Understanding Reductions of PM2.5 Concentration and Its Chemical Composition in the United States: Implications for Mitigation StrategiesClick to copy article linkArticle link copied!
- Chi Li*Chi Li*Email: [email protected]Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United StatesMore by Chi Li
- Randall V. MartinRandall V. MartinDepartment of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United StatesMore by Randall V. Martin
- Aaron van DonkelaarAaron van DonkelaarDepartment of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United StatesMore by Aaron van Donkelaar
Abstract
Motivated by the recent tightening of the US annual standard of fine particulate matter (PM2.5) concentrations from 12 to 9 μg/m3, there is a need to understand the spatial variation and drivers of historical PM2.5 reductions. We evaluate and interpret the variability of PM2.5 reductions across the contiguous US using high-resolution estimates of PM2.5 and its chemical composition over 1998–2019, inferred from satellite observations, air quality modeling, and ground-based measurements. We separated the 3092 counties into four characteristic regions sorted by PM2.5 trends. Region 1 (primarily Central Atlantic states, 25.9% population) exhibits the strongest population-weighted annual PM2.5 reduction (−3.6 ± 0.4%/yr) versus Region 2 (primarily rest of the eastern US, −3.0 ± 0.3%/yr, 39.7% population), Region 3 (primarily western Midwest, −1.9 ± 0.3%/yr, 25.6% population), and Region 4 (primarily the Mountain West, −0.4 ± 0.5%/yr, 8.9% population). Decomposition of these changes by chemical composition elucidates that sulfate exhibits the fastest reductions among all components in 2720 counties (76% of population), mostly over Regions 1–3, with the 1998–2019 mean sulfate mass fraction in PM2.5 decreasing from Region 1 (29.5%) to Region 4 (11.8%). Complete elimination of the remaining sulfate may be insufficient to meet the new standard for many regions in exceedance. Additional measures are needed to reduce other PM2.5 sources and components for further progress.
This publication is licensed under
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
Non-Commercial (NC): Only non-commercial uses of the work are permitted.
No Derivatives (ND): Derivative works may be created for non-commercial purposes, but sharing is prohibited.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
Synopsis
Regional variation in the reduction of PM2.5 across the US has been driven primarily by sulfate, but a stricter PM2.5 standard calls upon reducing other components.
Introduction
Materials and Methods
PM2.5 Data
Ground-Based Measurements
Population Data
Trend Analysis
Results
Spatially Varying PM2.5 Reduction Rates across the CONUS
Figure 1
Figure 1. Strong regional variation of PM2.5 relative trends (ΔPM2.5) across the CONUS. (a) Relative areal trends (%/yr) in annual mean PM2.5 during 1998–2019 from the satellite-derived estimates (background) and in situ measurements (points). Insignificant trends with p ≥ 0.05 are displayed with more transparent colors and smaller symbols. (b) Population (bin-width normalized distribution, blue line, left Y-axis) and 1998–2019 mean population-weighted (PW) PM2.5 chemical composition (right Y-axis, color-coded on the top) as a function of these trends. All components are presented at 35% relative humidity (RH) for consistency with PM2.5 mass concentration measurements. OM and BC are separated into contributions from open burning (Fire) and other sources (noFire). Vertical dotted lines are the thresholds to separate the four regions (Figure S4).
Component | Correlation (1 km2) | Correlation (county) | Correlation (in situ) | Correlation (co-located) |
---|---|---|---|---|
Sulfate | –0.78 | –0.79 | –0.56 | –0.62 |
Ammonium | –0.44 | –0.38 | –0.48 | –0.49 |
Nitrate | 0.08 | 0.25 | –0.07 (0.4) | –0.03 (0.7) |
OM | 0.29 | 0.21 | 0.36 (0.001) | 0.34 (0.007) |
Correlations with p < 0.001 are bold and otherwise are followed by the p-values in the brackets. For in situ observations, the nearest PM2.5 measurement (within 20 km) is used for each component observation to derive the mass fraction. Only locations with significant (p < 0.05) PM2.5 trends are investigated.
Figure 2
Figure 2. Sulfate dominates the PM2.5 reductions and its regional variation. On the left, circles and error bars (color-coded for the four regions) represent relative trends and 95% confidence intervals in annual mean regional PW PM2.5 (35% RH) over 1998–2019. Pixels in each region are further divided into four population bins (separated by purple lines and texts) following the overall PW-PM2.5 cases (the top four rows). Stacked bars indicate compositional trends (consistently normalized to multi-year mean PW PM2.5) to represent their contributions. Filled circles and bars are significant trends (p < 0.05) and empty ones are not. On the right, stacked bars represent compositional contribution to the multi-year mean PW PM2.5 for each case. OM and BC are separated into contributions from open burning (Fire) and other sources (noFire). All components are presented at 35% RH for consistency with PM2.5 mass concentration measurements.
Regionally Varying Compositional Drivers of PM2.5 Trends
Importance of Reducing Other Components to Meet the New EPA Standard
Figure 3
Figure 3. Future PM2.5 mitigation over the CONUS will require stronger measures to reduce components in addition to sulfate. Population (bin-width normalized distribution, blue line, left Y-axis) and 2017–2019 mean population-weighted (PW) PM2.5 chemical composition (right Y-axis, color-coded on the top) as a function of 2017–2019 mean PM2.5 concentrations. The vertical dotted line represents the new EPA standard (9 μg/m3). The two pie charts show the compositional fraction of PW-PM2.5 for pixels attaining (left) and violating (right) this standard based on the 2017–2019 mean concentrations. All components are presented at 35% RH for consistency with PM2.5 mass concentration measurements.
Discussion
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsestair.4c00004.
Complementary descriptions of the used data sets and uncertainties, figures, and table to support interpretation (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgments
This work was supported by the National Aeronautics and Space Administration (Grant No. 80NSSC21K0508 and 80NSSC22K0200) and the National Science Foundation (Grant No. 2244984). The authors thank the teams responsible for collecting and making available the ground-based observations used in this work.
References
This article references 63 other publications.
- 1Weichenthal, S.; Pinault, L.; Christidis, T.; Burnett, R. T.; Brook, J. R.; Chu, Y.; Crouse, D. L.; Erickson, A. C.; Hystad, P.; Li, C.; Martin, R. V.; Meng, J.; Pappin, A. J.; Tjepkema, M.; van Donkelaar, A.; Weagle, C. L.; Brauer, M. How Low Can You Go? Air Pollution Affects Mortality at Very Low Levels. Science Advances 2022, 8 (39), eabo3381 DOI: 10.1126/sciadv.abo3381Google ScholarThere is no corresponding record for this reference.
- 2Strak, M.; Weinmayr, G.; Rodopoulou, S.; Chen, J.; de Hoogh, K.; Andersen, Z. J. Long Term Exposure to Low Level Air Pollution and Mortality in Eight European Cohorts within the ELAPSE Project: Pooled Analysis. BMJ. 2021, 374, n1904, DOI: 10.1136/bmj.n1904Google ScholarThere is no corresponding record for this reference.
- 3Murray, C. J. L.; Aravkin, A. Y.; Zheng, P.; Abbafati, C.; Abbas, K. M.; Abbasi-Kangevari, M. Global Burden of 87 Risk Factors in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396 (10258), 1223– 1249, DOI: 10.1016/S0140-6736(20)30752-2Google ScholarThere is no corresponding record for this reference.
- 4Derwent, R. G.; Dernie, J. I. R.; Dollard, G. J.; Dumitrean, P.; Mitchell, R. F.; Murrells, T. P.; Telling, S. P.; Field, R. A. Twenty Years of Continuous High Time Resolution Volatile Organic Compound Monitoring in the United Kingdom from 1993 to 2012. Atmospheric Environment 2014, 99, 239– 247, DOI: 10.1016/j.atmosenv.2014.10.001Google ScholarThere is no corresponding record for this reference.
