ACS Publications. Most Trusted. Most Cited. Most Read
The Steady Rise of Kesterite Solar Cells
My Activity
  • Free to Read
Viewpoint

The Steady Rise of Kesterite Solar Cells
Click to copy article linkArticle link copied!

View Author Information
Centre for Sustainable Chemical Technologies, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
§ Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
Department of Materials Science and Engineering, Yonsei University, Seoul 03722, South Korea
Open PDF

ACS Energy Letters

Cite this: ACS Energy Lett. 2017, 2, 4, 776–779
Click to copy citationCitation copied!
https://doi.org/10.1021/acsenergylett.7b00131
Published March 10, 2017

Copyright © 2017 American Chemical Society. This publication is available under these Terms of Use.

This publication is licensed for personal use by The American Chemical Society.

Copyright © 2017 American Chemical Society

Could slow and steady win the race to sustainable energy generation? While perovskite solar cells are currently at the forefront of photovoltaic research activity, we argue in this Viewpoint that devices based on the mineral kesterite could be the dark horse of next-generation solar energy conversion. The most urgent research challenges for this technology are outlined.

Thin-film photovoltaic (PV) technologies offer an economically promising and flexible means to harness solar energy. (1) Compared to silicon, the use of materials that absorb sunlight strongly allows for less material to be used, lowering cost and opening up more possibilities for integrating the solar cell modules with buildings. Only a small number of commercial thin-film technologies have achieved power conversion efficiencies (PCEs) greater than 20%: CdTe and Cu(In,Ga)(S,Se)2 (CIGS) have champion device PCEs of 21%. (2) The toxicity of cadmium and competition in the supply of indium are limiting factors for the large-scale utilization of these technologies.

In the emerging thin-film PV market, hybrid halide perovskites such as methylammonium lead iodide (CH3NH3PbI3) have received an immense amount of research interest, with over 3000 publications in relation to solar cells since 2009. The efficiency of laboratory-scale halide perovskite devices has risen sharply, especially over the course of the first 500 publications focused on the material (see Figure 1). The current record for a perovskite solar cell is 22.1%. (2) Progress in PCE with respect to the number of publications on this material is beginning to plateau. Furthermore, stability issues and concerns over the lead content of halide perovskites remain as challenges for the commercialization of this technology. (3)

Figure 1

Figure 1. Comparison of the cumulative research output for Cu2ZnSn(S,Se)4 (kesterite) and CH3NH3PbI3 (halide perovskite) related photovoltaic technologies against year and the record light-to-electricity conversion efficiency. The publication data has been generated from Web of Science (February 15, 2017) for kesterite (search terms: “kesterite OR stannite” AND “solar cell”) and halide perovskite (search terms: “halide perovskite OR iodide perovskite OR hybrid perovskite” AND “solar cell”) solar cells.

Solar cells based on the kesterite mineral structure, including Cu2ZnSnS4 (CZTS), Cu2ZnSnSe4 (CZTSe), and their alloys Cu2ZnSn(SxSe1–x)4 (CZTSSe), stand out from other thin-film PV candidates for being composed of earth-abundant and nontoxic elements. Since the first kesterite solar cell was fabricated in 1997, the PCE of the champion device has risen from 0.66% (4) to the current certified record of 12.6% set in 2013, (5) with a 13.8% small-area device reported in late 2016. (6) These efficiencies fall far below the 28% predicted for this technology from the Shockley–Queisser limit. However, kesterites have achieved relatively little attention, with fewer than 1000 publications to date related to photovoltaic applications. A directed focus in research effort may see this sustainable PV technology achieve PCEs approaching those of hybrid perovskites or commercial thin-film PV technologies, perhaps as well with much improved operational stability.

There are numerous synthetic routes to kesterite thin films, including both vacuum-based deposition and nonvacuum-based solution processing. Nonvacuum approaches are desirable for scalability and feasible industrial production, including electrodeposition, (7-10) nanocrystal dispersion, (11-13) hydrazine-based deposition, (14) and other pure-solution approaches. (15-17) The current champion CZTSSe solar cell was fabricated using the hydrazine-based solution method developed at the IBM T. J. Watson Research Center. (5) Most record devices since 1997 have been produced by solution-based film deposition approaches, (18) alluding to the potential for large-scale fabrication, which is required to support a terawatt PV industry.

The relatively low efficiency of kesterite-based solar cells is attributed to a large deficit in the open-circuit voltage (VOC) relative to the band gap of the absorber layer. This is universal for high-performance kesterite devices, with the deficit being even larger for the pure sulfide material. While there is a consensus that the VOC deficit is the key limiting factor for devices, the origin remains very much an open question. (19) There are a number of hypotheses to account for the VOC deficit, which can be separated into three categories:

(i)

A non-Ohmic back electrical contact, usually Mo/CZTS, which could result in a high recombination velocity;

(ii)

A poorly optimized interface between CZTS and the CdS buffer layer, which could also result in rapid electron–hole recombination;

(iii)

Large amounts of defects and disorder in the bulk of the absorber layer, limiting minority charge carrier lifetimes and enhancing recombination processes.

In the best devices, it has been shown that the back contact with Mo is Ohmic in nature. (20) The borrowed device architecture from CIGS solar cells involves the use of a CdS buffer layer, and analysis of the conduction band offset between CdS and CZTSSe also does not imply any major limitation on device performance. (21) This then leaves us with consideration of defects and disorder in the bulk of the absorber layer.

Advances in defect engineering, through modification of synthesis, deposition, and/or annealing procedures, enable a reduction in the impact of extended defects such as grain boundaries, passivation of surfaces, and production of pinhole-free thin films. However, point defects such as site vacancies and antisites will remain present even for carefully processed samples. (22) Devices fabricated from high-quality single crystals have demonstrated PCEs of 10%, with a VOC deficit similar to that of thin-film solar cells. (23)

Kesterites are an example of a multinary semiconductor, with a zinc-blende-related structure (space group type I4̅) and the general chemical formula of Cu2-MII-MIV-X4 (X = O, S, Se, Te). A consequence of the many components of the material is an increase in the number of possible lattice defects, with particular concern for cation disorder. (24) In CZTS, disorder among Cu and Zn metals would seem particularly likely because of the chemical similarity of the two species, which are neighbors in the periodic table. Indeed, first-principles calculations predict that the neutral defect pair [CuZn + ZnCu+] has a low formation energy, (25) implying a high equilibrium concentration, and there is a large body of experimental evidence for Cu/Zn disorder from neutron diffraction, synchrotron X-ray diffraction, and near-resonant Raman studies. (22) It is now universally accepted that Cu/Zn disorder will be present to a high degree even in high-quality thin films. However, the impact of this type of disorder on device performance is the subject of ongoing debate in the community. (19, 26)

The open-circuit voltage of a PV device is limited by the band gap of the absorber material, but defects can modify the underlying electronic band structure (Figure 2). Lattice disorder can result in localized states near the top of the valence band or at the bottom of the conduction band. At sufficiently high concentrations, these interact to form an impurity band. As the density of defects increases, the tail states become more prevalent and penetrate further into the band gap. Localized states and associated band tailing in the electronic structure lead to band gap narrowing. (22, 27) As such, peaks in the photoluminescence spectra are red-shifted to energies below those of the optical band gap obtained from internal quantum efficiency measurements (which reflects only extended electronic states). (28) Band tailing in CZTSSe devices is roughly twice as severe as that in CIGS devices, and it has been suggested that Cu/Zn disorder in CZTSSe is one contributing factor. In comparison, cation disorder in CIGS could be expected to be less prevalent because Cu is less chemically similar to Ga/In than Cu is to Zn, increasing the energy cost associated with making substitutions among any of these two species with Cu compared to that of Zn with Cu. Furthermore, it has been observed that band tailing is less severe in devices made from Ag2ZnSnSe4, (29) where cation disorder could be expected to be suppressed because of the greater ionic radii mismatch between Ag+ and Zn2+ than Cu+ and Zn2+.

Figure 2

Figure 2. Acceptor defect-induced energy level within the band gap of a semiconductor, broadening to an impurity band with increased defect density until at sufficiently high defect concentrations the band merges with the valence band maximum, resulting in a reduced band gap. Such tail states would limit the open-circuit voltage accessible in a photovoltaic device and could explain the voltage deficit observed in kesterite-based solar cells. Also listed are the range of possible acceptor and donor defects in Cu2ZnSnS4; a large number of possible charge-neutral defect clusters can also be formed.

To our knowledge no direct connection between bulk disorder in the kesterite absorber layer and photovoltaic performance has yet been made. Postannealing treatments can be used to reduce the prevalence of Cu/Zn antisites. (30) Devices of varying degrees of Cu/Zn disorder in the absorber layer produced in this way demonstrated that the VOC changes by the same amount as the optical band gap. The postannealing treatment therefore had no impact on VOC deficit. (19) The lack of direct connection between Cu/Zn antisite concentration and photovoltaic performance could be because, despite reduction in Cu/Zn disorder, the antisite concentration is still high from the perspective of device performance. Alternatively, it could be because there are other defects that are more important for controlling device properties at the current performance level. It is worth noting that the primary factors limiting performance could differ considerably for devices produced using different absorber fabrication procedures or for different performance levels for samples produced using the same approach.

