convex hull energy. However, to assess the thermodynamic stability against decomposition of such halide double perovskites, further computational investigations should be performed to evaluate the three terms of the formation energy, especially to account for the presence of two types of metals. The valence band maximum (VBM) of halide double perovskites is dominated by bonding orbitals of MIII (ns), MI (nd), and X (np), whereas the conduction band minimum (CBM) is formed by antibonding orbitals MIII (np) and X

Mixing trivalent metals in halide double perovskites can serve as a strategy to design materials with direct–indirect bandgaps.

(np). (12) This is similar to most covalent semiconductors, such as silicon or germanium, and group III–V or II–VI semiconductors, like GaAs and CdSe, respectively. Notably, in the lead halide perovskites, both the VBM and CBM are composed of antibonding orbitals, so that many crystallographic defects do not initiate an electronic (trap) state in the bandgap. It is therefore likely that the halide double perovskites are not as defect-tolerant as their lead-based analogues, meaning that more effort is needed to make these materials defect-poor.

Figure 1

Figure 1. (a) Crystal structure of halide double perovskites described by the formula A2MIMIIIX6 , consisting of alternating corner-sharing [MIX6] and [MIIIX6] octahedra shown in purple and green, respectively. Orange and dark green spheres represent the monovalent cation A+ (often Cs+) and the halide X, respectively. (b) Photographs and normalized UV–Vis absorption spectra of Cs2AgIn1-xFexCl6 (x = 0.00, 0.01, 0.04, 0.32, 0.71, and 1.00) crystals. Adapted from ref (17). Copyright 2021 Royal Society of Chemistry. (c) Schematic representation of the halide double-perovskite band structure, showing changes in the magnitude (energy) and nature (indirect and direct) of the bandgap upon mixing different trivalent metals, MIII and M′III.

Most of the experimentally reported halide double perovskites contain chloride or bromide at the halide site, which have larger bandgaps than their iodide analogues. Incorporating iodide is more challenging because the size mismatch with the relatively small trivalent cations limits the geometric stability. (8) Lanthanides (e.g., Ce3+, La3+) could be at the MIII site used to meet the radius ratio criterion and favor the formation of iodide-based double perovskites. (13) However, some of the bromide- and even chloride-based double perovskites show suitable bandgaps for photovoltaics (PV) applications, (14) such as Cs2AgFeCl6 (experimental bandgap of ∼1.55 eV) (15) and predicted compositions like Cs2AgGaBr6 (expected bandgap of ∼1.37 eV). Precise bandgap tunability can be obtained when making solid solutions of halide double perovskites, in which mixtures of trivalent metals result in materials lattice parameters and bandgaps intermediate between those of the “parent compounds”. (16,17)Figure 1b shows an example of a mixed indium–iron double-metal perovskites, showing a substantial red-shift of the absorption already at 1% iron. (17) Interestingly, in solid solutions, not only the magnitude but also the nature of the bandgap can be tuned from direct to indirect and in between (Figure 1c). (18) Therefore, mixing trivalent metals in halide double perovskites can serve as a strategy to design materials with direct–indirect bandgaps. Such rationally designed direct–indirect semiconductors could be useful to combine strong absorption, driven by direct absorption transitions, with slow recombination, characteristic for indirect bandgaps. (13,18,19) Semiconductors with such extensive tunability are in sharp contrast with silicon, which always exhibits an indirect bandgap and does not allow for bandgap tunability, unless it is nanostructured. On the other hand, III–V semiconductors such as GaAs do offer tunability of the magnitude and nature of the bandgap when gallium or arsenic atoms are partially replaced by other elements from the same group. However, the narrow choice of elements in groups III–V limits the achievable combinations of magnitude and nature of the bandgap. Besides, many III–V semiconductors contain scarce elements, while halide double perovskites could, in principle, be made using more abundant elements. So far, the PV community has mainly focused on Cs2AgBiBr6, which, despite efforts, still shows poor performance in solar cells (i.e., PCE < 3%). (20) This is in part due to the intrinsic limitation of weak sunlight absorption, because of the large (2.2 eV) and indirect bandgap of Cs2AgBiBr6. On the other hand, the performance of Cs2AgBiBr6 has been more encouraging in other applications, such as X-ray detectors, (21,22) due to its strong X-ray absorption. Finally, this class of materials has potential in the field of photocatalysis, (23,19) where large bandgaps may be necessary to drive certain photoredox reactions, or indoor photovoltaics, where the incident light matches better with the absorption spectrum.

In comparison with lead halide perovskites, there are several challenges associated with solution-processed fabrication of halide double perovskites. In the first place, more precursors are needed, and most of the halide salts (MIX and MIIIX3) exhibit poor solubility in solvents commonly used for lead-based perovskites, such as dimethylsulfoxide (DMSO) and N,N-dimethylformamide (DMF). In addition, the monovalent A-site cation (i.e., Cs+) has been found to be difficult to tune while satisfying the tolerance factor (24) and achieving thermodynamic stability, limiting studies on the impact of the A-site on the optoelectronic properties in these materials. Similar challenges are associated with the synthesis of compositions where mixtures of monovalent metals MI or halides can be used as an alternative route to achieve bandgap tunability of these materials. Whereas several compositions have been reported experimentally in the form of powders and single crystals, (13) there are only a few examples of halide double perovskites in the form of thin films. (4,25,26) Considering that thin films are most suitable for spectroscopic measurements such as transient absorption, photoluminescence, and time-resolved photoconductivity, it is not surprising that the most studied composition, Cs2AgBiBr6, coincides with the most soluble double-perovskite composition in DMSO. The solubility of the precursors is one of the main bottlenecks for rapidly obtaining a comprehensive understanding of this class of materials. Solid-state synthesis techniques (such as ball-milling or oven-based powder synthesis) may provide a route to circumvent this issue. Ball-milling involves vigorously shaking a vessel containing stainless steel balls that continuously bump with each other and the walls of the vessel, crushing and mixing the material within. During these collisions, depending on the type of mill and the operation frequency, a large amount of energy is transferred to the raw materials, intensifying the diffusion processes in solids and accelerating the chemical reactions. This allows these chemical reactions to be performed at low temperatures. (27) The resulting double-perovskite powders can be dissolved and spin-coated or deposited on substrates using dry techniques such as physical vapor deposition (PVD) (28) and pulsed laser deposition (PLD). (29) These dry deposition techniques are useful to obtain near-stoichiometric transfer of multi-compound materials with any desired film thickness. Drawbacks of using solid-state synthesis techniques like ball-milling are the incomplete reaction of precursors and the poor control of the crystallite size, which is an important parameter for manipulating the optoelectronic properties of such materials. Thus, investigations on the synthesis products as a function of the milling conditions (i.e., frequency and time) and the effects of introducing chemical additives to control the kinetics of the crystallization should be conducted to make full use of this synthetic strategy. Another challenge in the solution-based fabrication of such halide double perovskites is that the low-dimensional, non-conductive, 3:2:9 phase (e.g., Cs3Bi2Br9) is thermodynamically favored, (30) thus competing with the elpasolite phase (i.e., Cs2AgBiBr6). The 3:2:9 phase consists of face-sharing double-layered [Bi2Br9]3– octahedra. A fingerprint for identifying the 3:2:9 phase is the presence in the X-ray diffraction pattern of the reflection (31) at ∼8.7° (2θ), corresponding to the (001) plane. High-temperature synthesis of Cs2AgBiBr6 has been shown to lead to the formation of the 3:2:9 phase and elemental silver. (32) This formation of Cs3Bi2Br9 is favored under bromide-poor conditions and during synthesis at high temperature (e.g., bottom-up synthesis). The presence of a reducing environment in combination with the low standard reduction potential of silver may facilitate the formation of elemental silver. In solution-based synthesis routes, effective strategies to control the formation of the desired composition rely on the control of the precursor stoichiometry; e.g., using an excess of bromine may suppress the formation of the 3:2:9 phase. Alternatively, performing the synthesis in an oxidative environment and/or carefully controlling the pH could also be used to hinder the formation of undesired phases. Despite the high-energy bandgap and low carrier mobility exhibited by 3:2:9 phases, such materials have been demonstrated to be promising candidates as photocatalysts for several reactions, such as ring-opening of epoxides, (33) photodegradation of dyes, (34) and photoreduction of carbon dioxide to carbon monoxide and methane at the gas–solid interface. (35) Nevertheless, very few compositional variations of this 3:2:9 phase have been reported, most of them showing different metals at the bismuth position. (36)

Performing the synthesis in an oxidative environment and/or carefully controlling the pH could also be used to hinder the formation of undesired phases.

To exploit a successful technological deployment of halide double perovskites, a comprehensive assessment of the fundamental properties as functions of the synthesis route and composition is vital. Of particular interest are understanding and controlling the role of defects, which have been shown to underpin the limitations in device operations as in any other semiconductor. (37,38) Most of the reported halide double perovskites show weak and very broad photoluminescence spectra that are substantially red-shifted (up to 1 eV) with respect to the absorption onset. This is in sharp contrast with the lead-based perovskites that show strong, narrow photoluminescence at the band edge. Temperature-dependent photoluminescence and absorption have been used to get insight into the origin of the absorption features and broad photoluminescence spectra in halide double perovskites. Due to the bonding VBM and anti-bonding CBM of halide double perovskites, the absorption bandgap blue-shifts on lowering the temperature. In contrast, no change or minor red-shifts in photoluminescence have been observed for Cs2AgBiBr6, accompanied by a slight narrowing of the emission line width (∼20 meV). (39) For some of the halide double perovskites (e.g., Cu2AgBiI6, (40) Rb4Ag2BiBr9 (41)), even more complex low-temperature spectra have been observed, showing multiple peaks also in the near-infrared region of the spectrum. The origin of the emission feature is still heavily under debate. The blue-shift of the absorption onset observed upon lowering the temperature, combined with the minor red-shift of the emission, suggests that likely these emission features do not share a common origin, and therefore, photoluminescence is not associated with band-to-band recombination of free charge carriers. Several mechanisms have been proposed, and the most common ones are schematically represented in Figure 2. One of the mechanisms proposes the dynamic formation of self-trapped charges or excitons (i.e., small polaron), promoted by the strong electron–phonon coupling, that subsequently diffuse to color centers (42) (i.e., a vacancy occupied by an electron that gives rise to transitions that absorb and emit light in the visible spectrum), causing broad emission (Figure 2a). Related to defects, intervalley scattering has also been suggested as the origin of low-energy emission, where a rapid transition (∼10 ps) from an indirectly to a directly bound exciton leads to the recombination of indirectly bound excitons and electrons with trapped holes. (43) The formation of such strongly bound excitons is promoted by the formation of stable shallow defects such as Ag+ vacancies (intrinsic defects) that leads to localization of holes in the valence band. (44) Another origin of the emission in these materials could be the presence of stationary color centers (Figure 2b). Local inhomogeneities in the distribution of the MI or MIII can also be responsible for the formation of local emissive states (45) with sub-bandgap energies (Figure 2c).

