ACS Publications. Most Trusted. Most Cited. Most Read
Multitarget Approaches against Multiresistant Superbugs
My Activity

Figure 1Loading Img
  • Open Access
Review

Multitarget Approaches against Multiresistant Superbugs
Click to copy article linkArticle link copied!

  • Declan Alan Gray
    Declan Alan Gray
    Newcastle University Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, United Kingdom
  • Michaela Wenzel*
    Michaela Wenzel
    Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
    *Email: [email protected]. Tel: 0046-31-772-2074.
Open PDF

ACS Infectious Diseases

Cite this: ACS Infect. Dis. 2020, 6, 6, 1346–1365
Click to copy citationCitation copied!
https://doi.org/10.1021/acsinfecdis.0c00001
Published March 10, 2020

Copyright © 2020 American Chemical Society. This publication is licensed under CC-BY.

Abstract

Click to copy section linkSection link copied!

Despite efforts to develop new antibiotics, antibacterial resistance still develops too fast for drug discovery to keep pace. Often, resistance against a new drug develops even before it reaches the market. This continued resistance crisis has demonstrated that resistance to antibiotics with single protein targets develops too rapidly to be sustainable. Most successful long-established antibiotics target more than one molecule or possess targets, which are encoded by multiple genes. This realization has motivated a change in antibiotic development toward drug candidates with multiple targets. Some mechanisms of action presuppose multiple targets or at least multiple effects, such as targeting the cytoplasmic membrane or the carrier molecule bactoprenol phosphate and are therefore particularly promising. Moreover, combination therapy approaches are being developed to break antibiotic resistance or to sensitize bacteria to antibiotic action. In this Review, we provide an overview of antibacterial multitarget approaches and the mechanisms behind them.

Copyright © 2020 American Chemical Society

SPECIAL ISSUE

This article is part of the Antibiotics special issue.

Antimicrobial resistance has developed into a global healthcare crisis that has culminated in the emergence of multidrug-resistant bacteria that are no longer treatable with any common antibiotic. (1) For example, recently emerging Neisseria gonorrhoeae strains resistant to third-generation carbapenems led to a number of untreatable gonorrhea infections in the UK. (2) Despite considerable investments, the development of innovative, resistance-breaking antibiotics still progresses too slowly. (3,4) For a long time, antibiotics with one specific protein target were highly sought after in drug design and screening efforts. Single target drugs were propagated as the ideal antibiotics with the argument that a high target specificity equals less side effects. This resulted in a predominantly genomic-driven approach to antibiotic discovery, where single protein targets were evaluated, while compounds with multiple or complex targets were regarded to be unspecific and unsuitable for further development. However, the last decades have shown that resistance to antibiotics with specific single protein targets develops too fast to be sustainable, and the realization emerged that candidates with multiple targets are worth pursuing for their slower resistance development rates. (5−7) In fact, long-established antibiotic drugs with great clinical success rarely target only one specific molecule. For example, β-lactam antibiotics typically target more than one transpeptidase, and quinolones inhibit both topoisomerases II and IV. (8,9) Antibiotics that truly have one single protein target, such as sulfonamides targeting an enzyme involved in folate synthesis or rifampicin targeting RNA polymerase, are famous for high resistance development and are therefore usually administered in combination regimes. (10,11)
Naturally occurring antibiotics often do not have strict single targets either. The most common class of natural antimicrobial substances are antimicrobial peptides, which occur in virtually all organisms. These molecules predominantly target complex bacterial structures, e.g., the cell membrane, the cell wall, or both. (12,13) Moreover, antibiotic producers often produce a mix of structurally related compounds. This is, for example, the case for gramicidin (contain gramicidin A–C), tyrothricin (contains gramicidin A–C and tyrocidine A–D), and polymyxins (contains multiple peptides with small structural variations depending on the polymyxin type). (14,15) Such small structural variations can result in slightly different target interactions (16−20) and may complicate resistance development by target alterations and antibiotic-cleaving or scavenging molecules. Naturally occurring mixes have been used in clinical settings with great success and in some cases are combined with each other or other antibiotics like neomycin. (21,22) It is quite common in clinical practice to use antibiotic combinations for different reasons. For example, trimethoprim is combined with sulfonamides to prevent quick resistance development by a single target mutation, and erythromycin is often given together with penicillin for their synergistic effect. (23) Since more and more pathogens become resistant to individual antibiotics, it has become pivotal to thoroughly explore multitarget approaches to combat resistant bacteria. In this Review, we provide an overview of multitarget antibiotics and combination approaches that are in current clinical use or have a chance to be applied in clinical settings in the future.

Part 1: Multitarget Compounds

Click to copy section linkSection link copied!

Generally, the ability of a single drug to interact with more than one specific target is called polypharmacology. (24) When talking about multitarget antibiotics, we distinguish between different levels of multitargeting. In this Review, we use the terminology intrinsically multi-effective, multitarget, and multifunctional. Intrinsically multi-effective compounds may have a single target, but this molecule or structure is involved in multiple processes, which are all affected by its inhibition. Multitarget antibiotics can be divided into multitarget compounds that target more than one isoenzyme or closely related proteins of the same pathway and multitarget compounds that bind to different molecules involved in separate cellular processes. Multifunctional compounds have a direct antibiotic target but an additional indirect antibacterial activity, e.g., immunomodulatory properties. Table 1 gives an overview of prominent antibiotics of these categories that are used in the clinic.
Table 1. Examples for Clinically Used Antibiotics with Multiple Mechanisms of Action
antibiotictargetsmechanism of actionref
Intrinsically Multi-effective
daptomycinphosphatidylglycerol, fluid lipid domainsbinds to phosphatidylglycerol, inserts into fluid lipid domains that harbor the cell wall synthesis machinery, immediately inhibits cell wall and membrane synthesis; prolonged treatment results in partial membrane depolarization and impairs several other membrane-bound processes (25,26)
gramicidin Smembraneinduces membrane phase separation causing inhibition of cell envelope synthesis and cell division (20)
vancomycinlipid IIbinds to lipid II, thereby inhibits peptidoglycan synthesis and depletes the pool of bactoprenol phosphate, additionally resulting in the inhibition of wall teichoic acid synthesis (27,28)
bacitracinbactoprenol pyrophosphatedepletes the pool of bactoprenol phosphate resulting in inhibition of peptidoglycan and wall teichoic acid synthesis (29)
nitrofurantoincellular macromoleculesgenerates reactive oxygen species, which damage cellular macromolecules including DNA and membrane lipids (30,31)
acyldepsipeptidesClp proteasederegulates the Clp protease resulting in unspecific degradation of a variety of proteins (32,33)
bedaquilineATP synthaseinhibits ATP synthase, depleting the ATP pool and resulting in the inhibition of all energy-consuming cellular processes (34)
Multitarget
penicillinpenicillin-binding proteinsinhibits multiple penicillin-binding proteins (8)
ciprofloxacintopoisomerase II and IVinhibits topoisomerase II and IV (9)
tetracyclineribosome and membraneblocks attachment of loaded aminoacyl tRNA to the A-site of the ribosome; also impairs membrane function (31,35)
polymyxin Bouter and inner membranepermeabilizes both the outer and inner membrane of Gram-negative bacteria (36)
tyrocidinemembrane and probably DNAforms defined ion-conducting membrane pores; probably additionally binds to DNA (20,37,38)
Multifunctional
clindamycin50S rRNAanti-inflammatory (39,40)
clofazimineguanineanti-inflammatory (41−43)
dapsonedihydropteroate synthaseanti-inflammatory and immunomodulatory (44,45)
macrolides50S rRNAanti-inflammatory and immunomodulatory (46−48)
metronidazoleDNAanti-inflammatory (49,50)
rifampicinDNA-dependent RNA polymeraseanti-inflammatory and immunomodulatory (51,52)
tetracyclineribosome and membraneanti-inflammatory (53−55)

