ACS Publications. Most Trusted. Most Cited. Most Read
Rutile TiO2 as an Anode Material for Water-Splitting Dye-Sensitized Photoelectrochemical Cells
My Activity
    Letter

    Rutile TiO2 as an Anode Material for Water-Splitting Dye-Sensitized Photoelectrochemical Cells
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Yale Energy Sciences Institute, Yale University, New Haven, Connecticut 06520-8107, United States
    Other Access OptionsSupporting Information (1)

    ACS Energy Letters

    Cite this: ACS Energy Lett. 2016, 1, 3, 603–606
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsenergylett.6b00279
    Published August 23, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) use a wide bandgap metal oxide semiconductor functionalized with a light-absorbing dye and water-oxidation catalyst to harvest light and drive water oxidation, respectively. We demonstrate here that the rutile polymorph of TiO2 (r-TiO2) is a promising anode material for WS-DSPECs. Recombination between the injected electron and oxidized sensitizer with r-TiO2 is an order of magnitude slower than with anatase TiO2 (a-TiO2), with injection yields approaching 100%. Studies with a reductive quencher demonstrate that r-TiO2 is significantly more efficient than a-TiO2, while exhibiting greater dye stability. Furthermore, comparison of direct band gap excitation photocurrent generation for bare and sensitized r-TiO2 suggests that the sensitizer functions as a light harvester and redox mediator.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsenergylett.6b00279.

    • Detailed experimental procedures, powder XRD data of sintered r-TiO2, TEM micrograph of rutile particles, UV–visible spectra of bare and sensitized r-TiO2, difference spectrum of bare and sensitized r-TiO2, and photoelectrotrolyis of bare r-TiO2 in H2Q (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 57 publications.

    1. Anh Tuan Hoang, Ashok Pandey, Wei-Hsin Chen, Shams Forruque Ahmed, Sandro Nižetić, Kim Hoong Ng, Zafar Said, Xuan Quang Duong, Ümit Ağbulut, Hady Hadiyanto, Xuan Phuong Nguyen. Hydrogen Production by Water Splitting with Support of Metal and Carbon-Based Photocatalysts. ACS Sustainable Chemistry & Engineering 2023, 11 (4) , 1221-1252. https://doi.org/10.1021/acssuschemeng.2c05226
    2. Michael J. Mortelliti, Milan Y. Patel, Jillian L. Dempsey. Ultrathin Tin-Doped Titanium Oxide by Atomic Layer Deposition on a Mesoporous Substrate: Physical/Electronic Structure, Spectroelectrochemistry, and Interfacial Charge Transfer. The Journal of Physical Chemistry C 2022, 126 (11) , 5265-5282. https://doi.org/10.1021/acs.jpcc.1c10412
    3. Sadman Sakib, Amin Hosseini, Igor Zhitomirsky, Leyla Soleymani. Photoelectrochemical IL-6 Immunoassay Manufactured on Multifunctional Catecholate-Modified TiO2 Scaffolds. ACS Applied Materials & Interfaces 2021, 13 (43) , 50851-50861. https://doi.org/10.1021/acsami.1c18240