- 5Xing, J.; Pleim, J.; Mathur, R.; Pouliot, G.; Hogrefe, C.; Gan, C. M.; Wei, C. Historical Gaseous and Primary Aerosol Emissions in the United States from 1990 to 2010. Atmos. Chem. Phys. 2013, 13 (15), 7531– 7549, DOI: 10.5194/acp-13-7531-2013Google ScholarThere is no corresponding record for this reference.
- 6Hand, J. L.; Prenni, A. J.; Copeland, S.; Schichtel, B. A.; Malm, W. C. Thirty Years of the Clean Air Act Amendments: Impacts on Haze in Remote Regions of the United States (1990-2018). Atmospheric Environment 2020, 243, 117865, DOI: 10.1016/j.atmosenv.2020.117865Google ScholarThere is no corresponding record for this reference.
- 7Cheng, B.; Alapaty, K.; Arunachalam, S. Spatiotemporal Trends in PM2.5 Chemical Composition in the Conterminous U.S. during 2006-2020. Atmospheric Environment 2024, 316, 120188, DOI: 10.1016/j.atmosenv.2023.120188Google ScholarThere is no corresponding record for this reference.
- 8Hand, J. L.; Prenni, A. J.; Schichtel, B. A. Trends in Seasonal Mean Speciated Aerosol Composition in Remote Areas of the United States From 2000 Through 2021. Journal of Geophysical Research: Atmospheres 2024, 129 (2), e2023JD039902 DOI: 10.1029/2023JD039902Google ScholarThere is no corresponding record for this reference.
- 9Li, C.; Martin, R. V.; van Donkelaar, A.; Boys, B. L.; Hammer, M. S.; Xu, J.-W.; Marais, E. A.; Reff, A.; Strum, M.; Ridley, D. A.; Crippa, M.; Brauer, M.; Zhang, Q. Trends in Chemical Composition of Global and Regional Population-Weighted Fine Particulate Matter Estimated for 25 Years. Environ. Sci. Technol. 2017, 51 (19), 11185– 11195, DOI: 10.1021/acs.est.7b02530Google ScholarThere is no corresponding record for this reference.
- 10Xing, J.; Mathur, R.; Pleim, J.; Hogrefe, C.; Gan, C.-M.; Wong, D. C.; Wei, C.; Gilliam, R.; Pouliot, G. Observations and Modeling of Air Quality Trends over 1990-2010 across the Northern Hemisphere: China, the United States and Europe. Atmospheric Chemistry and Physics 2015, 15 (5), 2723– 2747, DOI: 10.5194/acp-15-2723-2015Google ScholarThere is no corresponding record for this reference.
- 11Hand, J. L.; Schichtel, B. A.; Pitchford, M.; Malm, W. C.; Frank, N. H. Seasonal Composition of Remote and Urban Fine Particulate Matter in the United States. Journal of Geophysical Research: Atmospheres 2012, 117 (D5), D05209, DOI: 10.1029/2011JD017122Google ScholarThere is no corresponding record for this reference.
- 12Hand, J. L.; Schichtel, B. A.; Malm, W. C.; Pitchford, M. L. Particulate Sulfate Ion Concentration and SO2 Emission Trends in the United States from the Early 1990s through 2010. Atmospheric Chemistry and Physics 2012, 12 (21), 10353– 10365, DOI: 10.5194/acp-12-10353-2012Google ScholarThere is no corresponding record for this reference.
- 13Hand, J. L.; Schichtel, B. A.; Malm, W. C.; Frank, N. H. Spatial and Temporal Trends in PM2.5 Organic and Elemental Carbon across the United States. Advances in Meteorology 2013, 2013, 367674, DOI: 10.1155/2013/367674Google ScholarThere is no corresponding record for this reference.
- 14Malm, W. C.; Schichtel, B. A.; Hand, J. L.; Collett, J. L., Jr Concurrent Temporal and Spatial Trends in Sulfate and Organic Mass Concentrations Measured in the IMPROVE Monitoring Program. Journal of Geophysical Research: Atmospheres 2017, 122 (19), 10,462, DOI: 10.1002/2017JD026865Google ScholarThere is no corresponding record for this reference.
- 15Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A. High Aerosol Acidity despite Declining Atmospheric Sulfate Concentrations over the Past 15 Years. Nature Geoscience 2016, 9 (4), 282– 285, DOI: 10.1038/ngeo2665Google ScholarThere is no corresponding record for this reference.
- 16McClure, C. D.; Jaffe, D. A. US Particulate Matter Air Quality Improves except in Wildfire-Prone Areas. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (31), 7901– 7906, DOI: 10.1073/pnas.1804353115Google ScholarThere is no corresponding record for this reference.
- 17Martin, R. V.; Brauer, M.; van Donkelaar, A.; Shaddick, G.; Narain, U.; Dey, S. No One Knows Which City Has the Highest Concentration of Fine Particulate Matter. Atmospheric Environment: X 2019, 3, 100040, DOI: 10.1016/j.aeaoa.2019.100040Google ScholarThere is no corresponding record for this reference.
- 18van Donkelaar, A.; Martin, R. V.; Li, C.; Burnett, R. T. Regional Estimates of Chemical Composition of Fine Particulate Matter Using a Combined Geoscience-Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2019, 53 (5), 2595– 2611, DOI: 10.1021/acs.est.8b06392Google ScholarThere is no corresponding record for this reference.
- 19Meng, X.; Hand, J. L.; Schichtel, B. A.; Liu, Y. Space-Time Trends of PM2.5 Constituents in the Conterminous United States Estimated by a Machine Learning Approach, 2005-2015. Environ. Int. 2018, 121, 1137– 1147, DOI: 10.1016/j.envint.2018.10.029Google ScholarThere is no corresponding record for this reference.
- 20Amini, H.; Danesh-Yazdi, M.; Di, Q.; Requia, W.; Wei, Y.; Abu-Awad, Y. Hyperlocal Super-Learned PM2.5 Components across the Contiguous US. Research Square , 2022, Preprint, DOI: 10.21203/rs.3.rs-1745433/v2 (accessed Feb. 13, 2024).Google ScholarThere is no corresponding record for this reference.
- 21Eastham, S. D.; Long, M. S.; Keller, C. A.; Lundgren, E.; Yantosca, R. M.; Zhuang, J.; Li, C.; Lee, C. J.; Yannetti, M.; Auer, B. M.; Clune, T. L.; Kouatchou, J.; Putman, W. M.; Thompson, M. A.; Trayanov, A. L.; Molod, A. M.; Martin, R. V.; Jacob, D. J. GEOS-Chem High Performance (GCHP V11-02c): A next-Generation Implementation of the GEOS-Chem Chemical Transport Model for Massively \hack\break Parallel Applications. Geoscientific Model Development 2018, 11 (7), 2941– 2953, DOI: 10.5194/gmd-11-2941-2018Google ScholarThere is no corresponding record for this reference.
- 22Martin, R. V.; Eastham, S. D.; Bindle, L.; Lundgren, E. W.; Clune, T. L.; Keller, C. A.; Downs, W.; Zhang, D.; Lucchesi, R. A.; Sulprizio, M. P.; Yantosca, R. M.; Li, Y.; Estrada, L.; Putman, W. M.; Auer, B. M.; Trayanov, A. L.; Pawson, S.; Jacob, D. J. Improved Advection, Resolution, Performance, and Community Access in the New Generation (Version 13) of the High-Performance GEOS-Chem Global Atmospheric Chemistry Model (GCHP). Geoscientific Model Development 2022, 15 (23), 8731– 8748, DOI: 10.5194/gmd-15-8731-2022Google ScholarThere is no corresponding record for this reference.