Beyond Cu/Zn antisite defects, another explanation for the VOC deficit is the presence of defects with levels deep in the band gap that could be acting as centers for nonradiative recombination. In particular, defects involving Sn result in deeper charge transition states owing the higher charge and larger radius of Sn relative to Cu and Zn. (31) Deep-level defects in CZTS have been predicted to have a formation energy that is higher than those of the shallow defects; (16) therefore, it could be expected that they will be less prevalent. However, the presence of “killer centers” (32) even in low concentrations could be limiting device performance. It is possible that the formation energy of such centers may be reduced by the specific environmental conditions during synthesis and chemical potentials of the constituent elements.

To summarize, some key challenges and opportunities for kesterite solar cells include the following:

1.

Missing activation step. For CdTe, a postdeposition chemical treatment of CdCl2 or similar is required to “activate” the absorber layer (33) (e.g., passivate grain boundaries, enlarge grain size), while for CIGS a Cu-rich processing stage is needed during the 3-stage evaporation process. (34) Identifying a similar activation process for kesterites may enable a step-change in PV action.

2.

Accurate material and device measurements. The wide variety of demonstrated growth processes and conditions makes comparison of reported physical properties challenging. Accurate and consistent measurements concerning carrier generation, transport, recombination, and collection for different absorbers would provide valuable insights to overcome device bottlenecks.

3.

Quantifying defects and disorder. A number of different descriptors are being used in the field to quantify disorder, including Raman spectra, optical spectra, and neutron diffraction. However, the site disorder averaged over a macroscopic sample does not provide insights into the microscopic cation distribution that will interact with photogenerated electrons and holes. More accurate local structure techniques and materials simulations could provide valuable insights.

4.

Alternative device architectures. Relatively little effort has been spent on looking at alternatives to the standard Mo/CZTS/CdS device configuration. Beyond simple component replacement (e.g., Mo for W or ZnS for CdS), other device configurations such as p–i–n could result in enhanced photovoltaic performance.

Two large research consortia have recently been funded to address some of these questions. One is PVTEAM, led by L. M. Peter at the University of Bath (U.K.) that links with the SPECIFIC Innovation and Knowledge Centre for scale-up, and STARCELL, led by E. Saucedo at IREC (Spain) that combines 13 partners across Europe, Japan, and the United States. At a time when further breakthroughs in perovskite solar cells will become increasingly difficult to achieve, a focused effort on kesterites and related materials could have major impacts. While this technology has been relatively slow to emerge, the combination of earth-abundant and nontoxic elements in a chemically stable compound is the solution that sustainable thin-film photovoltaics requires.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
    • Aron Walsh - Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United KingdomDepartment of Materials Science and Engineering, Yonsei University, Seoul 03722, South KoreaOrcidhttp://orcid.org/0000-0001-5460-7033
  • Authors
    • Suzanne K. Wallace - Centre for Sustainable Chemical Technologies, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United KingdomDepartment of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
    • David B. Mitzi - Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United StatesDepartment of Chemistry, Duke University, Durham, North Carolina 27708, United States
  • Notes
    Views expressed in this Viewpoint are those of the authors and not necessarily the views of the ACS.
    The authors declare no competing financial interest.

References

Click to copy section linkSection link copied!

This article references 34 other publications.

  1. 1
    Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Photovoltaic materials – present efficiencies and future challenges Science 2016, 352, aad4424 DOI: 10.1126/science.aad4424
  2. 2
    Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar Cell Efficiency Tables (Version 49) Prog. Photovoltaics 2016, 24, 3 DOI: 10.1002/pip.2728
  3. 3
    Park, N.-G.; Grätzel, M.; Miyasaka, T.; Zhu, K.; Emery, K. Towards stable and commercially available perovskite solar cells Nat. Energy 2016, 1, 16152 DOI: 10.1038/nenergy.2016.152
  4. 4
    Katagiri, H.; Sasaguchi, N.; Hando, S.; Hoshino, S.; Ohashi, J.; Yokota, T. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors Sol. Energy Mater. Sol. Cells 1997, 49, 407 DOI: 10.1016/S0927-0248(97)00119-0
  5. 5
    Wang, W.; Winkler, M. T.; Gunawan, O.; Gokmen, T.; Todorov, T. K.; Zhu, Y.; Mitzi, D. B. Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency Adv. Energy Mater. 2014, 4, 1301465 DOI: 10.1002/aenm.201301465
  6. 6

    Reported at PVSEC-36 by a research team led at DGIST in South Korea. A 0.181 cm2 solar cell was certified at 13.80% by KIER.

