ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Challenges in Zinc Electrodes for Alkaline Zinc–Air Batteries: Obstacles to Commercialization

  • Zequan Zhao
    Zequan Zhao
    Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
    More by Zequan Zhao
  • Xiayue Fan
    Xiayue Fan
    Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
    More by Xiayue Fan
  • Jia Ding
    Jia Ding
    Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
    More by Jia Ding
  • Wenbin Hu
    Wenbin Hu
    Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
    Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
    More by Wenbin Hu
  • Cheng Zhong*
    Cheng Zhong
    Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
    Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
    *E-mail: [email protected] (C.Z.).
    More by Cheng Zhong
  • , and 
  • Jun Lu*
    Jun Lu
    Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
    *E-mail: [email protected] (J.L.).
    More by Jun Lu
Cite this: ACS Energy Lett. 2019, 4, 9, 2259–2270
Publication Date (Web):August 24, 2019
https://doi.org/10.1021/acsenergylett.9b01541
Copyright © 2019 American Chemical Society

    Article Views

    9280

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Alkaline zinc–air batteries are promising energy storage technologies with the advantages of low cost, ecological friendliness, and high energy density. However, the rechargeable zinc–air battery has not been used on a commercial scale because the zinc electrode suffers from critical problems such as passivation, dendrite growth, and hydrogen evolution reaction, which limit the practical applications of zinc–air batteries. Herein, the Perspective summaries the solutions to minimize the negative effects of zinc electrodes on discharge performance, cycling life, and shelf life. The future direction of academic research based on current studies of the existing challenges is proposed.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 275 publications.

    1. Michael Papanikolaou, Sofia Hadjithoma, Odysseas Keramidas, Chryssoula Drouza, Angelos Amoiridis, Alexandros Themistokleous, Sofia C. Hayes, Haralampos N. Miras, Panagiotis Lianos, Athanassios C. Tsipis, Themistoklis A. Kabanos, Anastasios D. Keramidas. Experimental and Theoretical Investigation of the Mechanism of the Reduction of O2 from Air to O22– by VIVO2+–N,N,N-Amidate Compounds and Their Potential Use in Fuel Cells. Inorganic Chemistry 2024, 63 (7) , 3229-3249. https://doi.org/10.1021/acs.inorgchem.3c03272
    2. Junjie Qiao, Yuyang Han, Lanyang Feng, Yanting Li, Jianning Ding, Fei Xu, Bencai Lin. Composite of Double Transition Metals (Fe, Ni) and N-Doped Carbon Nanotubes as Cathode Catalysts for Zinc–Air Batteries. ACS Applied Nano Materials 2023, 6 (24) , 22897-22906. https://doi.org/10.1021/acsanm.3c04255
    3. Xin-He Liu, Xinyan Liu, Hong-Jie Peng. Zinc–Air Flow Batteries at the Nexus of Materials Innovation and Reaction Engineering. Industrial & Engineering Chemistry Research 2023, 62 (49) , 20963-20978. https://doi.org/10.1021/acs.iecr.3c02416
    4. Valentín García-Caballero, Sebastián Lorca, Marta Villa-Moreno, Álvaro Caballero, Juan J. Giner-Casares, Antonio J. Fernández-Romero, Manuel Cano. Human Hemoglobin-Based Zinc–Air Battery in a Neutral Electrolyte. Energy & Fuels 2023, 37 (23) , 18210-18215. https://doi.org/10.1021/acs.energyfuels.3c02513
    5. Gargi Dey, Rajkumar Jana, Shadab Saifi, Ravi Kumar, D. Bhattacharyya, Ayan Datta, A. S. K. Sinha, Arshad Aijaz. Dual Single-Atomic Co–Mn Sites in Metal–Organic-Framework-Derived N-Doped Nanoporous Carbon for Electrochemical Oxygen Reduction. ACS Nano 2023, 17 (19) , 19155-19167. https://doi.org/10.1021/acsnano.3c05379
    6. Shan Cai, Xin Hao, Yuqing Luo, Guoqiang Zou, Hongshuai Hou, Jiugang Hu, Xiaobo Ji. Ice-Template-Induced Highly Interconnected Porous Polymer Gel Electrolytes for Dendrite-Free Flexible Zinc–Air Batteries. The Journal of Physical Chemistry Letters 2023, 14 (33) , 7445-7453. https://doi.org/10.1021/acs.jpclett.3c02026
