First-Principles Analysis of Radiative Recombination in Lead-Halide PerovskitesClick to copy article linkArticle link copied!
- Xie Zhang*Xie Zhang*E-mail: [email protected] (X.Z.).Materials Department, University of California, Santa Barbara, California 93106-5050, United StatesMore by Xie Zhang
- Jimmy-Xuan ShenJimmy-Xuan ShenDepartment of Physics, University of California, Santa Barbara, California 93106-9530, United StatesMore by Jimmy-Xuan Shen
- Wennie WangWennie WangMaterials Department, University of California, Santa Barbara, California 93106-5050, United StatesMore by Wennie Wang
- Chris G. Van de Walle*Chris G. Van de Walle*E-mail: [email protected] (C.G.V.d.W.).Materials Department, University of California, Santa Barbara, California 93106-5050, United StatesMore by Chris G. Van de Walle
Abstract
Slow radiative recombination due to a slightly indirect band gap has been proposed to explain the high efficiency of lead-halide perovskite solar cells. Here, we calculate the radiative recombination rate from first principles for the prototypical lead halide perovskite, MAPbI3 (MA = CH3NH3). Because the structure is dynamic, with the MA molecule rotating even at room temperature, we determine the momentum mismatch between the band edges as a function of the orientation of the MA molecule. Our results demonstrate that the indirect nature of the band gap suppresses the radiative recombination rate by less than a factor of two and that the radiative recombination coefficient is as high as that in traditional direct-gap semiconductors. Our study provides a rigorous assessment of the radiative recombination mechanisms and their relation to the high efficiency of lead-halide perovskite solar cells, and will provide a sound basis for accurate modeling.
Cited By
This article is cited by 91 publications.
- Xun Xu, Han-Pu Liang, Qiu-Shi Huang, Zheng Liu, Bai-Qing Zhao, Si-Yuan Xu, Chuan-Nan Li, Zi-Kai Zhou, Jinshan Li, Su-Huai Wei, Xie Zhang. Computational Screening of Promising Deep-Ultraviolet Light Emitters. Journal of the American Chemical Society 2024, 146
(18)
, 12864-12876. https://doi.org/10.1021/jacs.4c03711
- Qingjie Feng, Guangjun Nan. Impacts of Crystalline Phases on Rashba Splitting in Lead Halide Perovskites from Bulk to Surfaces. The Journal of Physical Chemistry C 2023, 127
(33)
, 16304-16311. https://doi.org/10.1021/acs.jpcc.3c03745
- Jianhui Fu, Sankaran Ramesh, Jia Wei Melvin Lim, Tze Chien Sum. Carriers, Quasi-particles, and Collective Excitations in Halide Perovskites. Chemical Reviews 2023, 123
(13)
, 8154-8231. https://doi.org/10.1021/acs.chemrev.2c00843
- Shahariar Chowdhury, Asmaa Soheil Najm, Montri Luengchavanon, Araa Mebdir Holi, Chin Hua Chia, kuaanan Techato, Sittiporn Channumsin, Issam K. Salih. Investigating the Effect of Nonideal Conditions on the Performance of a Planar Sb2Se3-Based Solar Cell through SCAPS-1D Simulation. Energy & Fuels 2023, 37
(9)
, 6722-6732. https://doi.org/10.1021/acs.energyfuels.2c03593
- Haoran Lu, Run Long. Spin–Orbit Coupling Notably Retards Non-radiative Electron–Hole Recombination in Methylammonium Lead Triiodide Perovskites. The Journal of Physical Chemistry Letters 2023, 14
(11)
, 2715-2721. https://doi.org/10.1021/acs.jpclett.3c00473