  7. 7
    Jiang, F.; Ikeda, S.; Harada, T.; Matsumura, M. Pure Sulfide Cu2ZnSnS4 Thin Film Solar Cells Fabricated by Preheating an Electrodeposited Metallic Stack Adv. Energy Mater. 2014, 4, 1301381 DOI: 10.1002/aenm.201301381
  8. 8
    Guo, L.; Zhu, Y.; Gunawan, O.; Gokmen, T.; Deline, V. R.; Ahmed, S.; Romankiw, L. T.; Deligianni, H. Electrodeposited Cu2ZnSnSe4 Thin Film Solar Cell with 7% Power Conversion Efficiency Prog. Photovoltaics 2014, 22, 58 DOI: 10.1002/pip.2332
  9. 9
    Yao, L.; Ao, J.; Jeng, M.-J.; Bi, J.; Gao, S.; He, Q.; Zhou, Z.; Sun, G.; Sun, Y.; Chang, L.-B. CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure Nanoscale Res. Lett. 2014, 9, 678 DOI: 10.1186/1556-276X-9-678
  10. 10
    Scragg, J. J.; Dale, P. J.; Peter, L. M. Synthesis and Characterization of Cu2ZnSnS4 Absorber Layers by an Electrodeposition-Annealing Route Thin Solid Films 2009, 517, 2481 DOI: 10.1016/j.tsf.2008.11.022
  11. 11
    Larramona, G.; Bourdais, S.; Jacob, A.; Chone, C.; Muto, T.; Cuccaro, Y.; Delatouche, B.; Moisan, C.; Pere, D.; Dennler, G. 8.6% Efficient CZTSSe Solar Cells Sprayed from Water-Ethanol CZTS Colloidal Solutions J. Phys. Chem. Lett. 2014, 5, 3763 DOI: 10.1021/jz501864a
  12. 12
    Guo, Q.; Ford, G. M.; Yang, W.-C.; Walker, B. C.; Stach, E. A.; Hillhouse, H. W.; Agrawal, R. Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals J. Am. Chem. Soc. 2010, 132, 17384 DOI: 10.1021/ja108427b
  13. 13
    Zhou, H.; Hsu, W.-C.; Duan, H.-S.; Bob, B.; Yang, W.; Song, T.-B.; Hsu, C.-J.; Yang, Y. CZTS nanocrystals: a promising approach for next generation thin film photovoltaics Energy Environ. Sci. 2013, 6, 2822 DOI: 10.1039/c3ee41627e
  14. 14
    Bag, S.; Gunawan, O.; Gokmen, T.; Zhu, Y.; Todorov, T. K.; Mitzi, D. B. Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency Energy Environ. Sci. 2012, 5, 7060 DOI: 10.1039/c2ee00056c
  15. 15
    Xin, H.; Katahara, J. K.; Braly, I. L.; Hillhouse, H. W. 8% Efficient Cu2ZnSn(S,Se)4 Solar Cells from Redox Equilibrated Simple Precursors in DMSO Adv. Energy Mater. 2014, 4, 1301823 DOI: 10.1002/aenm.201301823
  16. 16
    Haass, S. G.; Diethelm, M.; Werner, M.; Bissig, B.; Romanyuk, Y. E.; Tiwari, A. N. 11.2% Efficient Solution Processed Kesterite Solar Cell with a Low Voltage Deficit Adv. Energy Mater. 2015, 5, 1500712 DOI: 10.1002/aenm.201500712
  17. 17
    Su, Z.; Sun, K.; Han, Z.; Cui, H.; Liu, F.; Lai, Y.; Li, J.; Hao, X.; Liu, Y.; Green, M. A. Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route J. Mater. Chem. A 2014, 2, 500 DOI: 10.1039/C3TA13533K
  18. 18
    Liu, X.; Feng, Y.; Cui, H.; Liu, F.; Hao, X.; Conibeer, G.; Mitzi, D. B.; Green, M. The current status and future prospects of kesterite solar cells: a brief review Prog. Photovoltaics 2016, 24, 879 DOI: 10.1002/pip.2741
  19. 19
    Bourdais, S.; Choné, C.; Delatouche, B.; Jacob, A.; Larramona, G.; Moisan, C.; Lafond, A.; Donatini, F.; Rey, G.; Siebentritt, S. Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells? Adv. Energy Mater. 2016, 6, 1502276 DOI: 10.1002/aenm.201502276
  20. 20
    Gunawan, O.; Gokmen, T.; Mitzi, D. B. Suns-VOC characteristics of high performance kesterite solar cells J. Appl. Phys. 2014, 116, 084504 DOI: 10.1063/1.4893315
  21. 21
    Gershon, T.; Gokmen, T.; Gunawan, O.; Haight, R.; Guha, S.; Shin, B. Understanding the relationship between Cu2ZnSn(S,Se)4 material properties and device performance MRS Commun. 2014, 4, 159 DOI: 10.1557/mrc.2014.34
  22. 22
    Shin, D.; Saparov, B.; Mitzi, D. B. Defect Engineering in Multinary Earth-Abundant Chalcogenide Photovoltaic Materials Adv. Energy Mater. 2017, 1602366 DOI: 10.1002/aenm.201602366
  23. 23
    Lloyd, M. A.; Bishop, D.; Gunawan, O.; Mccandless, B. Fabrication and performance limitations in single crystal Cu2ZnSnSe4 Solar Cells 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) 2016, 3636 DOI: 10.1109/PVSC.2016.7750352
  24. 24
    Baranowski, L. L.; Zawadzki, P.; Lany, S.; Toberer, E. S.; Zakutayev, A. A review of defects and disorder in multinary tetrahedrally bonded semiconductors Semicond. Sci. Technol. 2016, 31, 123004 DOI: 10.1088/0268-1242/31/12/123004
  25. 25
    Chen, S. Y.; Yang, J.-H. H.; Gong, X. G.; Walsh, A.; Wei, S.-H. H. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4 Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 245204 DOI: 10.1103/PhysRevB.81.245204
  26. 26
    Scragg, J. J. S.; Larsen, J. K.; Kumar, M.; Persson, C.; Sendler, J.; Siebentritt, S.; Platzer Björkman, C. Cu-Zn Disorder and Band Gap Fluctuations in Cu2ZnSn(S,Se)4: Theoretical and Experimental Investigations Phys. Status Solidi B 2016, 253, 247 DOI: 10.1002/pssb.201552530
  27. 27
    Van Mieghem, P. Theory of band tails in heavily doped semiconductors Rev. Mod. Phys. 1992, 64, 755 DOI: 10.1103/RevModPhys.64.755
  28. 28
    Gokmen, T.; Gunawan, O.; Todorov, T. K.; Mitzi, D. B. Band tailing and efficiency limitation in kesterite solar cells Appl. Phys. Lett. 2013, 103, 103506 DOI: 10.1063/1.4820250
  29. 29
    Gershon, T.; Sardashti, K.; Gunawan, O.; Mankad, R.; Singh, S.; Lee, Y. S.; Ott, J. A.; Kummel, A.; Haight, R. Photovoltaic Device with over 5% Efficiency Based on an n-Type Ag2ZnSnSe4 Absorber Adv. Energy Mater. 2016, 6, 1601182 DOI: 10.1002/aenm.201601182
  30. 30
    Scragg, J. J. S.; Choubrac, L.; Lafond, A.; Ericson, T.; Platzer-Björkman, C. A low-temperature order-disorder transition in Cu2ZnSnS4 thin films Appl. Phys. Lett. 2014, 104, 041911 DOI: 10.1063/1.4863685
  31. 31
    Chen, S.; Walsh, A.; Gong, X.-G.; Wei, S.-H. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers Adv. Mater. 2013, 25, 1522 DOI: 10.1002/adma.201203146
  32. 32
    Stoneham, A. M. Non-radiative transitions in semiconductors Rep. Prog. Phys. 1981, 44, 1251 DOI: 10.1088/0034-4885/44/12/001
  33. 33
    Major, J. D.; Treharne, R. E.; Phillips, L. J.; Durose, K. A low-cost non-toxic post-growth activation step for CdTe solar cells Nature 2014, 511, 334 DOI: 10.1038/nature13435
  34. 34
    Gabor, A. M.; Tuttle, J. R.; Albin, D. S.; Contreras, M. A.; Noufi, R.; Hermann, A. M. High-efficiency CuInxGa1-xSe2 Solar Cells Made From (Inx,Ga1-x)2Se3 Precursor Films Appl. Phys. Lett. 1994, 65, 198 DOI: 10.1063/1.112670

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 207 publications.

