Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
First-Principles Analysis of Radiative Recombination in Lead-Halide Perovskites
My Activity

Figure 1Loading Img
    Letter

    First-Principles Analysis of Radiative Recombination in Lead-Halide Perovskites
    Click to copy article linkArticle link copied!

    Other Access Options

    ACS Energy Letters

    Cite this: ACS Energy Lett. 2018, 3, 10, 2329–2334
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsenergylett.8b01297
    Published September 5, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Slow radiative recombination due to a slightly indirect band gap has been proposed to explain the high efficiency of lead-halide perovskite solar cells. Here, we calculate the radiative recombination rate from first principles for the prototypical lead halide perovskite, MAPbI3 (MA = CH3NH3). Because the structure is dynamic, with the MA molecule rotating even at room temperature, we determine the momentum mismatch between the band edges as a function of the orientation of the MA molecule. Our results demonstrate that the indirect nature of the band gap suppresses the radiative recombination rate by less than a factor of two and that the radiative recombination coefficient is as high as that in traditional direct-gap semiconductors. Our study provides a rigorous assessment of the radiative recombination mechanisms and their relation to the high efficiency of lead-halide perovskite solar cells, and will provide a sound basis for accurate modeling.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 91 publications.

    1. Xun Xu, Han-Pu Liang, Qiu-Shi Huang, Zheng Liu, Bai-Qing Zhao, Si-Yuan Xu, Chuan-Nan Li, Zi-Kai Zhou, Jinshan Li, Su-Huai Wei, Xie Zhang. Computational Screening of Promising Deep-Ultraviolet Light Emitters. Journal of the American Chemical Society 2024, 146 (18) , 12864-12876. https://doi.org/10.1021/jacs.4c03711
    2. Qingjie Feng, Guangjun Nan. Impacts of Crystalline Phases on Rashba Splitting in Lead Halide Perovskites from Bulk to Surfaces. The Journal of Physical Chemistry C 2023, 127 (33) , 16304-16311. https://doi.org/10.1021/acs.jpcc.3c03745
    3. Jianhui Fu, Sankaran Ramesh, Jia Wei Melvin Lim, Tze Chien Sum. Carriers, Quasi-particles, and Collective Excitations in Halide Perovskites. Chemical Reviews 2023, 123 (13) , 8154-8231. https://doi.org/10.1021/acs.chemrev.2c00843
    4. Shahariar Chowdhury, Asmaa Soheil Najm, Montri Luengchavanon, Araa Mebdir Holi, Chin Hua Chia, kuaanan Techato, Sittiporn Channumsin, Issam K. Salih. Investigating the Effect of Nonideal Conditions on the Performance of a Planar Sb2Se3-Based Solar Cell through SCAPS-1D Simulation. Energy & Fuels 2023, 37 (9) , 6722-6732. https://doi.org/10.1021/acs.energyfuels.2c03593
    5. Haoran Lu, Run Long. Spin–Orbit Coupling Notably Retards Non-radiative Electron–Hole Recombination in Methylammonium Lead Triiodide Perovskites. The Journal of Physical Chemistry Letters 2023, 14 (11) , 2715-2721. https://doi.org/10.1021/acs.jpclett.3c00473
    6. Uma V. Ghorpade, Mahesh P. Suryawanshi, Martin A. Green, Tom Wu, Xiaojing Hao, Kevin M. Ryan. Emerging Chalcohalide Materials for Energy Applications. Chemical Reviews 2023, 123 (1) , 327-378. https://doi.org/10.1021/acs.chemrev.2c00422