- Uma V. Ghorpade, Mahesh P. Suryawanshi, Martin A. Green, Tom Wu, Xiaojing Hao, Kevin M. Ryan. Emerging Chalcohalide Materials for Energy Applications. Chemical Reviews 2023, 123
(1)
, 327-378. https://doi.org/10.1021/acs.chemrev.2c00422
- Mirella Al Katrib, Lara Perrin, Emilie Planes. Optimizing Perovskite Solar Cell Architecture in Multistep Routes Including Electrodeposition. ACS Applied Energy Materials 2022, 5
(4)
, 4461-4474. https://doi.org/10.1021/acsaem.1c04063
- Do-Kyoung Lee, Yunseop Shin, Ho Jin Jang, Joo-Hong Lee, Keonwoo Park, Woochan Lee, Seunghyup Yoo, Jun Yeob Lee, Dongho Kim, Jin-Wook Lee, Nam-Gyu Park. Nanocrystalline Polymorphic Energy Funnels for Efficient and Stable Perovskite Light-Emitting Diodes. ACS Energy Letters 2021, 6
(5)
, 1821-1830. https://doi.org/10.1021/acsenergylett.1c00565
- Sudip Chakraborty, Mohammad Khaja Nazeeruddin. The Status Quo of Rashba Phenomena in Organic–Inorganic Hybrid Perovskites. The Journal of Physical Chemistry Letters 2021, 12
(1)
, 361-367. https://doi.org/10.1021/acs.jpclett.0c02497
- Hardik L. Kagdada, Sanjeev K. Gupta, Satyaprakash Sahoo, Dheeraj K. Singh. Rashba Splitting in Two Dimensional Hybrid Perovskite Materials for High Efficient Solar and Heat Energy Harvesting. The Journal of Physical Chemistry Letters 2020, 11
(18)
, 7679-7686. https://doi.org/10.1021/acs.jpclett.0c01858
- Philipp Tockhorn, Johannes Sutter, Rémi Colom, Lukas Kegelmann, Amran Al-Ashouri, Marcel Roß, Klaus Jäger, Thomas Unold, Sven Burger, Steve Albrecht, Christiane Becker. Improved Quantum Efficiency by Advanced Light Management in Nanotextured Solution-Processed Perovskite Solar Cells. ACS Photonics 2020, 7
(9)
, 2589-2600. https://doi.org/10.1021/acsphotonics.0c00935
- Yongliang Shi, Oleg V. Prezhdo, Jin Zhao, Wissam A. Saidi. Iodine and Sulfur Vacancy Cooperation Promotes Ultrafast Charge Extraction at MAPbI3/MoS2 Interface. ACS Energy Letters 2020, 5
(5)
, 1346-1354. https://doi.org/10.1021/acsenergylett.0c00485
- Eunhwan Jung, Kestutis Budzinauskas, Senol Öz, Feray Ünlü, Henning Kuhn, Julian Wagner, David Grabowski, Benjamin Klingebiel, Marie Cherasse, Jingwei Dong, Pierfrancesco Aversa, Paola Vivo, Thomas Kirchartz, Tsutomu Miyasaka, Paul H. M. van Loosdrecht, Luca Perfetti, Sanjay Mathur. Femto- to Microsecond Dynamics of Excited Electrons in a Quadruple Cation Perovskite. ACS Energy Letters 2020, 5
(3)
, 785-792. https://doi.org/10.1021/acsenergylett.9b02684
- Abhishek Maiti, Salma Khatun, Amlan J. Pal. Rashba Band Splitting in CH3NH3PbI3: An Insight from Spin-Polarized Scanning Tunneling Spectroscopy. Nano Letters 2020, 20
(1)
, 292-299. https://doi.org/10.1021/acs.nanolett.9b03800
- Dane W. deQuilettes, Kyle Frohna, David Emin, Thomas Kirchartz, Vladimir Bulovic, David S. Ginger, Samuel D. Stranks. Charge-Carrier Recombination in Halide Perovskites. Chemical Reviews 2019, 119
(20)
, 11007-11019. https://doi.org/10.1021/acs.chemrev.9b00169
- Patrik Ščajev, Džiugas Litvinas, Vaiva Soriu̅tė, Gediminas Kreiza, Sandra Stanionytė, Saulius Juršėnas. Crystal Structure Ideality Impact on Bimolecular, Auger, and Diffusion Coefficients in Mixed-Cation CsxMA1–xPbBr3 and CsxFA1–xPbBr3 Perovskites. The Journal of Physical Chemistry C 2019, 123
(39)
, 23838-23844. https://doi.org/10.1021/acs.jpcc.9b05824