    7. Wenjia Du, Zhenyu Zhang, Francesco Iacoviello, Shangwei Zhou, Rhodri E. Owen, Rhodri Jervis, Dan J. L. Brett, Paul R. Shearing. Observation of Zn Dendrite Growth via Operando Digital Microscopy and Time-Lapse Tomography. ACS Applied Materials & Interfaces 2023, 15 (11) , 14196-14205. https://doi.org/10.1021/acsami.2c19895
    8. Di Yang, Jinsheng Li, Changpeng Liu, Junjie Ge, Wei Xing, Jianbing Zhu. Regulating the MXene–Zinc Interfacial Structure toward a Highly Revisable Metal Anode of Zinc–Air Batteries. ACS Applied Materials & Interfaces 2023, 15 (8) , 10651-10659. https://doi.org/10.1021/acsami.2c20701
    9. Chenghua Wang, Huiyu Huang, Xueyan Sun, Xiaobin Deng, Yuan Lei, Wenbing Hao, Yilun Liu, Xi Chen, Wei Zhao. Strategy of Electrolyte Design: Triethanolamine as a Polydentate Ligand to Improve Solvation of Zinc in Zinc–Air Batteries. ACS Omega 2023, 8 (8) , 8092-8100. https://doi.org/10.1021/acsomega.2c08143
    10. Yang Yang, Qian-Nan Yang, Yi-Bin Yang, Peng-Fei Guo, Wan-Xin Feng, Yan Jia, Kuan Wang, Wei-Tao Wang, Zhen-Hong He, Zhao-Tie Liu. Enhancing Water Oxidation of Ru Single Atoms via Oxygen-Coordination Bonding with NiFe Layered Double Hydroxide. ACS Catalysis 2023, 13 (4) , 2771-2779. https://doi.org/10.1021/acscatal.2c05624
    11. Hange Feng, Chaomin Zhang, Menghao Luo, Yuechuan Hu, Zibo Dong, Shaolin Xue, Paul K. Chu. Photo Energy-Enhanced Oxygen Reduction and Evolution Kinetics in Zn-Air Batteries. ACS Applied Materials & Interfaces 2023, 15 (5) , 6788-6796. https://doi.org/10.1021/acsami.2c19598
    12. Renjie Liu, Yuxin Wang, Wei Zheng, Hui Zhang, Zhongyi Zhang. FeCoP2 Nanoparticles Embedded in a Hybrid Carbon Matrix as a High Performance Bifunctional Catalyst of the Advanced Zinc–Air Battery. Energy & Fuels 2023, 37 (2) , 1344-1352. https://doi.org/10.1021/acs.energyfuels.2c03489
    13. Paul Erik Olli, Tavo Romann. Educational Metal–Air Battery. Journal of Chemical Education 2023, 100 (1) , 259-266. https://doi.org/10.1021/acs.jchemed.2c00994
    14. Satoshi Ogawa, Kei Nakayama, Misaki Katayama, Ryo Ishikawa, Yuichi Ikuhara, Miwa Saito, Teruki Motohashi. Highly Durable Bifunctional Gas Diffusion Electrodes Fabricated with Melilite-Type Fe/Co/Ni-Mixed Oxide Electrocatalysts. ACS Applied Energy Materials 2022, 5 (12) , 15502-15509. https://doi.org/10.1021/acsaem.2c03084
    15. Jason Kuang, Shan Yan, Lisa M. Housel, Steven N. Ehrlich, Lu Ma, Kenneth J. Takeuchi, Esther S. Takeuchi, Amy C. Marschilok, Lei Wang. Manganese Molybdate Cathodes with Dual-Redox Centers for Aqueous Zinc-Ion Batteries: Impact of Electrolyte on Electrochemistry. ACS Sustainable Chemistry & Engineering 2022, 10 (49) , 16197-16213. https://doi.org/10.1021/acssuschemeng.2c04491
    16. R. M. Abdel Hameed . Nanostructured Phosphides as Electrocatalysts for Green Energy Generation. , 191-235. https://doi.org/10.1021/bk-2022-1432.ch008
    17. Zhengxin Zhu, Taoli Jiang, Mohsin Ali, Yahan Meng, Yang Jin, Yi Cui, Wei Chen. Rechargeable Batteries for Grid Scale Energy Storage. Chemical Reviews 2022, 122 (22) , 16610-16751. https://doi.org/10.1021/acs.chemrev.2c00289
    18. Guangying Zhang, Xu Liu, Lei Wang, Gengyu Xing, Chungui Tian, Honggang Fu. Copper Collector Generated Cu+/Cu2+ Redox Pair for Enhanced Efficiency and Lifetime of Zn–Ni/Air Hybrid Battery. ACS Nano 2022, 16 (10) , 17139-17148. https://doi.org/10.1021/acsnano.2c07542
    19. Siwen Li, Xiayue Fan, Xiaorui Liu, Zequan Zhao, Wen Xu, Zhanyao Wu, Zhonghou Feng, Cheng Zhong, Wenbin Hu. Potassium Polyacrylate-Based Gel Polymer Electrolyte for Practical Zn–Ni Batteries. ACS Applied Materials & Interfaces 2022, 14 (20) , 22847-22857. https://doi.org/10.1021/acsami.1c20999