- 23Hammer, M. S.; van Donkelaar, A.; Martin, R. V.; McDuffie, E. E.; Lyapustin, A.; Sayer, A. M.; Hsu, N. C.; Levy, R. C.; Garay, M. J.; Kalashnikova, O. V.; Kahn, R. A. Effects of COVID-19 Lockdowns on Fine Particulate Matter Concentrations. Science Advances 2021, 7 (26), eabg7670 DOI: 10.1126/sciadv.abg7670Google ScholarThere is no corresponding record for this reference.
- 24Venter, Z. S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 Lockdowns Cause Global Air Pollution Declines. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (32), 18984– 18990, DOI: 10.1073/pnas.2006853117Google ScholarThere is no corresponding record for this reference.
- 25Keeley, J. E.; Syphard, A. D. Large California Wildfires: 2020 Fires in Historical Context. Fire Ecology 2021, 17 (1), 22, DOI: 10.1186/s42408-021-00110-7Google ScholarThere is no corresponding record for this reference.
- 26Turco, M.; Abatzoglou, J. T.; Herrera, S.; Zhuang, Y.; Jerez, S.; Lucas, D. D.; AghaKouchak, A.; Cvijanovic, I. Anthropogenic Climate Change Impacts Exacerbate Summer Forest Fires in California. Proc. Natl. Acad. Sci. U. S. A. 2023, 120 (25), e2213815120 DOI: 10.1073/pnas.2213815120Google ScholarThere is no corresponding record for this reference.
- 27Coop, J. D.; Parks, S. A.; Stevens-Rumann, C. S.; Ritter, S. M.; Hoffman, C. M. Extreme Fire Spread Events and Area Burned under Recent and Future Climate in the Western USA. Global Ecology and Biogeography 2022, 31 (10), 1949– 1959, DOI: 10.1111/geb.13496Google ScholarThere is no corresponding record for this reference.
- 28Center for International Earth Science Information Network - CIESIN - Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Count, Revision 11 , 2018. DOI: 10.7927/H4JW8BX5 (accessed Apr. 18, 2022).Google ScholarThere is no corresponding record for this reference.
- 29Heald, C. L.; Kroll, J. H. A Radical Shift in Air Pollution. Science 2021, 374 (6568), 688– 689, DOI: 10.1126/science.abl5978Google ScholarThere is no corresponding record for this reference.
- 30Sen, P. K. Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association 1968, 63 (324), 1379– 1389, DOI: 10.1080/01621459.1968.10480934Google ScholarThere is no corresponding record for this reference.
- 31Hussain, M.; Mahmud, I. pyMannKendall: A Python Package for Non Parametric Mann Kendall Family of Trend Tests. Journal of Open Source Software 2019, 4 (39), 1556, DOI: 10.21105/joss.01556Google ScholarThere is no corresponding record for this reference.
- 32Wang, Y.; Wang, J.; Wang, Y.; Li, W. Drought Impacts on PM2.5 Composition and Amount Over the US During 1988-2018. Journal of Geophysical Research: Atmospheres 2022, 127 (24), e2022JD037677 DOI: 10.1029/2022JD037677Google ScholarThere is no corresponding record for this reference.
- 33O’Dell, K.; Ford, B.; Fischer, E. V.; Pierce, J. R. Contribution of Wildland-Fire Smoke to US PM2.5 and Its Influence on Recent Trends. Environ. Sci. Technol. 2019, 53 (4), 1797– 1804, DOI: 10.1021/acs.est.8b05430Google ScholarThere is no corresponding record for this reference.
- 34Hammer, M. S.; van Donkelaar, A.; Li, C.; Lyapustin, A.; Sayer, A. M.; Hsu, N. C.; Levy, R. C.; Garay, M. J.; Kalashnikova, O. V.; Kahn, R. A.; Brauer, M.; Apte, J. S.; Henze, D. K.; Zhang, L.; Zhang, Q.; Ford, B.; Pierce, J. R.; Martin, R. V. Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998-2018). Environ. Sci. Technol. 2020, 54 (13), 7879– 7890, DOI: 10.1021/acs.est.0c01764Google ScholarThere is no corresponding record for this reference.
- 35Meng, J.; Martin, R. V.; Li, C.; van Donkelaar, A.; Tzompa-Sosa, Z. A.; Yue, X.; Xu, J.-W.; Weagle, C. L.; Burnett, R. T. Source Contributions to Ambient Fine Particulate Matter for Canada. Environ. Sci. Technol. 2019, 53 (17), 10269– 10278, DOI: 10.1021/acs.est.9b02461Google ScholarThere is no corresponding record for this reference.
- 36Caiazzo, F.; Ashok, A.; Waitz, I. A.; Yim, S. H. L.; Barrett, S. R. H. Air Pollution and Early Deaths in the United States. Part I: Quantifying the Impact of Major Sectors in 2005. Atmospheric Environment 2013, 79, 198– 208, DOI: 10.1016/j.atmosenv.2013.05.081Google ScholarThere is no corresponding record for this reference.
- 37McDuffie, E. E.; Smith, S. J.; O’Rourke, P.; Tibrewal, K.; Venkataraman, C.; Marais, E. A.; Zheng, B.; Crippa, M.; Brauer, M.; Martin, R. V. A Global Anthropogenic Emission Inventory of Atmospheric Pollutants from Sector- and Fuel-Specific Sources (1970-2017): An Application of the Community Emissions Data System (CEDS). Earth Syst. Sci. Data 2020, 12 (4), 3413– 3442, DOI: 10.5194/essd-12-3413-2020Google ScholarThere is no corresponding record for this reference.
- 38Smith, S. J.; van Aardenne, J.; Klimont, Z.; Andres, R. J.; Volke, A.; Delgado Arias, S. Anthropogenic Sulfur Dioxide Emissions: 1850-2005. Atmospheric Chemistry and Physics 2011, 11 (3), 1101– 1116, DOI: 10.5194/acp-11-1101-2011Google ScholarThere is no corresponding record for this reference.
- 39Council, N. R. Air Quality Management in the United States; The National Academies Press: Washington, DC, 2004. DOI: 10.17226/10728 .Google ScholarThere is no corresponding record for this reference.
- 40Abatzoglou, J. T.; Williams, A. P. Impact of Anthropogenic Climate Change on Wildfire across Western US Forests. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (42), 11770– 11775, DOI: 10.1073/pnas.1607171113Google ScholarThere is no corresponding record for this reference.
- 41Shao, Y.; Klose, M.; Wyrwoll, K.-H. Recent Global Dust Trend and Connections to Climate Forcing. Journal of Geophysical Research: Atmospheres 2013, 118 (19), 11,107– 11,118, DOI: 10.1002/jgrd.50836Google ScholarThere is no corresponding record for this reference.
- 42Wagstrom, K. M.; Pandis, S. N.; Yarwood, G.; Wilson, G. M.; Morris, R. E. Development and Application of a Computationally Efficient Particulate Matter Apportionment Algorithm in a Three-Dimensional Chemical Transport Model. Atmospheric Environment 2008, 42 (22), 5650– 5659, DOI: 10.1016/j.atmosenv.2008.03.012Google ScholarThere is no corresponding record for this reference.
- 43Hand, J. L.; Schichtel, B. A.; Malm, W. C.; Pitchford, M.; Frank, N. H. Spatial and Seasonal Patterns in Urban Influence on Regional Concentrations of Speciated Aerosols across the United States. Journal of Geophysical Research: Atmospheres 2014, 119 (22), 12,832– 12,849, DOI: 10.1002/2014JD022328Google ScholarThere is no corresponding record for this reference.
- 44Ridley, D. A.; Heald, C. L.; Ridley, K. J.; Kroll, J. H. Causes and Consequences of Decreasing Atmospheric Organic Aerosol in the United States. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (2), 290– 295, DOI: 10.1073/pnas.1700387115Google ScholarThere is no corresponding record for this reference.