    7. Mirella Al Katrib, Lara Perrin, Emilie Planes. Optimizing Perovskite Solar Cell Architecture in Multistep Routes Including Electrodeposition. ACS Applied Energy Materials 2022, 5 (4) , 4461-4474. https://doi.org/10.1021/acsaem.1c04063
    8. Do-Kyoung Lee, Yunseop Shin, Ho Jin Jang, Joo-Hong Lee, Keonwoo Park, Woochan Lee, Seunghyup Yoo, Jun Yeob Lee, Dongho Kim, Jin-Wook Lee, Nam-Gyu Park. Nanocrystalline Polymorphic Energy Funnels for Efficient and Stable Perovskite Light-Emitting Diodes. ACS Energy Letters 2021, 6 (5) , 1821-1830. https://doi.org/10.1021/acsenergylett.1c00565
    9. Sudip Chakraborty, Mohammad Khaja Nazeeruddin. The Status Quo of Rashba Phenomena in Organic–Inorganic Hybrid Perovskites. The Journal of Physical Chemistry Letters 2021, 12 (1) , 361-367. https://doi.org/10.1021/acs.jpclett.0c02497
    10. Hardik L. Kagdada, Sanjeev K. Gupta, Satyaprakash Sahoo, Dheeraj K. Singh. Rashba Splitting in Two Dimensional Hybrid Perovskite Materials for High Efficient Solar and Heat Energy Harvesting. The Journal of Physical Chemistry Letters 2020, 11 (18) , 7679-7686. https://doi.org/10.1021/acs.jpclett.0c01858
    11. Philipp Tockhorn, Johannes Sutter, Rémi Colom, Lukas Kegelmann, Amran Al-Ashouri, Marcel Roß, Klaus Jäger, Thomas Unold, Sven Burger, Steve Albrecht, Christiane Becker. Improved Quantum Efficiency by Advanced Light Management in Nanotextured Solution-Processed Perovskite Solar Cells. ACS Photonics 2020, 7 (9) , 2589-2600. https://doi.org/10.1021/acsphotonics.0c00935
    12. Yongliang Shi, Oleg V. Prezhdo, Jin Zhao, Wissam A. Saidi. Iodine and Sulfur Vacancy Cooperation Promotes Ultrafast Charge Extraction at MAPbI3/MoS2 Interface. ACS Energy Letters 2020, 5 (5) , 1346-1354. https://doi.org/10.1021/acsenergylett.0c00485
    13. Eunhwan Jung, Kestutis Budzinauskas, Senol Öz, Feray Ünlü, Henning Kuhn, Julian Wagner, David Grabowski, Benjamin Klingebiel, Marie Cherasse, Jingwei Dong, Pierfrancesco Aversa, Paola Vivo, Thomas Kirchartz, Tsutomu Miyasaka, Paul H. M. van Loosdrecht, Luca Perfetti, Sanjay Mathur. Femto- to Microsecond Dynamics of Excited Electrons in a Quadruple Cation Perovskite. ACS Energy Letters 2020, 5 (3) , 785-792. https://doi.org/10.1021/acsenergylett.9b02684
    14. Abhishek Maiti, Salma Khatun, Amlan J. Pal. Rashba Band Splitting in CH3NH3PbI3: An Insight from Spin-Polarized Scanning Tunneling Spectroscopy. Nano Letters 2020, 20 (1) , 292-299. https://doi.org/10.1021/acs.nanolett.9b03800
    15. Dane W. deQuilettes, Kyle Frohna, David Emin, Thomas Kirchartz, Vladimir Bulovic, David S. Ginger, Samuel D. Stranks. Charge-Carrier Recombination in Halide Perovskites. Chemical Reviews 2019, 119 (20) , 11007-11019. https://doi.org/10.1021/acs.chemrev.9b00169
    16. Patrik Ščajev, Džiugas Litvinas, Vaiva Soriu̅tė, Gediminas Kreiza, Sandra Stanionytė, Saulius Juršėnas. Crystal Structure Ideality Impact on Bimolecular, Auger, and Diffusion Coefficients in Mixed-Cation CsxMA1–xPbBr3 and CsxFA1–xPbBr3 Perovskites. The Journal of Physical Chemistry C 2019, 123 (39) , 23838-23844. https://doi.org/10.1021/acs.jpcc.9b05824
    17. Julian A. Steele, Pascal Puech, Bartomeu Monserrat, Bo Wu, Ruo Xi Yang, Thomas Kirchartz, Haifeng Yuan, Guillaume Fleury, David Giovanni, Eduard Fron, Masoumeh Keshavarz, Elke Debroye, Guofu Zhou, Tze Chien Sum, Aron Walsh, Johan Hofkens, Maarten B. J. Roeffaers. Role of Electron–Phonon Coupling in the Thermal Evolution of Bulk Rashba-Like Spin-Split Lead Halide Perovskites Exhibiting Dual-Band Photoluminescence. ACS Energy Letters 2019, 4 (9) , 2205-2212. https://doi.org/10.1021/acsenergylett.9b01427