Intrinsically Multi-effective

The most common antimicrobial target, whose inhibition results in a multitude of cellular effects, is the cytoplasmic membrane. It is the target of many natural antibiotics, most prominently host defense peptides. (12) The cytoplasmic membrane harbors essential cellular processes, such as the respiratory chain and cell wall synthesis (Figure 1A), and many more important components, including nutrient uptake, secretion, and stress response systems. Thus, membrane-targeting antibiotics have the potential to (i) inhibit processes essential for survival, (ii) reduce bacterial fitness, (iii) impair virulence, and (iv) interfere with stress adaptation. Depending on how an antibiotic interferes with the membrane, few or a whole array of membrane-bound processes can be affected. (20) Several membrane-active antibiotics are used in the clinic, although only a handful are applied systemically. For some of them, their multiple effects on bacterial cells have been studied.

Figure 1

Figure 1. Examples for multiple mechanisms of action of antibiotics. (A–C) Antibiotics with intrinsically multi-effective properties. (A) Disrupting cytoplasmic membrane integrity, e.g., by gramicidin S, affects membrane-bound processes, most prominently respiration and lipid II synthesis. (B) Binding of antibiotics to lipid II or its carrier molecule undecaprenyl(pyro)phosphate (here: bacitracin binding UDP-PP) depletes the carrier pool, affecting both the synthesis of wall teichoic acids (WTA) and lipid II. (C) Inhibition of ATP synthase, e.g., by bedaquiline, leads to the depletion of the cellular ATP pool and thus inhibition of multiple metabolic processes. (D–F) Antibiotics with multiple targets. (D) β-Lactams (here imipenem) typically inhibit more than one penicillin-binding protein (PBP). (E) Polymyxins like polymyxin B or colistin disrupt both the outer and inner membrane of Gram-negative bacteria. (F) Type A lantibiotics like nisin bind to lipid II and use it as a docking molecule to form a transmembrane pore.