    20. Subhajit Sarkar, Ashmita Biswas, Erakulan E. Siddharthan, Ranjit Thapa, Ramendra Sundar Dey. Strategic Modulation of Target-Specific Isolated Fe,Co Single-Atom Active Sites for Oxygen Electrocatalysis Impacting High Power Zn–Air Battery. ACS Nano 2022, 16 (5) , 7890-7903. https://doi.org/10.1021/acsnano.2c00547
    21. Bin Liu, Tian Wu, Fuyuan Ma, Cheng Zhong, Wenbin Hu. Long-Life and Highly Utilized Zinc Anode for Aqueous Batteries Enabled by Electrolyte Additives with Synergistic Effects. ACS Applied Materials & Interfaces 2022, 14 (16) , 18431-18438. https://doi.org/10.1021/acsami.2c00949
    22. Wen Liu, Peng Guo, Tianyu Zhang, Xiawei Ying, Fengling Zhou, Xinyi Zhang. Rational Electrode–Electrolyte Design for Long-Life Rechargeable Aqueous Zinc-Ion Batteries. The Journal of Physical Chemistry C 2022, 126 (3) , 1264-1270. https://doi.org/10.1021/acs.jpcc.1c08835
    23. Ye Zhang, Guang Yang, Michelle L. Lehmann, Chaoshan Wu, Lihong Zhao, Tomonori Saito, Yanliang Liang, Jagjit Nanda, Yan Yao. Separator Effect on Zinc Electrodeposition Behavior and Its Implication for Zinc Battery Lifetime. Nano Letters 2021, 21 (24) , 10446-10452. https://doi.org/10.1021/acs.nanolett.1c03792
    24. Nkosikhona Nzimande, Aderemi Haruna, Patrick Mwonga, Bertold Rasche, Franscious Cummings, Kenneth I. Ozoemena. Ceria-Spiderweb Nanosheets Unlock the Energy-Storage Properties in the “Sleeping” Triplite (Mn2(PO4)F). ACS Applied Energy Materials 2021, 4 (11) , 13085-13097. https://doi.org/10.1021/acsaem.1c02734
    25. Yuanhao Shen, Luyao Xu, Qingyu Wang, Zequan Zhao, Ziqiang Dong, Jie Liu, Cheng Zhong, Wenbin Hu. Root Reason for the Failure of a Practical Zn–Ni Battery: Shape Changing Caused by Uneven Current Distribution and Zn Dissolution. ACS Applied Materials & Interfaces 2021, 13 (43) , 51141-51150. https://doi.org/10.1021/acsami.1c17204
    26. Megan K. Puglia, Mansi Malhotra, Ajitha Chivukula, Challa V. Kumar. “Simple-Stir” Heterolayered MoS2/Graphene Nanosheets for Zn–Air Batteries. ACS Applied Nano Materials 2021, 4 (10) , 10389-10398. https://doi.org/10.1021/acsanm.1c01792
    27. Lijuan Niu, Guohua Liu, Yifan Li, Jiawen An, Boyuan Zhao, Jingsu Yang, Dan Qu, Xiayan Wang, Li An, Zaicheng Sun. CoNi Alloy Nanoparticles Encapsulated in N-Doped Graphite Carbon Nanotubes as an Efficient Electrocatalyst for Oxygen Reduction Reaction in an Alkaline Medium. ACS Sustainable Chemistry & Engineering 2021, 9 (24) , 8207-8213. https://doi.org/10.1021/acssuschemeng.1c02098
    28. Yiming Sui, Xiulei Ji. Anticatalytic Strategies to Suppress Water Electrolysis in Aqueous Batteries. Chemical Reviews 2021, 121 (11) , 6654-6695. https://doi.org/10.1021/acs.chemrev.1c00191
    29. Zhao Cai, Yangtao Ou, Bao Zhang, Jindi Wang, Lin Fu, Mintao Wan, Guocheng Li, Wenyu Wang, Li Wang, Jianjun Jiang, Zhi Wei Seh, Enyuan Hu, Xiao-Qing Yang, Yi Cui, Yongming Sun. A Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm–2 and 20 mAh cm–2. Journal of the American Chemical Society 2021, 143 (8) , 3143-3152. https://doi.org/10.1021/jacs.0c11753
    30. Shengxiang Qu, Bin Liu, Jingkun Wu, Zequan Zhao, Jie Liu, Jia Ding, Xiaopeng Han, Yida Deng, Cheng Zhong, Wenbin Hu. Kirigami-Inspired Flexible and Stretchable Zinc–Air Battery Based on Metal-Coated Sponge Electrodes. ACS Applied Materials & Interfaces 2020, 12 (49) , 54833-54841. https://doi.org/10.1021/acsami.0c17479
    31. Christopher N. Chervin, Brandon J. Hopkins, Ashley N. Hoffmaster, Nathaniel L. Skeele, Jesse S. Ko, Joseph F. Parker, Bethany M. Hudak, Jeffrey W. Long, Debra R. Rolison. Sustainable Electrocatalytic Architectures Enable Rechargeable Zinc–Air Batteries with Low Voltage Hysteresis. ACS Applied Energy Materials 2020, 3 (11) , 10485-10494. https://doi.org/10.1021/acsaem.0c01521
    32. Zijian Hong, Zeeshan Ahmad, Venkatasubramanian Viswanathan. Design Principles for Dendrite Suppression with Porous Polymer/Aqueous Solution Hybrid Electrolyte for Zn Metal Anodes. ACS Energy Letters 2020, 5 (8) , 2466-2474. https://doi.org/10.1021/acsenergylett.0c01235