- Julian A. Steele, Pascal Puech, Bartomeu Monserrat, Bo Wu, Ruo Xi Yang, Thomas Kirchartz, Haifeng Yuan, Guillaume Fleury, David Giovanni, Eduard Fron, Masoumeh Keshavarz, Elke Debroye, Guofu Zhou, Tze Chien Sum, Aron Walsh, Johan Hofkens, Maarten B. J. Roeffaers. Role of Electron–Phonon Coupling in the Thermal Evolution of Bulk Rashba-Like Spin-Split Lead Halide Perovskites Exhibiting Dual-Band Photoluminescence. ACS Energy Letters 2019, 4
(9)
, 2205-2212. https://doi.org/10.1021/acsenergylett.9b01427
- Ayala
V. Cohen, David A. Egger, Andrew M. Rappe, Leeor Kronik. Breakdown of the Static Picture of Defect Energetics in Halide Perovskites: The Case of the Br Vacancy in CsPbBr3. The Journal of Physical Chemistry Letters 2019, 10
(16)
, 4490-4498. https://doi.org/10.1021/acs.jpclett.9b01855
- Arup Mahata, Daniele Meggiolaro, Filippo De Angelis. From Large to Small Polarons in Lead, Tin, and Mixed Lead–Tin Halide Perovskites. The Journal of Physical Chemistry Letters 2019, 10
(8)
, 1790-1798. https://doi.org/10.1021/acs.jpclett.9b00422
- A. Filippetti, C. Caddeo, A. Bosin, P. Delugas, A. Mattoni. Donuts and Spin Vortices at the Fermi Surfaces of Hybrid Lead-Iodide CH3NH3PbI3 Perovskites. The Journal of Physical Chemistry C 2019, 123
(11)
, 6753-6762. https://doi.org/10.1021/acs.jpcc.9b00140
- Douglas
H. Fabini, Mitchell Koerner, Ram Seshadri. Candidate Inorganic Photovoltaic Materials from Electronic Structure-Based Optical Absorption and Charge Transport Proxies. Chemistry of Materials 2019, 31
(5)
, 1561-1574. https://doi.org/10.1021/acs.chemmater.8b04542
- Arthur Marronnier, Guido Roma, Marcelo A. Carignano, Yvan Bonnassieux, Claudine Katan, Jacky Even, Edoardo Mosconi, Filippo De Angelis. Influence of Disorder and Anharmonic Fluctuations on the Dynamical Rashba Effect in Purely Inorganic Lead-Halide Perovskites. The Journal of Physical Chemistry C 2019, 123
(1)
, 291-298. https://doi.org/10.1021/acs.jpcc.8b11288
- Md Amanullah Saifee, Urosa Latief, Javid Ali, Mohd. Shahid Khan. Tri-chalcogenides (Sb2S3/Bi2S3) solar cells with double electron transport layers: design and simulation. Discover Energy 2024, 4
(1)
https://doi.org/10.1007/s43937-024-00028-6
- Siyuan Xu, Zheng Liu, Xun Xu, Yuzheng Guo, Su-Huai Wei, Xie Zhang. PyArc: A python package for computing absorption and radiative coefficients from first principles. Computer Physics Communications 2024, 305 , 109352. https://doi.org/10.1016/j.cpc.2024.109352
- Yizhou He, Hongzhuo Chen, Shiqiang Wang, Qi Wang, Chi Zhang, Qianxi Hao, Ruoyu Li, Shaorong Li, Xiaodong Liu, Xiaowei Guo. Unveiling recombination in top cells: SCAPS-1D simulations for high-efficiency bifacial planar perovskite/silicon tandem solar cells. Solar Energy 2024, 282 , 112921. https://doi.org/10.1016/j.solener.2024.112921
- J. Fatima Rasheed, Firoz Khan, Syed Kashif Ali, Mohd Imran, Faisal Khan, O. Madkhali, Hussain J. Alathlawi, Ali S. Alshomrany. Numerical investigations on efficient Rb-doped CsPbIBr2-based inorganic perovskite solar cells with effectual hole transport layer optimization. Materials Science and Engineering: B 2024, 308 , 117593. https://doi.org/10.1016/j.mseb.2024.117593
- S Vijaykumar, Atul Kumar, R Radhika, R Thandaiah Prabu. Comprehensive evaluation of recombination confined performance of CuGaO
2