Many membrane-active antibiotics dissipate the membrane potential. This depolarization has a number of downstream effects due to the depletion of ATP and the subsequent impairment of ATP-dependent processes. Moreover, it leads to the displacement of peripheral membrane proteins that bind to the membrane surface by electrostatic interactions, such as the cell division proteins FtsA and MinD. (56,57) However, not all membrane effects can be explained by membrane depolarization. Thus, the membrane pore-forming peptides tyrocidine A and C not only dissipate the membrane potential and lead to leakage of ions and small molecules but also reduce membrane fluidity, diminish membrane domains, and affect the localization of several membrane-bound processes, including cell division, peptidoglycan synthesis, phospholipid synthesis, respiration, and ATP synthesis. (20) Such effects are not observed when the membrane potential is dissipated by specific ionophores. (56,57) The structurally similar peptide gramicidin S, which does not form distinct membrane pores and has milder effects on membrane potential and fluidity, only affects cell division and cell envelope synthesis proteins. (20,58) Daptomycin, which is one of the few systemically applied membrane-targeting antibiotics, has recently been described to interfere with both peptidoglycan and phospholipid synthesis by interfering with fluid membrane microdomains that harbor the lateral cell wall synthesis machinery. (25,31,59)
Similar results have been obtained for host defense peptides and experimental compounds that are not yet in clinical application. For example, human β-defensin 3 forms a dimeric raft-like structure with two α-helices anchoring it to the hydrocarbon layer and binds to negatively charged lipid head goups. (60) It has also been shown to bind the cell wall precursor lipid II with low affinity, probably due to electrostatic interactions with the pyrophosphate group. (61) Thus, the defensin is attracted to sites of active cell division and cell wall synthesis, where its presence disturbs the interactions of the complex peptidoglycan synthetic machinery, which was coined the “sand in the gearbox” effect. (61) The structurally similar human β-defensin 2 binds to distinct membrane foci at nascent cell division septa, where it disturbs the function of SecA and sortase A, which specifically localize to these sites and are involved in the secretion of virulence factors. (62) Other membrane-active compounds have been observed to have broader effects. For example, the membrane-disruptive peptides TC19 and TC84, which are derived from the microbicidal blood platelet protein thrombocidin, (63) lead to large-scale disruption of membrane organization and affect a multitude of cellular processes, including cell division, peptidoglycan synthesis, phospholipid synthesis, respiration, ATP synthesis, and spore outgrowth. (64−66) Such a broad panel of effects raises the following questions: which ones are due to the multifaceted mechanisms of the compounds and which are merely a consequence of cell death? It is therefore pivotal to examine the mechanism of a compound after short treatment times with sublethal concentrations. (4) The comparison of the effects observed under these conditions with those occurring at lethal concentrations or after prolonged treatment can give insight into which effects lead to cell death and which are a consequence thereof. In the case of the TC19 and TC84 peptides, membrane depolarization, rigidification, and phase separation were already observed at sublethal concentrations and increased at lethal concentrations, while other observations like protein delocalization and intracellular content leakage were mainly observed at lethal concentrations or after prolonged treatment. (64,65) This suggests that the primary mechanism of these peptides is the disruption of membrane organization. Similarly, depolarization and limited ion leakage are observed with daptomycin at high concentrations and long treatment times. However, at inhibitory, and even lethal, concentrations these effects do not occur, suggesting that increased membrane permeability is a consequence of cell death and not the primary mechanism by which it occurs. (67)
However, broad effects do not necessarily need to be a mere consequence of membrane disruption. Similar effects have been achieved by other compounds with quite creative molecular mechanisms. For example, the cyclic hexapeptide cWFW induces large-scale phase separation sorting peripheral and integral membrane proteins into two distinct domains, (68) and the plant-derived antibiotic candidate rhodomyrtone forms large membrane vesicles that irreversibly trap both peripheral and transmembrane proteins. (69)
Another molecular target that intrinsically presupposes multiple effects is the peptidoglycan precursor lipid II, which is the antibiotic target of the glycopeptide antibiotics vancomycin, telavancin, oritavancin, dalbavancin, and teicoplanin. (70−73) Lipid II is also the target of a variety of lantibiotics, most prominently the food preservative nisin. While nisin and other type A lantibiotics, such as gallidermin and epidermin, additionally target the cell membrane, (13,74,75) type B lantibiotics like mersacidin do not seem to have additional membrane effects. (74,76) Though the application of lantibiotics for antimicrobial coatings, e.g., for implants, is being explored, (77) none of them is currently used in a clinical setting. Lipid II is synthesized in the cytosol and attached to a lipid carrier molecule, undecaprenol phosphate, yielding the peptidoglycan building block lipid II. Lipid II flips over the membrane to the cell surface, and when the building block is incorporated into the cell wall, undecaprenyl phosphate flips back over the membrane to the cytosolic side, where it can undergo another cycle of peptidoglycan synthesis. (78) However, undecaprenyl phosphate is also used in the biosynthesis of wall teichoic acids, an important component of the Gram-positive bacterial cell wall. (78,79) The binding of antibiotics to lipid II not only directly prevents the incorporation of peptidoglycan building blocks into the cell wall but also depletes the undecaprenyl phosphate pool and thus concomitantly impairs the wall teichoic acid synthesis. Likewise, compounds that bind undecaprenyl phosphate (e.g., friulimicin B) or undecaprenol pyrophosphate (bacitracin) simultaneously inhibit both processes (Figure 1B). Moreover, cell wall synthesis is coupled to other cellular processes, most prominently cell division, and the binding of antibiotics to the sites of cell wall synthesis is likely to have additional “sand in the gearbox” effects. (61) Due to their typically large size and/or hydrophobic or amphipathic properties, membrane and cell wall-targeting antibiotics rarely cross the outer membrane of Gram-negative bacteria and are mostly used against and studied in Gram-positives. However, the general principle of the intrinsically multiple effects of such compounds is the same in all organisms.
These effects have also been predicted for other multiprotein machineries like the respiratory chain. Indeed, the inhibition of respiration and/or ATP synthase and subsequent depletion of ATP pools have been observed for several compounds, whose primary target is the cell membrane. (58,69,80−82) Membrane potential and respiration are closely intertwined, and the impairment of one can lead to the inhibition of the other. (83,84) Either way, both will have downstream effects on the performance of ATP synthase and the availability of ATP for important cellular processes (Figure 1C). Currently, no respiratory chain inhibitor is available as an antibiotic on the market, but with bedaquiline, the first ATP synthase inhibitor was marketed for the treatment of tuberculosis in 2012. (34) The impairment of the electron transport chain can also generate reactive oxygen species and thus cause oxidative stress. (85) This leads to widespread oxidative damage to cellular macromolecules, including DNA, proteins, and the cell membrane. (86) Oxidative damage is also a key mechanism of killing pathogenic bacteria by the immune system that is mediated by neutrophils. (87) While the generation of reactive oxygen species may be a side effect of membrane-targeting antibiotics, there is one antibiotic in the clinic that makes targeted use of oxidative stress. Nitrofurantoin, which is used against urinary tract infections, is a pro-drug that is activated by cellular nitrofuran reductases resulting in reactive intermediates that damage cellular macromolecules, especially DNA. (30,31)
Another mechanism that should be mentioned in this category is the deregulation of the ClpP protease by acyldepsipeptide antibiotics. ClpP takes part in both the general degradation of misfolded proteins and the regulated proteolysis of a range of substrates, including transcription factors and regulatory proteins. Acyldepsipeptides deactivate the tight control mechanisms that normally ensure that only such proteins that are either defective or supposed to be degraded as part of a regulatory cascade are degraded by ClpP. This leads to the uncontrolled proteolysis of intact cytosolic proteins and among them the key cell division protein FtsZ. (32,33,88)
Translation inhibitors that target the bacterial ribosome always bind to rRNAs, which are encoded in multiple copies in the bacterial genome. (5,89) While they only have one binding site, their resistance development rates are reduced, since simple point mutations are unlikely to affect all gene copies. (5) Translation inhibitors are also intrinsically multi-effective antibiotics, since an impaired ability to produce proteins hampers multiple cellular processes including the ability to elicit an appropriate stress response and thus prevents stress adaptation. Next to β-lactams, ribosome inhibitors constitute the most successful antibiotic class in the clinic, underlining the potential of compounds with multiple targets.

Multiple Targets in the Same Pathway

Most of the antibiotics described above target one specific cellular structure, which itself is involved in different processes. However, there are also several antibiotics that bind to two or more distinct molecules. We will first discuss those compounds that target related proteins of the same pathway. The most extreme examples for this are the β-lactam antibiotics, which typically target more than one penicillin-binding protein (PBP) (Figure 1D). (8) For example, Escherichia coli has 8 PBPs, 6 of which are inhibited by penicillin G. (90−92) Other examples include quinolone antibiotics, which target both topoisomerase II and IV involved in DNA supercoiling and resolving DNA concatemers, respectively, (9) and the cell wall synthesis inhibitors fosfomycin and d-cycloserine. Gram-positive bacteria possess two copies of MurA, the first enzyme in the lipid II synthesis pathway, and fosfomycin inhibits both isoenzymes. (93)d-Cycloserine competitively inhibits both alanine racemase and d-ala-d-ala ligase, which converts l-alanine to the d-alanine dipeptide that is part of the peptidoglycan interpeptide bridge. (94) Similarly, platencin, a fatty acid synthesis inhibitor that attracted significant attention upon its discovery but then encountered several hurdles in preclinical development, (95) is a dual inhibitor of the FabF and FabH enzymes. (96,97)