The vast chemical space offered by halide double perovskites exhibits potential for a plethora of applications beyond photovoltaics.

In fact, defect bands can be engineered by manipulating the distribution of the metals to produce local domains with different MI/MIII ratios. (46) For example, whereas intermediate bandgaps are obtained on mixing, e.g., Bi3+ and In3+, the significant red-shift observed for the incorporation of only 1% iron (Figure 1b) would suggest the presence of a defect band or local domains with high concentrations of Fe3+/In3+ ratio rather than an intermediate bandgap. Such inhomogeneities could be interrogated at the nanoscale by optical, structural, and analytical techniques which include spatially resolved photoluminescence, time-of-flight secondary-ion mass spectrometry (TOF-SIMS), (47) nano X-ray diffraction (nano-XRD), and electron back-scattering diffraction (EBSD). (48) Spatially resolved photoluminescence could potentially probe local emissive domains within the perovskite film, but only if these are micrometer-sized. Another limitation of such photoluminescence-based techniques is related to the accumulation and recombination of charges in the low-energy emissive states, providing only a limited picture in the case of an inhomogeneous electronic landscape. TOF-SIMS can provide information about the uniformity of the elemental distributions through the depth of the film. However, one significant limitation is the complex relationship between the intensity of the signal and the concentration of the probed elements, which makes absolute quantification difficult. Nano-XRD can efficiently probe the existence of separated phases consisting of metal-enriched domains, provided that the resolution is sufficient to distinguish the diffraction signal of different metal-enriched domains. The local distribution of those inhomogeneities could be measured by high-resolution EBSD that allows for the identification of different crystal phases with high spatial resolution (∼10 nm at low current doses) and characterizations of the grains, their size, and their shape. EBSD could even discriminate between compounds with the same crystal structure but different elemental composition if combined with an energy-dispersive X-ray (EDX) detector. Interestingly, the spatially resolved approach of EBSD can be complementary to other local techniques to correlate the nanoscale structural and optical or electrical properties. In semiconductors, the presence of structural inhomogeneities and defects also has huge implications on the charge carrier mobility. In Cs2AgBiBr6 and similar materials, initially after photoexcitation, charges with decent mobilities (∼12 cm2/(V·s)) can be generated, (42) but these lose mobility within tens of nanoseconds, leading to poor electron and hole transport. (25,49) Defect engineering would make it possible to improve the majority carrier mobility of such materials, as already shown in vacancy-ordered perovskites (50) such as Cs2SnI6. Here, it is hypothesized that n-type conductivity originates from iodine vacancies that serve as electron donors, leading to dark conductivities comparable to those in CsSnI3. (51)

Figure 2

Figure 2. Schematic representation of the proposed mechanisms behind the origin of the photoluminescence in Cs2AgBiBr6 and similar materials. (a) Due to the high electron–phonon coupling, the photogenerated exciton could be trapped by the lattice in small polarons. These self-trapped excitons could then diffuse to a color center and emit. (b) The presence of a vacancy occupied by an electron could result in a transition that absorbs the light used for excitation and emits in the visible region of the spectrum. (c) Inhomogeneities in the metals distribution could result in the formation of local domains with different MI/MIII ratios (circled), and thus multiple emissive domains.

The suitable bandgap of Cs2AgBiBr6 for indoor PV, (52) together with its improved stability and reduced toxicity compared to lead-based halide perovskites, makes it worth investigating whether trap densities in this material could be reduced to an acceptable value (i.e., less than 1015 cm–3). It would therefore be of interest to study this class of materials with ultrafast X-ray absorption spectroscopy to reveal the dominant defect state (53) or to use highly sensitive X-ray techniques to probe local heterogeneities for different compositions and synthesis routes through extended X-ray absorption fine structure (EXAFS). (54) Optimizing synthesis routes through varying the type of precursor, the solvent, the temperature, or the pressure, or by adding passivating molecules, could then ideally make it possible to prepare halide double perovskites with enhanced performance. However, it will be trickier for this class of materials than for lead-based halide perovskites, where most intrinsic defects do not result in intra-bandgap states. On the other hand, the presence of trap states may turn out to be beneficial for some of the envisioned applications of halide double perovskites. As an example, the non-mobile charges in Cs2AgBiBr6 have a spectacularly long lifetime, exceeding tens of microseconds. (55) If these long-lived charges reside at the surface of the crystallites, these may, depending on their absolute energy, be used for photoredox chemistry. Although some promising first results have been obtained in this research area, (23) the use of halide double perovskites for photoredox catalysis has been largely underexplored. The vast chemical space offered by halide double perovskites exhibits potential for a plethora of applications beyond photovoltaics, including lasers, photocatalysts, humidity and temperature sensors, memory devices, and X-ray detectors (Figure 3). The exciton binding energy on the order of a few hundred meV (56) reported for Cs2AgBiBr6 and similar materials discourages applications where long-range transport is required, but local exciton separation can serve as a strategy to facilitate their use in photovoltaics and photocatalysis. Such local exciton separation could be achieved by using halide double perovskite nanocrystals decorated with metals or connected to metal–organic frameworks, or by making more complex structures or blends of donors/acceptors. In addition, further investigations are needed to assess the binding energy of compositions suitable for photovoltaics (e.g., Cs2AgFeCl6). On the other hand, high binding energies are promising for display and lighting applications (e.g., LEDs) where they, along with direct bandgaps, promote efficient radiative recombination. Another route toward highly emissive materials involves the introduction of a continuous bandgap gradient by local tuning of the composition, e.g., low-band-gap inclusions. This smart light management approach could enhance the photoluminescence quantum yield (PLQY), as already demonstrated for lead-based layered two-dimensional (2D) perovskites and segregated mixed-halide perovskites. (57)

Figure 3

Figure 3. Schematic summary of the potential applications of halide double perovskites.

Another route toward highly emissive materials involves the introduction of a continuous bandgap gradient by local tuning of the composition.

In general, the compositional variation of A2MIMIIIX6 reported so far is only the tip of the iceberg, and this class of materials offers enormous potential to design materials for targeted applications. One example is the design of (ferro)magnetic perovskites by incorporating metals such as iron, (58) neodymium, (59) nickel, or cobalt. (60) Such materials could be relevant for next-generation high-speed and low-power-consumption information technology (i.e., spintronics) or for optomagnetic and magnetoelectric applications (e.g., sensors and memory devices), where the magnetization (or polarization) can be controlled by an external field.

Thermochromic applications could benefit from the strong electron–phonon coupling and spin–orbit coupling effects in halide double perovskites, paving the way toward the design of smart windows, temperature sensors, and visual thermometers. (61) Yet, the heat transport properties of these materials are barely reported. (62) Another exciting future route includes the incorporation of lanthanides in double halide perovskites. (63,64) Lanthanides (Ln) have been well-known for their applications as highly sensitive temperature sensors, in lasing, and in non-linear optics such as up-conversion. Several examples of the incorporation of Ln3+ ions, such as Yb3+, (65) Ho3+, (66) and Eu3+, (67) have already been reported. Colloidal quantum dots and nanostructures of the most promising halide double perovskites could be used to further tune the optoelectronic properties and the stability of such materials. (68) Finally, although some 2D compositions have been recently reported, (69) systematic and representative explorations on this class of materials are still largely underrepresented. We suspect that the incorporation of large organic moieties to induce the formation of two-dimensional (2D) halide double perovskites has huge potential, since specific functionalized spacers (70) (e.g., photoactive, electroactive, chiral) that are responsive to various stimuli can serve as platforms for advanced functions in future smart nanotechnologies. (69)

Author Information

ARTICLE SECTIONS
Jump To

Biographies

ARTICLE SECTIONS
Jump To

Loreta A. Muscarella

Loreta A. Muscarella is a postdoctoral researcher in the chemistry department of Utrecht University in The Netherlands. Her research focuses on understanding the structural–optical properties correlation in three- and two-dimensional halide perovskites using time-resolved spectroscopy techniques.

Eline M. Hutter

Eline M. Hutter is a tenure-track assistant professor in the chemistry department of Utrecht University in The Netherlands. Her research focuses on the design of semiconductor materials for light conversion applications and understanding charge carrier dynamics using time-resolved spectroscopy techniques.

Acknowledgments

ARTICLE SECTIONS
Jump To

The authors thank Dr. Linn Leppert and Prof. Eva Unger for fruitful discussions on the presented topic. The authors acknowledge funding from the Dutch Research Council (NWO) under grant number VI.Veni.192.034 and from the Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC).

References

ARTICLE SECTIONS
Jump To

This article references 70 other publications.