- 45Shah, V.; Jaeglé, L.; Thornton, J. A.; Lopez-Hilfiker, F. D.; Lee, B. H.; Schroder, J. C.; Campuzano-Jost, P.; Jimenez, J. L.; Guo, H.; Sullivan, A. P.; Weber, R. J.; Green, J. R.; Fiddler, M. N.; Bililign, S.; Campos, T. L.; Stell, M.; Weinheimer, A. J.; Montzka, D. D.; Brown, S. S. Chemical Feedbacks Weaken the Wintertime Response of Particulate Sulfate and Nitrate to Emissions Reductions over the Eastern United States. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (32), 8110– 8115, DOI: 10.1073/pnas.1803295115Google ScholarThere is no corresponding record for this reference.
- 46Guo, H.; Otjes, R.; Schlag, P.; Kiendler-Scharr, A.; Nenes, A.; Weber, R. J. Effectiveness of Ammonia Reduction on Control of Fine Particle Nitrate. Atmospheric Chemistry and Physics 2018, 18 (16), 12241– 12256, DOI: 10.5194/acp-18-12241-2018Google ScholarThere is no corresponding record for this reference.
- 47Marais, E. A.; Jacob, D. J.; Turner, J. R.; Mickley, L. J. Evidence of 1991-2013 Decrease of Biogenic Secondary Organic Aerosol in Response to SO2 Emission Controls. Environmental Research Letters 2017, 12 (5), 054018, DOI: 10.1088/1748-9326/aa69c8Google ScholarThere is no corresponding record for this reference.
- 48Carlton, A. G.; Pye, H. O. T.; Baker, K. R.; Hennigan, C. J. Additional Benefits of Federal Air-Quality Rules: Model Estimates of Controllable Biogenic Secondary Organic Aerosol. Environ. Sci. Technol. 2018, 52 (16), 9254– 9265, DOI: 10.1021/acs.est.8b01869Google ScholarThere is no corresponding record for this reference.
- 49McDonald, B. C.; de Gouw, J. A.; Gilman, J. B.; Jathar, S. H.; Akherati, A.; Cappa, C. D.; Jimenez, J. L.; Lee-Taylor, J.; Hayes, P. L.; McKeen, S. A.; Cui, Y. Y.; Kim, S.-W.; Gentner, D. R.; Isaacman-VanWertz, G.; Goldstein, A. H.; Harley, R. A.; Frost, G. J.; Roberts, J. M.; Ryerson, T. B.; Trainer, M. Volatile Chemical Products Emerging as Largest Petrochemical Source of Urban Organic Emissions. Science 2018, 359 (6377), 760– 764, DOI: 10.1126/science.aaq0524Google ScholarThere is no corresponding record for this reference.
- 50Khare, P.; Machesky, J.; Soto, R.; He, M.; Presto, A. A.; Gentner, D. R. Asphalt-Related Emissions Are a Major Missing Nontraditional Source of Secondary Organic Aerosol Precursors. Science Advances 2020, 6 (36), eabb9785 DOI: 10.1126/sciadv.abb9785Google ScholarThere is no corresponding record for this reference.
- 51Iglesias, V.; Balch, J. K.; Travis, W. R. U.S. Fires Became Larger, More Frequent, and More Widespread in the 2000s. Science Advances 2022, 8 (11), eabc0020 DOI: 10.1126/sciadv.abc0020Google ScholarThere is no corresponding record for this reference.
- 52Ford, B.; Val Martin, M.; Zelasky, S. E.; Fischer, E. V.; Anenberg, S. C.; Heald, C. L.; Pierce, J. R. Future Fire Impacts on Smoke Concentrations, Visibility, and Health in the Contiguous United States. GeoHealth 2018, 2 (8), 229– 247, DOI: 10.1029/2018GH000144Google ScholarThere is no corresponding record for this reference.
- 53Neumann, J. E.; Amend, M.; Anenberg, S.; Kinney, P. L.; Sarofim, M.; Martinich, J.; Lukens, J.; Xu, J.-W.; Roman, H. Estimating PM2.5-Related Premature Mortality and Morbidity Associated with Future Wildfire Emissions in the Western US. Environmental Research Letters 2021, 16 (3), 035019, DOI: 10.1088/1748-9326/abe82bGoogle ScholarThere is no corresponding record for this reference.
- 54Gu, S.; Guenther, A.; Faiola, C. Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Los Angeles Air Quality. Environ. Sci. Technol. 2021, 55 (18), 12191– 12201, DOI: 10.1021/acs.est.1c01481Google ScholarThere is no corresponding record for this reference.
- 55Thakrar, S. K.; Balasubramanian, S.; Adams, P. J.; Azevedo, I. M. L.; Muller, N. Z.; Pandis, S. N.; Polasky, S.; Pope, C. A. I.; Robinson, A. L.; Apte, J. S.; Tessum, C. W.; Marshall, J. D.; Hill, J. D. Reducing Mortality from Air Pollution in the United States by Targeting Specific Emission Sources. Environmental Science & Technology Letters 2020, 7 (9), 639– 645, DOI: 10.1021/acs.estlett.0c00424Google ScholarThere is no corresponding record for this reference.
- 56Kelp, M. M.; Carroll, M. C.; Liu, T.; Yantosca, R. M.; Hockenberry, H. E.; Mickley, L. J. Prescribed Burns as a Tool to Mitigate Future Wildfire Smoke Exposure: Lessons for States and Rural Environmental Justice Communities. Earth’s Future 2023, 11 (6), e2022EF003468 DOI: 10.1029/2022EF003468Google ScholarThere is no corresponding record for this reference.
- 57Jaffe, D. A.; O’Neill, S. M.; Larkin, N. K.; Holder, A. L.; Peterson, D. L.; Halofsky, J. E.; Rappold, A. G. Wildfire and Prescribed Burning Impacts on Air Quality in the United States. J. Air Waste Manage. Assoc. 2020, 70 (6), 583– 615, DOI: 10.1080/10962247.2020.1749731Google ScholarThere is no corresponding record for this reference.
- 58Holt, J.; Selin, N. E.; Solomon, S. Changes in Inorganic Fine Particulate Matter Sensitivities to Precursors Due to Large-Scale US Emissions Reductions. Environ. Sci. Technol. 2015, 49 (8), 4834– 4841, DOI: 10.1021/acs.est.5b00008Google ScholarThere is no corresponding record for this reference.
- 59Gu, B.; Zhang, L.; Van Dingenen, R.; Vieno; Van Grinsven, H. J.; Zhang, X.; Zhang, S.; Chen, Y.; Wang, S.; Ren, C.; Rao, S.; Holland, M.; Winiwarter, W.; Chen, D.; Xu, J.; Sutton, M. A. Abating Ammonia Is More Cost-Effective than Nitrogen Oxides for Mitigating PM2.5 Air Pollution. Science 2021, 374 (6568), 758– 762, DOI: 10.1126/science.abf8623Google ScholarThere is no corresponding record for this reference.
- 60Wang, R.; Pan, D.; Guo, X.; Sun, K.; Clarisse, L.; Van Damme, M.; Coheur, P.-F.; Clerbaux, C.; Puchalski, M.; Zondlo, M. A. Bridging the Spatial Gaps of the Ammonia Monitoring Network Using Satellite Ammonia Measurements. Atmospheric Chemistry and Physics 2023, 23 (20), 13217– 13234, DOI: 10.5194/acp-23-13217-2023Google ScholarThere is no corresponding record for this reference.