Multiple Targets in Different Pathways

Several antibiotics have been found that inhibit two or more distinct targets that are not closely related components of the same pathway or process. Not only is it more difficult to acquire target-based resistance in two different molecules, but also bacteria need to react with two different stress responses to mitigate antibiotic action, hampering their capabilities for efficient stress adaptation; thus, these antibiotics have an additional advantage.
There are several examples for such compounds in the clinic, and new molecules with multiple targets are regularly discovered. One example are the polymyxins, in particular polymyxin B and colistin, which are used as last resort antibiotics against multiresistant Gram-negative infections. (98) These polypeptides target both the outer and the inner membrane of Gram-negative bacteria (99,100) (Figure 1E). Another example is clofazimine, which is used to treat leprosy. (101) This antibiotic binds to guanine bases in bacterial DNA but also increases phospholipase A1 activity, leading to toxic overproduction of lysophospholipids. (102) The atypical tetracycline chelocardin, which has recently attracted renewed interest for clinical development, (103,104) inhibits the bacterial ribosome and additionally depolarizes the cytoplasmic membrane. (105) Tetracycline itself, while not leading to depolarization, has recently been shown to disturb membrane organization in addition to translation inhibition. (31) The same was observed for anhydrotetracycline, suggesting that this dual activity could be a general activity of the tetracycline class. (31) It would be reasonable to assume that membrane activity may be a general consequence of translation inhibition, since ribosomes associate with the cell membrane to couple translation to protein secretion. (106) However, other ribosome inhibitors did not visibly disturb the cell membrane, and a ribosomal protein mutant that diminishes tetracycline binding to the ribosome showed the same tetracycline-induced membrane effects as the wild-type. (31) These findings suggest that the membrane activity of tetracycline is independent from translation inhibition and thus a separate secondary target. Similarly, tyrocidines, which primarily disrupt cytoplasmic membrane integrity, have long ago been proposed to bind DNA as secondary target. This notion, which was derived from test tube interactions of the peptides with isolated DNA, (38) was only recently supported by in vivo experiments. (20)
Another very prominent example are antibiotics with a dual mechanism on cell wall synthesis and the cell membrane. This is relatively common, since cell wall synthesis inhibitors often target membrane-bound steps of this pathway. Thus, both targets are in close proximity. The most prominent example for this is the lantibiotic nisin, which is not used clinically but is a common food preservative (Figure 1F). Nisin has a two-step mechanism of action. It first establishes contact with lipid II, inhibiting peptidoglycan synthesis. It then inserts into the lipid bilayer to form a transmembrane pore. (107−109) More recently, it was found that nisin also binds to undecaprenyl phosphate, adding another structure to its list of molecular targets. (110) While nisin is able to bind to negatively charged lipids in the absence of lipid II or undecaprenyl phosphate, (111) it needs the lipid-coupled cell wall precursor as a docking molecule to form a transmembrane pore. Other lantibiotics like gallidermin can impair both targets independently. (112) This property of lantibiotics also inspired the development of dual-function vancomycin derivatives. Telavancin and oritavancin carry a hydrocarbon tail, which allows them to insert into the cell membrane after binding lipid II. Thereby, they disrupt the permeability barrier, a feature that vancomycin is lacking and that restores activity against strains with high-level vancomycin resistance. (7,71) Daptomycin could be included in this group as well, since it likewise inserts into the cell membrane and impairs cell wall synthesis. (25) However, at least to our current knowledge, it only binds a single molecular target, namely, phosphatidylglycerol-containing lipids. (113−116)

Designer Dual-Target Compounds

Inspired by the clinical success of these multitarget antibiotics, approaches have been undertaken to develop dual-target molecules. These can either be stable hybrids combining two functions in one molecule or cleavable compounds, whereby the prodrug has a different target than the cleavage product. (117,118) In the past, cleavable compounds have essentially behaved like simple prodrugs for the cleavage product rather than eliciting their intended dual effects. Hence, newer efforts rather focus on stable hybrids. (118−120) These approaches have been recently reviewed in detail, (117,121) but we want to give a brief overview of the molecules that are currently underway in clinical development (Table 2).
Table 2. Antibiotic Hybrid Molecules Currently under Clinical Development
compoundantibiotic 1 inhibited process 1antibiotic 2 inhibited process 2stageref
cadazolidquinolone topoisomerases II and IVoxazolidinone translationphase III (122)
cefilavancin (TD-1792)vancomycin lipid IIcephalosporin PBPsphase III (123)
DNV3837 (MCB-3681)afluoroquinolone topoisomerases II and IVoxazolidinone translationphase II (124)
TNP-2092 (CBR-2092)rifamycin RNA polymerasequinolone topoisomerases II and IVphase II (120)
TD-1607glycopeptide lipid IIcephalosporin PBPsphase I (125)
a

MCB-3681 was developed into the prodrug MBB-3837, which was renamed DNV3837 after Morphochem was acquired by Deinove.

Cadazolid is a stable hybrid of a quinolone and oxazolidinone and currently in phase III clinical trials for the treatment of Clostridium difficile infections. (122,126) It primarily inhibits translation but also topoisomerase activity and shows low resistance development rates. (127) Cefilavancin is a stable hybrid molecule of vancomycin and a third-generation cephalosporin, which is currently undergoing phase III clinical trials for complicated skin and soft tissue infections. (121) This hybrid compound is active against both methicillin and vancomycin-resistant Staphylococcus aureus, yet it has not been verified to which extent it inhibits lipid II and PBPs. (128,129) MCB-3681 is a stable fluoroquinolone–oxazolidinone hybrid similar to cadazolid. (124) It is active against strains that are resistant to both ciprofloxacin and linezolid. (130) MCB-3681 was scheduled to undergo phase II clinical trials since 2015 and was granted fast track status by the FDA in 2016. (124) Instead, it was further developed into a prodrug molecule, MCB-3837. In 2018, its developing company Morphochem was acquired by Deinove, and the compound, now under the name DNV3837, finally went into phase II clinical trials for treatment of C. difficile infections in 2019. (131) The study is planned to be completed in the summer of 2020. (132) TNP-2092 is a stable rifamycin–quinolone hybrid currently in phase II trials for prosthetic joint infections. (120) It is active against a range of quinolone and rifamycin-resistant strains. (120) TNP-2092 is also being evaluated against Helicobacter pylori infections yet at a preclinical stage. (133) TD-1607 is a stable glycopeptide–cephalosporin hybrid similar to cefilavancin. Two phase I clinical trials have been completed, yet results remain to be published. (121,125)
A different hybrid approach was followed by the company Visterra, who developed an ultranarrow spectrum hybrid molecule against P. aeruginosa infections by coupling a specific antibody that targets cell surface glycan molecules with an antimicrobial peptide. (134) Here, the hybrid molecule does not possess two antibacterial targets, but the antibody strategy allows more targeted treatment by increasing the local peptide concentration at the cell surface and bringing the antibiotic group close to its target.
Another approach to new multifunctional antibiotic candidates against Gram-negative bacteria based on the polymyxin lead structure has recently been published. (135) These compounds are chimeric peptidomimetics combining features of polymyxin A with the outer membrane protein-targeting cyclic peptide murepavadin. They permeabilize the outer membrane by targeting lipopolysaccharides, inhibit the outer membrane protein complex Bam, which is involved in the folding and insertion of β-barrel proteins in the outer membrane, and permeabilize the inner membrane. (135) One of these compounds is currently undergoing preclinical toxicology studies. (135)
It will be exciting to see whether these hybrid molecules will receive FDA approval and how they will ultimately perform in the clinic.