  1. 1
    Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I. A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. J. Am. Chem. Soc. 2016, 138 (7), 21382141,  DOI: 10.1021/jacs.5b13294
  2. 2
    McClure, E. T.; Ball, M. R.; Windl, W.; Woodward, P. M. Cs2AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors. Chem. Mater. 2016, 28 (5), 13481354,  DOI: 10.1021/acs.chemmater.5b04231
  3. 3
    Wolf, N. R.; Connor, B. A.; Slavney, A. H.; Karunadasa, H. I. Doubling the Stakes: The Promise of Halide Double Perovskites. Angew. Chemie - Int. Ed. 2021, 60 (30), 1626416278,  DOI: 10.1002/anie.202016185
  4. 4
    Greul, E.; Petrus, M. L.; Binek, A.; Docampo, P.; Bein, T. Highly Stable, Phase Pure Cs2AgBiBr6 Double Perovskite Thin Films for Optoelectronic Applications. J. Mater. Chem. A 2017, 5 (37), 1997219981,  DOI: 10.1039/C7TA06816F
  5. 5
    Volonakis, G.; Filip, M. R.; Haghighirad, A. A.; Sakai, N.; Wenger, B.; Snaith, H. J.; Giustino, F. Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. J. Phys. Chem. Lett. 2016, 7 (7), 12541259,  DOI: 10.1021/acs.jpclett.6b00376
  6. 6
    Filip, M. R.; Hillman, S.; Haghighirad, A. A.; Snaith, H. J.; Giustino, F. Band Gaps of the Lead-Free Halide Double Perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from Theory and Experiment. J. Phys. Chem. Lett. 2016, 7 (13), 25792585,  DOI: 10.1021/acs.jpclett.6b01041
  7. 7
    Slavney, A. H.; Leppert, L.; Saldivar Valdes, A.; Bartesaghi, D.; Savenije, T. J.; Neaton, J. B.; Karunadasa, H. I. Small-Band-Gap Halide Double Perovskites. Angew. Chemie - Int. Ed. 2018, 57 (39), 1276512770,  DOI: 10.1002/anie.201807421
  8. 8
    Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; Ouyang, R.; Musgrave, C. B.; Ghiringhelli, L. M.; Scheffler, M. New Tolerance Factor to Predict the Stability of Perovskite Oxides and Halides. Sci. Adv. 2019, 5, eaav069  DOI: 10.1126/sciadv.aav0693
  9. 9
    Zhang, T.; Cai, Z.; Chen, S. Chemical Trends in the Thermodynamic Stability and Band Gaps of 980 Halide Double Perovskites: A High-Throughput First-Principles Study. ACS Appl. Mater. Interfaces 2020, 12 (18), 2068020690,  DOI: 10.1021/acsami.0c03622
  10. 10
    Filip, M. R.; Liu, X.; Miglio, A.; Hautier, G.; Giustino, F. Phase Diagrams and Stability of Lead-Free Halide Double Perovskites Cs2BB′X6: B = Sb and Bi, B′ = Cu, Ag, and Au, and X = Cl, Br, and I. J. Phys. Chem. C 2018, 122 (1), 158170,  DOI: 10.1021/acs.jpcc.7b10370
  11. 11
    Zheng, C.; Rubel, O. Ionization Energy as a Stability Criterion for Halide Perovskites. J. Phys. Chem. C 2017, 121 (22), 1197711984,  DOI: 10.1021/acs.jpcc.7b00333
  12. 12
    Li, Z.; Kavanagh, S. R.; Napari, M.; Palgrave, R. G.; Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Davies, D. W.; Laitinen, M.; Julin, J.; Isaacs, M. A.; Friend, R. H.; Scanlon, D. O.; Walsh, A.; Hoye, R. L. Z. Bandgap Lowering in Mixed Alloys of Cs2Ag(SbxBi1-x)Br6 double Perovskite Thin Films. J. Mater. Chem. A 2020, 8 (41), 2178021788,  DOI: 10.1039/D0TA07145E
  13. 13
    Vishnoi, P.; Seshadri, R.; Cheetham, A. K. Why Are Double Perovskite Iodides so Rare?. J. Phys. Chem. C 2021, 125 (21), 1175611764,  DOI: 10.1021/acs.jpcc.1c02870
  14. 14
    Wang, K.-Q.; He, Y.; Zhang, M.; Shi, J.-J.; Cai, W.-W. Promising Lead-Free Double-Perovskite Photovoltaic Materials Cs2MM′Br6 (M = Cu, Ag, and Au; M′ = Ga, In, Sb, and Bi) with an Ideal Band Gap and High Power Conversion Efficiency. J. Phys. Chem. C 2021, 125, 2116021168,  DOI: 10.1021/acs.jpcc.1c05699
  15. 15
    Yin, H.; Xian, Y.; Zhang, Y.; Chen, W.; Wen, X.; Rahman, N. U.; Long, Y.; Jia, B.; Fan, J.; Li, W. An Emerging Lead-Free Double-Perovskite Cs2AgFeCl6:In Single Crystal. Adv. Funct. Mater. 2020, 30, 2002225,  DOI: 10.1002/adfm.202002225
  16. 16
    Du, K. Z.; Meng, W.; Wang, X.; Yan, Y.; Mitzi, D. B. Bandgap Engineering of Lead-Free Double Perovskite Cs2AgBiBr6 through Trivalent Metal Alloying. Angew. Chemie - Int. Ed. 2017, 56 (28), 81588162,  DOI: 10.1002/anie.201703970
  17. 17
    Ji, F.; Wang, F.; Kobera, L.; Abbrent, S.; Brus, J.; Ning, W.; Gao, F. The Atomic-Level Structure of Bandgap Engineered Double Perovskite Alloys Cs2AgIn1-xFexCl6. Chem. Sci. 2021, 12 (5), 17301735,  DOI: 10.1039/D0SC05264G
  18. 18
    Tran, T. T.; Panella, J. R.; Chamorro, J. R.; Morey, J. R.; McQueen, T. M. Designing Indirect-Direct Bandgap Transitions in Double Perovskites. Mater. Horiz. 2017, 4, 688693,  DOI: 10.1039/C7MH00239D
  19. 19
    Hutter, E. M.; Gélvez-Rueda, M. C.; Osherov, A.; Bulović, V.; Grozema, F. C.; Stranks, S. D.; Savenije, T. J. Direct-Indirect Character of the Bandgap in Methylammonium Lead Iodide Perovskite. Nat. Mater. 2017, 16, 115120,  DOI: 10.1038/nmat4765
  20. 20
    Sirtl, M. T.; Hooijer, R.; Armer, M.; Ebadi, F. G.; Mohammadi, M.; Maheu, C.; Weis, A.; van Gorkom, B. T.; Häringer, S.; Janssen, R. A. J.; Mayer, T.; Dyakonov, V.; Tress, W.; Bein, T. 2D/3D Hybrid Cs2AgBiBr6 Double Perovskite Solar Cells: Improved Energy Level Alignment for Higher Contact-Selectivity and Large Open Circuit Voltage. Adv. Energy Mater. 2022, 12, 2103215,  DOI: 10.1002/aenm.202103215
  21. 21
    Pan, W.; Wu, H.; Luo, J.; Deng, Z.; Ge, C.; Chen, C.; Jiang, X.; Yin, W.-J.; Niu, G.; Zhu, L.; Yin, L.; Zhou, Y.; Xie, Q.; Ke, X.; Sui, M.; Tang, J. Cs2AgBiBr6 Single-Crystal X-Ray Detectors with a Low Detection Limit. Nat. Photonics 2017, 11, 726732,  DOI: 10.1038/s41566-017-0012-4
  22. 22
    Steele, J. A.; Pan, W.; Martin, C.; Keshavarz, M.; Debroye, E.; Yuan, H.; Banerjee, S.; Fron, E.; Jonckheere, D.; Kim, C. W.; Baekelant, W.; Niu, G.; Tang, J.; Vanacken, J.; Van der Auweraer, M.; Hofkens, J.; Roeffaers, M. B. J. Photophysical Pathways in Highly Sensitive Cs2AgBiBr6 Double-Perovskite Single-Crystal X-Ray Detectors. Adv. Mater. 2018, 30, 1804450,  DOI: 10.1002/adma.201804450
  23. 23
    Wang, T.; Yue, D.; Li, X.; Zhao, Y. Lead-Free Double Perovskite Cs2AgBiBr6/RGO Composite for Efficient Visible Light Photocatalytic H2 Evolution. Appl. Catal. B Environ. 2020, 268, 118399,  DOI: 10.1016/j.apcatb.2019.118399
  24. 24
    Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; Ouyang, R.; Musgrave, C. B.; Ghiringhelli, L. M.; Scheffler, M. New Tolerance Factor to Predict the Stability of Perovskite Oxides and Halides. Sci. Adv. 2019, 5 (2), eaav0693,  DOI: 10.1126/sciadv.aav0693
  25. 25
    Hutter, E. M.; Gélvez-Rueda, M. C.; Bartesaghi, D.; Grozema, F. C.; Savenije, T. J. Band-Like Charge Transport in Cs2AgBiBr6 and Mixed Antimony-Bismuth Cs2AgBi1-xSbxBr6 Halide Double Perovskites. ACS Omega 2018, 3 (9), 1165511662,  DOI: 10.1021/acsomega.8b01705
  26. 26
    Li, Z.; Kavanagh, S. R.; Napari, M.; Palgrave, R. G.; Abdi-jalebi, M.; Andaji-Garmaroudi, Z.; Davies, D. w.; Laitinen, M.; Julin, J.; Isaacs, M. A.; Friend, R. H.; Scanlon, D. O.; Walsh, A.; Hoye, R. L. Z. Bandgap Lowering in Mixed Alloys of Cs2Ag(SbxBi1-x)Br6 Double Perovskite Thin Film. J. Mater. Chem. A 2020, 8, 2178021788,  DOI: 10.1039/D0TA07145E
  27. 27
    Gomollón-Bel, F. Ten Chemical Innovations That Will Change Our World. Chem. Int. 2020, 42 (4), 39,  DOI: 10.1515/ci-2020-0402
  28. 28
    Fan, P.; Peng, H. X.; Zheng, Z. H.; Chen, Z. H.; Tan, S. J.; Chen, X. Y.; Luo, Y. Di; Su, Z. H.; Luo, J. T.; Liang, G. X. Single-Source Vapor-Deposited Cs2AgBiBr6 Thin Films for Lead-Free Perovskite Solar Cells. Nanomaterials 2019, 9 (12), 1760,  DOI: 10.3390/nano9121760
  29. 29
    Rodkey, N.; Kaal, S.; Sebastia-Luna, P.; Birkhölzer, Y. A.; Ledinsky, M.; Palazon, F.; Bolink, H. J.; Morales-Masis, M. Pulsed Laser Deposition of Cs2AgBiBr6: From Mechanochemically Synthesized Powders to Dry, Single-Step Deposition. Chem. Mater. 2021, 33 (18), 74177422,  DOI: 10.1021/acs.chemmater.1c02054
  30. 30
    Deng, Z.; Wei, F.; Wu, Y.; Seshadri, R.; Cheetham, A. K.; Canepa, P. Understanding the Structural and Electronic Properties of Bismuth Trihalides and Related Compounds. Inorg. Chem. 2020, 59 (6), 33773386,  DOI: 10.1021/acs.inorgchem.9b03214
  31. 31
    The Materials Project, Materials Data on Cs3Bi2Br9, United States, 2020.
  32. 32
    Bekenstein, Y.; Dahl, J. C.; Huang, J.; Osowiecki, W. T.; Swabeck, J. K.; Chan, E. M.; Yang, P.; Alivisatos, A. P. The Making and Breaking of Lead-Free Double Perovskite Nanocrystals of Cesium Silver-Bismuth Halide Compositions. Nano Lett. 2018, 18 (6), 35023508,  DOI: 10.1021/acs.nanolett.8b00560
  33. 33
    Dai, Y.; Tüysüz, H. Lead-Free Cs3Bi2Br9 Perovskite as Photocatalyst for Ring-Opening Reactions of Epoxides. ChemSusChem 2019, 12 (12), 25872592,  DOI: 10.1002/cssc.201900716
  34. 34
    Bresolin, B. M.; Günnemann, C.; Bahnemann, D. W.; Sillanpää, M. Pb-Free Cs3Bi2I9 Perovskite as a Visible-Light-Active Photocatalyst for Organic Pollutant Degradation. Nanomaterials 2020, 10 (4), 763,  DOI: 10.3390/nano10040763
  35. 35
    Bhosale, S. S.; Kharade, A. K.; Jokar, E.; Fathi, A.; Chang, S. M.; Diau, E. W. G. Mechanism of Photocatalytic CO2 Reduction by Bismuth-Based Perovskite Nanocrystals at the Gas-Solid Interface. J. Am. Chem. Soc. 2019, 141 (51), 2043420442,  DOI: 10.1021/jacs.9b11089
  36. 36
    Krajewska, C. J.; Kavanagh, S. R.; Zhang, L.; Kubicki, D. J.; Dey, K.; Gałkowski, K.; Grey, C. P.; Stranks, S. D.; Walsh, A.; Scanlon, D. O.; Palgrave, R. G. Enhanced Visible Light Absorption in Layered Cs3Bi2Br9 through Mixed-Valence Sn(II)/Sn(IV) Doping. Chem. Sci. 2021, 12 (44), 1468614699,  DOI: 10.1039/D1SC03775G