  1. Kelechi Nwambaekwe, Sodiq Yussuf, Ziyanda Tshobeni, Chinwe Ikpo, Jaymi January, Meleskow Cox, Precious Ekwere, Shimelis Admassie, Xinwen Peng, Emmanuel Iwuoha. Cu2PdSnSe4 and Cu2PdSn(S,Se)4 Palladium-Substituted Kesterite Nanomaterials for Thin-Film Solar Cells. ACS Materials Au 2025, Article ASAP.
  2. Pingzhi Zhang, Elizabeth Stippell, Zhufeng Hou, Oleg V. Prezhdo, Wei Li. Mitigating Band Tailing in Kesterite Solar Absorbers: Ab Initio Quantum Dynamics. Journal of the American Chemical Society 2024, 146 (46) , 32147-32157. https://doi.org/10.1021/jacs.4c14416
  3. Raju Edla, David Nowak, Dirk Hauschild, Ilya Sergueev, Devendra Pareek, Levent Gütay, Clemens Heske, Lothar Weinhardt, Svetoslav Stankov. Lattice Dynamics of Cu2ZnSn(Sx,Se1–x)4 Kesterite Thin-Film Solar Cells Studied by Nuclear Inelastic Scattering. The Journal of Physical Chemistry C 2024, 128 (41) , 17483-17491. https://doi.org/10.1021/acs.jpcc.4c03689
  4. Guohong Xiao, Xiaoliang Ren, Yucheng Hu, Yuxi Cao, Zhouyi Li, Zhentao Shi, Feng Jiang. Spin-Coated CZTS Film with a Gradient Cu-Deficient Interfacial Layer for Solar Hydrogen Evolution. ACS Energy Letters 2024, 9 (2) , 715-726. https://doi.org/10.1021/acsenergylett.4c00013
  5. An-Yu Zhu, Rui-Xue Ding, Hao-Ting Xu, Chuan-Jia Tong, Keith P. McKenna. Cu–Zn Cation Disorder in Kesterite Cu2ZnSn(SxSe1–x)4 Solar Cells. ACS Energy Letters 2024, 9 (2) , 497-503. https://doi.org/10.1021/acsenergylett.3c02653
  6. S. Bette, E. Isotta, B. Mukherjee, A. Schulz, Z. Dallos, U. Kolb, Robert E. Dinnebier, P. Scardi. Microstructural Insights into the Transformation of Cubic, Low-Temperature, Disordered Cu2ZnSnS4 into the Tetragonal Form. The Journal of Physical Chemistry C 2024, 128 (4) , 1717-1727. https://doi.org/10.1021/acs.jpcc.3c07085
  7. Stenny Benny, Akshay Vishwanathan Vidyanagar, S. Venkataprasad Bhat. Progress and Prospects with Cationic and Anionic Doping of Solution-Processed Kesterite Solar Absorbers: A Mini-Review. Energy & Fuels 2024, 38 (1) , 61-72. https://doi.org/10.1021/acs.energyfuels.3c03419
  8. Oluwagbemiga P. Ojo, Long Ma, Wilarachchige D. C. B. Gunatilleke, Andrew F. May, Lilia M. Woods, George S. Nolas. Electronic and Thermal Properties of the Cation Substitution-Derived Quaternary Chalcogenide CuInSnSe4. Inorganic Chemistry 2023, 62 (39) , 16114-16121. https://doi.org/10.1021/acs.inorgchem.3c02354
  9. Fengxia Yang, Xiaofei Dong, Lei Yu, Xudong Sun, Jiangtao Chen, Yun Zhao, Yan Li. Modulation Effect of the Zn/Sn Ratio on Performance of Chloride-Fabricated CZTSSe Cells for Boosting 10%-Beyond Efficiencies. ACS Applied Energy Materials 2022, 5 (9) , 11431-11440. https://doi.org/10.1021/acsaem.2c01877
  10. Igor Vorona, Volodymyr Dzhagan, Valentyna Nosenko, Serhiy Kondratenko, Oleksandr Selyshchev, Mykhailo Valakh, Serhiy Okulov, Nazar Mazur, Oleksandra Raievska, Oleksandr L. Stroyuk, Dietrich R. T. Zahn. Room-Temperature Electron Paramagnetic Resonance Study of a Copper-Related Defect in Cu2ZnSnS4 Colloidal Nanocrystals. The Journal of Physical Chemistry C 2021, 125 (18) , 9923-9929. https://doi.org/10.1021/acs.jpcc.1c02176
  11. Zhi Chen, Ping-Zhi Zhang, Yu Zhou, Xingming Zhang, Xiaorui Liu, Zhufeng Hou, Jianfeng Tang, Wei Li. Elucidating the Influence of Sulfur Vacancies on Nonradiative Recombination Dynamics in Cu2ZnSnS4 Solar Absorbers. The Journal of Physical Chemistry Letters 2020, 11 (24) , 10354-10361. https://doi.org/10.1021/acs.jpclett.0c03175
  12. Ahmad Ibrahim, Asim Guchhait, Shreyash Hadke, Hwee Leng Seng, Lydia Helena Wong. Silver and Potassium Incorporation in Double-Layer Solution-Processed Cu2ZnSnS4 Solar Cell. ACS Applied Energy Materials 2020, 3 (11) , 10402-10407. https://doi.org/10.1021/acsaem.0c01165
  13. Ruifen Zhang, Xin Wen, Fen Xu, Qiubo Zhang, Lixian Sun. A Density Functional Theory Study of the Cu2ZnSnS4 Monolayer as a Photo-electrointegrated Catalyst for Water Splitting and Hydrogen Evolution. The Journal of Physical Chemistry C 2020, 124 (22) , 11922-11929. https://doi.org/10.1021/acs.jpcc.0c02103
  14. Sara Engberg, Joanna Symonowicz, Jørgen Schou, Stela Canulescu, Kirsten M. Ø Jensen. Characterization of Cu2ZnSnS4 Particles Obtained by the Hot-Injection Method. ACS Omega 2020, 5 (18) , 10501-10509. https://doi.org/10.1021/acsomega.0c00657
  15. Andrea Crovetto, Rasmus Nielsen, Eugen Stamate, Ole Hansen, Brian Seger, Ib Chorkendorff, Peter C. K. Vesborg. Wide Band Gap Cu2SrSnS4 Solar Cells from Oxide Precursors. ACS Applied Energy Materials 2019, 2 (10) , 7340-7344. https://doi.org/10.1021/acsaem.9b01322
  16. Temujin Enkhbat, SeongYeon Kim, JunHo Kim. Device Characteristics of Band gap Tailored 10.04% Efficient CZTSSe Solar Cells Sprayed from Water-Based Solution. ACS Applied Materials & Interfaces 2019, 11 (40) , 36735-36741. https://doi.org/10.1021/acsami.9b12565
  17. Zhuoran Wang, Nicolas Brodusch, Raynald Gauvin, George P. Demopoulos. New Insight into Sulfurized and Selenized Kesterite–Titania Nanostructures for CdS-free and HTM-free Photovoltaic and Voltage-Modulated Photodetecting Applications. ACS Sustainable Chemistry & Engineering 2019, 7 (17) , 15093-15101. https://doi.org/10.1021/acssuschemeng.9b03814
  18. Stener Lie, Shin Woei Leow, Douglas M. Bishop, Maxim Guc, Victor Izquierdo-Roca, Oki Gunawan, Lydia Helena Wong. Improving Carrier-Transport Properties of CZTS by Mg Incorporation with Spray Pyrolysis. ACS Applied Materials & Interfaces 2019, 11 (29) , 25824-25832. https://doi.org/10.1021/acsami.9b05244
  19. Ki beom Cheon, Sun Kyung Hwang, Se Won Seo, Jae-Hyun Park, Min-Ah Park, Jin Young Kim. Roughness-Controlled Cu2ZnSn(S,Se)4 Thin-Film Solar Cells with Reduced Charge Recombination. ACS Applied Materials & Interfaces 2019, 11 (27) , 24088-24095. https://doi.org/10.1021/acsami.9b05852
  20. Rayan Chakraborty, Kyu Min Sim, Megha Shrivastava, K. V. Adarsh, Dae Sung Chung, Angshuman Nag. Colloidal Synthesis, Optical Properties, and Hole Transport Layer Applications of Cu2BaSnS4 (CBTS) Nanocrystals. ACS Applied Energy Materials 2019, 2 (5) , 3049-3055. https://doi.org/10.1021/acsaem.9b00473
  21. Abhishek Swarnkar, Wasim J. Mir, Rayan Chakraborty, Metikoti Jagadeeswararao, Tariq Sheikh, Angshuman Nag. Are Chalcogenide Perovskites an Emerging Class of Semiconductors for Optoelectronic Properties and Solar Cell?. Chemistry of Materials 2019, 31 (3) , 565-575. https://doi.org/10.1021/acs.chemmater.8b04178
  22. Devendra Tiwari, Dominic Alibhai, David J Fermin. Above 600 mV Open-Circuit Voltage BiI3 Solar Cells. ACS Energy Letters 2018, 3 (8) , 1882-1886. https://doi.org/10.1021/acsenergylett.8b01182
  23. Shuai Gu, Bitian Fu, Gjergj Dodbiba, Toyohisa Fujita, Baizeng Fang. Promising Approach for Recycling of Spent CIGS Targets by Combining Electrochemical Techniques with Dehydration and Distillation. ACS Sustainable Chemistry & Engineering 2018, 6 (5) , 6950-6956. https://doi.org/10.1021/acssuschemeng.8b00787
  24. Sunghyun Kim, Ji-Sang Park, and Aron Walsh . Identification of Killer Defects in Kesterite Thin-Film Solar Cells. ACS Energy Letters 2018, 3 (2) , 496-500. https://doi.org/10.1021/acsenergylett.7b01313
  25. Amira Ben Hjal, Arshad Yazdanpanah, Elena Colusso, Noah Tormena, Dario De Nicola, Paolo Dolcet, Silvia Gross, Nicola Trivellin, Khaled Alouani, Katya Brunelli, Manuele Dabalà. Enhancing kesterite-based thin-film solar cells: A dual-strategy approach utilizing SnS back surface field and eco-friendly ZnSe electron transport layer. Applied Surface Science 2025, 684 , 161942. https://doi.org/10.1016/j.apsusc.2024.161942
  26. Rohit Mondal, G. Hema Chandra, Y. P. Venkata Subbaiah, Mukul Gupta. Impact of selenium content on the growth kinetics and optoelectronic properties of Ag-substituted Cu2ZnSnSe4 thin films. Journal of Materials Science: Materials in Electronics 2025, 36 (5) https://doi.org/10.1007/s10854-025-14381-2
  27. Sarah Youssef, Nouran M. Ali, Nadia H. Rafat. Improving the efficiency of kesterite solar cells using semi-ellipsoidal nanostructures. Next Energy 2025, 6 , 100187. https://doi.org/10.1016/j.nxener.2024.100187
  28. Perla J. Vázquez-González, Martha L. Paniagua-Chávez, Lizette A. Zebadua-Chavarria, Rafael Mota-Grajales, C. A. Meza-Avendaño, Enrique Campos-González, A. Escobosa-Echavarría, Yaoqiao Hu, Aldo E. Pérez-Ramos, Manuel-Matuz, Carlos A. Hernández-Gutiérrez. Comprehensive Structural, Chemical, and Optical Characterization of Cu2ZnSnS4 Films on Kapton Using the Automated Successive Ionic Layer Adsorption and Reaction Method. Nanomaterials 2025, 15 (2) , 85. https://doi.org/10.3390/nano15020085
  29. Wilarachchige D. C. B. Gunatilleke, Oluwagbemiga P. Ojo, Adam Biacchi, George S. Nolas. Structural, Optical and Thermal Properties of Na2mgsns4. 2025https://doi.org/10.2139/ssrn.5094071
  30. Haoyu Xu, Yijia Cong, Shumin Qin, Xuanyang Guo, Haifeng Gao, Zeran Gao, Xinzhan Wang, Yali Sun, Chao Gao, Wanlei Dai, Wei Yu. Improving back interface quality and passivating defects of CuZnSnSe4 solar cells via introducing a hydrogen plasma treated intermediate layer. Journal of Alloys and Compounds 2025, 1011 , 178306. https://doi.org/10.1016/j.jallcom.2024.178306
  31. Huiwen Xiang, Zhenfa Zheng, Ke Zhao, Chengyan Liu, Jin Zhao. Interfacial Passivation of Kesterite Solar Cells for Enhanced Carrier Lifetime: Ab Initio Nonadiabatic Molecular Dynamics Study. Advanced Functional Materials 2024, 34 (46) https://doi.org/10.1002/adfm.202407991
  32. Oluwagbemiga P. Ojo, Long Ma, Wilarachchige D.C.B. Gunatilleke, Adam J. Biacchi, Hsin Wang, Lilia M. Woods, George S. Nolas. A synergistic experimental and theoretical study elucidating the electronic and thermal properties in spinel CuInSnS4. Materials Research Bulletin 2024, 178 , 112888. https://doi.org/10.1016/j.materresbull.2024.112888