    18. Ayala V. Cohen, David A. Egger, Andrew M. Rappe, Leeor Kronik. Breakdown of the Static Picture of Defect Energetics in Halide Perovskites: The Case of the Br Vacancy in CsPbBr3. The Journal of Physical Chemistry Letters 2019, 10 (16) , 4490-4498. https://doi.org/10.1021/acs.jpclett.9b01855
    19. Arup Mahata, Daniele Meggiolaro, Filippo De Angelis. From Large to Small Polarons in Lead, Tin, and Mixed Lead–Tin Halide Perovskites. The Journal of Physical Chemistry Letters 2019, 10 (8) , 1790-1798. https://doi.org/10.1021/acs.jpclett.9b00422
    20. A. Filippetti, C. Caddeo, A. Bosin, P. Delugas, A. Mattoni. Donuts and Spin Vortices at the Fermi Surfaces of Hybrid Lead-Iodide CH3NH3PbI3 Perovskites. The Journal of Physical Chemistry C 2019, 123 (11) , 6753-6762. https://doi.org/10.1021/acs.jpcc.9b00140
    21. Douglas H. Fabini, Mitchell Koerner, Ram Seshadri. Candidate Inorganic Photovoltaic Materials from Electronic Structure-Based Optical Absorption and Charge Transport Proxies. Chemistry of Materials 2019, 31 (5) , 1561-1574. https://doi.org/10.1021/acs.chemmater.8b04542
    22. Arthur Marronnier, Guido Roma, Marcelo A. Carignano, Yvan Bonnassieux, Claudine Katan, Jacky Even, Edoardo Mosconi, Filippo De Angelis. Influence of Disorder and Anharmonic Fluctuations on the Dynamical Rashba Effect in Purely Inorganic Lead-Halide Perovskites. The Journal of Physical Chemistry C 2019, 123 (1) , 291-298. https://doi.org/10.1021/acs.jpcc.8b11288
    23. Md Amanullah Saifee, Urosa Latief, Javid Ali, Mohd. Shahid Khan. Tri-chalcogenides (Sb2S3/Bi2S3) solar cells with double electron transport layers: design and simulation. Discover Energy 2024, 4 (1) https://doi.org/10.1007/s43937-024-00028-6
    24. Siyuan Xu, Zheng Liu, Xun Xu, Yuzheng Guo, Su-Huai Wei, Xie Zhang. PyArc: A python package for computing absorption and radiative coefficients from first principles. Computer Physics Communications 2024, 305 , 109352. https://doi.org/10.1016/j.cpc.2024.109352
    25. Yizhou He, Hongzhuo Chen, Shiqiang Wang, Qi Wang, Chi Zhang, Qianxi Hao, Ruoyu Li, Shaorong Li, Xiaodong Liu, Xiaowei Guo. Unveiling recombination in top cells: SCAPS-1D simulations for high-efficiency bifacial planar perovskite/silicon tandem solar cells. Solar Energy 2024, 282 , 112921. https://doi.org/10.1016/j.solener.2024.112921
    26. J. Fatima Rasheed, Firoz Khan, Syed Kashif Ali, Mohd Imran, Faisal Khan, O. Madkhali, Hussain J. Alathlawi, Ali S. Alshomrany. Numerical investigations on efficient Rb-doped CsPbIBr2-based inorganic perovskite solar cells with effectual hole transport layer optimization. Materials Science and Engineering: B 2024, 308 , 117593. https://doi.org/10.1016/j.mseb.2024.117593
    27. S Vijaykumar, Atul Kumar, R Radhika, R Thandaiah Prabu. Comprehensive evaluation of recombination confined performance of CuGaO 2 for solar cell application. Physica Scripta 2024, https://doi.org/10.1088/1402-4896/ad7a3d
    28. Marina R Filip, Linn Leppert. Halide perovskites from first principles: from fundamental optoelectronic properties to the impact of structural and chemical heterogeneity. Electronic Structure 2024, 6 (3) , 033002. https://doi.org/10.1088/2516-1075/ad5898