  37. 37
    Stolterfoht, M.; Le Corre, V. M.; Feuerstein, M.; Caprioglio, P.; Koster, L. J. A.; Neher, D. Voltage-Dependent Photoluminescence and How It Correlates with the Fill Factor and Open-Circuit Voltage in Perovskite Solar Cells. ACS Energy Lett. 2019, 4 (12), 28872892,  DOI: 10.1021/acsenergylett.9b02262
  38. 38
    Green, M. A.; Ho-Baillie, A. W. Y. Pushing to the Limit: Radiative Efficiencies of Recent Mainstream and Emerging Solar Cells. ACS Energy Letters 2019, 4 (7), 16391644,  DOI: 10.1021/acsenergylett.9b01128
  39. 39
    Lei, H.; Hardy, D.; Gao, F. Lead-Free Double Perovskite Cs2AgBiBr6: Fundamentals, Applications, and Perspectives. Advanced Functional Materials. 2021, 31, 2105898,  DOI: 10.1002/adfm.202105898
  40. 40
    Buizza, L. R. V; Wright, A. D.; Longo, G.; Sansom, H. C.; Xia, C. Q.; Rosseinsky, M. J.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Charge-Carrier Mobility and Localization in Semiconducting Cu2AgBiI6 for Photovoltaic Applications. ACS Energy Lett. 2021, 6 (5), 17291739,  DOI: 10.1021/acsenergylett.1c00458
  41. 41
    Sharma, M.; Yangui, A.; Whiteside, V. R.; Sellers, I. R.; Han, D.; Chen, S.; Du, M. H.; Saparov, B. Rb4Ag2BiBr9: A Lead-Free Visible Light Absorbing Halide Semiconductor with Improved Stability. Inorg. Chem. 2019, 58 (7), 44464455,  DOI: 10.1021/acs.inorgchem.8b03623
  42. 42
    Wright, A. D.; Buizza, L. R. V; Savill, K. J.; Longo, G.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. Ultrafast Excited-State Localization in Cs2AgBiBr6 Double Perovskite. J. Phys. Chem. Lett. 2021, 12 (13), 33523360,  DOI: 10.1021/acs.jpclett.1c00653
  43. 43
    Dey, A.; Richter, A. F.; Debnath, T.; Huang, H.; Polavarapu, L.; Feldmann, J. Transfer of Direct to Indirect Bound Excitons by Electron Intervalley Scattering in Cs2AgBiBr6 Double Perovskite Nanocrystals. ACS Nano 2020, 14 (5), 58555861,  DOI: 10.1021/acsnano.0c00997
  44. 44
    Li, T.; Zhao, X.; Yang, D.; Du, M. H.; Zhang, L. Intrinsic Defect Properties in Halide Double Perovskites for Optoelectronic Applications. Phys. Rev. Appl. 2018, 10 (4), 041001,  DOI: 10.1103/PhysRevApplied.10.041001
  45. 45
    Dai, C. M.; Zhang, T.; Wu, Y. N.; Chen, S. Halide Double-Perovskite Light-Emitting Centers Embedded in Lattice-Matched and Coherent Crystalline Matrix. Adv. Funct. Mater. 2020, 30, 2000653,  DOI: 10.1002/adfm.202000653
  46. 46
    Ji, F.; Klarbring, J.; Wang, F.; Ning, W.; Wang, L.; Yin, C.; Figueroa, J. S. M.; Christensen, C. K.; Etter, M.; Ederth, T.; Sun, L.; Simak, S. I.; Abrikosov, I. A.; Gao, F. Lead-Free Halide Double Perovskite Cs2AgBiBr6 with Decreased Band Gap. Angew. Chemie - Int. Ed. 2020, 59 (35), 1519115194,  DOI: 10.1002/anie.202005568
  47. 47
    Harvey, S. P.; Li, Z.; Christians, J. A.; Zhu, K.; Luther, J. M.; Berry, J. J. Probing Perovskite Inhomogeneity beyond the Surface: TOF-SIMS Analysis of Halide Perovskite Photovoltaic Devices. ACS Appl. Mater. Interfaces 2018, 10 (34), 2854128552,  DOI: 10.1021/acsami.8b07937
  48. 48
    Sun, H.; Adhyaksa, G. W. P.; Garnett, E. C. The Application of Electron Backscatter Diffraction on Halide Perovskite Materials. Adv. Energy Mater. 2020, 10 (26), 2000364,  DOI: 10.1002/aenm.202000364
  49. 49
    Bartesaghi, D.; Slavney, A. H.; Gélvez-Rueda, M. C.; Connor, B. A.; Grozema, F. C.; Karunadasa, H. I.; Savenije, T. J. Charge Carrier Dynamics in Cs2AgBiBr6 Double Perovskite. J. Phys. Chem. C 2018, 122 (9), 48094816,  DOI: 10.1021/acs.jpcc.8b00572
  50. 50
    Maughan, A. E.; Ganose, A. M.; Scanlon, D. O.; Neilson, J. R. Perspectives and Design Principles of Vacancy-Ordered Double Perovskite Halide Semiconductors. Chem. Mater. 2019, 31 (4), 11841195,  DOI: 10.1021/acs.chemmater.8b05036
  51. 51
    Xiao, Z.; Zhou, Y.; Hosono, H.; Kamiya, T. Intrinsic Defects in a Photovoltaic Perovskite Variant Cs2SnI6. Phys. Chem. Chem. Phys. 2015, 17 (29), 1890018903,  DOI: 10.1039/C5CP03102H
  52. 52
    Ho, J. K. W.; Yin, H.; So, S. K. From 33% to 57%-an Elevated Potential of Efficiency Limit for Indoor Photovoltaics. J. Mater. Chem. A 2020, 8, 17171723,  DOI: 10.1039/C9TA11894B
  53. 53
    Kesavan, J. K.; Fiore Mosca, D.; Sanna, S.; Borgatti, F.; Schuck, G.; Tran, P. M.; Woodward, P. M.; Mitrović, V. F.; Franchini, C.; Boscherini, F. Doping Evolution of the Local Electronic and Structural Properties of the Double Perovskite Ba2Na1-xCaxOsO6. J. Phys. Chem. C 2020, 124 (30), 1657716585,  DOI: 10.1021/acs.jpcc.0c04807
  54. 54
    Santomauro, F. G.; Grilj, J.; Mewes, L.; Nedelcu, G.; Yakunin, S.; Rossi, T.; Capano, G.; Al Haddad, A.; Budarz, J.; Kinschel, D.; Ferreira, D. S.; Rossi, G.; Gutierrez Tovar, M.; Grolimund, D.; Samson, V.; Nachtegaal, M.; Smolentsev, G.; Kovalenko, M. V.; Chergui, M. Localized Holes and Delocalized Electrons in Photoexcited Inorganic Perovskites: Watching Each Atomic Actor by Picosecond X-Ray Absorption Spectroscopy. Struct. Dyn. 2017, 4 (4), 044002,  DOI: 10.1063/1.4971999
  55. 55
    Jöbsis, H. J.; Caselli, V. M.; Askes, S. H. C.; Garnett, E. C.; Savenije, T. J.; Rabouw, F. T.; Hutter, E. M. Recombination and Localization: Unfolding the Pathways behind Conductivity Losses in Cs2AgBiBr6 Thin Films. Appl. Phys. Lett. 2021, 119, 131908,  DOI: 10.1063/5.0061899
  56. 56
    Kentsch, R.; Scholz, M.; Horn, J.; Schlettwein, D.; Oum, K.; Lenzer, T. Exciton Dynamics and Electron-Phonon Coupling Affect the Photovoltaic Performance of the Cs2AgBiBr6 Double Perovskite. J. Phys. Chem. C 2018, 122 (45), 2594025947,  DOI: 10.1021/acs.jpcc.8b09911
  57. 57
    Yuan, M.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y.; Beauregard, E. M.; Kanjanaboos, P.; Lu, Z.; Kim, D. H.; Sargent, E. H. Perovskite Energy Funnels for Efficient Light-Emitting Diodes. Nat. Nanotechnol. 2016, 11, 872877,  DOI: 10.1038/nnano.2016.110
  58. 58
    Ning, W.; Bao, J.; Puttisong, Y.; Moro, F.; Kobera, L.; Shimono, S.; Wang, L.; Ji, F.; Cuartero, M.; Kawaguchi, S.; Abbrent, S.; Ishibashi, H.; de Marco, R.; Bouianova, I. A.; Crespo, G. A.; Kubota, Y.; Brus, J.; Chung, D. Y.; Sun, L.; Chen, W. M.; Kanatzidis, M. G.; Gao, F. Magnetizing Lead-Free Halide Double Perovskites. Sci. Adv. 2020, 6 (45), eabb5381,  DOI: 10.1126/sciadv.abb5381
  59. 59
    Xie, Y.; Peng, B.; Bravić, I.; Yu, Y.; Dong, Y.; Liang, R.; Ou, Q.; Monserrat, B.; Zhang, S. Highly Efficient Blue-Emitting CsPbBr3 Perovskite Nanocrystals through Neodymium Doping. Adv. Sci. 2020, 7 (20), 2830,  DOI: 10.1002/advs.202001698
  60. 60
    Babu, R.; Vardhaman, A. K.; Dhavale, V. M.; Giribabu, L.; Singh, S. P. MA2CoBr4: Lead-Free Cobalt-Based Perovskite for Electrochemical Conversion of Water to Oxygen. Chem. Commun. 2019, 55 (47), 67796782,  DOI: 10.1039/C9CC00878K
  61. 61
    Ning, W.; Zhao, X. G.; Klarbring, J.; Bai, S.; Ji, F.; Wang, F.; Simak, S. I.; Tao, Y.; Ren, X. M.; Zhang, L.; Huang, W.; Abrikosov, I. A.; Gao, F. Thermochromic Lead-Free Halide Double Perovskites. Adv. Funct. Mater. 2019, 29, 1807375,  DOI: 10.1002/adfm.201807375
  62. 62
    Sajjad, M.; Mahmood, Q.; Singh, N.; Larsson, J. A. Ultralow Lattice Thermal Conductivity in Double Perovskite Cs2PTi6: A Promising Thermoelectric Material. ACS Appl. Energy Mater. 2020, 3 (11), 1129311299,  DOI: 10.1021/acsaem.0c02236
  63. 63
    Cortecchia, D.; Mróz, W.; Folpini, G.; Borzda, T.; Leoncino, L.; Alvarado-Leaños, A. L.; Speller, E. M.; Petrozza, A. Layered Perovskite Doping with Eu3+ and β-Diketonate Eu3+ Complex. Chem. Mater. 2021, 33 (7), 22892297,  DOI: 10.1021/acs.chemmater.0c04097
  64. 64
    Schmitz, F.; Guo, K.; Horn, J.; Sorrentino, R.; Conforto, G.; Lamberti, F.; Brescia, R.; Drago, F.; Prato, M.; He, Z.; Giovanella, U.; Cacialli, F.; Schlettwein, D.; Meggiolaro, D.; Gatti, T. Lanthanide-Induced Photoluminescence in Lead-Free Cs2AgBiBr6 Bulk Perovskite: Insights from Optical and Theoretical Investigations. J. Phys. Chem. Lett. 2020, 11 (20), 88938900,  DOI: 10.1021/acs.jpclett.0c02317
  65. 65
    Mahor, Y.; Mir, W. J.; Nag, A. Synthesis and Near-Infrared Emission of Yb-Doped Cs2AgInCl6 Double Perovskite Microcrystals and Nanocrystals. J. Phys. Chem. C 2019, 123 (25), 1578715793,  DOI: 10.1021/acs.jpcc.9b02456
  66. 66
    Li, S.; Hu, Q.; Luo, J.; Jin, T.; Liu, J.; Li, J.; Tan, Z.; Han, Y.; Zheng, Z.; Zhai, T.; Song, H.; Gao, L.; Niu, G.; Tang, J. Self-Trapped Exciton to Dopant Energy Transfer in Rare Earth Doped Lead-Free Double Perovskite. Adv. Opt. Mater. 2019, 7 (23), 1901098,  DOI: 10.1002/adom.201901098
  67. 67
    Ding, N.; Zhou, D.; Pan, G.; Xu, W.; Chen, X.; Li, D.; Zhang, X.; Zhu, J.; Ji, Y.; Song, H. Europium-Doped Lead-Free Cs3Bi2Br9 Perovskite Quantum Dots and Ultrasensitive Cu2+ Detection. ACS Sustain. Chem. Eng. 2019, 7 (9), 83978404,  DOI: 10.1021/acssuschemeng.9b00038
  68. 68
    Manser, J. S.; Saidaminov, M. I.; Christians, J. A.; Bakr, O. M.; Kamat, P. V. Making and Breaking of Lead Halide Perovskites. Acc. Chem. Res. 2016, 49 (2), 330338,  DOI: 10.1021/acs.accounts.5b00455
  69. 69
    Xue, J.; Wang, Z.; Comstock, A.; Wang, Z.; Sung, H. H. Y.; Williams, I. D.; Sun, D.; Liu, J.; Lu, H. Chemical Control of Magnetic Ordering in Hybrid Fe-Cl Layered Double Perovskites. Chem. Mater. 2022, 34 (6), 28132823,  DOI: 10.1021/acs.chemmater.2c00163
  70. 70
    Milić, J. V. Multifunctional Layered Hybrid Perovskites. J. Mater. Chem. C 2021, 9 (35), 1142811443,  DOI: 10.1039/D1TC01533H