- 61Wei, J.; Wang, J.; Li, Z.; Kondragunta, S.; Anenberg, S.; Wang, Y.; Zhang, H.; Diner, D.; Hand, J.; Lyapustin, A.; Kahn, R.; Colarco, P.; da Silva, A.; Ichoku, C. Long-Term Mortality Burden Trends Attributed to Black Carbon and PM2·5 from Wildfire Emissions across the Continental USA from 2000 to 2020: A Deep Learning Modelling Study. Lancet Planetary Health 2023, 7 (12), e963– e975, DOI: 10.1016/S2542-5196(23)00235-8Google ScholarThere is no corresponding record for this reference.
- 62Pu, B.; Ginoux, P. Climatic Factors Contributing to Long-Term Variations in Surface Fine Dust Concentration in the United States. Atmospheric Chemistry and Physics 2018, 18 (6), 4201– 4215, DOI: 10.5194/acp-18-4201-2018Google ScholarThere is no corresponding record for this reference.
- 63Pai, S. J.; Carter, T. S.; Heald, C. L.; Kroll, J. H. Updated World Health Organization Air Quality Guidelines Highlight the Importance of Non-Anthropogenic PM2.5. Environmental Science & Technology Letters 2022, 9 (6), 501– 506, DOI: 10.1021/acs.estlett.2c00203Google ScholarThere is no corresponding record for this reference.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 5 publications.
- Linhao Guo, Xuemei Wang, Alexander Baklanov, Min Shao. PM2.5 Concentration Gap Reduction between Typical Urban and Nonurban China from 2000 to 2023. ACS ES&T Air 2025, 2
(1)
, 90-98. https://doi.org/10.1021/acsestair.4c00208
- Aaron van Donkelaar, Randall V. Martin, Bonne Ford, Chi Li, Amanda J. Pappin, Siyuan Shen, Dandan Zhang. North American Fine Particulate Matter Chemical Composition for 2000–2022 from Satellites, Models, and Monitors: The Changing Contribution of Wildfires. ACS ES&T Air 2024, 1
(12)
, 1589-1600. https://doi.org/10.1021/acsestair.4c00151
- Xi Zheng, Haiyan Meng, Zixiang Zhao, Xinyi Liu, Li Zhou, Michael L. Grieneisen, Han Zhang, Yu Zhan, Fumo Yang. Deep transfer learning for spatiotemporal mapping of PM2.5 nitrate across China: Addressing small data challenges in environmental machine learning. Journal of Hazardous Materials 2025, 492 , 138206. https://doi.org/10.1016/j.jhazmat.2025.138206
- Chi Li, Randall V Martin, Aaron van Donkelaar, Jose L Jimenez, Qi Zhang, Jay R Turner, Xuan Liu, Mark Rowe, Jun Meng, Wuyue Yu, George D Thurston. Estimates of submicron particulate matter (PM1) concentrations for 1998–2022 across the contiguous USA: leveraging measurements of PM1 with nationwide PM2·5 component data. The Lancet Planetary Health 2025, 9
(6)
, e491-e502. https://doi.org/10.1016/S2542-5196(25)00094-4
- J. L. Hand, A. J. Prenni, S. M. Raffuse, N. P. Hyslop, W. C. Malm, B. A. Schichtel. Spatial and Seasonal Variability of Remote and Urban Speciated Fine Particulate Matter in the United States. Journal of Geophysical Research: Atmospheres 2024, 129
(23)
https://doi.org/10.1029/2024JD042579
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
Abstract
Figure 1
Figure 1. Strong regional variation of PM2.5 relative trends (ΔPM2.5) across the CONUS. (a) Relative areal trends (%/yr) in annual mean PM2.5 during 1998–2019 from the satellite-derived estimates (background) and in situ measurements (points). Insignificant trends with p ≥ 0.05 are displayed with more transparent colors and smaller symbols. (b) Population (bin-width normalized distribution, blue line, left Y-axis) and 1998–2019 mean population-weighted (PW) PM2.5 chemical composition (right Y-axis, color-coded on the top) as a function of these trends. All components are presented at 35% relative humidity (RH) for consistency with PM2.5 mass concentration measurements. OM and BC are separated into contributions from open burning (Fire) and other sources (noFire). Vertical dotted lines are the thresholds to separate the four regions (Figure S4).
Figure 2
Figure 2. Sulfate dominates the PM2.5 reductions and its regional variation. On the left, circles and error bars (color-coded for the four regions) represent relative trends and 95% confidence intervals in annual mean regional PW PM2.5 (35% RH) over 1998–2019. Pixels in each region are further divided into four population bins (separated by purple lines and texts) following the overall PW-PM2.5 cases (the top four rows). Stacked bars indicate compositional trends (consistently normalized to multi-year mean PW PM2.5) to represent their contributions. Filled circles and bars are significant trends (p < 0.05) and empty ones are not. On the right, stacked bars represent compositional contribution to the multi-year mean PW PM2.5 for each case. OM and BC are separated into contributions from open burning (Fire) and other sources (noFire). All components are presented at 35% RH for consistency with PM2.5 mass concentration measurements.
Figure 3
Figure 3. Future PM2.5 mitigation over the CONUS will require stronger measures to reduce components in addition to sulfate. Population (bin-width normalized distribution, blue line, left Y-axis) and 2017–2019 mean population-weighted (PW) PM2.5 chemical composition (right Y-axis, color-coded on the top) as a function of 2017–2019 mean PM2.5 concentrations. The vertical dotted line represents the new EPA standard (9 μg/m3). The two pie charts show the compositional fraction of PW-PM2.5 for pixels attaining (left) and violating (right) this standard based on the 2017–2019 mean concentrations. All components are presented at 35% RH for consistency with PM2.5 mass concentration measurements.
References
This article references 63 other publications.
- 1Weichenthal, S.; Pinault, L.; Christidis, T.; Burnett, R. T.; Brook, J. R.; Chu, Y.; Crouse, D. L.; Erickson, A. C.; Hystad, P.; Li, C.; Martin, R. V.; Meng, J.; Pappin, A. J.; Tjepkema, M.; van Donkelaar, A.; Weagle, C. L.; Brauer, M. How Low Can You Go? Air Pollution Affects Mortality at Very Low Levels. Science Advances 2022, 8 (39), eabo3381 DOI: 10.1126/sciadv.abo3381There is no corresponding record for this reference.
- 2Strak, M.; Weinmayr, G.; Rodopoulou, S.; Chen, J.; de Hoogh, K.; Andersen, Z. J. Long Term Exposure to Low Level Air Pollution and Mortality in Eight European Cohorts within the ELAPSE Project: Pooled Analysis. BMJ. 2021, 374, n1904, DOI: 10.1136/bmj.n1904There is no corresponding record for this reference.
- 3Murray, C. J. L.; Aravkin, A. Y.; Zheng, P.; Abbafati, C.; Abbas, K. M.; Abbasi-Kangevari, M. Global Burden of 87 Risk Factors in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396 (10258), 1223– 1249, DOI: 10.1016/S0140-6736(20)30752-2There is no corresponding record for this reference.
- 4Derwent, R. G.; Dernie, J. I. R.; Dollard, G. J.; Dumitrean, P.; Mitchell, R. F.; Murrells, T. P.; Telling, S. P.; Field, R. A. Twenty Years of Continuous High Time Resolution Volatile Organic Compound Monitoring in the United Kingdom from 1993 to 2012. Atmospheric Environment 2014, 99, 239– 247, DOI: 10.1016/j.atmosenv.2014.10.001There is no corresponding record for this reference.
- 5Xing, J.; Pleim, J.; Mathur, R.; Pouliot, G.; Hogrefe, C.; Gan, C. M.; Wei, C. Historical Gaseous and Primary Aerosol Emissions in the United States from 1990 to 2010. Atmos. Chem. Phys. 2013, 13 (15), 7531– 7549, DOI: 10.5194/acp-13-7531-2013There is no corresponding record for this reference.