    33. Ya-Ping Deng, Ruilin Liang, Gaopeng Jiang, Yi Jiang, Aiping Yu, Zhongwei Chen. The Current State of Aqueous Zn-Based Rechargeable Batteries. ACS Energy Letters 2020, 5 (5) , 1665-1675. https://doi.org/10.1021/acsenergylett.0c00502
    34. Min Wang, Unnati Joshi, James H. Pikul. Powering Electronics by Scavenging Energy from External Metals. ACS Energy Letters 2020, 5 (3) , 758-765. https://doi.org/10.1021/acsenergylett.9b02661
    35. Ghazanfar Nazir, Adeela Rehman, Jong-Hoon Lee, Choong-Hee Kim, Jagadis Gautam, Kwang Heo, Sajjad Hussain, Muhammad Ikram, Abeer A. AlObaid, Seul-Yi Lee, Soo-Jin Park. A Review of Rechargeable Zinc–Air Batteries: Recent Progress and Future Perspectives. Nano-Micro Letters 2024, 16 (1) https://doi.org/10.1007/s40820-024-01328-1
    36. Xiaorong Lin, Gao Chen, Yanping Zhu, Haitao Huang. Advanced dual-atom catalysts for rechargeable zinc-air batteries. Energy Reviews 2024, 3 (3) , 100076. https://doi.org/10.1016/j.enrev.2024.100076
    37. . Electrolytes for Aqueous Zinc‐Ion Batteries. 2024, 153-190. https://doi.org/10.1002/9783527835065.ch5
    38. Qingtao Wang, Xun Wei, Yanxia Wu, Guofu Ma, Ziqiang Lei, Shufang Ren. Bimetallic iron complex constructed clusters and single atoms neighboring structure to enhance oxygen reduction reaction performance. Journal of Colloid and Interface Science 2024, 664 , 893-901. https://doi.org/10.1016/j.jcis.2024.03.097
    39. Hongyu Cen, Yijian Gao, Shasha He, Zhuo Peng, Chonggang Wu, Zhenyu Chen. Synergistic effect of surfactant and 1,10-decanedithiol as corrosion inhibitor for zinc anode in alkaline electrolyte of zinc-air batteries. Journal of Colloid and Interface Science 2024, 659 , 160-177. https://doi.org/10.1016/j.jcis.2023.12.142
    40. Katam Srinivas, Zhuo Chen, Anran Chen, Fei Ma, Ming-qiang Zhu, Yuanfu Chen. Fe-N sites coupled with core-shell FeS@C nanoparticles to boost the oxygen catalysis for rechargeable Zn-air batteries. Journal of Energy Chemistry 2024, 90 , 565-577. https://doi.org/10.1016/j.jechem.2023.11.042
    41. Qi Liu, Hongtu Shi, Tianyu Han, Lei Wang, Honggang Fu. Research progress in wide-temperature flexible zinc-air batteries. Energy Storage Materials 2024, 67 , 103255. https://doi.org/10.1016/j.ensm.2024.103255
    42. Yizhi Yin, Huize Liu, Guandong Wang, Dandan Ma, Jinfu Ma. Efficient bifunctional catalyst CoZnO/CN: A pre-zincification strategy applied to rechargeable zinc-air batteries. Surfaces and Interfaces 2024, 46 , 103974. https://doi.org/10.1016/j.surfin.2024.103974
    43. Thiruvenkatam Subramaniam, Mustapha Balarabe Idris, Suganthi K.S., Rajan K.S., Devaraj S.. Mitigating hydrogen evolution reaction and corrosion of zinc in electrically rechargeable zinc-air batteries using nanofluid electrolytes. Journal of Energy Storage 2024, 81 , 110457. https://doi.org/10.1016/j.est.2024.110457
    44. Chenrayan Senthil, Hyun Young Jung. Coordination engineering of single-atom catalysis derived from metal-organic and inorganic frameworks for advanced batteries. Coordination Chemistry Reviews 2024, 500 , 215493. https://doi.org/10.1016/j.ccr.2023.215493
    45. Chen Xu, Yanli Niu, Vonika Ka-Man Au, Shuaiqi Gong, Xuan Liu, Jianying Wang, Deli Wu, Zuofeng Chen. Recent progress of self-supported air electrodes for flexible Zn-air batteries. Journal of Energy Chemistry 2024, 89 , 110-136. https://doi.org/10.1016/j.jechem.2023.10.038
    46. Sowjanya Vallem, Sada Venkateswarlu, Yang Li, Seunghyun Song, Man Li, Joonho Bae. MXene- and MOF-based single-atom catalysts for next-generation batteries chemistry: A synergy of experimental and theoretical insights. Energy Storage Materials 2024, 65 , 103159. https://doi.org/10.1016/j.ensm.2023.103159
    47. An Duan, Sha Luo, Wei Sun. Insight into the development of electrolytes for aqueous zinc metal batteries from alkaline to neutral. Chinese Chemical Letters 2024, 35 (2) , 108337. https://doi.org/10.1016/j.cclet.2023.108337