Cited By

ARTICLE SECTIONS
Jump To

This article is cited by 22 publications.

  1. Mayank Gupta, Susmita Jana, B. R. K. Nanda. Electronic Structure and Optoelectronic Properties of Halide Double Perovskites: Fundamental Insights and Design of a Theoretical Workflow. Chemistry of Materials 2024, 36 (1) , 132-145. https://doi.org/10.1021/acs.chemmater.3c01048
  2. Ruiqian Li, Yifan Zhou, Xuanyu Zhang, Jiawei Lin, Jian Chen, Congcong Chen, Xin Pan, Pan Wang, Rui Chen, Jun Yin, Lingling Mao. In/Bi-based Direct- and Indirect-Gap Hybrid Double-Perovskite-Derived 1D Halides with Near-Unity Quantum Yield via Sb3+ Doping. Chemistry of Materials 2023, 35 (21) , 9362-9369. https://doi.org/10.1021/acs.chemmater.3c02183
  3. Sarika Singh, Pabitra Kumar Nayak, Sergei Tretiak, Dibyajyoti Ghosh. Composition Dependent Strain Engineering of Lead-Free Halide Double Perovskite: Computational Insights. The Journal of Physical Chemistry Letters 2023, 14 (42) , 9479-9489. https://doi.org/10.1021/acs.jpclett.3c02249
  4. Raisa-Ioana Biega, Yinan Chen, Marina R. Filip, Linn Leppert. Chemical Mapping of Excitons in Halide Double Perovskites. Nano Letters 2023, 23 (17) , 8155-8161. https://doi.org/10.1021/acs.nanolett.3c02285
  5. Showkat H. Mir, Sudip Chakraborty. Pressure Driven Optical Transitions in Columnar-Ordered Cs2AgPdCl5: Phase Transformation-Independent Piezochromism. The Journal of Physical Chemistry C 2023, 127 (30) , 14805-14811. https://doi.org/10.1021/acs.jpcc.3c02523
  6. Mengjiao Sun, Chao Wang, Hui Wang, Guangjiu Zhao. Lead-Free Zero-Dimensional Zn-Based Metal Halides of Highly Efficient Blue Luminescence from Self-Trapping Exciton. The Journal of Physical Chemistry Letters 2023, 14 (18) , 4365-4371. https://doi.org/10.1021/acs.jpclett.3c00784
  7. Bhawna, Mrinmoy Roy, Amandeep Kaur, Aftab Alam, M. Aslam. BiOBr Surface-Functionalized Halide Double-Perovskite Films for Slow Ion Migration and Improved Stability. ACS Applied Materials & Interfaces 2023, 15 (14) , 18473-18481. https://doi.org/10.1021/acsami.3c00369
  8. Oleksandr Stroyuk, Oleksandra Raievska, Paz Sebastia-Luna, Bas A. H. Huisman, Christian Kupfer, Anastasia Barabash, Jens Hauch, Henk J. Bolink, Christoph J. Brabec. Highly Luminescent Transparent Cs2AgxNa1–xBiyIn1–yCl6 Perovskite Films Produced by Single-Source Vacuum Deposition. ACS Materials Letters 2023, 5 (2) , 596-602. https://doi.org/10.1021/acsmaterialslett.3c00034
  9. Tianyu Tang, Yanlin Tang. An effective strategy of indium half-doping to stabilize the structure and improve optoelectronic characteristics of Tl-Co based double perovskite: First principles study. Results in Physics 2023, 47 , 106375. https://doi.org/10.1016/j.rinp.2023.106375
  10. Saswata Halder, Ram Awdhesh Kumar, Ritwik Maity, T.P. Sinha. A tailored direct-to-indirect band structure transition in double perovskite oxides influences its photocatalysis efficiency. Ceramics International 2023, 49 (5) , 8634-8645. https://doi.org/10.1016/j.ceramint.2022.12.096
  11. Tariq M. Al-Daraghmeh, Omar Zayed, Taharh Zelai, Sadaf Saba, Ghulam M. Mustafa, Othman Hakami, Hind Albalawi, S. Bouzgarrou, Z. Mahmoud, Q. Mahmood. Study of mechanical, optical and transport aspirants of double perovskites Cs2XInI6 (X = Li, Na) for solar cells and clean energy applications. Journal of Solid State Chemistry 2023, 32 , 124003. https://doi.org/10.1016/j.jssc.2023.124003
  12. Mengde Zhai, Cheng Chen, Ming Cheng. Advancing Lead-Free Cs2AgBiBr6 perovskite solar cells: Challenges and strategies. Solar Energy 2023, 253 , 563-583. https://doi.org/10.1016/j.solener.2023.02.027
  13. Zhongyuan Li, Bin Li, Wuqi Liu, Dong Yan, Qiang Tang, Zhen Fang, Rong‐Jun Xie. Doping Mn 2+ in a New Layered Halide Double Perovskite PPA 4 NaInCl 8 (PPA +  = C 6 H 5 (CH 2 ) 3 NH 3 + ): Dimensional Reduction Accelerating Mn 2+ Dissolution and Separation for Efficient Light Emission. Advanced Optical Materials 2023, , 2203031. https://doi.org/10.1002/adom.202203031
  14. Oleksandr Stroyuk, Oleksandra Raievska, Jens Hauch, Christoph J. Brabec. Dotierungs‐/Legierungswege zu bleifreien Halogenid‐Perowskiten mit ultimativen Photolumineszenz‐Quantenausbeuten. Angewandte Chemie 2023, 135 (3) https://doi.org/10.1002/ange.202212668
  15. Oleksandr Stroyuk, Oleksandra Raievska, Jens Hauch, Christoph J. Brabec. Doping/Alloying Pathways to Lead‐Free Halide Perovskites with Ultimate Photoluminescence Quantum Yields. Angewandte Chemie International Edition 2023, 62 (3) https://doi.org/10.1002/anie.202212668
  16. Tianxin Bai, Xiaochen Wang, Zhongyi Wang, Sujun Ji, Xuan Meng, Qiujie Wang, Ruiling Zhang, Peigeng Han, Ke‐li Han, Junsheng Chen, Feng Liu, Bin Yang. Highly Luminescent One‐Dimensional Organic–Inorganic Hybrid Double‐Perovskite‐Inspired Materials for Single‐Component Warm White‐Light‐Emitting Diodes. Angewandte Chemie 2023, 135 (2) https://doi.org/10.1002/ange.202213240
  17. Tianxin Bai, Xiaochen Wang, Zhongyi Wang, Sujun Ji, Xuan Meng, Qiujie Wang, Ruiling Zhang, Peigeng Han, Ke‐li Han, Junsheng Chen, Feng Liu, Bin Yang. Highly Luminescent One‐Dimensional Organic–Inorganic Hybrid Double‐Perovskite‐Inspired Materials for Single‐Component Warm White‐Light‐Emitting Diodes. Angewandte Chemie International Edition 2023, 62 (2) https://doi.org/10.1002/anie.202213240
  18. Zhao Yang Dai, Chen Chen, Gen Shui Wang, Yi Nong Lyu, Nan Ma. Bandgap-tuned barium bismuth niobate double perovskite for self-powered photodetectors with a full-spectrum response. Journal of Materials Chemistry C 2023, 11 (2) , 574-582. https://doi.org/10.1039/D2TC04310F
  19. Abdelazim M Mebed, Muhammad Mushtaq, Iltaf Muhammad, Ikram Un Nabi Lone, Samah AL-Qaisi, Norah Algethami, E F EL-Shamy, Amel Laref, N M AL-Hosiny. Structure, half-metallic and magnetic properties of bulk and (001) surface of Rb 2 XMoO 6 (X = Cr, Sc) double perovskites: a DFT + U study. Physica Scripta 2023, 98 (1) , 015807. https://doi.org/10.1088/1402-4896/aca56b
  20. Duo-Fu Li, Feng Guo, Xiao-Li He, Yao-Zhen Wu, Xiang-Hong Deng, Kang-Ping Yang, Yan Sui, Yong-Xiu Li. A layered hybrid rare-earth double perovskite with two continuous reversible phase transitions induced by unusual two driving gears of fan-like rotation movements. CrystEngComm 2022, 24 (48) , 8496-8502. https://doi.org/10.1039/D2CE01297A
  21. Zewei Li, Yi-Teng Huang, Lokeshwari Mohan, Szymon J. Zelewski, Richard H. Friend, Joe Briscoe, Robert L. Z. Hoye. Elucidating the Factors Limiting the Photovoltaic Performance of Mixed Sb–Bi Halide Elpasolite Absorbers. Solar RRL 2022, 6 (11) , 2200749. https://doi.org/10.1002/solr.202200749
  22. Eline M. Hutter. Halide perovskite materials as chemical playground. Nachrichten aus der Chemie 2022, 70 (9) , 68-69. https://doi.org/10.1002/nadc.20224127355
  • Abstract