for solar cell application. Physica Scripta 2024, https://doi.org/10.1088/1402-4896/ad7a3d
- Marina R Filip, Linn Leppert. Halide perovskites from first principles: from fundamental optoelectronic properties to the impact of structural and chemical heterogeneity. Electronic Structure 2024, 6
(3)
, 033002. https://doi.org/10.1088/2516-1075/ad5898
- Lara Perrin, Emilie Planes, Takaya Shioki, Ryuki Tsuji, Jean‐Claude Honore, Cynthia Farha, Seigo Ito, Lionel Flandin. How Ammonium Valeric Acid Iodide Additive Can Lead to More Efficient and Stable Carbon‐Based Perovskite Solar Cells: Role of Microstructure and Interfaces?. Solar RRL 2024, 8
(17)
https://doi.org/10.1002/solr.202400393
- Sean A. Bourelle, Xie Zhang, Sascha Feldmann, Baiyu Zhang, Angus Mathieson, Lissa Eyre, Haralds Abolins, Thomas Winkler, Chris G. Van de Walle, Felix Deschler. Energy Level Gradients from Surface to Bulk in Hybrid Metal-Halide Perovskite Thin Films. PRX Energy 2024, 3
(3)
https://doi.org/10.1103/PRXEnergy.3.033001
- Rahutosh Ranjan, Sona Verma, Naveen Mani Tripathi. The organic HTL in highly efficient germanium-alloyed CsSnI
3
perovskite solar cell: a modelling and computational analysis. Physica Scripta 2024, 99
(6)
, 066010. https://doi.org/10.1088/1402-4896/ad4e15
- Zheng Liu, Si-Yuan Xu, Su-Huai Wei, Xie Zhang. Chemical trend of radiative recombination in III-nitrides. Physical Review Materials 2024, 8
(4)
https://doi.org/10.1103/PhysRevMaterials.8.044602
- S. Mahmud, M.A. Ali, M.M. Hossain, M.M. Uddin. DFT aided prediction of phase stability, optoelectronic and thermoelectric properties of A2AuScX6 (A= Cs, Rb; X= Cl, Br, I) double perovskites for energy harvesting technology. Vacuum 2024, 221 , 112926. https://doi.org/10.1016/j.vacuum.2023.112926
- Ye Yuan, Genghua Yan, Chris Dreessen, Toby Rudolph, Markus Hülsbeck, Benjamin Klingebiel, Jiajiu Ye, Uwe Rau, Thomas Kirchartz. Shallow defects and variable photoluminescence decay times up to 280 µs in triple-cation perovskites. Nature Materials 2024, 23
(3)
, 391-397. https://doi.org/10.1038/s41563-023-01771-2
- Xie 燮 Zhang 张, Jun 俊 Kang 康, Su-Huai 苏淮 Wei 魏. Profiling Electronic and Phononic Band Structures of Semiconductors at Finite Temperatures: Methods and Applications. Chinese Physics Letters 2024, 41
(2)
, 026301. https://doi.org/10.1088/0256-307X/41/2/026301
- M. Monira, M. A. Helal, M. N. H. Liton, M. Kamruzzaman, S. Kojima. Elastic, optoelectronic and photocatalytic properties of semiconducting CsNbO3: first principles insights. Scientific Reports 2023, 13
(1)
https://doi.org/10.1038/s41598-023-36875-x
- M.N.H. Liton, A.K.M. Farid Ul Islam, M.S.I. Sarker, M.M. Rahman, M.K.R. Khan. Structural polymorphism, electronic, and optical properties of NaSbS2: A computational approach toward eco-friendly and emerging semiconductor. Results in Physics 2023, 55 , 107192. https://doi.org/10.1016/j.rinp.2023.107192
- Jyoti, Bhaskar Chandra Mohanty. Revealing performance limiting factors in Cu2BaSnS4 thin film solar cells. Optik 2023, 295 , 171504. https://doi.org/10.1016/j.ijleo.2023.171504
- Bai‐Qing Zhao, Yulu Li, Xuan‐Yan Chen, Yaoyao Han, Su‐Huai Wei, Kaifeng Wu, Xie Zhang. Engineering Carrier Dynamics in Halide Perovskites by Dynamical Lattice Distortion. Advanced Science 2023, 10
(33)
https://doi.org/10.1002/advs.202300386