- 6Hand, J. L.; Prenni, A. J.; Copeland, S.; Schichtel, B. A.; Malm, W. C. Thirty Years of the Clean Air Act Amendments: Impacts on Haze in Remote Regions of the United States (1990-2018). Atmospheric Environment 2020, 243, 117865, DOI: 10.1016/j.atmosenv.2020.117865There is no corresponding record for this reference.
- 7Cheng, B.; Alapaty, K.; Arunachalam, S. Spatiotemporal Trends in PM2.5 Chemical Composition in the Conterminous U.S. during 2006-2020. Atmospheric Environment 2024, 316, 120188, DOI: 10.1016/j.atmosenv.2023.120188There is no corresponding record for this reference.
- 8Hand, J. L.; Prenni, A. J.; Schichtel, B. A. Trends in Seasonal Mean Speciated Aerosol Composition in Remote Areas of the United States From 2000 Through 2021. Journal of Geophysical Research: Atmospheres 2024, 129 (2), e2023JD039902 DOI: 10.1029/2023JD039902There is no corresponding record for this reference.
- 9Li, C.; Martin, R. V.; van Donkelaar, A.; Boys, B. L.; Hammer, M. S.; Xu, J.-W.; Marais, E. A.; Reff, A.; Strum, M.; Ridley, D. A.; Crippa, M.; Brauer, M.; Zhang, Q. Trends in Chemical Composition of Global and Regional Population-Weighted Fine Particulate Matter Estimated for 25 Years. Environ. Sci. Technol. 2017, 51 (19), 11185– 11195, DOI: 10.1021/acs.est.7b02530There is no corresponding record for this reference.
- 10Xing, J.; Mathur, R.; Pleim, J.; Hogrefe, C.; Gan, C.-M.; Wong, D. C.; Wei, C.; Gilliam, R.; Pouliot, G. Observations and Modeling of Air Quality Trends over 1990-2010 across the Northern Hemisphere: China, the United States and Europe. Atmospheric Chemistry and Physics 2015, 15 (5), 2723– 2747, DOI: 10.5194/acp-15-2723-2015There is no corresponding record for this reference.
- 11Hand, J. L.; Schichtel, B. A.; Pitchford, M.; Malm, W. C.; Frank, N. H. Seasonal Composition of Remote and Urban Fine Particulate Matter in the United States. Journal of Geophysical Research: Atmospheres 2012, 117 (D5), D05209, DOI: 10.1029/2011JD017122There is no corresponding record for this reference.
- 12Hand, J. L.; Schichtel, B. A.; Malm, W. C.; Pitchford, M. L. Particulate Sulfate Ion Concentration and SO2 Emission Trends in the United States from the Early 1990s through 2010. Atmospheric Chemistry and Physics 2012, 12 (21), 10353– 10365, DOI: 10.5194/acp-12-10353-2012There is no corresponding record for this reference.
- 13Hand, J. L.; Schichtel, B. A.; Malm, W. C.; Frank, N. H. Spatial and Temporal Trends in PM2.5 Organic and Elemental Carbon across the United States. Advances in Meteorology 2013, 2013, 367674, DOI: 10.1155/2013/367674There is no corresponding record for this reference.
- 14Malm, W. C.; Schichtel, B. A.; Hand, J. L.; Collett, J. L., Jr Concurrent Temporal and Spatial Trends in Sulfate and Organic Mass Concentrations Measured in the IMPROVE Monitoring Program. Journal of Geophysical Research: Atmospheres 2017, 122 (19), 10,462, DOI: 10.1002/2017JD026865There is no corresponding record for this reference.
- 15Weber, R. J.; Guo, H.; Russell, A. G.; Nenes, A. High Aerosol Acidity despite Declining Atmospheric Sulfate Concentrations over the Past 15 Years. Nature Geoscience 2016, 9 (4), 282– 285, DOI: 10.1038/ngeo2665There is no corresponding record for this reference.
- 16McClure, C. D.; Jaffe, D. A. US Particulate Matter Air Quality Improves except in Wildfire-Prone Areas. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (31), 7901– 7906, DOI: 10.1073/pnas.1804353115There is no corresponding record for this reference.
- 17Martin, R. V.; Brauer, M.; van Donkelaar, A.; Shaddick, G.; Narain, U.; Dey, S. No One Knows Which City Has the Highest Concentration of Fine Particulate Matter. Atmospheric Environment: X 2019, 3, 100040, DOI: 10.1016/j.aeaoa.2019.100040There is no corresponding record for this reference.
- 18van Donkelaar, A.; Martin, R. V.; Li, C.; Burnett, R. T. Regional Estimates of Chemical Composition of Fine Particulate Matter Using a Combined Geoscience-Statistical Method with Information from Satellites, Models, and Monitors. Environ. Sci. Technol. 2019, 53 (5), 2595– 2611, DOI: 10.1021/acs.est.8b06392There is no corresponding record for this reference.
- 19Meng, X.; Hand, J. L.; Schichtel, B. A.; Liu, Y. Space-Time Trends of PM2.5 Constituents in the Conterminous United States Estimated by a Machine Learning Approach, 2005-2015. Environ. Int. 2018, 121, 1137– 1147, DOI: 10.1016/j.envint.2018.10.029There is no corresponding record for this reference.
- 20Amini, H.; Danesh-Yazdi, M.; Di, Q.; Requia, W.; Wei, Y.; Abu-Awad, Y. Hyperlocal Super-Learned PM2.5 Components across the Contiguous US. Research Square , 2022, Preprint, DOI: 10.21203/rs.3.rs-1745433/v2 (accessed Feb. 13, 2024).There is no corresponding record for this reference.
- 21Eastham, S. D.; Long, M. S.; Keller, C. A.; Lundgren, E.; Yantosca, R. M.; Zhuang, J.; Li, C.; Lee, C. J.; Yannetti, M.; Auer, B. M.; Clune, T. L.; Kouatchou, J.; Putman, W. M.; Thompson, M. A.; Trayanov, A. L.; Molod, A. M.; Martin, R. V.; Jacob, D. J. GEOS-Chem High Performance (GCHP V11-02c): A next-Generation Implementation of the GEOS-Chem Chemical Transport Model for Massively \hack\break Parallel Applications. Geoscientific Model Development 2018, 11 (7), 2941– 2953, DOI: 10.5194/gmd-11-2941-2018There is no corresponding record for this reference.
- 22Martin, R. V.; Eastham, S. D.; Bindle, L.; Lundgren, E. W.; Clune, T. L.; Keller, C. A.; Downs, W.; Zhang, D.; Lucchesi, R. A.; Sulprizio, M. P.; Yantosca, R. M.; Li, Y.; Estrada, L.; Putman, W. M.; Auer, B. M.; Trayanov, A. L.; Pawson, S.; Jacob, D. J. Improved Advection, Resolution, Performance, and Community Access in the New Generation (Version 13) of the High-Performance GEOS-Chem Global Atmospheric Chemistry Model (GCHP). Geoscientific Model Development 2022, 15 (23), 8731– 8748, DOI: 10.5194/gmd-15-8731-2022There is no corresponding record for this reference.
- 23Hammer, M. S.; van Donkelaar, A.; Martin, R. V.; McDuffie, E. E.; Lyapustin, A.; Sayer, A. M.; Hsu, N. C.; Levy, R. C.; Garay, M. J.; Kalashnikova, O. V.; Kahn, R. A. Effects of COVID-19 Lockdowns on Fine Particulate Matter Concentrations. Science Advances 2021, 7 (26), eabg7670 DOI: 10.1126/sciadv.abg7670There is no corresponding record for this reference.
- 24Venter, Z. S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 Lockdowns Cause Global Air Pollution Declines. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (32), 18984– 18990, DOI: 10.1073/pnas.2006853117There is no corresponding record for this reference.