    29. Lara Perrin, Emilie Planes, Takaya Shioki, Ryuki Tsuji, Jean‐Claude Honore, Cynthia Farha, Seigo Ito, Lionel Flandin. How Ammonium Valeric Acid Iodide Additive Can Lead to More Efficient and Stable Carbon‐Based Perovskite Solar Cells: Role of Microstructure and Interfaces?. Solar RRL 2024, 8 (17) https://doi.org/10.1002/solr.202400393
    30. Sean A. Bourelle, Xie Zhang, Sascha Feldmann, Baiyu Zhang, Angus Mathieson, Lissa Eyre, Haralds Abolins, Thomas Winkler, Chris G. Van de Walle, Felix Deschler. Energy Level Gradients from Surface to Bulk in Hybrid Metal-Halide Perovskite Thin Films. PRX Energy 2024, 3 (3) https://doi.org/10.1103/PRXEnergy.3.033001
    31. Rahutosh Ranjan, Sona Verma, Naveen Mani Tripathi. The organic HTL in highly efficient germanium-alloyed CsSnI 3 perovskite solar cell: a modelling and computational analysis. Physica Scripta 2024, 99 (6) , 066010. https://doi.org/10.1088/1402-4896/ad4e15
    32. Zheng Liu, Si-Yuan Xu, Su-Huai Wei, Xie Zhang. Chemical trend of radiative recombination in III-nitrides. Physical Review Materials 2024, 8 (4) https://doi.org/10.1103/PhysRevMaterials.8.044602
    33. S. Mahmud, M.A. Ali, M.M. Hossain, M.M. Uddin. DFT aided prediction of phase stability, optoelectronic and thermoelectric properties of A2AuScX6 (A= Cs, Rb; X= Cl, Br, I) double perovskites for energy harvesting technology. Vacuum 2024, 221 , 112926. https://doi.org/10.1016/j.vacuum.2023.112926
    34. Ye Yuan, Genghua Yan, Chris Dreessen, Toby Rudolph, Markus Hülsbeck, Benjamin Klingebiel, Jiajiu Ye, Uwe Rau, Thomas Kirchartz. Shallow defects and variable photoluminescence decay times up to 280 µs in triple-cation perovskites. Nature Materials 2024, 23 (3) , 391-397. https://doi.org/10.1038/s41563-023-01771-2
    35. Xie 燮 Zhang 张, Jun 俊 Kang 康, Su-Huai 苏淮 Wei 魏. Profiling Electronic and Phononic Band Structures of Semiconductors at Finite Temperatures: Methods and Applications. Chinese Physics Letters 2024, 41 (2) , 026301. https://doi.org/10.1088/0256-307X/41/2/026301
    36. M. Monira, M. A. Helal, M. N. H. Liton, M. Kamruzzaman, S. Kojima. Elastic, optoelectronic and photocatalytic properties of semiconducting CsNbO3: first principles insights. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-36875-x
    37. M.N.H. Liton, A.K.M. Farid Ul Islam, M.S.I. Sarker, M.M. Rahman, M.K.R. Khan. Structural polymorphism, electronic, and optical properties of NaSbS2: A computational approach toward eco-friendly and emerging semiconductor. Results in Physics 2023, 55 , 107192. https://doi.org/10.1016/j.rinp.2023.107192
    38. Jyoti, Bhaskar Chandra Mohanty. Revealing performance limiting factors in Cu2BaSnS4 thin film solar cells. Optik 2023, 295 , 171504. https://doi.org/10.1016/j.ijleo.2023.171504
    39. Bai‐Qing Zhao, Yulu Li, Xuan‐Yan Chen, Yaoyao Han, Su‐Huai Wei, Kaifeng Wu, Xie Zhang. Engineering Carrier Dynamics in Halide Perovskites by Dynamical Lattice Distortion. Advanced Science 2023, 10 (33) https://doi.org/10.1002/advs.202300386
    40. Julia E. Huddy, William J. Scheideler. Rapid 2D Patterning of High‐Performance Perovskites Using Large Area Flexography. Advanced Functional Materials 2023, 33 (44) https://doi.org/10.1002/adfm.202306312