- Julia E. Huddy, William J. Scheideler. Rapid 2D Patterning of High‐Performance Perovskites Using Large Area Flexography. Advanced Functional Materials 2023, 33
(44)
https://doi.org/10.1002/adfm.202306312
- Chris Dreessen, Kassio P. S. Zanoni, Lidón Gil‐Escrig, Nathan Rodkey, Jafar I. Khan, Frédéric Laquai, Michele Sessolo, Cristina Roldán‐Carmona, Henk J. Bolink. When JV Curves Conceal Material Improvements: The Relevance of Photoluminescence Measurements in the Optimization of Perovskite Solar Cells. Advanced Optical Materials 2023, 5 https://doi.org/10.1002/adom.202301019
- Xuan-Yan Chen, Bai-Qing Zhao, Zheng Liu, Su-Huai Wei, Xie Zhang. Crystal-liquid duality enhanced dynamical stability of hybrid perovskites. Physical Chemistry Chemical Physics 2023, 25
(27)
, 17787-17792. https://doi.org/10.1039/D3CP01541F
- Alessio Filippetti, Payal Wadhwa, Claudia Caddeo, Alessandro Mattoni. Fermi Surface Topology and Rashba‐Edelstein Charge‐Spin Conversion in Lead‐Halide Perovskites. Advanced Theory and Simulations 2023, 6
(6)
https://doi.org/10.1002/adts.202300092
- Abhijeet J. Kale, Rajneesh Chaurasiya, Ambesh Dixit. Photovoltaic characteristics of ultrathin Cs2CuBiCl6 halide double perovskite based solar cell: theoretical studies. Optik 2023, 281 , 170820. https://doi.org/10.1016/j.ijleo.2023.170820
- Jingda Zhang, Xie Zhang, Mark E. Turiansky, Chris G. Van de Walle. Iodine Vacancies do not Cause Nonradiative Recombination in Halide Perovskites. PRX Energy 2023, 2
(1)
https://doi.org/10.1103/PRXEnergy.2.013008
- Sk. Taheruddin Ahamed, Arindam Basak, Anup Mondal. Device modeling and investigation of Sb-based low-cost heterojunction solar cells using SCAPS-1D. Results in Optics 2023, 10 , 100364. https://doi.org/10.1016/j.rio.2023.100364
- Luan Passini, Jeferson Almeida Dias, Giovanna Ferreira Bigotto Gonçalves, Sajjad Ullah, Elias Paiva Ferreira Neto, Danilo Manzani. Halide-based perovskites in photonics: From photocatalysts to highly efficient optoelectronic devices. 2023, 547-600. https://doi.org/10.1016/B978-0-323-90586-2.00009-7
- Mehmood Shahid, Waqar Ahmed, Yiqiang Zhan, Zhang Hongtao, Chariya Kaewsaneha, Pakorn Opaprakasit. Nanosolar cell technologies. 2023, 25-41. https://doi.org/10.1016/B978-0-323-90601-2.00013-1
- Patricio Serafini, Pablo P. Boix, Eva M. Barea, Tomas Edvinson, Sandy Sánchez, Iván Mora-Seró. Photonic Processing of MAPbI
3
Films by Flash Annealing and Rapid Growth for High‐Performance Perovskite Solar Cells. Solar RRL 2022, 6
(12)
https://doi.org/10.1002/solr.202200641
- Zohaib Ali, Khuram Ali. Modeling of improved efficiency and spectral response of a Si-based heterojunction solar cell by using CeO2 as a buffer layer. Journal of Computational Electronics 2022, 21
(6)
, 1320-1328. https://doi.org/10.1007/s10825-022-01912-x
- A. Filippetti, P. Wadhwa, C. Caddeo, A. Mattoni. A promising outlook on the development of lead halide perovskites as spin-orbitronic materials. Applied Physics Letters 2022, 121
(20)
https://doi.org/10.1063/5.0107903
- Tusar Saha, Md. Majibul Haque Babu, Md. Arifuzzaman, Jiban Podder. Thermodynamic and dynamic stability in a new potential Cs
2
AgAsCl
6
perovskite: insight from DFT study. Physical Chemistry Chemical Physics 2022, 24
(43)
, 26609-26621. https://doi.org/10.1039/D2CP03152C