    Figure 1

    Figure 1. (a) Crystal structure of halide double perovskites described by the formula A2MIMIIIX6 , consisting of alternating corner-sharing [MIX6] and [MIIIX6] octahedra shown in purple and green, respectively. Orange and dark green spheres represent the monovalent cation A+ (often Cs+) and the halide X, respectively. (b) Photographs and normalized UV–Vis absorption spectra of Cs2AgIn1-xFexCl6 (x = 0.00, 0.01, 0.04, 0.32, 0.71, and 1.00) crystals. Adapted from ref (17). Copyright 2021 Royal Society of Chemistry. (c) Schematic representation of the halide double-perovskite band structure, showing changes in the magnitude (energy) and nature (indirect and direct) of the bandgap upon mixing different trivalent metals, MIII and M′III.

    Figure 2

    Figure 2. Schematic representation of the proposed mechanisms behind the origin of the photoluminescence in Cs2AgBiBr6 and similar materials. (a) Due to the high electron–phonon coupling, the photogenerated exciton could be trapped by the lattice in small polarons. These self-trapped excitons could then diffuse to a color center and emit. (b) The presence of a vacancy occupied by an electron could result in a transition that absorbs the light used for excitation and emits in the visible region of the spectrum. (c) Inhomogeneities in the metals distribution could result in the formation of local domains with different MI/MIII ratios (circled), and thus multiple emissive domains.

    Figure 3

    Figure 3. Schematic summary of the potential applications of halide double perovskites.

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 70 other publications.