    41. Chris Dreessen, Kassio P. S. Zanoni, Lidón Gil‐Escrig, Nathan Rodkey, Jafar I. Khan, Frédéric Laquai, Michele Sessolo, Cristina Roldán‐Carmona, Henk J. Bolink. When JV Curves Conceal Material Improvements: The Relevance of Photoluminescence Measurements in the Optimization of Perovskite Solar Cells. Advanced Optical Materials 2023, 5 https://doi.org/10.1002/adom.202301019
    42. Xuan-Yan Chen, Bai-Qing Zhao, Zheng Liu, Su-Huai Wei, Xie Zhang. Crystal-liquid duality enhanced dynamical stability of hybrid perovskites. Physical Chemistry Chemical Physics 2023, 25 (27) , 17787-17792. https://doi.org/10.1039/D3CP01541F
    43. Alessio Filippetti, Payal Wadhwa, Claudia Caddeo, Alessandro Mattoni. Fermi Surface Topology and Rashba‐Edelstein Charge‐Spin Conversion in Lead‐Halide Perovskites. Advanced Theory and Simulations 2023, 6 (6) https://doi.org/10.1002/adts.202300092
    44. Abhijeet J. Kale, Rajneesh Chaurasiya, Ambesh Dixit. Photovoltaic characteristics of ultrathin Cs2CuBiCl6 halide double perovskite based solar cell: theoretical studies. Optik 2023, 281 , 170820. https://doi.org/10.1016/j.ijleo.2023.170820
    45. Jingda Zhang, Xie Zhang, Mark E. Turiansky, Chris G. Van de Walle. Iodine Vacancies do not Cause Nonradiative Recombination in Halide Perovskites. PRX Energy 2023, 2 (1) https://doi.org/10.1103/PRXEnergy.2.013008
    46. Sk. Taheruddin Ahamed, Arindam Basak, Anup Mondal. Device modeling and investigation of Sb-based low-cost heterojunction solar cells using SCAPS-1D. Results in Optics 2023, 10 , 100364. https://doi.org/10.1016/j.rio.2023.100364
    47. Luan Passini, Jeferson Almeida Dias, Giovanna Ferreira Bigotto Gonçalves, Sajjad Ullah, Elias Paiva Ferreira Neto, Danilo Manzani. Halide-based perovskites in photonics: From photocatalysts to highly efficient optoelectronic devices. 2023, 547-600. https://doi.org/10.1016/B978-0-323-90586-2.00009-7
    48. Mehmood Shahid, Waqar Ahmed, Yiqiang Zhan, Zhang Hongtao, Chariya Kaewsaneha, Pakorn Opaprakasit. Nanosolar cell technologies. 2023, 25-41. https://doi.org/10.1016/B978-0-323-90601-2.00013-1
    49. Patricio Serafini, Pablo P. Boix, Eva M. Barea, Tomas Edvinson, Sandy Sánchez, Iván Mora-Seró. Photonic Processing of MAPbI 3 Films by Flash Annealing and Rapid Growth for High‐Performance Perovskite Solar Cells. Solar RRL 2022, 6 (12) https://doi.org/10.1002/solr.202200641
    50. Zohaib Ali, Khuram Ali. Modeling of improved efficiency and spectral response of a Si-based heterojunction solar cell by using CeO2 as a buffer layer. Journal of Computational Electronics 2022, 21 (6) , 1320-1328. https://doi.org/10.1007/s10825-022-01912-x
    51. A. Filippetti, P. Wadhwa, C. Caddeo, A. Mattoni. A promising outlook on the development of lead halide perovskites as spin-orbitronic materials. Applied Physics Letters 2022, 121 (20) https://doi.org/10.1063/5.0107903
    52. Tusar Saha, Md. Majibul Haque Babu, Md. Arifuzzaman, Jiban Podder. Thermodynamic and dynamic stability in a new potential Cs 2 AgAsCl 6 perovskite: insight from DFT study. Physical Chemistry Chemical Physics 2022, 24 (43) , 26609-26621. https://doi.org/10.1039/D2CP03152C
    53. Abhijeet J. Kale, Ambesh Dixit. Vacancy ordered Cs2SnX6 (X = Cl, Br, I) double perovskites as an absorber and antiferromagnetic NiO with GO as a hole transport layer for highly efficient heterojunction solar cell application. Solar Energy 2022, 247 , 330-345. https://doi.org/10.1016/j.solener.2022.10.040