- Abhijeet J. Kale, Ambesh Dixit. Vacancy ordered Cs2SnX6 (X = Cl, Br, I) double perovskites as an absorber and antiferromagnetic NiO with GO as a hole transport layer for highly efficient heterojunction solar cell application. Solar Energy 2022, 247 , 330-345. https://doi.org/10.1016/j.solener.2022.10.040
- Young-Kwang Jung, Mayami Abdulla, Richard H. Friend, Samuel D. Stranks, Aron Walsh. Pressure-induced non-radiative losses in halide perovskite light-emitting diodes. Journal of Materials Chemistry C 2022, 10
(35)
, 12560-12568. https://doi.org/10.1039/D2TC01490D
- Xie Zhang. First-principles computation of charge-carrier recombination coefficients in optoelectronic materials. 2022, 77-78. https://doi.org/10.1109/NUSOD54938.2022.9894789
- Shanshan Wang, Menglin Huang, Yu-Ning Wu, Weibin Chu, Jin Zhao, Aron Walsh, Xin-Gao Gong, Su-Huai Wei, Shiyou Chen. Effective lifetime of non-equilibrium carriers in semiconductors from non-adiabatic molecular dynamics simulations. Nature Computational Science 2022, 2
(8)
, 486-493. https://doi.org/10.1038/s43588-022-00297-y
- Julia E. Huddy, Youxiong Ye, William J. Scheideler. Eliminating the Perovskite Solar Cell Manufacturing Bottleneck via High‐Speed Flexography. Advanced Materials Technologies 2022, 7
(7)
https://doi.org/10.1002/admt.202101282
- Shriya Sakul Bal, Arindam Basak, Udai P. Singh. Numerical modeling and performance analysis of Sb-based tandem solar cell structure using SCAPS – 1D. Optical Materials 2022, 127 , 112282. https://doi.org/10.1016/j.optmat.2022.112282
- Hardik L. Kagdada, Sanjeev K. Gupta, Satyaprakash Sahoo, Dheeraj K. Singh. Mobility driven thermoelectric and optical properties of two-dimensional halide-based hybrid perovskites: impact of organic cation rotation. Physical Chemistry Chemical Physics 2022, 24
(15)
, 8867-8880. https://doi.org/10.1039/D1CP05724C
- Xie Zhang, Mark E. Turiansky, Jimmy-Xuan Shen, Chris G. Van de Walle. Defect tolerance in halide perovskites: A first-principles perspective. Journal of Applied Physics 2022, 131
(9)
https://doi.org/10.1063/5.0083686
- Xie Zhang, Mark E. Turiansky, Chris G. Van de Walle. All-inorganic halide perovskites as candidates for efficient solar cells. Cell Reports Physical Science 2021, 2
(10)
, 100604. https://doi.org/10.1016/j.xcrp.2021.100604
- Arindam Basak, Udai P. Singh. Numerical modelling and analysis of earth abundant Sb2S3 and Sb2Se3 based solar cells using SCAPS-1D. Solar Energy Materials and Solar Cells 2021, 230 , 111184. https://doi.org/10.1016/j.solmat.2021.111184
- Qingyue Cui, Xin Song, Yucheng Liu, Zhuo Xu, Haochen Ye, Zhou Yang, Kui Zhao, Shengzhong (Frank) Liu. Halide-modulated self-assembly of metal-free perovskite single crystals for bio-friendly X-ray detection. Matter 2021, 4
(7)
, 2490-2507. https://doi.org/10.1016/j.matt.2021.05.018
- Alessandro Veronese, Carlo Ciarrocchi, Marcello Marelli, Paolo Quadrelli, Maddalena Patrini, Lorenzo Malavasi. Morphological and Optical Tuning of Lead-Free Cs2SnX6 (X = I, Br) Perovskite Nanocrystals by Ligand Engineering. Frontiers in Electronics 2021, 2 https://doi.org/10.3389/felec.2021.703182
- M.N.H. Liton, M. Roknuzzaman, M.A. Helal, M. Kamruzzaman, A.K.M.F.U. Islam, K. Ostrikov, M.K.R. Khan. Electronic, mechanical, optical and photocatalytic properties of perovskite RbSr2Nb3O10 compound. Journal of Alloys and Compounds 2021, 867 , 159077. https://doi.org/10.1016/j.jallcom.2021.159077