  33. Lijing Wang, Jintang Ban, Litao Han, Zhengji Zhou, Wenhui Zhou, Dongxing Kou, Yuena Meng, Yafang Qi, Shengjie Yuan, Sixin Wu. Defects in kesterite materials towards high-efficiency solar cells: origin, impact, characterization, and engineering. Journal of Materials Chemistry A 2024, 12 (38) , 25643-25677. https://doi.org/10.1039/D4TA03883E
  34. Rohit Mondal, G. Hema Chandra, Y.P. Venkata Subbaiah, Mukul Gupta, R. Prasada Rao. Insights into the structural and optical properties of (Cu,Ag)2ZnSnSe4 thin films: Role of pre-annealing and selenization times. Optical Materials 2024, 154 , 115618. https://doi.org/10.1016/j.optmat.2024.115618
  35. Oleksandra Ivakhno‐Tsehelnyk, Oleksandr Selyshchev, Serhiy Kondratenko, Volodymyr Dzhagan, Dietrich R. T. Zahn. “Green” Aqueous Synthesis, Structural, and Optical Properties of Quaternary Cu 2 ZnSnS 4 and Cu 2 NiSnS 4 Nanocrystals. physica status solidi (b) 2024, 249 https://doi.org/10.1002/pssb.202400203
  36. Lijing Wang, Liangli Chu, Zhengji Zhou, Wenhui Zhou, Dongxing Kou, Yuena Meng, Yafang Qi, Shengjie Yuan, Litao Han, Gang Yang, Zhuhua Zhang, Zhi Zheng, Sixin Wu. Synergistic Crystallization Modulation and Defects Passivation in Kesterite via Anion‐Coordinate Precursor Engineering for Efficient Solar Cells. Advanced Science 2024, https://doi.org/10.1002/advs.202405016
  37. Jiajia Guo, Rutao Meng, Yue Liu, Yang Mao, Jianping Ao, Yi Zhang. Ferroelectric BaTiO 3 Nanoparticles Embedded at the p–n Heterojunction Interface Improves the Carrier Transport in Kesterite Solar Cells. Advanced Functional Materials 2024, 34 (27) https://doi.org/10.1002/adfm.202316119
  38. Vaibhav Gupta, Prasun Kumar, Ranbir Singh. Unveiling the potential of bifacial photovoltaics in harvesting indoor light energy: A comprehensive review. Solar Energy 2024, 276 , 112660. https://doi.org/10.1016/j.solener.2024.112660
  39. Usman Ali Shah, Ao Wang, Muhammad Irfan Ullah, Muhammad Ishaq, Imtiaz Alam Shah, Yiyu Zeng, Misbah Sehar Abbasi, Muhammad Ali Umair, Umar Farooq, Guang‐Xing Liang, Kaiwen Sun. A Deep Dive into Cu 2 ZnSnS 4 (CZTS) Solar Cells: A Review of Exploring Roadblocks, Breakthroughs, and Shaping the Future. Small 2024, 20 (30) https://doi.org/10.1002/smll.202310584
  40. Oluwagbemiga P. Ojo, Wilarachchige D.C.B. Gunatilleke, Hsin Wang, George S. Nolas. Synergistic role of Sn-doping on the thermal and electrical properties of sinnerite Cu6As4S9. Journal of Alloys and Compounds 2024, 990 , 174406. https://doi.org/10.1016/j.jallcom.2024.174406
  41. Reim A. Almotiri. Tailoring the structural, optical, and optoelectrical properties of innovative n-type Ag2ZnSnS4 thin films and investigating ITO/Ag2ZnSnS4/SnS/Au heterojunction. Journal of Materials Science: Materials in Electronics 2024, 35 (11) https://doi.org/10.1007/s10854-024-12563-y
  42. Wilarachchige D.C.B. Gunatilleke, Winnie Wong-Ng, Adam J. Biacchi, Teiyan Chang, Yu-Sheng Chen, George S. Nolas. Diffusion dominant thermal transport in mixed valent Ba4Sn4Se9. Acta Materialia 2024, 23 , 119915. https://doi.org/10.1016/j.actamat.2024.119915
  43. I. M. El Radaf, H. Y. S. Al-Zahrani. Structural, Optical and Optoelectrical Properties of CuAlSnS 4 Thin Films. ECS Journal of Solid State Science and Technology 2024, 13 (3) , 035002. https://doi.org/10.1149/2162-8777/ad3366
  44. Yosuke Shimamune, Reiya Nagumo, Kazuo Jimbo. Cu 2 ZnSnS 4 formation by laser annealing in controlled atmosphere. Japanese Journal of Applied Physics 2024, 63 (2) , 02SP16. https://doi.org/10.35848/1347-4065/ad07e9
  45. D. Mora-Herrera, Mou Pal. Effect of Ge content on diode parameters of superstrate type Cu2ZnSn1−xGexS4/CdS heterostructures prepared by all-solution process. Journal of Materials Science 2024, 59 (6) , 2416-2436. https://doi.org/10.1007/s10853-024-09352-7
  46. Indrajit D. Pharne, Santosh V. Patil, Kshitij Bhargava. Effect of Defect Concentration on Photovoltaic Cell and Module Performance. 2024, 23-27. https://doi.org/10.1007/978-3-031-68038-0_4
  47. Nowshin Akhtary, Ahmed Zubair. High efficiency titanium nitride bowtie nanoparticle and upconverter layer incorporated kesterite tandem solar cell. Results in Physics 2023, 55 , 107148. https://doi.org/10.1016/j.rinp.2023.107148
  48. Jyoti, Bhaskar Chandra Mohanty. Revealing performance limiting factors in Cu2BaSnS4 thin film solar cells. Optik 2023, 295 , 171504. https://doi.org/10.1016/j.ijleo.2023.171504
  49. Marcello Righetto, Yongjie Wang, Karim A. Elmestekawy, Chelsea Q. Xia, Michael B. Johnston, Gerasimos Konstantatos, Laura M. Herz. Cation‐Disorder Engineering Promotes Efficient Charge‐Carrier Transport in AgBiS 2 Nanocrystal Films. Advanced Materials 2023, 35 (48) https://doi.org/10.1002/adma.202305009
  50. Mileny dos Santos Araujo, Hugo Leandro Sousa dos Santos, Marina Medina, Arthur Corrado Salomao, Lucia Helena Mascaro, Marcos Antonio Santana Andrade. Vanquishing CZTSSe deep defects to enhance photoelectrocatalytic water splitting. Electrochimica Acta 2023, 464 , 142935. https://doi.org/10.1016/j.electacta.2023.142935
  51. Maria Giovanna Buonomenna. Inorganic Thin-Film Solar Cells: Challenges at the Terawatt-Scale. Symmetry 2023, 15 (9) , 1718. https://doi.org/10.3390/sym15091718
  52. Katarzyna Lejda, Magdalena Ziąbka, Zbigniew Olejniczak, Jerzy Franciszek Janik. Long-Term Oxidation Susceptibility in Ambient Air of the Semiconductor Kesterite Cu2ZnSnS4 Nanopowders Made by Mechanochemical Synthesis Method. Materials 2023, 16 (18) , 6160. https://doi.org/10.3390/ma16186160
  53. Rajrupa Paul, Stefan W. Tabernig, Joel Reñé Sapera, Julien Hurni, Anja Tiede, Xinyun Liu, Djamshid A. Damry, Vanessa Conti, Mahdi Zamani, Simon Escobar Steinvall, Mirjana Dimitrievska, Esther Alarcon-Lladó, Valerio Piazza, Jessica Boland, Franz-Josef Haug, Albert Polman, Anna Fontcuberta i Morral. Carrier generation and collection in Zn3P2/InP heterojunction solar cells. Solar Energy Materials and Solar Cells 2023, 256 , 112349. https://doi.org/10.1016/j.solmat.2023.112349
  54. Karina G. Rodriguez-Osorio, Juan P. Morán-Lázaro, Miguel Ojeda-Martínez, Isaac Montoya De Los Santos, Nassima El Ouarie, El Mustapha Feddi, Laura M. Pérez, David Laroze, Soumyaranjan Routray, Fernando J. Sánchez-Rodríguez, Maykel Courel. Analytical Modeling and Optimization of Cu2ZnSn(S,Se)4 Solar Cells with the Use of Quantum Wells under the Radiative Limit. Nanomaterials 2023, 13 (14) , 2058. https://doi.org/10.3390/nano13142058
  55. Wilarachchige D. C. B. Gunatilleke, Winnie Wong-Ng, Teiyan Chang, Yu-Sheng Chen, George S. Nolas. Structure, electrical and thermal properties of single-crystal BaCuGdTe 3. Dalton Transactions 2023, 52 (24) , 8316-8321. https://doi.org/10.1039/D3DT01192E
  56. Kelechi C. Nwambaekwe, Valentin P. Batir, Lazari Dermenji, Nicolai D. Curmei, Ernest Arushanov, Emmanuel I. Iwuoha. Spray‐pyrolyzed Cd‐substituted kesterite thin‐films for photovoltaic applications: Post annealing conditions and property studies. Materials Chemistry and Physics 2023, 301 , 127594. https://doi.org/10.1016/j.matchemphys.2023.127594
  57. Lijing Wang, Yufei Wang, Zhengji Zhou, Wenhui Zhou, Dongxing Kou, Yuena Meng, Yafang Qi, Shengjie Yuan, Litao Han, Sixin Wu. Progress and prospectives of solution-processed kesterite absorbers for photovoltaic applications. Nanoscale 2023, 15 (20) , 8900-8924. https://doi.org/10.1039/D3NR00218G
  58. Ihsan Nawaz Khan, Muhammad Noman, Shayan Tariq Jan. Optimization of Non-Toxic Inorganic CsSnGeI3 Perovskite Solar Cell with TiO 2 and CNTS Charge Transport Layers using SCAPS-1D. 2023, 1-6. https://doi.org/10.1109/ICEPT58859.2023.10152319
  59. Indrajit D. Pharne, Santosh V. Patil, Ashish D. Rana, Kshitij Bhargava. Quantified Analysis of Highly Efficient Halide Perovskite Solar Cell. 2023, 1-6. https://doi.org/10.1109/I2CT57861.2023.10126442
  60. Md. Ferdous Rahman, Nayeem Mahmud, Intekhab Alam, Md. Hasan Ali, M. M. A. Moon, Abdul Kuddus, G. F. Ishraque Toki, M. H. K. Rubel, Md. Abdullah Al Asad, M. Khalid Hossain. Design and numerical analysis of CIGS-based solar cell with V2O5 as the BSF layer to enhance photovoltaic performance. AIP Advances 2023, 13 (4) https://doi.org/10.1063/5.0138354
  61. Yixiong Ji, Xiangyun Zhao, Yining Pan, Zhenghua Su, Jinhong Lin, Eser Metin Akinoglu, Yang Xu, Heyou Zhang, Pengjun Zhao, Yue Dong, Xingzhan Wei, Fangyang Liu, Paul Mulvaney. CuSCN Modified Back Contacts for High Performance CZTSSe Solar Cells. Advanced Functional Materials 2023, 33 (11) https://doi.org/10.1002/adfm.202211421
  62. S.T. Yussuf, K.C. Nwambaekwe, M.E. Ramoroka, E.I. Iwuoha. Photovoltaic efficiencies of microwave and Cu2ZnSnS4 (CZTS) superstrate solar cells. Materials Today Sustainability 2023, 21 , 100287. https://doi.org/10.1016/j.mtsust.2022.100287
  63. Katarzyna Lejda, Jerzy F. Janik, Marcin Perzanowski, Svitlana Stelmakh, Bogdan Pałosz. Oxygen Aspects in the High-Pressure and High-Temperature Sintering of Semiconductor Kesterite Cu2ZnSnS4 Nanopowders Prepared by a Mechanochemically-Assisted Synthesis Method. International Journal of Molecular Sciences 2023, 24 (4) , 3159. https://doi.org/10.3390/ijms24043159
  64. Diwen Liu, Qiqi Zhang, Chao Xu, Rongjian Sa. The structural, mechanical, and optoelectronic properties of Cu2-II-Sn-VI4 (II = Mg, Zn, Cd; VI = S, Se): A DFT study. Materials Science in Semiconductor Processing 2023, 154 , 107207. https://doi.org/10.1016/j.mssp.2022.107207
  65. Kaiwen Sun, Jialiang Huang, Jianjun Li, Chang Yan, Xiaojing Hao. Recent progress in defect engineering for kesterite solar cells. Science China Physics, Mechanics & Astronomy 2023, 66 (1) https://doi.org/10.1007/s11433-022-1939-6