- 25Keeley, J. E.; Syphard, A. D. Large California Wildfires: 2020 Fires in Historical Context. Fire Ecology 2021, 17 (1), 22, DOI: 10.1186/s42408-021-00110-7There is no corresponding record for this reference.
- 26Turco, M.; Abatzoglou, J. T.; Herrera, S.; Zhuang, Y.; Jerez, S.; Lucas, D. D.; AghaKouchak, A.; Cvijanovic, I. Anthropogenic Climate Change Impacts Exacerbate Summer Forest Fires in California. Proc. Natl. Acad. Sci. U. S. A. 2023, 120 (25), e2213815120 DOI: 10.1073/pnas.2213815120There is no corresponding record for this reference.
- 27Coop, J. D.; Parks, S. A.; Stevens-Rumann, C. S.; Ritter, S. M.; Hoffman, C. M. Extreme Fire Spread Events and Area Burned under Recent and Future Climate in the Western USA. Global Ecology and Biogeography 2022, 31 (10), 1949– 1959, DOI: 10.1111/geb.13496There is no corresponding record for this reference.
- 28Center for International Earth Science Information Network - CIESIN - Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Count, Revision 11 , 2018. DOI: 10.7927/H4JW8BX5 (accessed Apr. 18, 2022).There is no corresponding record for this reference.
- 29Heald, C. L.; Kroll, J. H. A Radical Shift in Air Pollution. Science 2021, 374 (6568), 688– 689, DOI: 10.1126/science.abl5978There is no corresponding record for this reference.
- 30Sen, P. K. Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association 1968, 63 (324), 1379– 1389, DOI: 10.1080/01621459.1968.10480934There is no corresponding record for this reference.
- 31Hussain, M.; Mahmud, I. pyMannKendall: A Python Package for Non Parametric Mann Kendall Family of Trend Tests. Journal of Open Source Software 2019, 4 (39), 1556, DOI: 10.21105/joss.01556There is no corresponding record for this reference.
- 32Wang, Y.; Wang, J.; Wang, Y.; Li, W. Drought Impacts on PM2.5 Composition and Amount Over the US During 1988-2018. Journal of Geophysical Research: Atmospheres 2022, 127 (24), e2022JD037677 DOI: 10.1029/2022JD037677There is no corresponding record for this reference.
- 33O’Dell, K.; Ford, B.; Fischer, E. V.; Pierce, J. R. Contribution of Wildland-Fire Smoke to US PM2.5 and Its Influence on Recent Trends. Environ. Sci. Technol. 2019, 53 (4), 1797– 1804, DOI: 10.1021/acs.est.8b05430There is no corresponding record for this reference.
- 34Hammer, M. S.; van Donkelaar, A.; Li, C.; Lyapustin, A.; Sayer, A. M.; Hsu, N. C.; Levy, R. C.; Garay, M. J.; Kalashnikova, O. V.; Kahn, R. A.; Brauer, M.; Apte, J. S.; Henze, D. K.; Zhang, L.; Zhang, Q.; Ford, B.; Pierce, J. R.; Martin, R. V. Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998-2018). Environ. Sci. Technol. 2020, 54 (13), 7879– 7890, DOI: 10.1021/acs.est.0c01764There is no corresponding record for this reference.
- 35Meng, J.; Martin, R. V.; Li, C.; van Donkelaar, A.; Tzompa-Sosa, Z. A.; Yue, X.; Xu, J.-W.; Weagle, C. L.; Burnett, R. T. Source Contributions to Ambient Fine Particulate Matter for Canada. Environ. Sci. Technol. 2019, 53 (17), 10269– 10278, DOI: 10.1021/acs.est.9b02461There is no corresponding record for this reference.
- 36Caiazzo, F.; Ashok, A.; Waitz, I. A.; Yim, S. H. L.; Barrett, S. R. H. Air Pollution and Early Deaths in the United States. Part I: Quantifying the Impact of Major Sectors in 2005. Atmospheric Environment 2013, 79, 198– 208, DOI: 10.1016/j.atmosenv.2013.05.081There is no corresponding record for this reference.
- 37McDuffie, E. E.; Smith, S. J.; O’Rourke, P.; Tibrewal, K.; Venkataraman, C.; Marais, E. A.; Zheng, B.; Crippa, M.; Brauer, M.; Martin, R. V. A Global Anthropogenic Emission Inventory of Atmospheric Pollutants from Sector- and Fuel-Specific Sources (1970-2017): An Application of the Community Emissions Data System (CEDS). Earth Syst. Sci. Data 2020, 12 (4), 3413– 3442, DOI: 10.5194/essd-12-3413-2020There is no corresponding record for this reference.
- 38Smith, S. J.; van Aardenne, J.; Klimont, Z.; Andres, R. J.; Volke, A.; Delgado Arias, S. Anthropogenic Sulfur Dioxide Emissions: 1850-2005. Atmospheric Chemistry and Physics 2011, 11 (3), 1101– 1116, DOI: 10.5194/acp-11-1101-2011There is no corresponding record for this reference.
- 39Council, N. R. Air Quality Management in the United States; The National Academies Press: Washington, DC, 2004. DOI: 10.17226/10728 .There is no corresponding record for this reference.
- 40Abatzoglou, J. T.; Williams, A. P. Impact of Anthropogenic Climate Change on Wildfire across Western US Forests. Proc. Natl. Acad. Sci. U. S. A. 2016, 113 (42), 11770– 11775, DOI: 10.1073/pnas.1607171113There is no corresponding record for this reference.
- 41Shao, Y.; Klose, M.; Wyrwoll, K.-H. Recent Global Dust Trend and Connections to Climate Forcing. Journal of Geophysical Research: Atmospheres 2013, 118 (19), 11,107– 11,118, DOI: 10.1002/jgrd.50836There is no corresponding record for this reference.
- 42Wagstrom, K. M.; Pandis, S. N.; Yarwood, G.; Wilson, G. M.; Morris, R. E. Development and Application of a Computationally Efficient Particulate Matter Apportionment Algorithm in a Three-Dimensional Chemical Transport Model. Atmospheric Environment 2008, 42 (22), 5650– 5659, DOI: 10.1016/j.atmosenv.2008.03.012There is no corresponding record for this reference.
- 43Hand, J. L.; Schichtel, B. A.; Malm, W. C.; Pitchford, M.; Frank, N. H. Spatial and Seasonal Patterns in Urban Influence on Regional Concentrations of Speciated Aerosols across the United States. Journal of Geophysical Research: Atmospheres 2014, 119 (22), 12,832– 12,849, DOI: 10.1002/2014JD022328There is no corresponding record for this reference.
- 44Ridley, D. A.; Heald, C. L.; Ridley, K. J.; Kroll, J. H. Causes and Consequences of Decreasing Atmospheric Organic Aerosol in the United States. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (2), 290– 295, DOI: 10.1073/pnas.1700387115There is no corresponding record for this reference.
- 45Shah, V.; Jaeglé, L.; Thornton, J. A.; Lopez-Hilfiker, F. D.; Lee, B. H.; Schroder, J. C.; Campuzano-Jost, P.; Jimenez, J. L.; Guo, H.; Sullivan, A. P.; Weber, R. J.; Green, J. R.; Fiddler, M. N.; Bililign, S.; Campos, T. L.; Stell, M.; Weinheimer, A. J.; Montzka, D. D.; Brown, S. S. Chemical Feedbacks Weaken the Wintertime Response of Particulate Sulfate and Nitrate to Emissions Reductions over the Eastern United States. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (32), 8110– 8115, DOI: 10.1073/pnas.1803295115There is no corresponding record for this reference.