    54. Young-Kwang Jung, Mayami Abdulla, Richard H. Friend, Samuel D. Stranks, Aron Walsh. Pressure-induced non-radiative losses in halide perovskite light-emitting diodes. Journal of Materials Chemistry C 2022, 10 (35) , 12560-12568. https://doi.org/10.1039/D2TC01490D
    55. Xie Zhang. First-principles computation of charge-carrier recombination coefficients in optoelectronic materials. 2022, 77-78. https://doi.org/10.1109/NUSOD54938.2022.9894789
    56. Shanshan Wang, Menglin Huang, Yu-Ning Wu, Weibin Chu, Jin Zhao, Aron Walsh, Xin-Gao Gong, Su-Huai Wei, Shiyou Chen. Effective lifetime of non-equilibrium carriers in semiconductors from non-adiabatic molecular dynamics simulations. Nature Computational Science 2022, 2 (8) , 486-493. https://doi.org/10.1038/s43588-022-00297-y
    57. Julia E. Huddy, Youxiong Ye, William J. Scheideler. Eliminating the Perovskite Solar Cell Manufacturing Bottleneck via High‐Speed Flexography. Advanced Materials Technologies 2022, 7 (7) https://doi.org/10.1002/admt.202101282
    58. Shriya Sakul Bal, Arindam Basak, Udai P. Singh. Numerical modeling and performance analysis of Sb-based tandem solar cell structure using SCAPS – 1D. Optical Materials 2022, 127 , 112282. https://doi.org/10.1016/j.optmat.2022.112282
    59. Hardik L. Kagdada, Sanjeev K. Gupta, Satyaprakash Sahoo, Dheeraj K. Singh. Mobility driven thermoelectric and optical properties of two-dimensional halide-based hybrid perovskites: impact of organic cation rotation. Physical Chemistry Chemical Physics 2022, 24 (15) , 8867-8880. https://doi.org/10.1039/D1CP05724C
    60. Xie Zhang, Mark E. Turiansky, Jimmy-Xuan Shen, Chris G. Van de Walle. Defect tolerance in halide perovskites: A first-principles perspective. Journal of Applied Physics 2022, 131 (9) https://doi.org/10.1063/5.0083686
    61. Xie Zhang, Mark E. Turiansky, Chris G. Van de Walle. All-inorganic halide perovskites as candidates for efficient solar cells. Cell Reports Physical Science 2021, 2 (10) , 100604. https://doi.org/10.1016/j.xcrp.2021.100604
    62. Arindam Basak, Udai P. Singh. Numerical modelling and analysis of earth abundant Sb2S3 and Sb2Se3 based solar cells using SCAPS-1D. Solar Energy Materials and Solar Cells 2021, 230 , 111184. https://doi.org/10.1016/j.solmat.2021.111184
    63. Qingyue Cui, Xin Song, Yucheng Liu, Zhuo Xu, Haochen Ye, Zhou Yang, Kui Zhao, Shengzhong (Frank) Liu. Halide-modulated self-assembly of metal-free perovskite single crystals for bio-friendly X-ray detection. Matter 2021, 4 (7) , 2490-2507. https://doi.org/10.1016/j.matt.2021.05.018
    64. Alessandro Veronese, Carlo Ciarrocchi, Marcello Marelli, Paolo Quadrelli, Maddalena Patrini, Lorenzo Malavasi. Morphological and Optical Tuning of Lead-Free Cs2SnX6 (X = I, Br) Perovskite Nanocrystals by Ligand Engineering. Frontiers in Electronics 2021, 2 https://doi.org/10.3389/felec.2021.703182
    65. M.N.H. Liton, M. Roknuzzaman, M.A. Helal, M. Kamruzzaman, A.K.M.F.U. Islam, K. Ostrikov, M.K.R. Khan. Electronic, mechanical, optical and photocatalytic properties of perovskite RbSr2Nb3O10 compound. Journal of Alloys and Compounds 2021, 867 , 159077. https://doi.org/10.1016/j.jallcom.2021.159077
    66. Lisa Krückemeier, Benedikt Krogmeier, Zhifa Liu, Uwe Rau, Thomas Kirchartz. Understanding Transient Photoluminescence in Halide Perovskite Layer Stacks and Solar Cells. Advanced Energy Materials 2021, 11 (19) https://doi.org/10.1002/aenm.202003489