  66. A. S. Ibraheam, Jamal M. Rzaij, M. K. Md. Arshad. Influence of Magnesium Content on the Structural, Optical, and Electrical Properties of Cu2(Zn1-xMgx)SnS4 Nanostructured Quaternary Thin Film Synthesized Using the Sol–Gel Method. Journal of Electronic Materials 2023, 52 (1) , 414-421. https://doi.org/10.1007/s11664-022-10002-4
  67. V. I. Alekseev. Sulfostannates of Zwitter-Tourmalinite Complexes Accompanying the Lithium-Fluoric Granites (On the Example of Pravourmiysky Rare-Metal-Tin Deposit). 2023, 133-139. https://doi.org/10.1007/978-3-031-23390-6_18
  68. Jiajia Guo, Jianping Ao, Yi Zhang. . Journal of Materials Chemistry A 2023, 16494. https://doi.org/10.1039/D3TA02682E
  69. Nisika, Anupam Ghosh, Kulwinder Kaur, Manoj K. Yadav, Ankush Bag, Mukesh Kumar. A new strategy of defect passivation in kesterite absorber layer to engineer the band tailing for efficient carrier transport. Applied Physics A 2022, 128 (12) https://doi.org/10.1007/s00339-022-06249-7
  70. Ibrahim Gunes, Vildan Bilgin, Emrah Sarica. Non-stoichiometric effect and disorder in as-prepared Cu2ZnSnS4 films deposited at different temperatures by ultrasonic spray pyrolysis. Materials Science in Semiconductor Processing 2022, 152 , 107120. https://doi.org/10.1016/j.mssp.2022.107120
  71. Xiaojie Yuan, Jianjun Li, Jialiang Huang, Chang Yan, Xin Cui, Kaiwen Sun, Jialin Cong, Mingrui He, Ao Wang, Guojun He, Arman Mahboubi Soufiani, Junjie Jiang, Shujie Zhou, John A. Stride, Bram Hoex, Martin Green, Xiaojing Hao. 10.3% Efficient Green Cd‐Free Cu 2 ZnSnS 4 Solar Cells Enabled by Liquid‐Phase Promoted Grain Growth. Small 2022, 18 (50) https://doi.org/10.1002/smll.202204392
  72. Sreejith P. Madhusudanan, Elamathy Balamoorthy, Suresh Kumar M., Thirugnasambandam G. Manivasagam, Sudip K. Batabyal. Alloyed Cu2Fe1-xBaxSnS4 for photoelectrochemical applications: band gap tailoring and structural transition. Journal of Solid State Electrochemistry 2022, 26 (11) , 2411-2421. https://doi.org/10.1007/s10008-022-05243-6
  73. Benisha Chris A, Soumyaranjan Routray, Yehia Massoud. Analysis of Loss Mechanisms in CZGSe Thin-Film Kesterite Solar Cells: A Statistical Distribution for Defects and Traps. ECS Journal of Solid State Science and Technology 2022, https://doi.org/10.1149/2162-8777/ac9759
  74. Arthur Mar. The centre cannot hold. Acta Crystallographica Section C Structural Chemistry 2022, 78 (10) , 515-516. https://doi.org/10.1107/S2053229622009020
  75. Zhuoran Wang, Yongjie Wang, Nima Taghipour, Lucheng Peng, Gerasimos Konstantatos. Ag‐Refined Kesterite in Superstrate Solar Cell Configuration with 9.7% Power Conversion Efficiency. Advanced Functional Materials 2022, 32 (43) https://doi.org/10.1002/adfm.202205948
  76. Sonali Das, Injamul Alam, Pitamber Mahanandia. Cu2ZnSnS4 QDs anchored 2-D few-layer graphene bridge enhanced photo induced charge carrier transport behavior for high efficient kesterite photovoltaic cell. Optical Materials 2022, 132 , 112775. https://doi.org/10.1016/j.optmat.2022.112775
  77. Benlong Luo, Rongjian Sa, Diwen Liu. Incorporation of Na into Ag2ZnSnSe4 from hybrid functional calculations. Physica B: Condensed Matter 2022, 640 , 414084. https://doi.org/10.1016/j.physb.2022.414084
  78. Sara Engberg, Mungunshagai Gansukh, Filipe Martinho, Eugen Stamate, Ole Hansen, Jørgen Schou, Stela Canulescu. Silver-substituted (Ag1-xCux)2ZnSnS4 solar cells from aprotic molecular inks. Ceramics International 2022, 48 (15) , 21483-21491. https://doi.org/10.1016/j.ceramint.2022.04.116
  79. Eleonora Isotta, Jacob Andrade‐Arvizu, Ubaidah Syafiq, Alex Jiménez‐Arguijo, Alejandro Navarro‐Güell, Maxim Guc, Edgardo Saucedo, Paolo Scardi. Towards Low Cost and Sustainable Thin Film Thermoelectric Devices Based on Quaternary Chalcogenides. Advanced Functional Materials 2022, 32 (32) https://doi.org/10.1002/adfm.202202157
  80. W. Ross Rucker, Emily G. Sukenik, Steven G. Rizzie, Dunbar P. Birnie. Thin film absorber selection to pair with silicon for 1-Sun tandem photovoltaics. Solar Energy 2022, 238 , 178-188. https://doi.org/10.1016/j.solener.2022.03.067
  81. Shahaboddin Resalati, Tobechi Okoroafor, Amani Maalouf, Edgardo Saucedo, Marcel Placidi. Life cycle assessment of different chalcogenide thin-film solar cells. Applied Energy 2022, 313 , 118888. https://doi.org/10.1016/j.apenergy.2022.118888
  82. Shriya Sakul Bal, Arindam Basak, Udai P. Singh. Numerical modeling and performance analysis of Sb-based tandem solar cell structure using SCAPS – 1D. Optical Materials 2022, 127 , 112282. https://doi.org/10.1016/j.optmat.2022.112282
  83. Stener Lie, Maxim Guc, Venkatesh Tunuguntla, Victor Izquierdo-Roca, Susanne Siebentritt, Lydia Helena Wong. Comprehensive physicochemical and photovoltaic analysis of different Zn substitutes (Mn, Mg, Fe, Ni, Co, Ba, Sr) in CZTS-inspired thin film solar cells. Journal of Materials Chemistry A 2022, 10 (16) , 9137-9149. https://doi.org/10.1039/D2TA00225F
  84. Vijay C. Karade, Mahesh P. Suryawanshi, Jun Sung Jang, Kuldeep Singh Gour, Suyoung Jang, Jongsung Park, Jin Hyeok Kim, Seung Wook Shin. Understanding defects and band tailing characteristics and their impact on the device performance of Cu 2 ZnSn(S,Se) 4 solar cells. Journal of Materials Chemistry A 2022, 10 (15) , 8466-8478. https://doi.org/10.1039/D2TA00165A
  85. Zhuoran Wang, Yongjie Wang, Gerasimos Konstantatos. Highly efficient, ultrathin, Cd-free kesterite solar cells in superstrate configuration enabled by band level tuning via Ag incorporation. Nano Energy 2022, 94 , 106898. https://doi.org/10.1016/j.nanoen.2021.106898
  86. Eleonora Isotta, Binayak Mukherjee, Sebastian Bette, Robert Dinnebier, Paolo Scardi. Static and dynamic components of Debye–Waller coefficients in the novel cubic polymorph of low-temperature disordered Cu 2 ZnSnS 4. IUCrJ 2022, 9 (2) , 272-285. https://doi.org/10.1107/S2052252522000239
  87. Rongjian Sa, Diwen Liu. The mechanical and optoelectronic properties of (Cu1-Ag )2ZnSnSe4 solid solutions: A theoretical study. Materials Chemistry and Physics 2022, 279 , 125757. https://doi.org/10.1016/j.matchemphys.2022.125757
  88. Thi-Thong Ho, Efat Jokar, Shaham Quadir, Ruei-San Chen, Fang-Chen Liu, Cheng-Ying Chen, Kuei-Hsien Chen, Li-Chyong Chen. Enhancing the photovoltaic properties of SnS-Based solar cells by crystallographic orientation engineering. Solar Energy Materials and Solar Cells 2022, 236 , 111499. https://doi.org/10.1016/j.solmat.2021.111499
  89. Ke Zhao, Huiwen Xiang, Rui Zhu, Chengyan Liu, Yu Jia. Passivation principle of deep-level defects: a study of Sn Zn defects in kesterites for high-efficient solar cells. Journal of Materials Chemistry A 2022, 10 (6) , 2849-2855. https://doi.org/10.1039/D1TA10042D
  90. Bashir Eghbalifar, Heydar Izadneshan, Ghahraman Solookinejad, Leila Separdar. Investigating In2S3 as the buffer layer in CZTSSe solar cells using simulation and experimental approaches. Solid State Communications 2022, 343 , 114654. https://doi.org/10.1016/j.ssc.2022.114654
  91. Diwen Liu, Huan Peng, Qiqi Zhang, Rongjian Sa. First-principles calculations to investigate the electronic and optical properties of Cu2ZnSnS4 with Ag and Se codoping. Chemical Physics 2022, 554 , 111418. https://doi.org/10.1016/j.chemphys.2021.111418
  92. Francisco Palazon. Metal Chalcohalides: Next Generation Photovoltaic Materials?. Solar RRL 2022, 6 (2) https://doi.org/10.1002/solr.202100829
  93. Elias Z. Stutz, Mahdi Zamani, Djamshid A. Damry, Léa Buswell, Rajrupa Paul, Simon Escobar Steinvall, Jean-Baptiste Leran, Jessica L. Boland, Mirjana Dimitrievska, Anna Fontcuberta i Morral. Showcasing the optical properties of monocrystalline zinc phosphide thin films as an earth-abundant photovoltaic absorber. Materials Advances 2022, 3 (2) , 1295-1303. https://doi.org/10.1039/D1MA00922B
  94. P.K. Kannan, Sushmita Chaudhari, Suhash R. Dey, Mohamad Ramadan. Progress in Development of CZTS for Solar Photovoltaics Applications. 2022, 681-698. https://doi.org/10.1016/B978-0-12-815732-9.00130-3
  95. Abdulmutolib O. Olaoye, Thomas O. Daniel, Ebenezer O. Olabomi, Kazeem O. Olawale, Akeem Mafe. Energy and Fuels: Structural and Optical Characterization of Cu2ZnSnS4 Solar Absorber Layer for Photovoltaic Application Using SILAR Method. 2022, 27-36. https://doi.org/10.1007/978-3-030-96721-5_3
  96. Andrey A. Kistanov, Svetlana V. Ustiuzhanina, Siarhei Zhuk. Theoretical aspects of sulfide and selenides: Structure, point defects, and electronic structure modifications. 2022, 57-79. https://doi.org/10.1016/B978-0-323-99860-4.00028-9
  97. Asim Guchhait, Vinayak Vitthal Satale, Bhuvaneshwari Ezhilmaran, S. Venkataprasad Bhat, Tapas Das, Raghavendra Lawaniya, Avishek Kumar, Goutam Kumar Dalapati. Absorber-buffer interface engineering for kesterite CZTS(Se) solar cells: Wide bandgap buffer layers and postsulfurization treatment. 2022, 161-178. https://doi.org/10.1016/B978-0-323-99860-4.00003-4
  98. Kunal J. Tiwari, Sergio Giraldo, Marcel Placidi, Zacharie Jehl Li-Kao, Edgardo Saucedo. Recent Advances in the Kesterite-Based Thin Film Solar Cell Technology: Role of Ge. 2022, 41-66. https://doi.org/10.1007/978-981-19-3724-8_3
  99. Gurpreet Kaur, Ankush Vij, Akshay Kumar. Recent Advances in Earth Abundant and Environmentally Green Semiconducting Chalcogenide Nanomaterials for Photovoltaics Applications. 2022, 21-50. https://doi.org/10.1007/978-3-031-11996-5_2
  100. V. I. Alekseev, Yu. B. Marin. Ferrokësterite and Kësterite in Greisens Associated with Lithium–Fluorine Granites of the Russian Far East. Geology of Ore Deposits 2021, 63 (8) , 850-856. https://doi.org/10.1134/S107570152108002X
Load more citations

ACS Energy Letters

Cite this: ACS Energy Lett. 2017, 2, 4, 776–779
Click to copy citationCitation copied!
https://doi.org/10.1021/acsenergylett.7b00131
Published March 10, 2017

Copyright © 2017 American Chemical Society. This publication is available under these Terms of Use.

Article Views

8190

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Figure 1

    Figure 1. Comparison of the cumulative research output for Cu2ZnSn(S,Se)4 (kesterite) and CH3NH3PbI3 (halide perovskite) related photovoltaic technologies against year and the record light-to-electricity conversion efficiency. The publication data has been generated from Web of Science (February 15, 2017) for kesterite (search terms: “kesterite OR stannite” AND “solar cell”) and halide perovskite (search terms: “halide perovskite OR iodide perovskite OR hybrid perovskite” AND “solar cell”) solar cells.

    Figure 2

    Figure 2. Acceptor defect-induced energy level within the band gap of a semiconductor, broadening to an impurity band with increased defect density until at sufficiently high defect concentrations the band merges with the valence band maximum, resulting in a reduced band gap. Such tail states would limit the open-circuit voltage accessible in a photovoltaic device and could explain the voltage deficit observed in kesterite-based solar cells. Also listed are the range of possible acceptor and donor defects in Cu2ZnSnS4; a large number of possible charge-neutral defect clusters can also be formed.

  • References


    This article references 34 other publications.

    1. 1
      Polman, A.; Knight, M.; Garnett, E. C.; Ehrler, B.; Sinke, W. C. Photovoltaic materials – present efficiencies and future challenges Science 2016, 352, aad4424 DOI: 10.1126/science.aad4424
    2. 2
      Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar Cell Efficiency Tables (Version 49) Prog. Photovoltaics 2016, 24, 3 DOI: 10.1002/pip.2728
    3. 3
      Park, N.-G.; Grätzel, M.; Miyasaka, T.; Zhu, K.; Emery, K. Towards stable and commercially available perovskite solar cells Nat. Energy 2016, 1, 16152 DOI: 10.1038/nenergy.2016.152
    4. 4
      Katagiri, H.; Sasaguchi, N.; Hando, S.; Hoshino, S.; Ohashi, J.; Yokota, T. Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors Sol. Energy Mater. Sol. Cells 1997, 49, 407 DOI: 10.1016/S0927-0248(97)00119-0
    5. 5
      Wang, W.; Winkler, M. T.; Gunawan, O.; Gokmen, T.; Todorov, T. K.; Zhu, Y.; Mitzi, D. B. Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency Adv. Energy Mater. 2014, 4, 1301465 DOI: 10.1002/aenm.201301465
    6. 6

      Reported at PVSEC-36 by a research team led at DGIST in South Korea. A 0.181 cm2 solar cell was certified at 13.80% by KIER.