- 46Guo, H.; Otjes, R.; Schlag, P.; Kiendler-Scharr, A.; Nenes, A.; Weber, R. J. Effectiveness of Ammonia Reduction on Control of Fine Particle Nitrate. Atmospheric Chemistry and Physics 2018, 18 (16), 12241– 12256, DOI: 10.5194/acp-18-12241-2018There is no corresponding record for this reference.
- 47Marais, E. A.; Jacob, D. J.; Turner, J. R.; Mickley, L. J. Evidence of 1991-2013 Decrease of Biogenic Secondary Organic Aerosol in Response to SO2 Emission Controls. Environmental Research Letters 2017, 12 (5), 054018, DOI: 10.1088/1748-9326/aa69c8There is no corresponding record for this reference.
- 48Carlton, A. G.; Pye, H. O. T.; Baker, K. R.; Hennigan, C. J. Additional Benefits of Federal Air-Quality Rules: Model Estimates of Controllable Biogenic Secondary Organic Aerosol. Environ. Sci. Technol. 2018, 52 (16), 9254– 9265, DOI: 10.1021/acs.est.8b01869There is no corresponding record for this reference.
- 49McDonald, B. C.; de Gouw, J. A.; Gilman, J. B.; Jathar, S. H.; Akherati, A.; Cappa, C. D.; Jimenez, J. L.; Lee-Taylor, J.; Hayes, P. L.; McKeen, S. A.; Cui, Y. Y.; Kim, S.-W.; Gentner, D. R.; Isaacman-VanWertz, G.; Goldstein, A. H.; Harley, R. A.; Frost, G. J.; Roberts, J. M.; Ryerson, T. B.; Trainer, M. Volatile Chemical Products Emerging as Largest Petrochemical Source of Urban Organic Emissions. Science 2018, 359 (6377), 760– 764, DOI: 10.1126/science.aaq0524There is no corresponding record for this reference.
- 50Khare, P.; Machesky, J.; Soto, R.; He, M.; Presto, A. A.; Gentner, D. R. Asphalt-Related Emissions Are a Major Missing Nontraditional Source of Secondary Organic Aerosol Precursors. Science Advances 2020, 6 (36), eabb9785 DOI: 10.1126/sciadv.abb9785There is no corresponding record for this reference.
- 51Iglesias, V.; Balch, J. K.; Travis, W. R. U.S. Fires Became Larger, More Frequent, and More Widespread in the 2000s. Science Advances 2022, 8 (11), eabc0020 DOI: 10.1126/sciadv.abc0020There is no corresponding record for this reference.
- 52Ford, B.; Val Martin, M.; Zelasky, S. E.; Fischer, E. V.; Anenberg, S. C.; Heald, C. L.; Pierce, J. R. Future Fire Impacts on Smoke Concentrations, Visibility, and Health in the Contiguous United States. GeoHealth 2018, 2 (8), 229– 247, DOI: 10.1029/2018GH000144There is no corresponding record for this reference.
- 53Neumann, J. E.; Amend, M.; Anenberg, S.; Kinney, P. L.; Sarofim, M.; Martinich, J.; Lukens, J.; Xu, J.-W.; Roman, H. Estimating PM2.5-Related Premature Mortality and Morbidity Associated with Future Wildfire Emissions in the Western US. Environmental Research Letters 2021, 16 (3), 035019, DOI: 10.1088/1748-9326/abe82bThere is no corresponding record for this reference.
- 54Gu, S.; Guenther, A.; Faiola, C. Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Los Angeles Air Quality. Environ. Sci. Technol. 2021, 55 (18), 12191– 12201, DOI: 10.1021/acs.est.1c01481There is no corresponding record for this reference.
- 55Thakrar, S. K.; Balasubramanian, S.; Adams, P. J.; Azevedo, I. M. L.; Muller, N. Z.; Pandis, S. N.; Polasky, S.; Pope, C. A. I.; Robinson, A. L.; Apte, J. S.; Tessum, C. W.; Marshall, J. D.; Hill, J. D. Reducing Mortality from Air Pollution in the United States by Targeting Specific Emission Sources. Environmental Science & Technology Letters 2020, 7 (9), 639– 645, DOI: 10.1021/acs.estlett.0c00424There is no corresponding record for this reference.
- 56Kelp, M. M.; Carroll, M. C.; Liu, T.; Yantosca, R. M.; Hockenberry, H. E.; Mickley, L. J. Prescribed Burns as a Tool to Mitigate Future Wildfire Smoke Exposure: Lessons for States and Rural Environmental Justice Communities. Earth’s Future 2023, 11 (6), e2022EF003468 DOI: 10.1029/2022EF003468There is no corresponding record for this reference.
- 57Jaffe, D. A.; O’Neill, S. M.; Larkin, N. K.; Holder, A. L.; Peterson, D. L.; Halofsky, J. E.; Rappold, A. G. Wildfire and Prescribed Burning Impacts on Air Quality in the United States. J. Air Waste Manage. Assoc. 2020, 70 (6), 583– 615, DOI: 10.1080/10962247.2020.1749731There is no corresponding record for this reference.
- 58Holt, J.; Selin, N. E.; Solomon, S. Changes in Inorganic Fine Particulate Matter Sensitivities to Precursors Due to Large-Scale US Emissions Reductions. Environ. Sci. Technol. 2015, 49 (8), 4834– 4841, DOI: 10.1021/acs.est.5b00008There is no corresponding record for this reference.
- 59Gu, B.; Zhang, L.; Van Dingenen, R.; Vieno; Van Grinsven, H. J.; Zhang, X.; Zhang, S.; Chen, Y.; Wang, S.; Ren, C.; Rao, S.; Holland, M.; Winiwarter, W.; Chen, D.; Xu, J.; Sutton, M. A. Abating Ammonia Is More Cost-Effective than Nitrogen Oxides for Mitigating PM2.5 Air Pollution. Science 2021, 374 (6568), 758– 762, DOI: 10.1126/science.abf8623There is no corresponding record for this reference.
- 60Wang, R.; Pan, D.; Guo, X.; Sun, K.; Clarisse, L.; Van Damme, M.; Coheur, P.-F.; Clerbaux, C.; Puchalski, M.; Zondlo, M. A. Bridging the Spatial Gaps of the Ammonia Monitoring Network Using Satellite Ammonia Measurements. Atmospheric Chemistry and Physics 2023, 23 (20), 13217– 13234, DOI: 10.5194/acp-23-13217-2023There is no corresponding record for this reference.
- 61Wei, J.; Wang, J.; Li, Z.; Kondragunta, S.; Anenberg, S.; Wang, Y.; Zhang, H.; Diner, D.; Hand, J.; Lyapustin, A.; Kahn, R.; Colarco, P.; da Silva, A.; Ichoku, C. Long-Term Mortality Burden Trends Attributed to Black Carbon and PM2·5 from Wildfire Emissions across the Continental USA from 2000 to 2020: A Deep Learning Modelling Study. Lancet Planetary Health 2023, 7 (12), e963– e975, DOI: 10.1016/S2542-5196(23)00235-8There is no corresponding record for this reference.
- 62Pu, B.; Ginoux, P. Climatic Factors Contributing to Long-Term Variations in Surface Fine Dust Concentration in the United States. Atmospheric Chemistry and Physics 2018, 18 (6), 4201– 4215, DOI: 10.5194/acp-18-4201-2018There is no corresponding record for this reference.
- 63Pai, S. J.; Carter, T. S.; Heald, C. L.; Kroll, J. H. Updated World Health Organization Air Quality Guidelines Highlight the Importance of Non-Anthropogenic PM2.5. Environmental Science & Technology Letters 2022, 9 (6), 501– 506, DOI: 10.1021/acs.estlett.2c00203There is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsestair.4c00004.
Complementary descriptions of the used data sets and uncertainties, figures, and table to support interpretation (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.