    48. Weili Xie, Kaiyue Zhu, Hanmiao Yang, Weishen Yang. Advancements in Achieving High Reversibility of Zinc Anode for Alkaline Zinc‐Based Batteries. Advanced Materials 2024, 36 (5) https://doi.org/10.1002/adma.202306154
    49. Linghui Meng, Yanzhe Zhu, Yile Lu, Tianyue Liang, Lu Zhou, Jiajun Fan, Yu‐Chieh Kuo, Peiyuan Guan, Tao Wan, Long Hu, Dewei Chu. Rechargeable Zn−MnO 2 Batteries: Progress, Challenges, Rational Design, and Perspectives. ChemElectroChem 2024, 11 (3) https://doi.org/10.1002/celc.202300495
    50. Xuanxuan Bi, Yi Jiang, Ruiting Chen, Yuncheng Du, Yun Zheng, Rong Yang, Rongyue Wang, Jiantao Wang, Xin Wang, Zhongwei Chen. Rechargeable Zinc–Air versus Lithium–Air Battery: from Fundamental Promises Toward Technological Potentials. Advanced Energy Materials 2024, 14 (6) https://doi.org/10.1002/aenm.202302388
    51. Abd El-Rahman El-Sayed, Hoda A. El-Shafy Shilkamy, Mahmoud Elrouby. Novel zinc-antimony alloy as anodes in alkaline batteries in the presence of sulfide ions additive: Practical and computational study. International Journal of Hydrogen Energy 2024, 56 , 418-431. https://doi.org/10.1016/j.ijhydene.2023.12.183
    52. Ch Girginov, S Kozhukharov, N Boshkova. Electrochemical assessment of the barrier ability of galvanic Zn coating primers electrodeposited on low-carbon steel. Journal of Physics: Conference Series 2024, 2710 (1) , 012013. https://doi.org/10.1088/1742-6596/2710/1/012013
    53. Yuxuan Wang, Yong Gao, Junyuan He, Jiayu Yang, Gangwen Fu, Qinghe Cao, Jie Pu, Fan Bu, Xi Xu, Cao Guan. Sphere‐Confined Reversible Zn Deposition for Stable Alkaline Aqueous Batteries. Advanced Materials 2024, 36 (8) https://doi.org/10.1002/adma.202307819
    54. Bandhana Devi, Sreekumar Kurungot. Conductive metal–organic frameworks for zinc–air battery application: design principles, recent trends and prospects. Journal of Materials Chemistry A 2024, 12 (5) , 2605-2619. https://doi.org/10.1039/D3TA03753C
    55. Yunhai Zhu, Guojin Liang, Xun Cui, Xueqin Liu, Haixia Zhong, Chunyi Zhi, Yingkui Yang. Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy & Environmental Science 2024, 17 (2) , 369-385. https://doi.org/10.1039/D3EE03584K
    56. Xingping Yuan, Cuiping He, Jianguo Wang, Xiang You, Yuanliang Chen, Qingyi Gou, Ni Yang, Gang Xie, Yanqing Hou. Inhibition of zinc dendrite growth in zinc-air batteries by alloying the anode with Ce and Yb. Journal of Alloys and Compounds 2024, 970 , 172523. https://doi.org/10.1016/j.jallcom.2023.172523
    57. Aroa R. Mainar, Elena Iruin, Idoia Urdampilleta, Hans-Jürgen Grande, J. Alberto Blázquez. Effect of cell design on the durability of secondary zinc-air batteries. Applied Energy 2024, 353 , 122049. https://doi.org/10.1016/j.apenergy.2023.122049
    58. Jia Nan, Shi Shufeng, Yang Juxiang, Jia Yuan, Weng Qiang, Chen Pei. Carbon material with high pyridine/graphite nitrogen content: an efficient electrocatalyst for the oxygen reduction reaction. New Journal of Chemistry 2024, 17 https://doi.org/10.1039/D3NJ05221D
    59. Hongfei Bao, Hele Guo, Xuan Zhang, Zhihong Tian, Jiajia Huang, Tianxi Liu, Feili Lai. Anti‐Freezing Electrolytes in Aqueous Multivalent Metal‐Ion Batteries: Progress, Challenges, and Optimization Strategies. The Chemical Record 2024, 24 (1) https://doi.org/10.1002/tcr.202300212
    60. Lei Yan, Jie Chen, Chen Yang, Jiqiang Ning, Yong Hu. Achieving High Energy Efficiency: Recent Advances in Zn‐Air‐Based Hybrid Battery Systems. Small Science 2024, 4 (1) https://doi.org/10.1002/smsc.202300094
    61. Tanyanyu Wang, Masahiro Kunimoto, Masahiro Yanagisawa, Masayuki Morita, Takeshi Abe, Takayuki Homma. Zn Dissolution−Passivation Behavior with ZnO Formation via In Situ Characterizations. ENERGY & ENVIRONMENTAL MATERIALS 2024, 7 (1) https://doi.org/10.1002/eem2.12481
    62. Tao Wang, Zezhong Shi, Faxing Wang, Jiarui He, Yiren Zhong, Yuan Ma, Zhi Zhu, Xin-Bing Cheng, Kenneth Ikechukwu Ozoemena, Yuping Wu. Advanced Bifunctional Catalyst Design for Rechargeable Zinc-Air Batteries. EES Catalysis 2024, https://doi.org/10.1039/D4EY00014E