Multifunctional Compounds

The last category of multitarget molecules that we want to discuss are multifunctional compounds, which in addition to their antibacterial properties possess a second, unrelated activity that is beneficial for treatment. Most prominently, such compounds may have anti-inflammatory or immunomodulatory properties (Table 1). This is well-described for a range of antibiotics, and some are even used to treat conditions unrelated to infections due to these properties. This is, for example, the case for macrolides, which are used to treat diffuse panbronchiolitis, (47) dapsone, which has anti-inflammatory and immunomodulatory effects and is, for example, used against dermatitis herpetiformis, (136) or rifampicin, used against pruritus caused by primary biliary cholangitis. (137) For other indications, the dual effects of these compounds are crucial for their therapeutic efficacy. For example, clindamycin is used to treat acne for both its direct antibacterial action and its ability to decrease swelling and inflammation by modulating cytokine production. (40,138) Acne is a very common indication for combining antibacterial and anti-inflammatory activities. Other antibiotics with this dual function are metronidazole, tetracycline, macrolides, and dapsone, which are all used to treat acne. (48) Clofazimine, which is used against leprosy, already has two distinct antibacterial targets, guanine bases and phospholipase A2. (102) In addition to these activities, it also reduces neutrophil mobility, which is beneficial for treating patients with a type 2 lepra reaction characterized by strong inflammation. (139,140) The range of antibiotics with immunomodulatory and anti-inflammatory effects and the detailed use of these compounds have been thoroughly reviewed before (48,141−143) and should not be described here in more detail. However, it should be noted that daptomycin has been implicated to have immunomodulatory effects as well. (144) Daptomycin already has multiple effects on bacterial cells, and both tetracycline and clofazimine have two distinct antibacterial targets. This illustrates that multiple activities are quite common in clinically successful antibiotics.

Part 2: Antibiotic Combinations

Click to copy section linkSection link copied!

Combination regimes are nowadays quite common in the clinic, normally to potentiate activity against multiresistant strains and prevent resistance development. A common regime is, for example, the combination of sulfonamides with trimethoprim in urinary tract infections (Figure 2).

Figure 2

Figure 2. Prevention of resistance development by combination therapy. Sulfonamide antibiotics are typically given together with trimethoprim to prevent fast target mutation of a single enzyme.

Table 3 gives an overview of well-characterized antibiotic combinations and their effects. A significant amount of research is being conducted to find combinations that are more effective than monotherapy or that are resistance-breaking. When two antibiotics are combined, they are usually either indifferent in their activity or more effective in killing bacteria due to additive effects. However, if the effects of the combination exceed the expected additive effects, the combination is called synergistic. This is, for example, the case for daptomycin and β-lactams. (145) The opposite effect is called antagonistic and is observed, e.g., with the antifungal drugs amphotericin B and ravuconazole. (146) Synergistic drug combinations are highly sought after, since they allow one to lower drug doses and thus may reduce side effects. A different approach to combination strategies is using potentiators, sometimes also called antibiotic adjuvants. These are compounds that by themselves have little or no antibacterial activity but enhance the effects of antibiotics when administered in combination. This is, for example, the case for resistance-breaking compounds like β-lactamase inhibitors. (147) Such compounds typically target either acquired or intrinsic antibiotic resistance mechanisms. There have also been approaches to develop inhibitors of horizontal gene transfer to prevent the spread of resistance genes. (148) In the following, we will discuss these different approaches to antibiotic combination therapy.
Table 3. Examples for Well-Characterized Antibiotic Combinationsa
antibiotic 1antibiotic 2mechanism of combinationref
synergistic
d-cycloserine inhibits peptidoglycan synthesisepigallocatechin gallate binds to and disrupts the peptidoglycan layerd-cycloserine inhibits lipid II synthesis, and epigallocatechin gallate disrupts cell wall peptidoglycan (149)
ampicillinb inhibition of PBPsdaptomycin inhibition of membrane and cell wall synthesisdaptomycin affects membrane organization, which might interfere with the function of PBPs; it also inhibits lipid II synthesis by abolishing membrane binding of MurG (25,150,151)
rifampicinb RNA synthase inhibitionfusidic acid ribosome inhibitionmechanism unknown, but it has been observed in vitro that DNA-dependent RNA-polymerase is inhibited by the elongation factor T (152−155)
erythromycinb ribosome inhibitionpenicillin inhibition of PBPsinhibition of translation might deplete β-lactamases (153,156,157)
additive
ampicillinb inhibition of PBPsimipenem inhibition of PBPsboth antibiotics bind to the same site of PBP2A but with low affinity (150,158,159)
azithromycinb ribosome inhibitionimipenem inhibition of PBPsinhibition of translation might deplete PBPs, requiring lower doses of imipenem (160,161)
indifferent
sulphamethoxazoleb inhibits dihydropteroate synthetasetrimethoprim inhibits dihydrofolate reductaseboth compounds target folate synthesis but at different steps; a combination is given to prevent rapid resistance development to a single drug rather than increase activity (162−164)
potentiative
amoxicillineb inhibition of PBPsclavulanate β-lactamase inhibitorclavulanate inhibits the β-lactamase that degrades amoxicilline (165,166)
a

PBP: penicillin-binding protein.

b

Combination in clinical use.

Antibiotic Synergy

Synergistic compound combinations are known against Gram-positive and Gram-negative bacteria and mycobacteria. However, the exact mechanisms of antibiotic synergy are mostly unknown. While there have been attempts to explain synergy, these have rarely been experimentally proven. However, there are four widely accepted categories of possible synergistic mechanisms for which examples are known (Figure 3).

Figure 3

Figure 3. Mechanisms of synergy. (A) Targeting the same molecule (here, plectasin in red–yellow and dalbavancin in green–blue), (B) targeting the same pathway (here, plectasin in red–yellow and moenomycin in green–blue), (C) targeting a related process (here, LL-37 in green–blue and teicoplanin in red–yellow), and (D) improving target accessibility (here, colistin in red–yellow and minocycline in green–blue).