- Lisa Krückemeier, Benedikt Krogmeier, Zhifa Liu, Uwe Rau, Thomas Kirchartz. Understanding Transient Photoluminescence in Halide Perovskite Layer Stacks and Solar Cells. Advanced Energy Materials 2021, 11
(19)
https://doi.org/10.1002/aenm.202003489
- Wenhong Yang, Yujing Dong, Zhipeng Wang, Yuqin Li, Chunhui Dai, Dongwei Ma, Yu Jia, Zhen Yang, Chao Zeng. Synthesis, characterization, and photocatalytic activity of stannum-doped MgIn2S4 microspheres. Journal of Alloys and Compounds 2021, 860 , 158446. https://doi.org/10.1016/j.jallcom.2020.158446
- Le Ma, Boning Han, Fengjuan Zhang, Leimeng Xu, Tao Fang, Shalong Wang, Jizhong Song. Recent progress on defect modulation for highly efficient metal halide perovskite light-emitting diodes. Applied Materials Today 2021, 22 , 100946. https://doi.org/10.1016/j.apmt.2021.100946
- Vincent M. Le Corre, Tejas S. Sherkar, Marten Koopmans, L. Jan Anton Koster. Identification of the dominant recombination process for perovskite solar cells based on machine learning. Cell Reports Physical Science 2021, 2
(2)
, 100346. https://doi.org/10.1016/j.xcrp.2021.100346
- Vincent M. Le Corre, Zishuai Wang, L. Jan Anton Koster, Wolfgang Tress. Device Modeling of Perovskite Solar Cells: Insights and Outlooks. 2020, 4-1-4-32. https://doi.org/10.1063/9780735422414_004
- Jingxiu Yang, Peng Zhang, Jianping Wang, Su-Huai Wei. Theoretical investigation of halide perovskites for solar cell and optoelectronic applications*. Chinese Physics B 2020, 29
(10)
, 108401. https://doi.org/10.1088/1674-1056/abb3f6
- Jared D. Friedl, Ramez Hosseinian Ahangharnejhad, Adam B. Phillips, Michael J. Heben. Materials requirements for improving the electron transport layer/perovskite interface of perovskite solar cells determined via numerical modeling. MRS Advances 2020, 5
(50)
, 2603-2610. https://doi.org/10.1557/adv.2020.319
- Guido Roma, Arthur Marronnier, Jacky Even. From latent ferroelectricity to hyperferroelectricity in alkali lead halide perovskites. Physical Review Materials 2020, 4
(9)
https://doi.org/10.1103/PhysRevMaterials.4.092402
- Patrik Ščajev, Saulius Miasojedovas, Saulius Juršėnas. A carrier density dependent diffusion coefficient, recombination rate and diffusion length in MAPbI
3
and MAPbBr
3
crystals measured under one- and two-photon excitations. Journal of Materials Chemistry C 2020, 8
(30)
, 10290-10301. https://doi.org/10.1039/D0TC02283G
- Raja Chakraborty, Goutam Paul, Amlan J. Pal. Dynamic Response of Alternating-Current-Driven Light-Emitting Diodes Based on Hybrid Halide Perovskites. Physical Review Applied 2020, 14
(2)
https://doi.org/10.1103/PhysRevApplied.14.024006
- Thomas Kirchartz, José A. Márquez, Martin Stolterfoht, Thomas Unold. Photoluminescence‐Based Characterization of Halide Perovskites for Photovoltaics. Advanced Energy Materials 2020, 10
(26)
https://doi.org/10.1002/aenm.201904134
- Minyeong Je, Eun Seob Sim, Jungwook Woo, Heechae Choi, Yong-Chae Chung. Manipulatable Interface Electric Field and Charge Transfer in a 2D/2D Heterojunction Photocatalyst via Oxygen Intercalation. Catalysts 2020, 10
(5)
, 469. https://doi.org/10.3390/catal10050469