    63. Tong Wang, Tingzhou Yang, Dan Luo, Michael Fowler, Aiping Yu, Zhongwei Chen. High‐Energy‐Density Solid‐State Metal–Air Batteries: Progress, Challenges, and Perspectives. Small 2023, 2 https://doi.org/10.1002/smll.202309306
    64. Gang Wang, Hao Chi, Yang Feng, Jie Fan, Nanping Deng, Weimin Kang, Bowen Cheng. MnF 2 Surface Modulated Hollow Carbon Nanorods on Porous Carbon Nanofibers as Efficient Bi‐Functional Oxygen Catalysis for Rechargeable Zinc–Air Batteries. Small 2023, 433 https://doi.org/10.1002/smll.202306367
    65. Yae Qi, Xiaoqing jin, Li Xu, Xuefeng Ren, Yongyao Xia. Ultra-high mass-loading V5+-VO2@PPy cathode for aqueous zinc-ion battery. Journal of Alloys and Compounds 2023, 967 , 171750. https://doi.org/10.1016/j.jallcom.2023.171750
    66. Min Jie Wang, Jiao Yang, Li Wang, Qingbin Li, Yunli Cao, Qihan Wu, Yongjun Han, Dan Wang, Chao Wang, Han-Ming Zhang, Lishan Peng. Engineering charge redistribution on high-density RuCo nanoclusters loaded on N-doped graphite carbon as robust bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Journal of Alloys and Compounds 2023, 967 , 171813. https://doi.org/10.1016/j.jallcom.2023.171813
    67. Jürgen-Martin Assafrei, Gulnara Yusibova, Kefeng Ping, Helle-Mai Piirsoo, Aile Tamm, Maike Käärik, Jaan Leis, Jaan Aruväli, Vitali Grozovski, Enn Lust, Nadezda Kongi. Maximizing the performance of aqueous zinc-air/iodide hybrid batteries through electrolyte composition optimization. Journal of Energy Storage 2023, 74 , 109528. https://doi.org/10.1016/j.est.2023.109528
    68. Yanzhe Zhu, Peiyuan Guan, Renbo Zhu, Shuo Zhang, Ziheng Feng, Mengyao Li, Tao Wan, Long Hu, Yunjian Liu, Qin Li, Juan Yu, Dewei Chu. Recent advances in flexible alkaline zinc-based batteries: Materials, structures, and perspectives. Journal of Energy Chemistry 2023, 87 , 61-88. https://doi.org/10.1016/j.jechem.2023.08.024
    69. Jingbo Cai, Jianglin Wang, Xiao Yu, Yini Long, Zhanhong Yang. ZnO quantum dots@covalent organic frameworks for high-performance alkaline zinc-based batteries. Journal of Materials Chemistry A 2023, 11 (46) , 25692-25702. https://doi.org/10.1039/D3TA05714C
    70. Ruiyu Qi, Wenhao Tang, Yiliang Shi, Kewei Teng, Yirui Deng, Lei Zhang, Junqing Zhang, Ruiping Liu. Gel Polymer Electrolyte toward Large‐Scale Application of Aqueous Zinc Batteries. Advanced Functional Materials 2023, 33 (47) https://doi.org/10.1002/adfm.202306052
    71. Yawar Salman, Sheharyar Waseem, Alessandro Alleva, Pritam Banerjee, Valentina Bonanni, Elisa Emanuele, Regina Ciancio, Alessandra Gianoncelli, George Kourousias, Andrea Li Bassi, Andrea Macrelli, Emanuele Marini, Piu Rajak, Benedetto Bozzini. Synthesis, characterization, functional testing and ageing analysis of bifunctional Zn-air battery GDEs, based on α-MnO2 nanowires and Ni/NiO nanoparticle electrocatalysts. Electrochimica Acta 2023, 469 , 143246. https://doi.org/10.1016/j.electacta.2023.143246
    72. Katam Srinivas, Zhuo Chen, Fei Ma, Anran Chen, Ziheng Zhang, Yu Wu, Ming-qiang Zhu, Yuanfu Chen. Highly accessible atomically dispersed FeNx sites coupled with Fe3C@C core-shell nanoparticles boost the oxygen catalysis for ultra-stable rechargeable Zn-air batteries. Applied Catalysis B: Environmental 2023, 335 , 122887. https://doi.org/10.1016/j.apcatb.2023.122887
    73. José Béjar, Francisco Espinosa-Magaña, Norberto Valdiviezo-Godina, Alfredo Aguilar-Elguezabal, Minerva Guerra-Balcázar, Noé Arjona, Lorena Álvarez-Contreras. CoMn2O4 nanoparticles supported on defect-rich N-doped carbon nanotubes as air electrode in rechargeable zinc-air batteries. Journal of Electroanalytical Chemistry 2023, 947 , 117754. https://doi.org/10.1016/j.jelechem.2023.117754