    4. Zhenlei Wang, Liwen Lai, Tianfu Zhang, Sanming Wu, Jie Zhao, Yuxin Zhao, Yuanhao Jin, Jiaping Wang, Shoushan Fan, Qunqing Li. Enhanced Visible-Light Absorption and Photocurrent Generation of Three-Dimensional Metal–Dielectric Hybrid-Structured Films. ACS Applied Energy Materials 2021, 4 (10) , 10542-10552. https://doi.org/10.1021/acsaem.1c01485
    5. Jacob A. Spies, John R. Swierk, H. Ray Kelly, Matt D. Capobianco, Kevin P. Regan, Victor S. Batista, Gary W. Brudvig, Charles A. Schmuttenmaer. Tuning the Conduction Band for Interfacial Electron Transfer: Dye-Sensitized SnxTi1–xO2 Photoanodes for Water Splitting. ACS Applied Energy Materials 2021, 4 (5) , 4695-4703. https://doi.org/10.1021/acsaem.1c00305
    6. Rachel E. Bangle, Michael J. Mortelliti, Ludovic Troian-Gautier, Jillian L. Dempsey, Gerald J. Meyer. Tunneling and Thermally Activated Electron Transfer in Dye-Sensitized SnO2|TiO2 Core|Shell Nanostructures. The Journal of Physical Chemistry C 2020, 124 (45) , 25148-25159. https://doi.org/10.1021/acs.jpcc.0c08200
    7. Iwona Grądzka-Kurzaj, Mateusz Gierszewski, Gotard Burdziński, Marcin Ziółek. Interplay between Ruthenium Sensitizer and Ruthenium Catalyst in Photoelectrochemical Cells with Different Water-Based Electrolytes. The Journal of Physical Chemistry C 2020, 124 (39) , 21268-21282. https://doi.org/10.1021/acs.jpcc.0c05262
    8. Jens Neu, Sarah Ostresh, Kevin P. Regan, Jacob A. Spies, Charles A. Schmuttenmaer. Influence of Dye Sensitizers on Charge Dynamics in SnO2 Nanoparticles Probed with THz Spectroscopy. The Journal of Physical Chemistry C 2020, 124 (6) , 3482-3488. https://doi.org/10.1021/acs.jpcc.9b11024
    9. William T. Kender, Claudia Turro. Unusually Slow Internal Conversion in N-Heterocyclic Carbene/Carbanion Cyclometallated Ru(II) Complexes: A Hammett Relationship. The Journal of Physical Chemistry A 2019, 123 (13) , 2650-2660. https://doi.org/10.1021/acs.jpca.9b00858
    10. Kevin P. Regan, John R. Swierk, Jens Neu, and Charles A. Schmuttenmaer . Frequency-Dependent Terahertz Transient Photoconductivity of Mesoporous SnO2 Films. The Journal of Physical Chemistry C 2017, 121 (29) , 15949-15956. https://doi.org/10.1021/acs.jpcc.7b02318
    11. Ganesh T. Chavan, Deepak P. Dubal, Eun Chel Cho, Deepak Rajaram Patil, Jin Seog Gwag, Rajneesh Kumar Mishra, Yogendra Kumar Mishra, Jinsung An, Junsin Yi. A Roadmap of Sustainable Hydrogen Production and Storage: Innovations and Challenges. Small 2025, 2 https://doi.org/10.1002/smll.202411444
    12. Fei Yang, Qichao Bao, Wenxiu Yin, Ying Ran, Penxu Tao, Jiawei Zhu, Chungui Du. Expeditious self-healing supermolecules enabling fireproof and ultra-long-life of intelligent bamboo fire alarm systems. Industrial Crops and Products 2025, 224 , 120391. https://doi.org/10.1016/j.indcrop.2024.120391
    13. Tao Liu, Linjiang Chen, Xiaoyan Wang, Andrew I. Cooper. Screening potential dye sensitizers for water splitting photocatalysts using a genetic algorithm. Physical Chemistry Chemical Physics 2024, 26 (23) , 16847-16858. https://doi.org/10.1039/D4CP01487A
    14. Susanginee Nayak, Kulamani Parida. Plethora of preparatory features on single layered double hydroxide towards energy conversion process. Materials Research Bulletin 2023, 162 , 112185. https://doi.org/10.1016/j.materresbull.2023.112185
    15. Abhishek Sharan, Muhammad Sajjad, David J. Singh, Nirpendra Singh. Two-dimensional ternary chalcogenides Fe X 2 Y 4 ( X = Ga ,   In ;   Y = S ,   Se ,   Te ) : Promising materials for sustainable energy. Physical Review Materials 2022, 6 (9) https://doi.org/10.1103/PhysRevMaterials.6.094005
    16. Milan Y. Patel, Michael J. Mortelliti, Jillian L. Dempsey. A compendium and meta-analysis of flatband potentials for TiO2, ZnO, and SnO2 semiconductors in aqueous media. Chemical Physics Reviews 2022, 3 (1) https://doi.org/10.1063/5.0063170
    17. J. R. Swierk. Blocking Layers for Controlling Directional Charge Transport in Dye-sensitized Photoelectrochemical Cells. 2022, 70-102. https://doi.org/10.1039/9781839163708-00070
    18. Weihang Sun, Dongfang Liu, Minghui Zhang. Application of electrode materials and catalysts in electrocatalytic treatment of dye wastewater. Frontiers of Chemical Science and Engineering 2021, 15 (6) , 1427-1443. https://doi.org/10.1007/s11705-021-2108-0
    19. Kassoum Sangaré, Hayet Cherfouh, Benoît Marsan. Synthesis and Characterization of N-Type CuGaS 2 Nanoparticles and Films for Purpose of Photoelectrocatalytic Water Splitting. Journal of The Electrochemical Society 2021, 168 (8) , 086506. https://doi.org/10.1149/1945-7111/ac1cc6
    20. Arunkumar Shanmugasundaram, Muhammad Ali Johar, Ramireddy Boppella, Dong-Su Kim, Yun-Jin Jeong, Jong Yun Kim, Mostafa Afifi Hassan, Sang-Wan Ryu, Dong Weon Lee. Stabilizing nanocrystalline Cu2O with ZnO/rGO: Engineered photoelectrodes enables efficient water splitting. Ceramics International 2021, 47 (6) , 7558-7570. https://doi.org/10.1016/j.ceramint.2020.11.094
    21. Anupma Thakur, Praveen Kumar, R.K. Sinha, Pooja Devi. Advances in polymer-based composites for solar energy conversion to chemical fuels. 2021, 195-213. https://doi.org/10.1016/B978-0-12-818484-4.00004-5
    22. Degao Wang, Qing Huang, Weiqun Shi, Wei You, Thomas J. Meyer. Application of Atomic Layer Deposition in Dye-Sensitized Photoelectrosynthesis Cells. Trends in Chemistry 2021, 3 (1) , 59-71. https://doi.org/10.1016/j.trechm.2020.11.002
    23. Qingzhe Zhang, Yanlong Liu, Zhenhe Xu, Yue Zhao, Mohamed Chaker, Dongling Ma. Optimized design and mechanistic understanding of plasmon and upconversion enhanced broadband photocatalysts. Catalysis Today 2020, 350 , 25-32. https://doi.org/10.1016/j.cattod.2019.05.017
    24. T. Gamze Ulusoy Ghobadi, Amir Ghobadi, Muhammed Buyuktemiz, Elif Akhuseyin Yildiz, Dilara Berna Yildiz, H. Gul Yaglioglu, Yavuz Dede, Ekmel Ozbay, Ferdi Karadas. A Robust, Precious‐Metal‐Free Dye‐Sensitized Photoanode for Water Oxidation: A Nanosecond‐Long Excited‐State Lifetime through a Prussian Blue Analogue. Angewandte Chemie 2020, 132 (10) , 4111-4119. https://doi.org/10.1002/ange.201914743
    25. T. Gamze Ulusoy Ghobadi, Amir Ghobadi, Muhammed Buyuktemiz, Elif Akhuseyin Yildiz, Dilara Berna Yildiz, H. Gul Yaglioglu, Yavuz Dede, Ekmel Ozbay, Ferdi Karadas. A Robust, Precious‐Metal‐Free Dye‐Sensitized Photoanode for Water Oxidation: A Nanosecond‐Long Excited‐State Lifetime through a Prussian Blue Analogue. Angewandte Chemie International Edition 2020, 59 (10) , 4082-4090. https://doi.org/10.1002/anie.201914743
    26. Liping Guo, Pravin S. Shinde, Yanxiao Ma, Lin Li, Shanlin Pan, Feng Yan. Scalable Core–Shell MoS 2 /Sb 2 Se 3 Nanorod Array Photocathodes for Enhanced Photoelectrochemical Water Splitting. Solar RRL 2020, 4 (3) https://doi.org/10.1002/solr.201900442
    27. S.H. Lee, Y. Hong, H. Ryu, J. Yun. Improving the photostability of cupric oxide nanorods. Thin Solid Films 2020, 697 , 137849. https://doi.org/10.1016/j.tsf.2020.137849
    28. Suhun Lee, Hyukhyun Ryu, Won-Jae Lee, Jong-Seong Bae. Improvement of an Al2O3/CuO heterostructure photoelectrode by controlling the Al2O3 precursor concentration. Journal of Industrial and Engineering Chemistry 2020, 82 , 63-70. https://doi.org/10.1016/j.jiec.2019.09.043
    29. Dilip Krishna Nandakumar, Jayraj V. Vaghasiya, Lin Yang, Yaoxin Zhang, Swee Ching Tan. A solar cell that breathes in moisture for energy generation. Nano Energy 2020, 68 , 104263. https://doi.org/10.1016/j.nanoen.2019.104263
    30. Baoshun Liu, Ling Yan, Jiangyan Wang. Liquid N2 quenching induced oxygen defects and surface distortion in TiO2 and the effect on the photocatalysis of methylene blue and acetone. Applied Surface Science 2019, 494 , 266-274. https://doi.org/10.1016/j.apsusc.2019.07.095
    31. Anupma Thakur, Praveen Kumar, Sudeshna Bagchi, R.K. Sinha, Pooja Devi. Green synthesized plasmonic nanostructure decorated TiO2 nanofibers for photoelectrochemical hydrogen production. Solar Energy 2019, 193 , 715-723. https://doi.org/10.1016/j.solener.2019.10.022
    32. Yonghua Shi, Xishun Jiang, Shaokang Zheng, Yongchun Zhang, Zhaoqi Sun. Cu2O-Decorated TiO2 Nanotubes with Enhanced Optical Properties and Photocatalytic Performance. Journal of Electronic Materials 2019, 48 (10) , 6591-6597. https://doi.org/10.1007/s11664-019-07467-1
    33. Fan Lu Meng, Gamze Yilmaz, Tian Peng Ding, Minmin Gao, Ghim Wei Ho. A Hybrid Solar Absorber–Electrocatalytic N‐Doped Carbon/Alloy/Semiconductor Electrode for Localized Photothermic Electrocatalysis. Advanced Materials 2019, 31 (37) https://doi.org/10.1002/adma.201903605
    34. Amit Mishra, Akansha Mehta, Soumen Basu, Nagaraj P. Shetti, Kakarla Raghava Reddy, Tejraj M. Aminabhavi. Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: A review. Carbon 2019, 149 , 693-721. https://doi.org/10.1016/j.carbon.2019.04.104
    35. Muhammad Qamaruddin, Ibrahim Khan, Oluwole Olagoke Ajumobi, Saheed Adewale Ganiyu, Ahsanulhaq Qurashi. Sulfur doped ceria-titania (S-CeTiO4−x) nanocomposites for enhanced solar-driven water splitting. Solar Energy 2019, 188 , 890-897. https://doi.org/10.1016/j.solener.2019.05.058
    36. Kaili Sun, Shuang Yan, Tianpeng Yu, Kaihang Wang, Chang Feng, Likun Xu, Guangwen Xie. Highly enhanced photoelectrochemical cathodic protection performance of the preparation of magnesium oxides modified TiO2 nanotube arrays. Journal of Electroanalytical Chemistry 2019, 834 , 138-144. https://doi.org/10.1016/j.jelechem.2019.01.005
    37. Ludovic Troian-Gautier, Renato N. Sampaio, Eric J. Piechota, Matthew D. Brady, Gerald J. Meyer. Barriers for interfacial back-electron transfer: A comparison between TiO2 and SnO2/TiO2 core/shell structures. The Journal of Chemical Physics 2019, 150 (4) https://doi.org/10.1063/1.5054604
    38. Do Kyung Lee, Jae Hong Kim, Kwang-Soon Ahn. Visible-light photoelectrochemical responses of dye-sensitized, compact TiO 2 thin films deposited by electron beam evaporation. Molecular Crystals and Liquid Crystals 2019, 679 (1) , 119-126. https://doi.org/10.1080/15421406.2019.1597555
    39. El Hadji Mamour Sakho, Oluwatobi S. Oluwafemi. Quantum dots for solar cell applications. 2019, 377-415. https://doi.org/10.1016/B978-0-12-813337-8.00011-4
    40. Xishun Jiang, Shaokang Zheng, Yonghua Shi, Zhaoqi Sun, Yuxia Zhao. Structural and optical property studies of TiO2 nanotube arrays prepared by anodic oxidation. Journal of Materials Science: Materials in Electronics 2018, 29 (17) , 14852-14857. https://doi.org/10.1007/s10854-018-9622-y
    41. Tingting Yao, Xiurui An, Hongxian Han, John Qianjun Chen, Can Li. Photoelectrocatalytic Materials for Solar Water Splitting. Advanced Energy Materials 2018, 8 (21) https://doi.org/10.1002/aenm.201800210
    42. Baoying Wang, Lun Li, Jiakuan Chen, Chenglin Duan, Jinling Song, Ruifen Wang, Bangwen Zhang. Synthesis of BiOCl0.5I0.5/TiO2 heterojunctions with enhanced visible-light photocatalytic properties. Journal of Nanoparticle Research 2018, 20 (7) https://doi.org/10.1007/s11051-018-4270-y
    43. Keyue Wu, Jingbiao Cui. Synthesis of TiO 2 nanocrystals with exposed {001} facets and improved photocatalytic activity. Optik 2018, 164 , 556-560. https://doi.org/10.1016/j.ijleo.2018.03.074
    44. Selvaraj David, Mahadeo A. Mahadik, Gil Woo An, Jungho Ryu, Hyun Gyu Kim, Jum Suk Jang. Effect of directional light dependence on enhanced photoelectrochemical performance of ZnIn2S4/TiO2 binary heterostructure photoelectrodes. Electrochimica Acta 2018, 276 , 223-232. https://doi.org/10.1016/j.electacta.2018.04.110
    45. Dongliang Qian, Dongyun Chen, Najun Li, Qingfeng Xu, Hua Li, Jinghui He, Jianmei Lu. TiO2/sulfonated graphene oxide/Ag nanoparticle membrane: In situ separation and photodegradation of oil/water emulsions. Journal of Membrane Science 2018, 554 , 16-25. https://doi.org/10.1016/j.memsci.2017.12.084
    46. Rui Tang, Shujie Zhou, Luyuan Zhang, Longwei Yin. Metal–Organic Framework Derived Narrow Bandgap Cobalt Carbide Sensitized Titanium Dioxide Nanocage for Superior Photo‐Electrochemical Water Oxidation Performance. Advanced Functional Materials 2018, 28 (14) https://doi.org/10.1002/adfm.201706154
    47. Matthew V. Sheridan, Ying Wang, Degao Wang, Ludovic Troian‐Gautier, Christopher J. Dares, Benjamin D. Sherman, Thomas J. Meyer. Light‐Driven Water Splitting Mediated by Photogenerated Bromine. Angewandte Chemie 2018, 130 (13) , 3507-3511. https://doi.org/10.1002/ange.201708879
    48. Matthew V. Sheridan, Ying Wang, Degao Wang, Ludovic Troian‐Gautier, Christopher J. Dares, Benjamin D. Sherman, Thomas J. Meyer. Light‐Driven Water Splitting Mediated by Photogenerated Bromine. Angewandte Chemie International Edition 2018, 57 (13) , 3449-3453. https://doi.org/10.1002/anie.201708879
    49. Jinsong Hu, Xinhua Huang, Nuoya Wang, Lei Zhang. Facile synthesis of porous nanospheres TiO 2 as catalyst carrier for plasmon-enhanced photocatalysis. Materials Research Express 2018, 5 (2) , 025034. https://doi.org/10.1088/2053-1591/aaaedf
    50. Kai Song, Fengmei Gao, Weiyou Yang, Enyan Wang, Zhenxia Wang, Huilin Hou. WO 3 Mesoporous Nanobelts towards Efficient Photoelectrocatalysts for Water Splitting. ChemElectroChem 2018, 5 (2) , 322-327. https://doi.org/10.1002/celc.201700993
    51. Lorenzo Zani, Janardan Dagar, Sarah Lai, Sonia Centi, Fulvio Ratto, Roberto Pini, Massimo Calamante, Alessandro Mordini, Gianna Reginato, Marina Mazzoni. Studies on the efficiency enhancement of co-sensitized, transparent DSSCs by employment of core-shell-shell gold nanorods. Inorganica Chimica Acta 2018, 470 , 407-415. https://doi.org/10.1016/j.ica.2017.06.041
    52. Iwona Grądzka, Mateusz Gierszewski, Jerzy Karolczak, Marcin Ziółek. Comparison of charge transfer dynamics in polypyridyl ruthenium sensitizers for solar cells and water splitting systems. Physical Chemistry Chemical Physics 2018, 20 (11) , 7710-7720. https://doi.org/10.1039/C8CP00258D
    53. Jung Tae Park, Chang Soo Lee, Cheol Hun Park, Jong Hak Kim. Preparation of TiO2/Ag binary nanocomposite as high-activity visible-light-driven photocatalyst via graft polymerization. Chemical Physics Letters 2017, 685 , 119-126. https://doi.org/10.1016/j.cplett.2017.07.054
    54. Siti Nur Hidayah Jaafar, Lorna Jeffery Minggu, Khuzaimah Arifin, Mohammad B. Kassim, Wan Ramli Daud Wan. Natural dyes as TIO2 sensitizers with membranes for photoelectrochemical water splitting: An overview. Renewable and Sustainable Energy Reviews 2017, 78 , 698-709. https://doi.org/10.1016/j.rser.2017.04.118
    55. Pengtao Xu, Nicholas S. McCool, Thomas E. Mallouk. Water splitting dye-sensitized solar cells. Nano Today 2017, 14 , 42-58. https://doi.org/10.1016/j.nantod.2017.04.009
    56. Saman Kohnehpoushi, Mehdi Eskandari, Bahram Abdollahi Nejand, Vahid Ahmadi. Numerical calculation of visible light absorption enhancement of CdSe-quantum dot-sensitized TiO 2 nanorod periodic array as photoanode. Journal of Physics D: Applied Physics 2017, 50 (7) , 075102. https://doi.org/10.1088/1361-6463/aa560f
    57. Xiaolin Hu, Xiang Liu, Jian Tian, Yujie Li, Hongzhi Cui. Towards full-spectrum (UV, visible, and near-infrared) photocatalysis: achieving an all-solid-state Z-scheme between Ag 2 O and TiO 2 using reduced graphene oxide as the electron mediator. Catalysis Science & Technology 2017, 7 (18) , 4193-4205. https://doi.org/10.1039/C7CY01349C

    ACS Energy Letters

    Cite this: ACS Energy Lett. 2016, 1, 3, 603–606
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsenergylett.6b00279
    Published August 23, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    1564

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.