    7. 7
      Jiang, F.; Ikeda, S.; Harada, T.; Matsumura, M. Pure Sulfide Cu2ZnSnS4 Thin Film Solar Cells Fabricated by Preheating an Electrodeposited Metallic Stack Adv. Energy Mater. 2014, 4, 1301381 DOI: 10.1002/aenm.201301381
    8. 8
      Guo, L.; Zhu, Y.; Gunawan, O.; Gokmen, T.; Deline, V. R.; Ahmed, S.; Romankiw, L. T.; Deligianni, H. Electrodeposited Cu2ZnSnSe4 Thin Film Solar Cell with 7% Power Conversion Efficiency Prog. Photovoltaics 2014, 22, 58 DOI: 10.1002/pip.2332
    9. 9
      Yao, L.; Ao, J.; Jeng, M.-J.; Bi, J.; Gao, S.; He, Q.; Zhou, Z.; Sun, G.; Sun, Y.; Chang, L.-B. CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure Nanoscale Res. Lett. 2014, 9, 678 DOI: 10.1186/1556-276X-9-678
    10. 10
      Scragg, J. J.; Dale, P. J.; Peter, L. M. Synthesis and Characterization of Cu2ZnSnS4 Absorber Layers by an Electrodeposition-Annealing Route Thin Solid Films 2009, 517, 2481 DOI: 10.1016/j.tsf.2008.11.022
    11. 11
      Larramona, G.; Bourdais, S.; Jacob, A.; Chone, C.; Muto, T.; Cuccaro, Y.; Delatouche, B.; Moisan, C.; Pere, D.; Dennler, G. 8.6% Efficient CZTSSe Solar Cells Sprayed from Water-Ethanol CZTS Colloidal Solutions J. Phys. Chem. Lett. 2014, 5, 3763 DOI: 10.1021/jz501864a
    12. 12
      Guo, Q.; Ford, G. M.; Yang, W.-C.; Walker, B. C.; Stach, E. A.; Hillhouse, H. W.; Agrawal, R. Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals J. Am. Chem. Soc. 2010, 132, 17384 DOI: 10.1021/ja108427b
    13. 13
      Zhou, H.; Hsu, W.-C.; Duan, H.-S.; Bob, B.; Yang, W.; Song, T.-B.; Hsu, C.-J.; Yang, Y. CZTS nanocrystals: a promising approach for next generation thin film photovoltaics Energy Environ. Sci. 2013, 6, 2822 DOI: 10.1039/c3ee41627e
    14. 14
      Bag, S.; Gunawan, O.; Gokmen, T.; Zhu, Y.; Todorov, T. K.; Mitzi, D. B. Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency Energy Environ. Sci. 2012, 5, 7060 DOI: 10.1039/c2ee00056c
    15. 15
      Xin, H.; Katahara, J. K.; Braly, I. L.; Hillhouse, H. W. 8% Efficient Cu2ZnSn(S,Se)4 Solar Cells from Redox Equilibrated Simple Precursors in DMSO Adv. Energy Mater. 2014, 4, 1301823 DOI: 10.1002/aenm.201301823
    16. 16
      Haass, S. G.; Diethelm, M.; Werner, M.; Bissig, B.; Romanyuk, Y. E.; Tiwari, A. N. 11.2% Efficient Solution Processed Kesterite Solar Cell with a Low Voltage Deficit Adv. Energy Mater. 2015, 5, 1500712 DOI: 10.1002/aenm.201500712
    17. 17
      Su, Z.; Sun, K.; Han, Z.; Cui, H.; Liu, F.; Lai, Y.; Li, J.; Hao, X.; Liu, Y.; Green, M. A. Fabrication of Cu2ZnSnS4 solar cells with 5.1% efficiency via thermal decomposition and reaction using a non-toxic sol–gel route J. Mater. Chem. A 2014, 2, 500 DOI: 10.1039/C3TA13533K
    18. 18
      Liu, X.; Feng, Y.; Cui, H.; Liu, F.; Hao, X.; Conibeer, G.; Mitzi, D. B.; Green, M. The current status and future prospects of kesterite solar cells: a brief review Prog. Photovoltaics 2016, 24, 879 DOI: 10.1002/pip.2741
    19. 19
      Bourdais, S.; Choné, C.; Delatouche, B.; Jacob, A.; Larramona, G.; Moisan, C.; Lafond, A.; Donatini, F.; Rey, G.; Siebentritt, S. Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells? Adv. Energy Mater. 2016, 6, 1502276 DOI: 10.1002/aenm.201502276
    20. 20
      Gunawan, O.; Gokmen, T.; Mitzi, D. B. Suns-VOC characteristics of high performance kesterite solar cells J. Appl. Phys. 2014, 116, 084504 DOI: 10.1063/1.4893315
    21. 21
      Gershon, T.; Gokmen, T.; Gunawan, O.; Haight, R.; Guha, S.; Shin, B. Understanding the relationship between Cu2ZnSn(S,Se)4 material properties and device performance MRS Commun. 2014, 4, 159 DOI: 10.1557/mrc.2014.34
    22. 22
      Shin, D.; Saparov, B.; Mitzi, D. B. Defect Engineering in Multinary Earth-Abundant Chalcogenide Photovoltaic Materials Adv. Energy Mater. 2017, 1602366 DOI: 10.1002/aenm.201602366
    23. 23
      Lloyd, M. A.; Bishop, D.; Gunawan, O.; Mccandless, B. Fabrication and performance limitations in single crystal Cu2ZnSnSe4 Solar Cells 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) 2016, 3636 DOI: 10.1109/PVSC.2016.7750352
    24. 24
      Baranowski, L. L.; Zawadzki, P.; Lany, S.; Toberer, E. S.; Zakutayev, A. A review of defects and disorder in multinary tetrahedrally bonded semiconductors Semicond. Sci. Technol. 2016, 31, 123004 DOI: 10.1088/0268-1242/31/12/123004
    25. 25
      Chen, S. Y.; Yang, J.-H. H.; Gong, X. G.; Walsh, A.; Wei, S.-H. H. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4 Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81, 245204 DOI: 10.1103/PhysRevB.81.245204
    26. 26
      Scragg, J. J. S.; Larsen, J. K.; Kumar, M.; Persson, C.; Sendler, J.; Siebentritt, S.; Platzer Björkman, C. Cu-Zn Disorder and Band Gap Fluctuations in Cu2ZnSn(S,Se)4: Theoretical and Experimental Investigations Phys. Status Solidi B 2016, 253, 247 DOI: 10.1002/pssb.201552530
    27. 27
      Van Mieghem, P. Theory of band tails in heavily doped semiconductors Rev. Mod. Phys. 1992, 64, 755 DOI: 10.1103/RevModPhys.64.755
    28. 28
      Gokmen, T.; Gunawan, O.; Todorov, T. K.; Mitzi, D. B. Band tailing and efficiency limitation in kesterite solar cells Appl. Phys. Lett. 2013, 103, 103506 DOI: 10.1063/1.4820250
    29. 29
      Gershon, T.; Sardashti, K.; Gunawan, O.; Mankad, R.; Singh, S.; Lee, Y. S.; Ott, J. A.; Kummel, A.; Haight, R. Photovoltaic Device with over 5% Efficiency Based on an n-Type Ag2ZnSnSe4 Absorber Adv. Energy Mater. 2016, 6, 1601182 DOI: 10.1002/aenm.201601182
    30. 30
      Scragg, J. J. S.; Choubrac, L.; Lafond, A.; Ericson, T.; Platzer-Björkman, C. A low-temperature order-disorder transition in Cu2ZnSnS4 thin films Appl. Phys. Lett. 2014, 104, 041911 DOI: 10.1063/1.4863685
    31. 31
      Chen, S.; Walsh, A.; Gong, X.-G.; Wei, S.-H. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers Adv. Mater. 2013, 25, 1522 DOI: 10.1002/adma.201203146
    32. 32
      Stoneham, A. M. Non-radiative transitions in semiconductors Rep. Prog. Phys. 1981, 44, 1251 DOI: 10.1088/0034-4885/44/12/001
    33. 33
      Major, J. D.; Treharne, R. E.; Phillips, L. J.; Durose, K. A low-cost non-toxic post-growth activation step for CdTe solar cells Nature 2014, 511, 334 DOI: 10.1038/nature13435
    34. 34
      Gabor, A. M.; Tuttle, J. R.; Albin, D. S.; Contreras, M. A.; Noufi, R.; Hermann, A. M. High-efficiency CuInxGa1-xSe2 Solar Cells Made From (Inx,Ga1-x)2Se3 Precursor Films Appl. Phys. Lett. 1994, 65, 198 DOI: 10.1063/1.112670