    67. Wenhong Yang, Yujing Dong, Zhipeng Wang, Yuqin Li, Chunhui Dai, Dongwei Ma, Yu Jia, Zhen Yang, Chao Zeng. Synthesis, characterization, and photocatalytic activity of stannum-doped MgIn2S4 microspheres. Journal of Alloys and Compounds 2021, 860 , 158446. https://doi.org/10.1016/j.jallcom.2020.158446
    68. Le Ma, Boning Han, Fengjuan Zhang, Leimeng Xu, Tao Fang, Shalong Wang, Jizhong Song. Recent progress on defect modulation for highly efficient metal halide perovskite light-emitting diodes. Applied Materials Today 2021, 22 , 100946. https://doi.org/10.1016/j.apmt.2021.100946
    69. Vincent M. Le Corre, Tejas S. Sherkar, Marten Koopmans, L. Jan Anton Koster. Identification of the dominant recombination process for perovskite solar cells based on machine learning. Cell Reports Physical Science 2021, 2 (2) , 100346. https://doi.org/10.1016/j.xcrp.2021.100346
    70. Vincent M. Le Corre, Zishuai Wang, L. Jan Anton Koster, Wolfgang Tress. Device Modeling of Perovskite Solar Cells: Insights and Outlooks. 2020, 4-1-4-32. https://doi.org/10.1063/9780735422414_004
    71. Jingxiu Yang, Peng Zhang, Jianping Wang, Su-Huai Wei. Theoretical investigation of halide perovskites for solar cell and optoelectronic applications*. Chinese Physics B 2020, 29 (10) , 108401. https://doi.org/10.1088/1674-1056/abb3f6
    72. Jared D. Friedl, Ramez Hosseinian Ahangharnejhad, Adam B. Phillips, Michael J. Heben. Materials requirements for improving the electron transport layer/perovskite interface of perovskite solar cells determined via numerical modeling. MRS Advances 2020, 5 (50) , 2603-2610. https://doi.org/10.1557/adv.2020.319
    73. Guido Roma, Arthur Marronnier, Jacky Even. From latent ferroelectricity to hyperferroelectricity in alkali lead halide perovskites. Physical Review Materials 2020, 4 (9) https://doi.org/10.1103/PhysRevMaterials.4.092402
    74. Patrik Ščajev, Saulius Miasojedovas, Saulius Juršėnas. A carrier density dependent diffusion coefficient, recombination rate and diffusion length in MAPbI 3 and MAPbBr 3 crystals measured under one- and two-photon excitations. Journal of Materials Chemistry C 2020, 8 (30) , 10290-10301. https://doi.org/10.1039/D0TC02283G
    75. Raja Chakraborty, Goutam Paul, Amlan J. Pal. Dynamic Response of Alternating-Current-Driven Light-Emitting Diodes Based on Hybrid Halide Perovskites. Physical Review Applied 2020, 14 (2) https://doi.org/10.1103/PhysRevApplied.14.024006
    76. Thomas Kirchartz, José A. Márquez, Martin Stolterfoht, Thomas Unold. Photoluminescence‐Based Characterization of Halide Perovskites for Photovoltaics. Advanced Energy Materials 2020, 10 (26) https://doi.org/10.1002/aenm.201904134
    77. Minyeong Je, Eun Seob Sim, Jungwook Woo, Heechae Choi, Yong-Chae Chung. Manipulatable Interface Electric Field and Charge Transfer in a 2D/2D Heterojunction Photocatalyst via Oxygen Intercalation. Catalysts 2020, 10 (5) , 469. https://doi.org/10.3390/catal10050469
    78. Chang Liu, Heng Gao, Yongchang Li, Kangying Wang, Lee A. Burton, Wei Ren. Manipulation of the Rashba effect in layered tellurides MTe (M = Ge, Sn, Pb). Journal of Materials Chemistry C 2020, 8 (15) , 5143-5149. https://doi.org/10.1039/D0TC00003E