One possible synergistic mechanism is the inhibition of the same target molecule at multiple binding sites (Figure 3A). An example for this is the synergy of plectasin with teicoplanin and dalbavancin, which all bind the peptidoglycan precursor lipid II. (167) However, this is not a universal phenomenon, and other antibiotics that target the same molecule might only have additive effects. This is, for example, the case for the PBP inhibitors ampicillin and imipenem. (150) Another possibility for synergy is that two compounds inhibit independent targets in the same pathway (Figure 3B). This is for example the case for d-cycloserine, an antituberculosis drug that inhibits an intracellular step of peptidoglycan synthesis, (168) and epigallocatechin gallate, a compound found in tea that is thought to disrupt cell wall peptidoglycan. (149,169) Epigallocatechin gallate also acts synergistically with β-lactam antibiotics (149) and inhibits β-lactamase activity. (170) Another example for this synergistic mechanism is again plectasin, which also acts synergistically with the glycosyltransferase inhibitor moenomycin. (167) However, plectasin does not show synergy with other cell wall synthesis inhibitors like vancomycin or penicillin G, demonstrating that the exact mechanisms underlying synergy are little understood. (167) Synergy can also be observed between compounds that inhibit related processes (Figure 3C). This can often be observed for antibiotics that target cell wall synthesis and membrane-active compounds, e.g., β-lactams and daptomycin (150,171,172) or the cationic antimicrobial peptide LL-37 and the lipid II-binding antibiotic teicoplanin. (173) In some cases, synergy is also observed between antibiotics with different targets in unrelated pathways as observed with penicillin and the ribosome inhibitor erythromycin. Here, it has been suggested that the depletion of penicillin-binding proteins by translation inhibition might be the underlying mechanism. (157) However, a similar combination of azithromycin (ribosome inhibitor) and imipenem (β-lactam) only results in additive effects. (174) The last documented mechanism underlying antibiotic synergy is the improvement of target accessibility (Figure 3D). This is, for example, observed with the outer membrane-permeabilizing peptide colistin in combination with drugs that have inner membrane-bound or cytosolic targets, such as the β-lactam meropenem, the ribosome inhibitor minocycline, and fosfomycin, which inhibits the first enzyme in the lipid II pathway. (175) This is an important anti-Gram-negative strategy that will be discussed in more detail in the following chapter. Antibiotic synergy has attracted significant attention over the last years, and efforts are being undertaken to discover new synergistic combinations that can be useful for clinical applications. (176−180)

Permeabilizers

In addition to synergistic antibiotic combinations, potentiative combination approaches have recently attracted increased attention. Potentiators typically target intrinsic or acquired antibiotic resistance mechanisms to sensitize or resensitize bacteria to existing antibiotics (Figure 4).

Figure 4

Figure 4. Mechanisms of resistance-breaking and antibiotic-potentiating compounds. (A) Cell envelope permeabilizers, (B) antibiotic sensitizers, (C) β-lactamase inhibitors, (D) inhibitors of aminoglycoside-modifying enzymes, (E) efflux pump inhibitors, and (F) biofilm inhibitors. red–yellow: antibiotic; magenta–turquoise: potentiator.

The advantage of these molecules is that they can potentially increase the activity of a whole array of existing antibiotics. One class of potentiators are cell envelope permeabilizers, especially outer membrane-permeabilizing compounds (Figure 4A). These are particularly interesting, since the outer membrane is the main reason why most antibiotics are ineffective against Gram-negative bacteria. The inactivation of this permeability barrier could make almost the whole array of current antibiotic drugs available for treating these infections, instead of the handful that we have at our disposal now. Two antibiotics in current clinical use are known to target the outer membrane of Gram-negative bacteria, colistin and polymyxin B. Both of them display synergy with antibiotics with intracellular targets, which can at least partially be attributed to increased outer membrane permeability. (175,181,182) Many other outer membrane-permeabilizing agents are known, for example, chelators like EDTA, metal ions, and certain antimicrobial peptides, but many of these have little clinical promise. (183−188) However, several compounds have recently been described that could make the step into clinical practice in the future. For example, the antiprotozoal drug pentamidine has been identified as an outer membrane-permeabilizing agent. It was shown to potentiate the activity of typical Gram-positive-only drugs against Gram-negative bacteria in vitro and in a systemic Acinetobacter baumannii mouse infection model. Importantly, this activity was retained in colistin-resistant strains. (189,190) Since pentamidine has already been in clinical use for the treatment of trypanosomiasis, leishmaniasis, and babesiosis since 1937, its safety and side effects have been extensively assessed. Recent efforts have yielded lipophilic vancomycin analogues that were able to permeabilize both the inner and outer membrane of Gram-negative bacteria while retaining their ability to inhibit peptidoglycan activity. (191)
Attempts to fuse outer membrane-penetrating peptide sequences to the lantibiotic nisin, which by itself is not active against Gram-negative bacteria due to its inability to reach its inner membrane target, have resulted in hybrid molecules with significantly increased anti-Gram-negative activity. (192,193) A similar approach is the hybridization of antibiotics with the aminoglycoside tobramycin. (194) Tobramycin is known as a ribosome inhibitor but at higher concentrations primarily attacks and permeabilizes the outer membrane. (195,196) It has been conjugated with efflux pump inhibitors, (197) quinolones, (198,199) and the chelator cyclam. (200) The resulting conjugates turned out to be potent antibiotic adjuvants and increased the activity of tetracyclines, fluoroquinolones, and β-lactams against Gram-negative bacteria by increasing uptake and limiting efflux. This is achieved by a multifaceted mechanism involving outer membrane permeabilization, impairment of efflux pumps, and depolarization of the inner membrane. (117,194,197−200) Similar results have been obtained for tobramycin dimers. (201)
Another very interesting example are short peptide sequences derived from the cell cycle proteins FtsA and MreB from E. coli. These proteins bind to the cytoplasmic membrane with an amphipathic α helix motif. Peptides derived from these membrane-anchoring sequences not only display potent activity against E. coli and other Gram-negative bacteria but also significantly increase their outer membrane permeability. (186,202,203)
Few compounds are known that selectively permeabilize the outer membrane, and most known compounds also permeabilize the inner membrane. Such dual membrane activity can often be a sign for poor selectivity for bacteria, and side effects are likely. This is, for example, the case for colistin and polymyxin B and the reason why they are only employed as the last resort antibiotics for otherwise resistant infections. (98,204−206) However, colistin nonapeptide and polymyxin B hepta-, octa-, and nonapeptide are derivatives of these compounds that retain their membrane-permeabilizing but not antibacterial activity, indicating high selectivity. (184) Such derivatives, particularly polymyxin B nonapeptide, have been shown to act as strong potentiators of antibiotics with otherwise poor anti-Gram-negative activity. (184,207,208) At the same time, it is much less toxic than full-length polymyxin B. (184,209,210) While these properties have been demonstrated by many different studies, it is not used for combination therapy in the clinic. (211) However, a polymyxin derivative with similar properties as polymyxin B nonapeptide, NAB741, has been developed and successfully passed its first phase I clinical trial. (211) Compounds like polymyxin B nonapeptide or NAB741 hold great promise as potentiators of a wide range of antibiotics that would otherwise be ineffective against Gram-negative infections. It remains exciting to see how this type of compound proceeds in future clinical trials.