    74. Ting Ma, Yifei Yang, Denis Johnson, Kyle Hansen, Sisi Xiang, Ratul Mitra Thakur, Abdoulaye Djire, Jodie L. Lutkenhaus. Understanding the mechanism of a conjugated ladder polymer as a stable anode for acidic polymer-air batteries. Joule 2023, 7 (10) , 2261-2273. https://doi.org/10.1016/j.joule.2023.08.009
    75. Xian‐Wei Lv, Zhongli Wang, Zhuangzhuang Lai, Yuping Liu, Tianyi Ma, Jianxin Geng, Zhong‐Yong Yuan. Rechargeable Zinc–Air Batteries: Advances, Challenges, and Prospects. Small 2023, 574 https://doi.org/10.1002/smll.202306396
    76. Ao Chen, Yaqin Zhang, Qing Li, Guojing Liang, Shuo Yang, Zhaodong Huang, Qi Yang, Hong Hu, Xinliang Li, Ze Chen, Jun Fan, Chunyi Zhi. An immiscible phase-separation electrolyte and interface ion transfer electrochemistry enable zinc/lithium hybrid batteries with a 3.5 V-class operating voltage. Energy & Environmental Science 2023, 16 (9) , 4054-4064. https://doi.org/10.1039/D3EE01362F
    77. Zheqin Chen, Yongmin Xie, Jiaming Liu, Xiaocong Zhong, Zhifeng Xu, Ruixiang Wang. Fabrication of layered LaNi0.6Fe0.4O3-δ perovskite to enhance oxygen reduction catalytic performance. Journal of Alloys and Compounds 2023, 957 , 170320. https://doi.org/10.1016/j.jallcom.2023.170320
    78. M. E. Trejo-Caballero, Lucía Díaz-Patiño, Marlen González-Reynac, Gustavo A. Molina, J. L. López-Miranda, Rodrigo Esparza, Beatriz Liliana España-Sánchez, Noé Arjona, Miriam Estevez. Biopolymeric hydrogel electrolytes obtained by using natural polysaccharide–poly(itaconic acid- co -2-hydroxyethyl methacrylate) in deep eutectic solvents for rechargeable Zn–air batteries. Green Chemistry 2023, 25 (17) , 6784-6796. https://doi.org/10.1039/D3GC01952G
    79. Wanqi Tang, Jiarong Mai, Lili Liu, Nengfei Yu, Lijun Fu, Yuhui Chen, Yankai Liu, Yuping Wu, Teunis van Ree. Recent advances of bifunctional catalysts for zinc air batteries with stability considerations: from selecting materials to reconstruction. Nanoscale Advances 2023, 5 (17) , 4368-4401. https://doi.org/10.1039/D3NA00074E
    80. Yue Hou, Ze Chen, Xinliang Li, Yiqiao Wang, Pei Li, Huilin Cui, Rong Zhang, Shuo Yang, Shaoce Zhang, Chunyi Zhi. MBene promoted Zn peroxide chemistry in rechargeable near-neutral Zn–air batteries. Energy & Environmental Science 2023, 16 (8) , 3407-3415. https://doi.org/10.1039/D3EE01297B
    81. Katam Srinivas, Dawei Liu, Fei Ma, Anran Chen, Ziheng Zhang, Yu Wu, Qi Wu, Yuanfu Chen. Defect‐Engineered Mesoporous Undoped Carbon Nanoribbons for Benchmark Oxygen Reduction Reaction. Small 2023, 19 (34) https://doi.org/10.1002/smll.202301589
    82. Jing Li, Chaojun Wang, Zixun Yu, Yuan Chen, Li Wei. MXenes for Zinc‐Based Electrochemical Energy Storage Devices. Small 2023, 5 https://doi.org/10.1002/smll.202304543
    83. Siyuan Zhao, Tong Liu, Yayu Zuo, Manhui Wei, Jian Wang, Zongping Shao, Dennis Y.C. Leung, Tianshou Zhao, Meng Ni. High-Power-Density and High-Energy-Efficiency Zinc-Air Flow Battery System for Long-Duration Energy Storage. Chemical Engineering Journal 2023, 470 , 144091. https://doi.org/10.1016/j.cej.2023.144091
    84. Yae Qi, Mochou Liao, Yihua Xie, Jiawei Chen, Xiaoli Dong, Yonggang Wang, Jianhang Huang, Yongyao Xia. Long-life vanadium oxide cathode for zinc battery enabled by polypyrrole intercalation and concentrated electrolyte. Chemical Engineering Journal 2023, 470 , 143971. https://doi.org/10.1016/j.cej.2023.143971
    85. Srijib Das, Aniruddha Kundu, Tapas Kuila, Naresh Chandra Murmu. Recent advancements on designing transition metal-based carbon-supported single atom catalysts for oxygen electrocatalysis: Miles to go for sustainable Zn-air batteries. Energy Storage Materials 2023, 61 , 102890. https://doi.org/10.1016/j.ensm.2023.102890
    86. Dongyang Qiu, Baoyuan Li, Chuanxi Zhao, Jiaxin Dang, Genman Chen, Haoqi Qiu, He Miao. A review on zinc electrodes in alkaline electrolyte: Current challenges and optimization strategies. Energy Storage Materials 2023, 61 , 102903. https://doi.org/10.1016/j.ensm.2023.102903