    1. 1
      Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I. A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. J. Am. Chem. Soc. 2016, 138 (7), 21382141,  DOI: 10.1021/jacs.5b13294
    2. 2
      McClure, E. T.; Ball, M. R.; Windl, W.; Woodward, P. M. Cs2AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors. Chem. Mater. 2016, 28 (5), 13481354,  DOI: 10.1021/acs.chemmater.5b04231
    3. 3
      Wolf, N. R.; Connor, B. A.; Slavney, A. H.; Karunadasa, H. I. Doubling the Stakes: The Promise of Halide Double Perovskites. Angew. Chemie - Int. Ed. 2021, 60 (30), 1626416278,  DOI: 10.1002/anie.202016185
    4. 4
      Greul, E.; Petrus, M. L.; Binek, A.; Docampo, P.; Bein, T. Highly Stable, Phase Pure Cs2AgBiBr6 Double Perovskite Thin Films for Optoelectronic Applications. J. Mater. Chem. A 2017, 5 (37), 1997219981,  DOI: 10.1039/C7TA06816F
    5. 5
      Volonakis, G.; Filip, M. R.; Haghighirad, A. A.; Sakai, N.; Wenger, B.; Snaith, H. J.; Giustino, F. Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. J. Phys. Chem. Lett. 2016, 7 (7), 12541259,  DOI: 10.1021/acs.jpclett.6b00376
    6. 6
      Filip, M. R.; Hillman, S.; Haghighirad, A. A.; Snaith, H. J.; Giustino, F. Band Gaps of the Lead-Free Halide Double Perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from Theory and Experiment. J. Phys. Chem. Lett. 2016, 7 (13), 25792585,  DOI: 10.1021/acs.jpclett.6b01041
    7. 7
      Slavney, A. H.; Leppert, L.; Saldivar Valdes, A.; Bartesaghi, D.; Savenije, T. J.; Neaton, J. B.; Karunadasa, H. I. Small-Band-Gap Halide Double Perovskites. Angew. Chemie - Int. Ed. 2018, 57 (39), 1276512770,  DOI: 10.1002/anie.201807421
    8. 8
      Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; Ouyang, R.; Musgrave, C. B.; Ghiringhelli, L. M.; Scheffler, M. New Tolerance Factor to Predict the Stability of Perovskite Oxides and Halides. Sci. Adv. 2019, 5, eaav069  DOI: 10.1126/sciadv.aav0693
    9. 9
      Zhang, T.; Cai, Z.; Chen, S. Chemical Trends in the Thermodynamic Stability and Band Gaps of 980 Halide Double Perovskites: A High-Throughput First-Principles Study. ACS Appl. Mater. Interfaces 2020, 12 (18), 2068020690,  DOI: 10.1021/acsami.0c03622
    10. 10
      Filip, M. R.; Liu, X.; Miglio, A.; Hautier, G.; Giustino, F. Phase Diagrams and Stability of Lead-Free Halide Double Perovskites Cs2BB′X6: B = Sb and Bi, B′ = Cu, Ag, and Au, and X = Cl, Br, and I. J. Phys. Chem. C 2018, 122 (1), 158170,  DOI: 10.1021/acs.jpcc.7b10370
    11. 11
      Zheng, C.; Rubel, O. Ionization Energy as a Stability Criterion for Halide Perovskites. J. Phys. Chem. C 2017, 121 (22), 1197711984,  DOI: 10.1021/acs.jpcc.7b00333
    12. 12
      Li, Z.; Kavanagh, S. R.; Napari, M.; Palgrave, R. G.; Abdi-Jalebi, M.; Andaji-Garmaroudi, Z.; Davies, D. W.; Laitinen, M.; Julin, J.; Isaacs, M. A.; Friend, R. H.; Scanlon, D. O.; Walsh, A.; Hoye, R. L. Z. Bandgap Lowering in Mixed Alloys of Cs2Ag(SbxBi1-x)Br6 double Perovskite Thin Films. J. Mater. Chem. A 2020, 8 (41), 2178021788,  DOI: 10.1039/D0TA07145E
    13. 13
      Vishnoi, P.; Seshadri, R.; Cheetham, A. K. Why Are Double Perovskite Iodides so Rare?. J. Phys. Chem. C 2021, 125 (21), 1175611764,  DOI: 10.1021/acs.jpcc.1c02870
    14. 14
      Wang, K.-Q.; He, Y.; Zhang, M.; Shi, J.-J.; Cai, W.-W. Promising Lead-Free Double-Perovskite Photovoltaic Materials Cs2MM′Br6 (M = Cu, Ag, and Au; M′ = Ga, In, Sb, and Bi) with an Ideal Band Gap and High Power Conversion Efficiency. J. Phys. Chem. C 2021, 125, 2116021168,  DOI: 10.1021/acs.jpcc.1c05699
    15. 15
      Yin, H.; Xian, Y.; Zhang, Y.; Chen, W.; Wen, X.; Rahman, N. U.; Long, Y.; Jia, B.; Fan, J.; Li, W. An Emerging Lead-Free Double-Perovskite Cs2AgFeCl6:In Single Crystal. Adv. Funct. Mater. 2020, 30, 2002225,  DOI: 10.1002/adfm.202002225
    16. 16
      Du, K. Z.; Meng, W.; Wang, X.; Yan, Y.; Mitzi, D. B. Bandgap Engineering of Lead-Free Double Perovskite Cs2AgBiBr6 through Trivalent Metal Alloying. Angew. Chemie - Int. Ed. 2017, 56 (28), 81588162,  DOI: 10.1002/anie.201703970
    17. 17
      Ji, F.; Wang, F.; Kobera, L.; Abbrent, S.; Brus, J.; Ning, W.; Gao, F. The Atomic-Level Structure of Bandgap Engineered Double Perovskite Alloys Cs2AgIn1-xFexCl6. Chem. Sci. 2021, 12 (5), 17301735,  DOI: 10.1039/D0SC05264G
    18. 18
      Tran, T. T.; Panella, J. R.; Chamorro, J. R.; Morey, J. R.; McQueen, T. M. Designing Indirect-Direct Bandgap Transitions in Double Perovskites. Mater. Horiz. 2017, 4, 688693,  DOI: 10.1039/C7MH00239D
    19. 19
      Hutter, E. M.; Gélvez-Rueda, M. C.; Osherov, A.; Bulović, V.; Grozema, F. C.; Stranks, S. D.; Savenije, T. J. Direct-Indirect Character of the Bandgap in Methylammonium Lead Iodide Perovskite. Nat. Mater. 2017, 16, 115120,  DOI: 10.1038/nmat4765
    20. 20
      Sirtl, M. T.; Hooijer, R.; Armer, M.; Ebadi, F. G.; Mohammadi, M.; Maheu, C.; Weis, A.; van Gorkom, B. T.; Häringer, S.; Janssen, R. A. J.; Mayer, T.; Dyakonov, V.; Tress, W.; Bein, T. 2D/3D Hybrid Cs2AgBiBr6 Double Perovskite Solar Cells: Improved Energy Level Alignment for Higher Contact-Selectivity and Large Open Circuit Voltage. Adv. Energy Mater. 2022, 12, 2103215,  DOI: 10.1002/aenm.202103215
    21. 21
      Pan, W.; Wu, H.; Luo, J.; Deng, Z.; Ge, C.; Chen, C.; Jiang, X.; Yin, W.-J.; Niu, G.; Zhu, L.; Yin, L.; Zhou, Y.; Xie, Q.; Ke, X.; Sui, M.; Tang, J. Cs2AgBiBr6 Single-Crystal X-Ray Detectors with a Low Detection Limit. Nat. Photonics 2017, 11, 726732,  DOI: 10.1038/s41566-017-0012-4
    22. 22
      Steele, J. A.; Pan, W.; Martin, C.; Keshavarz, M.; Debroye, E.; Yuan, H.; Banerjee, S.; Fron, E.; Jonckheere, D.; Kim, C. W.; Baekelant, W.; Niu, G.; Tang, J.; Vanacken, J.; Van der Auweraer, M.; Hofkens, J.; Roeffaers, M. B. J. Photophysical Pathways in Highly Sensitive Cs2AgBiBr6 Double-Perovskite Single-Crystal X-Ray Detectors. Adv. Mater. 2018, 30, 1804450,  DOI: 10.1002/adma.201804450
    23. 23
      Wang, T.; Yue, D.; Li, X.; Zhao, Y. Lead-Free Double Perovskite Cs2AgBiBr6/RGO Composite for Efficient Visible Light Photocatalytic H2 Evolution. Appl. Catal. B Environ. 2020, 268, 118399,  DOI: 10.1016/j.apcatb.2019.118399
    24. 24
      Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; Ouyang, R.; Musgrave, C. B.; Ghiringhelli, L. M.; Scheffler, M. New Tolerance Factor to Predict the Stability of Perovskite Oxides and Halides. Sci. Adv. 2019, 5 (2), eaav0693,  DOI: 10.1126/sciadv.aav0693
    25. 25
      Hutter, E. M.; Gélvez-Rueda, M. C.; Bartesaghi, D.; Grozema, F. C.; Savenije, T. J. Band-Like Charge Transport in Cs2AgBiBr6 and Mixed Antimony-Bismuth Cs2AgBi1-xSbxBr6 Halide Double Perovskites. ACS Omega 2018, 3 (9), 1165511662,  DOI: 10.1021/acsomega.8b01705
    26. 26
      Li, Z.; Kavanagh, S. R.; Napari, M.; Palgrave, R. G.; Abdi-jalebi, M.; Andaji-Garmaroudi, Z.; Davies, D. w.; Laitinen, M.; Julin, J.; Isaacs, M. A.; Friend, R. H.; Scanlon, D. O.; Walsh, A.; Hoye, R. L. Z. Bandgap Lowering in Mixed Alloys of Cs2Ag(SbxBi1-x)Br6 Double Perovskite Thin Film. J. Mater. Chem. A 2020, 8, 2178021788,  DOI: 10.1039/D0TA07145E
    27. 27
      Gomollón-Bel, F. Ten Chemical Innovations That Will Change Our World. Chem. Int. 2020, 42 (4), 39,  DOI: 10.1515/ci-2020-0402
    28. 28
      Fan, P.; Peng, H. X.; Zheng, Z. H.; Chen, Z. H.; Tan, S. J.; Chen, X. Y.; Luo, Y. Di; Su, Z. H.; Luo, J. T.; Liang, G. X. Single-Source Vapor-Deposited Cs2AgBiBr6 Thin Films for Lead-Free Perovskite Solar Cells. Nanomaterials 2019, 9 (12), 1760,  DOI: 10.3390/nano9121760
    29. 29
      Rodkey, N.; Kaal, S.; Sebastia-Luna, P.; Birkhölzer, Y. A.; Ledinsky, M.; Palazon, F.; Bolink, H. J.; Morales-Masis, M. Pulsed Laser Deposition of Cs2AgBiBr6: From Mechanochemically Synthesized Powders to Dry, Single-Step Deposition. Chem. Mater. 2021, 33 (18), 74177422,  DOI: 10.1021/acs.chemmater.1c02054
    30. 30
      Deng, Z.; Wei, F.; Wu, Y.; Seshadri, R.; Cheetham, A. K.; Canepa, P. Understanding the Structural and Electronic Properties of Bismuth Trihalides and Related Compounds. Inorg. Chem. 2020, 59 (6), 33773386,  DOI: 10.1021/acs.inorgchem.9b03214
    31. 31
      The Materials Project, Materials Data on Cs3Bi2Br9, United States, 2020.
    32. 32
      Bekenstein, Y.; Dahl, J. C.; Huang, J.; Osowiecki, W. T.; Swabeck, J. K.; Chan, E. M.; Yang, P.; Alivisatos, A. P. The Making and Breaking of Lead-Free Double Perovskite Nanocrystals of Cesium Silver-Bismuth Halide Compositions. Nano Lett. 2018, 18 (6), 35023508,  DOI: 10.1021/acs.nanolett.8b00560
    33. 33
      Dai, Y.; Tüysüz, H. Lead-Free Cs3Bi2Br9 Perovskite as Photocatalyst for Ring-Opening Reactions of Epoxides. ChemSusChem 2019, 12 (12), 25872592,  DOI: 10.1002/cssc.201900716
    34. 34
      Bresolin, B. M.; Günnemann, C.; Bahnemann, D. W.; Sillanpää, M. Pb-Free Cs3Bi2I9 Perovskite as a Visible-Light-Active Photocatalyst for Organic Pollutant Degradation. Nanomaterials 2020, 10 (4), 763,  DOI: 10.3390/nano10040763
    35. 35
      Bhosale, S. S.; Kharade, A. K.; Jokar, E.; Fathi, A.; Chang, S. M.; Diau, E. W. G. Mechanism of Photocatalytic CO2 Reduction by Bismuth-Based Perovskite Nanocrystals at the Gas-Solid Interface. J. Am. Chem. Soc. 2019, 141 (51), 2043420442,  DOI: 10.1021/jacs.9b11089
    36. 36
      Krajewska, C. J.; Kavanagh, S. R.; Zhang, L.; Kubicki, D. J.; Dey, K.; Gałkowski, K.; Grey, C. P.; Stranks, S. D.; Walsh, A.; Scanlon, D. O.; Palgrave, R. G. Enhanced Visible Light Absorption in Layered Cs3Bi2Br9 through Mixed-Valence Sn(II)/Sn(IV) Doping. Chem. Sci. 2021, 12 (44), 1468614699,  DOI: 10.1039/D1SC03775G