Sensitizers

A different strategy to enhance the performance of existing antibiotic drugs is to sensitize bacteria to their action. This can be achieved by inhibiting bacterial stress response systems that allow bacteria to adapt and survive antibiotic exposure (Figure 4B). Many studies on bacterial stress responses have proposed this as an option for future drug development, yet this has almost never been pursued. One exception is the bacterial SOS response to DNA damage. DNA damage is sensed by the RecA protein, which induces autoproteolysis of the LexA repressor, leading to derepression of DNA repair genes. It has been shown that genetically impairing this stress response mechanism leads to reversion of quinolone resistance in E. coli. (212) Few inhibitors of DNA repair have been verified so far. For example, p-coumaric acid was found to interfere with the DNA-binding ability of RecA in Listeria monocytogenes and increased the activity of ciprofloxacin against this pathogen. (213) Another study found that zinc inhibits the ability of RecA to bind to single-stranded DNA, suggesting a potential application for zinc ionophores. (214) However, the effectivity and cytotoxicity of zinc ionophores would depend on the external zinc concentration, (215) which may limit this approach to topical applications or targeted drug delivery and release approaches. A large-scale screen for inhibitors of LexA autoproteolysis has yielded promising lead structures for the inhibition of this step of SOS response activation. (216) Similarly, IMP-1700, a rationally designed inhibitor of DNA repair, was later verified to target the AddAB DNA repair complex and sensitized multidrug-resistant S. aureus to ciprofloxacin. (217)
Another example for this strategy was identified by a transposon screen for increased tobramycin sensitivity in Pseudomonas aeruginosa. This screen identified the two-component stress response system AmgRS as a potential target for combination therapy with aminoglycoside antibiotics. (218) It was later found that the RNA polymerase inhibitor rifampicin was also a potent inhibitor of this stress response system and potentiated the activity of aminoglycosides like tobramycin, amikacin, gentamycin, and neomycin against P. aeruginosa. (219,220)
A multitude of stress response systems have been identified that play a role for antibiotic adaptation and resistance, yet little effort has been put into identifying inhibitors of these systems to be used as antibiotic potentiators. In view of the urgent need for novel antibacterial strategies, this possibility deserves more attention.

Resistance Breakers

A similar strategy, yet much more exploited, is the direct targeting of bacterial resistance mechanisms (Table 4).
Table 4. Examples for Resistance-Breaking Compounds
resistance breakerantibioticmechanismref
clavulanateaamoxicillineβ-lactamase inhibitor (165,166)
avibactamaceftazidime, ceftaroline, aztreonamβ-lactamase inhibitor (221)
vaborbactamaMeropenemβ-lactamase inhibitor (221)
tazobactamaceftolozaneβ-lactamase inhibitor (221)
compound 1amikacininhibitor of aminoglycoside-modifying enzymes (222)
PAβNerythromycin, chloramphenicolefflux pump inhibitor (223)
verapamilbedaquiline, ofloxacinefflux pump inhibitor (224,225)
IMP-1700quinolonessensitizer (SOS response) (212,217)
colistinarifampinpermeabilizer (226−228)
dispersin Bseveral possiblebiofilm inhibitor (229−231)
dehydrocrepenyc acidseveral possibleinhibitor of horizontal gene transfer (232)
streptazolinseveral possibleimmunomodulator (233)
a

Combination in clinical use.

The most prominent example for this is the inhibition of β-lactamase activity (234) (Figure 4C). Having pioneered the field, it was the first resistance-breaking strategy to be applied in the clinic. It is also the only combination of antibiotic and potentiator in current clinical use apart from synergistic combinations with the outer membrane-permeabilizing peptides colistin and polymyxin B. The oldest combination of β-lactam antibiotic and β-lactamase inhibitor is amoxicillin–clavulanate, which was approved for clinical use in 1981. It is still in use today and remains the only one that is orally available. (235) Since then, several other β-lactamase inhibitors have been identified, and eight combinations are currently on the market: amoxicillin–clavulanate, ticarcillin–clavulanate, ampicillin–sulbactam, cefoperazone–sulbactam, piperacillin–tazobactam, ceftolozane–tazobactam, ceftazidime–avibactam, and Meropenem–vaborbactam. (221,235) Several other combinations are in different stages of clinical development. (221)
A similar strategy is the inhibition of aminoglycoside-modifying enzymes, which are responsible for the majority of cases of aminoglycoside resistance (Figure 4D). Different enzymes have been described that acetylate different sites of aminoglycoside antibiotics, (236) some of which are inhibited by Cu2+, Zn2+, and Cd2+ ions. (237) Inhibitors of these enzymes have been identified by molecular docking studies with virtual compound libraries and by screening libraries for in vitro enzyme inhibition. (222,238,239) One of these has been confirmed to restore the activity of amikacin against a resistant Acinetobacter baumannii strain. (222) However, none of these compounds is close to clinical development at the present time.
The most important intrinsic resistance mechanism, next to the outer membrane permeability barrier, is constituted by antibiotic efflux pumps. Particularly, Gram-negative bacteria possess different multidrug efflux pumps that can export a wide variety of antibiotics and antimicrobial molecules. The most prominent efflux pump type is the Gram-negative-specific resistance-nodulation-division (RND) superfamily, in particular the well-characterized AcrAB-TolC pump. (240) A wide variety of antibiotics can be the substrate of these export systems, and their overexpression leads to high level drug resistance. (240) This makes efflux pumps one of the biggest challenges in overcoming antibiotic resistance and at the same time an attractive target for resistance-breaking antibiotic potentiators (Figure 4E). Since the discovery of the very first efflux pump inhibitors reserpine and verapamil against the S. aureus efflux pump NorA in 1991, (240) a multitude of inhibitors have been identified for both Gram-positive and Gram-negative efflux pumps. Many of them have been found to increase the activity of drugs, which are normally ineffective due to active export. These molecules have been extensively reviewed elsewhere. (240−244) Despite these efforts, no efflux pump inhibitor has advanced to clinical development yet. Common limitations of these molecules appear to be a high toxicity for mammalian cells, low in vivo efficacy, and insufficient spectrum coverage. (240,245) More research into this topic is needed to fully understand how multidrug efflux pumps work and how they synergize with other resistance mechanisms, such as the outer membrane, to go forward with effective inhibitor design.