- Chang Liu, Heng Gao, Yongchang Li, Kangying Wang, Lee A. Burton, Wei Ren. Manipulation of the Rashba effect in layered tellurides MTe (M = Ge, Sn, Pb). Journal of Materials Chemistry C 2020, 8
(15)
, 5143-5149. https://doi.org/10.1039/D0TC00003E
- Daniele Meggiolaro, Francesco Ambrosio, Edoardo Mosconi, Arup Mahata, Filippo De Angelis. Polarons in Metal Halide Perovskites. Advanced Energy Materials 2020, 10
(13)
https://doi.org/10.1002/aenm.201902748
- Xie Zhang, Jimmy‐Xuan Shen, Chris G. Van de Walle. First‐Principles Simulation of Carrier Recombination Mechanisms in Halide Perovskites. Advanced Energy Materials 2020, 10
(13)
https://doi.org/10.1002/aenm.201902830
- Huanchun Wang, Zheng Xie, Xuanjun Wang, Ying Jia. NaBiS2 as a Novel Indirect Bandgap Full Spectrum Photocatalyst: Synthesis and Application. Catalysts 2020, 10
(4)
, 413. https://doi.org/10.3390/catal10040413
- Vatsal A Jhalani, Hsiao-Yi Chen, Maurizia Palummo, Marco Bernardi. Precise radiative lifetimes in bulk crystals from first principles: the case of wurtzite gallium nitride. Journal of Physics: Condensed Matter 2020, 32
(8)
, 084001. https://doi.org/10.1088/1361-648X/ab5563
- Ryan A. DeCrescent, Naveen R. Venkatesan, Clayton J. Dahlman, Rhys M. Kennard, Xie Zhang, Wenhao Li, Xinhong Du, Michael L. Chabinyc, Rashid Zia, Jon A. Schuller. Bright magnetic dipole radiation from two-dimensional lead-halide perovskites. Science Advances 2020, 6
(6)
https://doi.org/10.1126/sciadv.aay4900
- Lei Gao, Qingfeng Yan. Recent Advances in Lead Halide Perovskites for Radiation Detectors. Solar RRL 2020, 4
(2)
https://doi.org/10.1002/solr.201900210
- Matthew J. Wolf, Dibyajyoti Ghosh, Jolla Kullgren, Meysam Pazoki. Characterizing MAPbI3 with the aid of first principles calculations. 2020, 217-236. https://doi.org/10.1016/B978-0-12-814727-6.00010-4
- Thomas Kirchartz. High open-circuit voltages in lead-halide perovskite solar cells: experiment, theory and open questions. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2019, 377
(2152)
, 20180286. https://doi.org/10.1098/rsta.2018.0286
- Hsiao-Yi Chen, Vatsal A. Jhalani, Maurizia Palummo, Marco Bernardi. Ab initio
calculations of exciton radiative lifetimes in bulk crystals, nanostructures, and molecules. Physical Review B 2019, 100
(7)
https://doi.org/10.1103/PhysRevB.100.075135
- Catherine M. Mauck, William A. Tisdale. Excitons in 2D Organic–Inorganic Halide Perovskites. Trends in Chemistry 2019, 1
(4)
, 380-393. https://doi.org/10.1016/j.trechm.2019.04.003
- Stefan Nanz, Raphael Schmager, Muluneh G. Abebe, Christian Willig, Andreas Wickberg, Aimi Abass, Guillaume Gomard, Martin Wegener, Ulrich W. Paetzold, Carsten Rockstuhl. Photon recycling in nanopatterned perovskite thin-films for photovoltaic applications. APL Photonics 2019, 4
(7)
, 076104. https://doi.org/10.1063/1.5094579
- Ying-Qiang Wei, Lei Xu, Qi-Ming Peng, Jian-Pu Wang, . Rashba effect in perovskites and its influences on carrier recombination. Acta Physica Sinica 2019, 68
(15)
, 158506. https://doi.org/10.7498/aps.68.20190675
- Jimmy‐Xuan Shen, Xie Zhang, Suvadip Das, Emmanouil Kioupakis, Chris G. Van de Walle. Unexpectedly Strong Auger Recombination in Halide Perovskites. Advanced Energy Materials 2018, 8
(30)
https://doi.org/10.1002/aenm.201801027
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.