    37. 37
      Stolterfoht, M.; Le Corre, V. M.; Feuerstein, M.; Caprioglio, P.; Koster, L. J. A.; Neher, D. Voltage-Dependent Photoluminescence and How It Correlates with the Fill Factor and Open-Circuit Voltage in Perovskite Solar Cells. ACS Energy Lett. 2019, 4 (12), 28872892,  DOI: 10.1021/acsenergylett.9b02262
    38. 38
      Green, M. A.; Ho-Baillie, A. W. Y. Pushing to the Limit: Radiative Efficiencies of Recent Mainstream and Emerging Solar Cells. ACS Energy Letters 2019, 4 (7), 16391644,  DOI: 10.1021/acsenergylett.9b01128
    39. 39
      Lei, H.; Hardy, D.; Gao, F. Lead-Free Double Perovskite Cs2AgBiBr6: Fundamentals, Applications, and Perspectives. Advanced Functional Materials. 2021, 31, 2105898,  DOI: 10.1002/adfm.202105898
    40. 40
      Buizza, L. R. V; Wright, A. D.; Longo, G.; Sansom, H. C.; Xia, C. Q.; Rosseinsky, M. J.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Charge-Carrier Mobility and Localization in Semiconducting Cu2AgBiI6 for Photovoltaic Applications. ACS Energy Lett. 2021, 6 (5), 17291739,  DOI: 10.1021/acsenergylett.1c00458
    41. 41
      Sharma, M.; Yangui, A.; Whiteside, V. R.; Sellers, I. R.; Han, D.; Chen, S.; Du, M. H.; Saparov, B. Rb4Ag2BiBr9: A Lead-Free Visible Light Absorbing Halide Semiconductor with Improved Stability. Inorg. Chem. 2019, 58 (7), 44464455,  DOI: 10.1021/acs.inorgchem.8b03623
    42. 42
      Wright, A. D.; Buizza, L. R. V; Savill, K. J.; Longo, G.; Snaith, H. J.; Johnston, M. B.; Herz, L. M. Ultrafast Excited-State Localization in Cs2AgBiBr6 Double Perovskite. J. Phys. Chem. Lett. 2021, 12 (13), 33523360,  DOI: 10.1021/acs.jpclett.1c00653
    43. 43
      Dey, A.; Richter, A. F.; Debnath, T.; Huang, H.; Polavarapu, L.; Feldmann, J. Transfer of Direct to Indirect Bound Excitons by Electron Intervalley Scattering in Cs2AgBiBr6 Double Perovskite Nanocrystals. ACS Nano 2020, 14 (5), 58555861,  DOI: 10.1021/acsnano.0c00997
    44. 44
      Li, T.; Zhao, X.; Yang, D.; Du, M. H.; Zhang, L. Intrinsic Defect Properties in Halide Double Perovskites for Optoelectronic Applications. Phys. Rev. Appl. 2018, 10 (4), 041001,  DOI: 10.1103/PhysRevApplied.10.041001
    45. 45
      Dai, C. M.; Zhang, T.; Wu, Y. N.; Chen, S. Halide Double-Perovskite Light-Emitting Centers Embedded in Lattice-Matched and Coherent Crystalline Matrix. Adv. Funct. Mater. 2020, 30, 2000653,  DOI: 10.1002/adfm.202000653
    46. 46
      Ji, F.; Klarbring, J.; Wang, F.; Ning, W.; Wang, L.; Yin, C.; Figueroa, J. S. M.; Christensen, C. K.; Etter, M.; Ederth, T.; Sun, L.; Simak, S. I.; Abrikosov, I. A.; Gao, F. Lead-Free Halide Double Perovskite Cs2AgBiBr6 with Decreased Band Gap. Angew. Chemie - Int. Ed. 2020, 59 (35), 1519115194,  DOI: 10.1002/anie.202005568
    47. 47
      Harvey, S. P.; Li, Z.; Christians, J. A.; Zhu, K.; Luther, J. M.; Berry, J. J. Probing Perovskite Inhomogeneity beyond the Surface: TOF-SIMS Analysis of Halide Perovskite Photovoltaic Devices. ACS Appl. Mater. Interfaces 2018, 10 (34), 2854128552,  DOI: 10.1021/acsami.8b07937
    48. 48
      Sun, H.; Adhyaksa, G. W. P.; Garnett, E. C. The Application of Electron Backscatter Diffraction on Halide Perovskite Materials. Adv. Energy Mater. 2020, 10 (26), 2000364,  DOI: 10.1002/aenm.202000364
    49. 49
      Bartesaghi, D.; Slavney, A. H.; Gélvez-Rueda, M. C.; Connor, B. A.; Grozema, F. C.; Karunadasa, H. I.; Savenije, T. J. Charge Carrier Dynamics in Cs2AgBiBr6 Double Perovskite. J. Phys. Chem. C 2018, 122 (9), 48094816,  DOI: 10.1021/acs.jpcc.8b00572
    50. 50
      Maughan, A. E.; Ganose, A. M.; Scanlon, D. O.; Neilson, J. R. Perspectives and Design Principles of Vacancy-Ordered Double Perovskite Halide Semiconductors. Chem. Mater. 2019, 31 (4), 11841195,  DOI: 10.1021/acs.chemmater.8b05036
    51. 51
      Xiao, Z.; Zhou, Y.; Hosono, H.; Kamiya, T. Intrinsic Defects in a Photovoltaic Perovskite Variant Cs2SnI6. Phys. Chem. Chem. Phys. 2015, 17 (29), 1890018903,  DOI: 10.1039/C5CP03102H
    52. 52
      Ho, J. K. W.; Yin, H.; So, S. K. From 33% to 57%-an Elevated Potential of Efficiency Limit for Indoor Photovoltaics. J. Mater. Chem. A 2020, 8, 17171723,  DOI: 10.1039/C9TA11894B
    53. 53
      Kesavan, J. K.; Fiore Mosca, D.; Sanna, S.; Borgatti, F.; Schuck, G.; Tran, P. M.; Woodward, P. M.; Mitrović, V. F.; Franchini, C.; Boscherini, F. Doping Evolution of the Local Electronic and Structural Properties of the Double Perovskite Ba2Na1-xCaxOsO6. J. Phys. Chem. C 2020, 124 (30), 1657716585,  DOI: 10.1021/acs.jpcc.0c04807
    54. 54
      Santomauro, F. G.; Grilj, J.; Mewes, L.; Nedelcu, G.; Yakunin, S.; Rossi, T.; Capano, G.; Al Haddad, A.; Budarz, J.; Kinschel, D.; Ferreira, D. S.; Rossi, G.; Gutierrez Tovar, M.; Grolimund, D.; Samson, V.; Nachtegaal, M.; Smolentsev, G.; Kovalenko, M. V.; Chergui, M. Localized Holes and Delocalized Electrons in Photoexcited Inorganic Perovskites: Watching Each Atomic Actor by Picosecond X-Ray Absorption Spectroscopy. Struct. Dyn. 2017, 4 (4), 044002,  DOI: 10.1063/1.4971999
    55. 55
      Jöbsis, H. J.; Caselli, V. M.; Askes, S. H. C.; Garnett, E. C.; Savenije, T. J.; Rabouw, F. T.; Hutter, E. M. Recombination and Localization: Unfolding the Pathways behind Conductivity Losses in Cs2AgBiBr6 Thin Films. Appl. Phys. Lett. 2021, 119, 131908,  DOI: 10.1063/5.0061899
    56. 56
      Kentsch, R.; Scholz, M.; Horn, J.; Schlettwein, D.; Oum, K.; Lenzer, T. Exciton Dynamics and Electron-Phonon Coupling Affect the Photovoltaic Performance of the Cs2AgBiBr6 Double Perovskite. J. Phys. Chem. C 2018, 122 (45), 2594025947,  DOI: 10.1021/acs.jpcc.8b09911
    57. 57
      Yuan, M.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y.; Beauregard, E. M.; Kanjanaboos, P.; Lu, Z.; Kim, D. H.; Sargent, E. H. Perovskite Energy Funnels for Efficient Light-Emitting Diodes. Nat. Nanotechnol. 2016, 11, 872877,  DOI: 10.1038/nnano.2016.110
    58. 58
      Ning, W.; Bao, J.; Puttisong, Y.; Moro, F.; Kobera, L.; Shimono, S.; Wang, L.; Ji, F.; Cuartero, M.; Kawaguchi, S.; Abbrent, S.; Ishibashi, H.; de Marco, R.; Bouianova, I. A.; Crespo, G. A.; Kubota, Y.; Brus, J.; Chung, D. Y.; Sun, L.; Chen, W. M.; Kanatzidis, M. G.; Gao, F. Magnetizing Lead-Free Halide Double Perovskites. Sci. Adv. 2020, 6 (45), eabb5381,  DOI: 10.1126/sciadv.abb5381
    59. 59
      Xie, Y.; Peng, B.; Bravić, I.; Yu, Y.; Dong, Y.; Liang, R.; Ou, Q.; Monserrat, B.; Zhang, S. Highly Efficient Blue-Emitting CsPbBr3 Perovskite Nanocrystals through Neodymium Doping. Adv. Sci. 2020, 7 (20), 2830,  DOI: 10.1002/advs.202001698
    60. 60
      Babu, R.; Vardhaman, A. K.; Dhavale, V. M.; Giribabu, L.; Singh, S. P. MA2CoBr4: Lead-Free Cobalt-Based Perovskite for Electrochemical Conversion of Water to Oxygen. Chem. Commun. 2019, 55 (47), 67796782,  DOI: 10.1039/C9CC00878K
    61. 61
      Ning, W.; Zhao, X. G.; Klarbring, J.; Bai, S.; Ji, F.; Wang, F.; Simak, S. I.; Tao, Y.; Ren, X. M.; Zhang, L.; Huang, W.; Abrikosov, I. A.; Gao, F. Thermochromic Lead-Free Halide Double Perovskites. Adv. Funct. Mater. 2019, 29, 1807375,  DOI: 10.1002/adfm.201807375
    62. 62
      Sajjad, M.; Mahmood, Q.; Singh, N.; Larsson, J. A. Ultralow Lattice Thermal Conductivity in Double Perovskite Cs2PTi6: A Promising Thermoelectric Material. ACS Appl. Energy Mater. 2020, 3 (11), 1129311299,  DOI: 10.1021/acsaem.0c02236
    63. 63
      Cortecchia, D.; Mróz, W.; Folpini, G.; Borzda, T.; Leoncino, L.; Alvarado-Leaños, A. L.; Speller, E. M.; Petrozza, A. Layered Perovskite Doping with Eu3+ and β-Diketonate Eu3+ Complex. Chem. Mater. 2021, 33 (7), 22892297,  DOI: 10.1021/acs.chemmater.0c04097
    64. 64
      Schmitz, F.; Guo, K.; Horn, J.; Sorrentino, R.; Conforto, G.; Lamberti, F.; Brescia, R.; Drago, F.; Prato, M.; He, Z.; Giovanella, U.; Cacialli, F.; Schlettwein, D.; Meggiolaro, D.; Gatti, T. Lanthanide-Induced Photoluminescence in Lead-Free Cs2AgBiBr6 Bulk Perovskite: Insights from Optical and Theoretical Investigations. J. Phys. Chem. Lett. 2020, 11 (20), 88938900,  DOI: 10.1021/acs.jpclett.0c02317
    65. 65
      Mahor, Y.; Mir, W. J.; Nag, A. Synthesis and Near-Infrared Emission of Yb-Doped Cs2AgInCl6 Double Perovskite Microcrystals and Nanocrystals. J. Phys. Chem. C 2019, 123 (25), 1578715793,  DOI: 10.1021/acs.jpcc.9b02456
    66. 66
      Li, S.; Hu, Q.; Luo, J.; Jin, T.; Liu, J.; Li, J.; Tan, Z.; Han, Y.; Zheng, Z.; Zhai, T.; Song, H.; Gao, L.; Niu, G.; Tang, J. Self-Trapped Exciton to Dopant Energy Transfer in Rare Earth Doped Lead-Free Double Perovskite. Adv. Opt. Mater. 2019, 7 (23), 1901098,  DOI: 10.1002/adom.201901098
    67. 67
      Ding, N.; Zhou, D.; Pan, G.; Xu, W.; Chen, X.; Li, D.; Zhang, X.; Zhu, J.; Ji, Y.; Song, H. Europium-Doped Lead-Free Cs3Bi2Br9 Perovskite Quantum Dots and Ultrasensitive Cu2+ Detection. ACS Sustain. Chem. Eng. 2019, 7 (9), 83978404,  DOI: 10.1021/acssuschemeng.9b00038
    68. 68
      Manser, J. S.; Saidaminov, M. I.; Christians, J. A.; Bakr, O. M.; Kamat, P. V. Making and Breaking of Lead Halide Perovskites. Acc. Chem. Res. 2016, 49 (2), 330338,  DOI: 10.1021/acs.accounts.5b00455
    69. 69
      Xue, J.; Wang, Z.; Comstock, A.; Wang, Z.; Sung, H. H. Y.; Williams, I. D.; Sun, D.; Liu, J.; Lu, H. Chemical Control of Magnetic Ordering in Hybrid Fe-Cl Layered Double Perovskites. Chem. Mater. 2022, 34 (6), 28132823,  DOI: 10.1021/acs.chemmater.2c00163
    70. 70
      Milić, J. V. Multifunctional Layered Hybrid Perovskites. J. Mater. Chem. C 2021, 9 (35), 1142811443,  DOI: 10.1039/D1TC01533H