    79. Daniele Meggiolaro, Francesco Ambrosio, Edoardo Mosconi, Arup Mahata, Filippo De Angelis. Polarons in Metal Halide Perovskites. Advanced Energy Materials 2020, 10 (13) https://doi.org/10.1002/aenm.201902748
    80. Xie Zhang, Jimmy‐Xuan Shen, Chris G. Van de Walle. First‐Principles Simulation of Carrier Recombination Mechanisms in Halide Perovskites. Advanced Energy Materials 2020, 10 (13) https://doi.org/10.1002/aenm.201902830
    81. Huanchun Wang, Zheng Xie, Xuanjun Wang, Ying Jia. NaBiS2 as a Novel Indirect Bandgap Full Spectrum Photocatalyst: Synthesis and Application. Catalysts 2020, 10 (4) , 413. https://doi.org/10.3390/catal10040413
    82. Vatsal A Jhalani, Hsiao-Yi Chen, Maurizia Palummo, Marco Bernardi. Precise radiative lifetimes in bulk crystals from first principles: the case of wurtzite gallium nitride. Journal of Physics: Condensed Matter 2020, 32 (8) , 084001. https://doi.org/10.1088/1361-648X/ab5563
    83. Ryan A. DeCrescent, Naveen R. Venkatesan, Clayton J. Dahlman, Rhys M. Kennard, Xie Zhang, Wenhao Li, Xinhong Du, Michael L. Chabinyc, Rashid Zia, Jon A. Schuller. Bright magnetic dipole radiation from two-dimensional lead-halide perovskites. Science Advances 2020, 6 (6) https://doi.org/10.1126/sciadv.aay4900
    84. Lei Gao, Qingfeng Yan. Recent Advances in Lead Halide Perovskites for Radiation Detectors. Solar RRL 2020, 4 (2) https://doi.org/10.1002/solr.201900210
    85. Matthew J. Wolf, Dibyajyoti Ghosh, Jolla Kullgren, Meysam Pazoki. Characterizing MAPbI3 with the aid of first principles calculations. 2020, 217-236. https://doi.org/10.1016/B978-0-12-814727-6.00010-4
    86. Thomas Kirchartz. High open-circuit voltages in lead-halide perovskite solar cells: experiment, theory and open questions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2019, 377 (2152) , 20180286. https://doi.org/10.1098/rsta.2018.0286
    87. Hsiao-Yi Chen, Vatsal A. Jhalani, Maurizia Palummo, Marco Bernardi. Ab initio calculations of exciton radiative lifetimes in bulk crystals, nanostructures, and molecules. Physical Review B 2019, 100 (7) https://doi.org/10.1103/PhysRevB.100.075135
    88. Catherine M. Mauck, William A. Tisdale. Excitons in 2D Organic–Inorganic Halide Perovskites. Trends in Chemistry 2019, 1 (4) , 380-393. https://doi.org/10.1016/j.trechm.2019.04.003
    89. Stefan Nanz, Raphael Schmager, Muluneh G. Abebe, Christian Willig, Andreas Wickberg, Aimi Abass, Guillaume Gomard, Martin Wegener, Ulrich W. Paetzold, Carsten Rockstuhl. Photon recycling in nanopatterned perovskite thin-films for photovoltaic applications. APL Photonics 2019, 4 (7) , 076104. https://doi.org/10.1063/1.5094579
    90. Ying-Qiang Wei, Lei Xu, Qi-Ming Peng, Jian-Pu Wang, . Rashba effect in perovskites and its influences on carrier recombination. Acta Physica Sinica 2019, 68 (15) , 158506. https://doi.org/10.7498/aps.68.20190675
    91. Jimmy‐Xuan Shen, Xie Zhang, Suvadip Das, Emmanouil Kioupakis, Chris G. Van de Walle. Unexpectedly Strong Auger Recombination in Halide Perovskites. Advanced Energy Materials 2018, 8 (30) https://doi.org/10.1002/aenm.201801027

    ACS Energy Letters

    Cite this: ACS Energy Lett. 2018, 3, 10, 2329–2334
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsenergylett.8b01297
    Published September 5, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    3472

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.