    87. Shan Cai, Ge Chang, Jiugang Hu, Jiae Wu, Yuqing Luo, Guoqiang Zou, Hongshuai Hou, Xiaobo Ji. N, S‐Doped Carbon Dots as Additive for Suppression of Zinc Dendrites in Alkaline Electrolyte †. Chinese Journal of Chemistry 2023, 41 (14) , 1697-1704. https://doi.org/10.1002/cjoc.202200799
    88. Thiruvenkatam Subramaniam, Mustapha Balarabe Idris, G Harshini Sai, S Devaraj. The effect of the crystallographic form of MnO2 on the kinetics of oxygen reduction and evolution reaction. Materials Chemistry and Physics 2023, 303 , 127845. https://doi.org/10.1016/j.matchemphys.2023.127845
    89. Divyani Gupta, Alankar Kafle, Prajna Parimita Mohanty, Tisita Das, Sudip Chakraborty, Rajeev Ahuja, Tharamani C. Nagaiah. Self-powered NH 3 synthesis by trifunctional Co 2 B-based high power density Zn–air batteries. Journal of Materials Chemistry A 2023, 11 (23) , 12223-12235. https://doi.org/10.1039/D3TA02178E
    90. Anum Iqbal, Oussama M. El-Kadri, Nasser M. Hamdan. Insights into rechargeable Zn-air batteries for future advancements in energy storing technology. Journal of Energy Storage 2023, 62 , 106926. https://doi.org/10.1016/j.est.2023.106926
    91. Xiaoyu Yu, Zhengang Li, Xiaohong Wu, Haitang Zhang, Qingao Zhao, Hanfeng Liang, Huan Wang, Dongliang Chao, Fei Wang, Yu Qiao, Haoshen Zhou, Shi-Gang Sun. Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 2023, 7 (6) , 1145-1175. https://doi.org/10.1016/j.joule.2023.05.004
    92. Pengfei Zhang, Keliang Wang, Yayu Zuo, Manhui Wei, Hengwei Wang, Zhuo Chen, Nuo Shang, Pucheng Pei. 3D Spiral Zinc Electrode for Rechargeable Aqueous Zinc-Air Battery. Journal of The Electrochemical Society 2023, 170 (6) , 060519. https://doi.org/10.1149/1945-7111/acdafa
    93. Dong-Eun Lee, Satyanarayana Moru, Kasala Prabhakar Reddy, Wan-Kuen Jo, Surendar Tonda. Bimetallic Cu–Ni core–shell nanoparticles anchored N-doped reduced graphene oxide as a high-performance bifunctional electrocatalyst for alkaline water splitting. Applied Surface Science 2023, 622 , 156928. https://doi.org/10.1016/j.apsusc.2023.156928
    94. Zhendong Hao, Yuming Dai, Xiaolong Xu, Xiuxiu Zhao, Yuan Cong, Xiaoming Wu, Weiqiang Zhou. Strategies for addressing the challenges of aqueous zinc batteries enabled by functional separators. Journal of Materials Chemistry A 2023, 11 (21) , 11031-11047. https://doi.org/10.1039/D3TA01706K
    95. Panagiotis Lianos. A brief review on solar charging of Zn–air batteries. Physical Chemistry Chemical Physics 2023, 25 (17) , 11883-11891. https://doi.org/10.1039/D3CP00307H
    96. Daniel Deckenbach, Jörg J. Schneider. A Long‐Overlooked Pitfall in Rechargeable Zinc–Air Batteries: Proper Electrode Balancing. Advanced Materials Interfaces 2023, 10 (15) https://doi.org/10.1002/admi.202202494
    97. Fanbo Meng, Xingyu Xiong, Shengnan He, Yanxia Liu, Renzong Hu. Post Nitrogen Electrocatalysis Era From Li–N 2 Batteries to Zn–N 2 Batteries. Advanced Energy Materials 2023, 13 (19) https://doi.org/10.1002/aenm.202300269
    98. Giancarlo de Souza Dias, Josiel Martins Costa, Ambrósio Florêncio de Almeida Neto. Transition metal chalcogenides carbon-based as bifunctional cathode electrocatalysts for rechargeable zinc-air battery: An updated review. Advances in Colloid and Interface Science 2023, 315 , 102891. https://doi.org/10.1016/j.cis.2023.102891
    99. Vishal Venkatesh, Qi Yang, Jingwen Zhang, Yanghang Huang, James H Pikul, Sue Ann Bidstrup Allen, Mark G Allen. Zinc film anodes for air microbatteries: fabrication, approaches, and utilization optimization. Journal of Micromechanics and Microengineering 2023, 33 (5) , 055001. https://doi.org/10.1088/1361-6439/acbc2d
    100. Jiahe Zhang, Hanfang Zhang, Yingge Zhang, Xuemei Wang, Hongfen Li, Feng Feng, Ke Wang, Gaixia Zhang, Shuhui Sun, Yihe Zhang. Approaches to construct high-performance Mg–air batteries: from mechanism to materials design. Journal of Materials Chemistry A 2023, 11 (15) , 7924-7948. https://doi.org/10.1039/D2TA07774D
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect