ACS Publications. Most Trusted. Most Cited. Most Read
Light-Driven Water Oxidation Using Polyelectrolyte Layer-by-Layer Chromophore–Catalyst Assemblies
My Activity
    ADDITION/CORRECTION. This article has been corrected. View the notice.
    Letter

    Light-Driven Water Oxidation Using Polyelectrolyte Layer-by-Layer Chromophore–Catalyst Assemblies
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
    Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
    Other Access OptionsSupporting Information (1)

    ACS Energy Letters

    Cite this: ACS Energy Lett. 2016, 1, 2, 339–343
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsenergylett.6b00171
    Published June 21, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Layer-by-Layer (LbL) polyelectrolyte self-assembly occurs by the alternate exposure of a substrate to solutions of oppositely charged polyelectrolytes or polyions. Here, we report the application of LbL to construct chromophore–catalyst assemblies consisting of a cationic polystyrene-based Ru polychromophore (PS-Ru) and a [Ru(tpy)(2-pyridyl-N-methylbenzimidazole) (OH2)]2+ water oxidation catalyst (RuC), codeposited with poly(acrylic acid) (PAA) as an inert polyanion. These assemblies are deposited onto planar indium tin oxide (ITO, Sn:In2O3) substrates for electrochemical characterization and onto mesoporous substrates consisting of a SnO2/TiO2 core/shell structure atop fluorine doped tin oxide (FTO) for application to light-driven water oxidation in a dye-sensitized photoelectrosynthesis cell. Cyclic voltammetry and ultraviolet–visible absorption spectroscopy reveal that multilayer deposition progressively increases the film thickness on ITO glass substrates. Under an applied bias, photocurrent measurements of the (PAA/PS-Ru)5/(PAA/RuC)5 LbL films formed on FTO//SnO2/TiO2 mesoporous core–shell electrodes demonstrate a clear anodic photocurrent response. Prolonged photoelectrolysis experiments, with the use of a dual working electrode collector–generator cell, reveal production of O2 from the illuminated photoanode with a Faradaic efficiency of 22%. This is the first report to demonstrate the use of polyelectrolyte LbL to construct chromophore–catalyst assemblies for water oxidation.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsenergylett.6b00171.

    • Materials and methods, experimental description, and additional data analysis (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 40 publications.

    1. Chang Wei, Yongfang Li, Lingyun Shen, Jing Li, Xuan Pang, Mao Li. Sequence-Controlled Electrochemical Immobilization of Catalyst-Photosensitizer Oligomers for Tuning Photoelectrochemical Behaviors. Langmuir 2024, 40 (39) , 20791-20796. https://doi.org/10.1021/acs.langmuir.4c02995
    2. Hanpeng Gao, Zetian Xing, Jiaxi Liu, Xiaomin Chen, Na Zhou, Ying Zheng, Lianlian Tang, Liang Jin, Jun Gao, Zong Meng. Bioinspired Photoelectronic Synergy Coating with Antifogging and Antibacterial Properties. Langmuir 2024, 40 (20) , 10589-10599. https://doi.org/10.1021/acs.langmuir.4c00455
    3. Guanhua Lin, Maria Lewandowska, Shuo Wang. Rational Design of Superior Photoelectrochemical System through Bioinspired Self-Assembly of Light-Harvesting Complexes. ACS Materials Letters 2023, 5 (9) , 2556-2566. https://doi.org/10.1021/acsmaterialslett.3c00712
    4. Mingfu Ye, Chen Yang, Yan Sun, Jieyue Wang, Didi Wang, Yijing Zhao, Zhu Zhu, Pengchao Liu, Jiahao Zhu, Chunsheng Li, Wenxiu Peng, Ning Zhang, Yongping Dong. ZnFe2O4/Graphitic Carbon Nitride Nano/Microcomposites for the Enhanced Electrochemical Sensing of H2O2. ACS Applied Nano Materials 2022, 5 (8) , 10922-10932. https://doi.org/10.1021/acsanm.2c02204
    5. Madasamy Thangamuthu, Qiushi Ruan, Peter Osei Ohemeng, Bing Luo, Dengwei Jing, Robert Godin, Junwang Tang. Polymer Photoelectrodes for Solar Fuel Production: Progress and Challenges. Chemical Reviews 2022, 122 (13) , 11778-11829. https://doi.org/10.1021/acs.chemrev.1c00971
    6. Shuya Li, Eric Wolfgang Shuler, Debora Willinger, Hai Tien Nguyen, Saerona Kim, Hyeong Cheol Kang, Jae-Joon Lee, Weiwei Zheng, Chang Geun Yoo, Benjamin D. Sherman, Gyu Leem. Enhanced Photocatalytic Alcohol Oxidation at the Interface of RuC-Coated TiO2 Nanorod Arrays. ACS Applied Materials & Interfaces 2022, 14 (20) , 22799-22809. https://doi.org/10.1021/acsami.1c20795
    7. Shuya Li, Udani K. Wijethunga, Andrew H. Davis, Saerona Kim, Weiwei Zheng, Benjamin D. Sherman, Chang Geun Yoo, Gyu Leem. Ru(II) Polypyridyl-Modified TiO2 Nanoparticles for Photocatalytic C–C/C–O Bond Cleavage at Room Temperature. ACS Applied Nano Materials 2022, 5 (1) , 948-956. https://doi.org/10.1021/acsanm.1c03622
    8. Sreehari Surendran Rajasree, Jierui Yu, Saied Md Pratik, Xinlin Li, Rui Wang, Amar S. Kumbhar, Subhadip Goswami, Christopher J. Cramer, Pravas Deria. Superradiance and Directional Exciton Migration in Metal–Organic Frameworks. Journal of the American Chemical Society 2022, 144 (3) , 1396-1406. https://doi.org/10.1021/jacs.1c11979
    9. Yan Zhao, Soojin Kim, Yu Kyung Eom, Silvano R. Valandro, Kirk S. Schanze. Polymer Chromophore–Catalyst Assembly for Photocatalytic CO2 Reduction. ACS Applied Energy Materials 2021, 4 (7) , 7030-7039. https://doi.org/10.1021/acsaem.1c01100
    10. Caroline E. Reilly, Robert J. Dillon, Animesh Nayak, Shane Brogan, Taylor Moot, Matthew K. Brennaman, Rene Lopez, Thomas J. Meyer, Leila Alibabaei. Dye-Sensitized Nonstoichiometric Strontium Titanate Core–Shell Photocathodes for Photoelectrosynthesis Applications. ACS Applied Materials & Interfaces 2021, 13 (13) , 15261-15269. https://doi.org/10.1021/acsami.1c00933
    11. Shuya Li, Saerona Kim, Andrew H. Davis, Jingshun Zhuang, Eric Wolfgang Shuler, Debora Willinger, Jae-Joon Lee, Weiwei Zheng, Benjamin D. Sherman, Chang Geun Yoo, Gyu Leem. Photocatalytic Chemoselective C–C Bond Cleavage at Room Temperature in Dye-Sensitized Photoelectrochemical Cells. ACS Catalysis 2021, 11 (7) , 3771-3781. https://doi.org/10.1021/acscatal.1c00198
    12. Shukun Shen, Yiyun Wang, Jingxuan Dong, Rui Zhang, Atul Parikh, Jian-Gang Chen, Daodao Hu. Mimicking Thylakoid Membrane with Chlorophyll/TiO2/Lipid Co-Assembly for Light-Harvesting and Oxygen Releasing. ACS Applied Materials & Interfaces 2021, 13 (9) , 11461-11469. https://doi.org/10.1021/acsami.0c21662
    13. Jierui Yu, Ryther Anderson, Xinlin Li, Wenqian Xu, Subhadip Goswami, Sreehari Surendran Rajasree, Karan Maindan, Diego A. Gómez-Gualdrón, Pravas Deria. Improving Energy Transfer within Metal–Organic Frameworks by Aligning Linker Transition Dipoles along the Framework Axis. Journal of the American Chemical Society 2020, 142 (25) , 11192-11202. https://doi.org/10.1021/jacs.0c03949
    14. Shuya Li, Zhi-Jun Li, Hyun Yu, Marion Ryan Sytu, Yunxuan Wang, Debora Beeri, Weiwei Zheng, Benjamin D. Sherman, Chang Geun Yoo, Gyu Leem. Solar-Driven Lignin Oxidation via Hydrogen Atom Transfer with a Dye-Sensitized TiO2 Photoanode. ACS Energy Letters 2020, 5 (3) , 777-784. https://doi.org/10.1021/acsenergylett.9b02391
    15. Yu Kyung Eom, Linda Nhon, Gyu Leem, Benjamin D. Sherman, Degao Wang, Ludovic Troian-Gautier, Soojin Kim, Jinheung Kim, Thomas J. Meyer, John R. Reynolds, Kirk S. Schanze. Visible-Light-Driven Photocatalytic Water Oxidation by a π-Conjugated Donor–Acceptor–Donor Chromophore/Catalyst Assembly. ACS Energy Letters 2018, 3 (9) , 2114-2119. https://doi.org/10.1021/acsenergylett.8b01020
    16. Gyu Leem, Hayden T. Black, Bing Shan, Jose P. O. Bantang, Thomas J. Meyer, John R. Reynolds, Kirk S. Schanze. Photocathode Chromophore–Catalyst Assembly via Layer-By-Layer Deposition of a Low Band-Gap Isoindigo Conjugated Polyelectrolyte. ACS Applied Energy Materials 2018, 1 (1) , 62-67. https://doi.org/10.1021/acsaem.7b00223
    17. Norberto Manfredi, Matteo Monai, Tiziano Montini, Francesco Peri, Filippo De Angelis, Paolo Fornasiero, Alessandro Abbotto. Dye-Sensitized Photocatalytic Hydrogen Generation: Efficiency Enhancement by Organic Photosensitizer–Coadsorbent Intermolecular Interaction. ACS Energy Letters 2018, 3 (1) , 85-91. https://doi.org/10.1021/acsenergylett.7b00896
    18. Degao Wang, Matthew V. Sheridan, Bing Shan, Byron H. Farnum, Seth L. Marquard, Benjamin D. Sherman, Michael S. Eberhart, Animesh Nayak, Christopher J. Dares, Atanu K. Das, R. Morris Bullock, and Thomas J. Meyer . Layer-by-Layer Molecular Assemblies for Dye-Sensitized Photoelectrosynthesis Cells Prepared by Atomic Layer Deposition. Journal of the American Chemical Society 2017, 139 (41) , 14518-14525. https://doi.org/10.1021/jacs.7b07216
    19. Junlin Jiang, Benjamin D. Sherman, Yan Zhao, Ru He, Ion Ghiviriga, Leila Alibabaei, Thomas J. Meyer, Gyu Leem, and Kirk S. Schanze . Polymer Chromophore-Catalyst Assembly for Solar Fuel Generation. ACS Applied Materials & Interfaces 2017, 9 (23) , 19529-19534. https://doi.org/10.1021/acsami.7b05173
    20. Brian L. Wadsworth, Anna M. Beiler, Diana Khusnutdinova, Samuel I. Jacob, and Gary F. Moore . Electrocatalytic and Optical Properties of Cobaloxime Catalysts Immobilized at a Surface-Grafted Polymer Interface. ACS Catalysis 2016, 6 (12) , 8048-8057. https://doi.org/10.1021/acscatal.6b02194
    21. Thomas Gobbato, Giulia Alice Volpato, Andrea Sartorel, Marcella Bonchio. A breath of sunshine: oxygenic photosynthesis by functional molecular architectures. Chemical Science 2023, 14 (44) , 12402-12429. https://doi.org/10.1039/D3SC03780K
    22. Daobin Tang, Jianguo Liu, Xinghua Zhang, Lungang Chen, Longlong Ma, Qi Zhang. Sacrifice and valorization of biomass to realize energy exploitation and transformation in a photoelectrochemical way. Green Chemistry 2023, 25 (20) , 7843-7862. https://doi.org/10.1039/D3GC01934A
    23. Wako Matsumoto, Muneyuki Naito, Hiroshi Danjo. Preparation of spiroborate supramolecular and peapod polymers containing a photoluminescent ruthenium( ii ) complex. RSC Advances 2023, 13 (36) , 25002-25006. https://doi.org/10.1039/D3RA03940D
    24. Saerona Kim, Hyeong Cheol Kang, Chun Chu, Shuya Li, Kicheon Yoo, Udani Kaushalya Wijethunga, Weiwei Zheng, Chang Geun Yoo, Benjamin D. Sherman, Jae-Joon Lee, Gyu Leem. Solar energy driven C–C bond cleavage in a lignin model compound with a D–π–A organic dye-sensitized photoanode. Sustainable Energy & Fuels 2023, 7 (10) , 2339-2348. https://doi.org/10.1039/D3SE00194F
    25. Mahesh Dhonde, Prateek Bhojane, Kirti Sahu, V.V.S. Murty. Dye-sensitized photoelectrochemical cells in water splitting. 2023, 157-191. https://doi.org/10.1016/B978-0-323-99580-1.00005-4
    26. Jiachi Xie, Lei Zhang. Machine learning and symbolic regression for adsorption of atmospheric molecules on low-dimensional TiO2. Applied Surface Science 2022, 597 , 153728. https://doi.org/10.1016/j.apsusc.2022.153728
    27. Carla Casadevall. Heterogenization of Molecular Water Oxidation Catalysts in Electrodes for (Photo)Electrochemical Water Oxidation. Water 2022, 14 (3) , 371. https://doi.org/10.3390/w14030371
    28. Tao Li, Chuang Feng, Boon Kar Yap, Xuhui Zhu, Biquan Xiong, Zhicai He, Wai-Yeung Wong. Accelerating charge transfer via nonconjugated polyelectrolyte interlayers toward efficient versatile photoredox catalysis. Communications Chemistry 2021, 4 (1) https://doi.org/10.1038/s42004-021-00589-w
    29. Benjamin D. Sherman, Nelli Klinova McMillan, Debora Willinger, Gyu Leem. Sustainable hydrogen production from water using tandem dye-sensitized photoelectrochemical cells. Nano Convergence 2021, 8 (1) https://doi.org/10.1186/s40580-021-00257-8
    30. Lei Zhang, Zhiqiao Chen. First principles investigation on long alkyl chain-based surface anchoring for self-assembled bilayer. Applied Surface Science 2020, 506 , 144692. https://doi.org/10.1016/j.apsusc.2019.144692
    31. Lei Zhang, Kun Xu. Aggregation-enhanced adsorption and optoelectronic performance of metal-free organic dye on anatase (1 0 1) toward water-splitting purpose: A first-principles investigation. Applied Surface Science 2020, 502 , 144139. https://doi.org/10.1016/j.apsusc.2019.144139
    32. Sanghyun Bae, Ji‐Eun Jang, Hyun‐Wook Lee, Jungki Ryu. Tailored Assembly of Molecular Water Oxidation Catalysts on Photoelectrodes for Artificial Photosynthesis. European Journal of Inorganic Chemistry 2019, 2019 (15) , 2040-2057. https://doi.org/10.1002/ejic.201801328
    33. Dongseok Kim, Minsu Gu, Minju Park, Taehyung Kim, Byeong-Su Kim. Layer-by-layer assembly for photoelectrochemical nanoarchitectonics. Molecular Systems Design & Engineering 2019, 4 (1) , 65-77. https://doi.org/10.1039/C8ME00067K
    34. Sinval F. Sousa, Breno L. Souza, Cristiane L. Barros, Antonio Otavio T. Patrocinio. Inorganic Photochemistry and Solar Energy Harvesting: Current Developments and Challenges to Solar Fuel Production. International Journal of Photoenergy 2019, 2019 , 1-23. https://doi.org/10.1155/2019/9624092
    35. Xin Ding, Linlin Zhang, Yong Wang, Aihua Liu, Yan Gao. Design of photoanode-based dye-sensitized photoelectrochemical cells assembling with transition metal complexes for visible light-induced water splitting. Coordination Chemistry Reviews 2018, 357 , 130-143. https://doi.org/10.1016/j.ccr.2017.10.020
    36. Gyu Leem, Benjamin D. Sherman, Kirk S. Schanze. Polymer-based chromophore–catalyst assemblies for solar energy conversion. Nano Convergence 2017, 4 (1) https://doi.org/10.1186/s40580-017-0132-z
    37. Barbara N. Nunes, Leonardo F. Paula, Ítalo A. Costa, Antonio Eduardo H. Machado, Leonardo G. Paterno, Antonio Otavio T. Patrocinio. Layer-by-layer assembled photocatalysts for environmental remediation and solar energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2017, 32 , 1-20. https://doi.org/10.1016/j.jphotochemrev.2017.05.002
    38. Pengtao Xu, Nicholas S. McCool, Thomas E. Mallouk. Water splitting dye-sensitized solar cells. Nano Today 2017, 14 , 42-58. https://doi.org/10.1016/j.nantod.2017.04.009
    39. Xin Ding, Linlin Zhang, Yan Gao. Insights into electrolyte effects on photoactivities of dye-sensitized photoelectrochemical cells for water splitting. Journal of Energy Chemistry 2017, 26 (3) , 476-480. https://doi.org/10.1016/j.jechem.2016.11.022
    40. Tamilarasu Ezhilarasu, Anbazhagan Sathiyaseelan, Pudupalayam Thangavelu Kalaichelvan, Sengottuvelan Balasubramanian. Synthesis of 4′-substituted-2,2′;6′,2″-terpyridine Ru(II) complexes electrochemical, fluorescence quenching and antibacterial studies. Journal of Molecular Structure 2017, 1134 , 265-277. https://doi.org/10.1016/j.molstruc.2016.12.102

    ACS Energy Letters

    Cite this: ACS Energy Lett. 2016, 1, 2, 339–343
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsenergylett.6b00171
    Published June 21, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    1420

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.