Prevention of Horizontal Gene Transfer

A very different strategy to target antibiotic resistance is inhibiting horizontal gene transfer. Target mutations are only one way for bacteria to become antibiotic resistant. The much more threatening possibility is the spread of resistance genes that are encoded on plasmids or other mobile genetic elements within a bacterial population. This is especially critical for otherwise slowly occurring resistance mechanisms like enzymatic resistance. (246) Importantly, the human (or animal) microbiota can act as a reservoir for resistance plasmids that may spread to pathogenic bacteria during infection. Thus, the administration of an inhibitor of horizontal gene transfer in combination with antibiotic treatment could decrease the incidence of resistance transfer from a reservoir to an infectious strain. (247) This is an interesting concept but remains to be tested in infection experiments. Several compounds have been identified that inhibit horizontal gene transfer, yet in the majority of cases, this activity turned out to be due to secondary effects. (248) However, a small number of specific inhibitors have been found. For example, unsaturated fatty acid species from tropical fruits and their synthetic derivatives were able to inhibit the transfer of the most important resistance-related plasmid types in several Gram-negative pathogens. (232,249) Likewise, a mutation of a competence-stimulating peptide from Streptococcus pneumoniae has resulted in peptide versions that reduced competence and, thus, horizontal gene transfer. (250) As mentioned earlier, zinc was able to inhibit the bacterial SOS response, which interestingly, also impaired horizontal gene transfer between enterobacteria. (214) Secretion systems could be a promising target for such molecules as well. Thus, the inhibition of type IV secretion, which is involved in conjugative DNA transfer, has been shown to be inhibited by small peptidomimetic compounds. (251) While more research is needed to verify the feasibility of these approaches in clinical settings, it is certainly an interesting new combination therapy strategy that deserves further exploration.

Biofilm Inhibitors

One big problem in the clinic is the production of biofilms by bacteria like S. aureus and P. aeruginosa, and biofilm inhibitors are potent potentiators for antibiotics used against such infections (Figure 4F). Strategies to prevent biofilm formation or disperse mature biofilms can commonly be divided into three categories: the inhibition of adhesion or extracellular matrix production, the inhibition of quorum sensing, and the dispersion of the extracellular matrix. (252) Several antimicrobial peptides, for example, LL-37, prevent adhesion of bacterial cells by inhibiting the initiation of biofilm production. (253) Furanones are structurally similar to the quorum sensing molecule N-acyl-homoserine-lactone and are thought to competitively inhibit binding to their cognate transcriptional regulator. (253) Several other analogues of quorum sensing molecules have been patented, yet studies on their clinical potential are yet to come. (254) The most prominent biofilm-dispersing agent is the glycoside hydrolase dispersin B, which directly targets the extracellular matrix. (230) Further small molecule inhibitors have been identified for all these mechanisms. (254−257)
Biofilm inhibitors are particularly relevant in the context of medical devices like catheters and of chronic lung infections, with P. aeruginosa being the most problematic pathogen due to its high intrinsic antibiotic resistance and the emergence of totally drug-resistant isolates. (258) Several compounds have been described that could be used against P. aeruginosa biofilms. Interestingly, biofilm-degrading enzymes have been shown to remain active when immobilized on a surface, suggesting future applications in medical device technologies. (259) Short glycans have been shown to disrupt P. aeruginosa biofilms and subsequently increase the efficacy of antibiotics against it. (260) The small peptide 1018 targets the stringent response (p)ppGpp signaling, which is involved in biofilm formation, and acts as a potent biofilm-dispersing agent not only for P. aeruginosa but also for other pathogens including Klebsiella pneumoniae and S. aureus. (261) Peptide 1018 also resulted in decreased virulence of P. aeruginosa in a murine skin infection model. (262) Similarly, small molecule quorum sensing inhibitors have been shown to increase the efficacy of tobramycin against P. aeruginosa in a foreign-body infection model in mice. (263) Micafungin, which inhibits the synthesis of the pseudomonal cell wall component 1,3-β-d-glucan, was demonstrated to prevent P. aeruginosa biofilm formation and improved the outcome of antibiotic therapy in P. aeruginosa-infected mice, particularly when combined with the fluoroquinolone levofloxacin. (264) Interestingly, when the fatty acid synthesis inhibitor triclosan, which has been commonly used in hygiene products like toothpaste, was applied together with aminoglycosides like tobramycin, a strong antibiofilm activity was observed. Neither of these compounds have an effect on biofilms by themselves, and the mechanism behind this adjuvant activity is unknown. (265) So far, no biofilm inhibitor has made the transition to the clinic, yet a number of preclinical studies show the promise of using such agents as antibiotic potentiators in the future.

Multidrug Approaches

Combination therapy approaches may involve more than two compounds. This is, for example, very common in tuberculosis treatment regimes, which often consist of a combination of rifampicin, isoniazid, ethambutol, and pyrazinamide (266) but has also been employed for other bacterial infections. (267) A newly emerging approach is the combination of an antibiotic with more than one potentiator. This has, for example, been explored for the combination of β-lactams with β-lactamase inhibitors and permeabilizers such as dimeric tobramycin and tobramycin–cyclam. (200,201) However, such combinations are not currently used in the clinic.

Challenges of Combination Therapy

To date, antibiotic combination therapy is rather a last resort for severe infections than a standard therapy option. It is normally only employed for infections with multiresistant bacteria that cannot be treated with monotherapy, for latent infections like tuberculosis, or for antibiotics that have a high risk of encountering resistance when applied alone, such as trimethoprim–sulfonamide or β-lactam−β-lactamase combinations. Just as multitarget antibiotics are more effective than single-target antibiotics, (267) combination therapy is superior over monotherapy in terms of patient outcomes, at least when it comes to infections with multiresistant pathogens. (268) The current developments on antibiotic adjuvants have shown great promise for new combination strategies being added to our clinically available repertoire soon. However, combination therapies also face challenges.
One important limitation is the development of clinically useful formulations and treatment regimes. Finding the right dosing, treatment intervals, and total treatment duration can already be challenging for single drugs and gets much more complicated with each additional drug added to the regime, since each individual drug has its own pharmacodynamic and -kinetic properties and its own side effects. Matching these to elicit the desired outcome in patients can be a serious challenge. (267,269) A solution for this limitation could be antibiotic hybrids as discussed in Designer Dual-Target Compounds. However, hybrid molecules may encounter other challenges like solubility and uptake. (125)
Another risk of combination therapy is antimicrobial resistance. While many empirical studies have found that drug combinations suppress resistance, (198,269−276) other studies have warned that under certain conditions antibiotic combinations might even promote faster resistance development. This is a particular concern for synergistic drug combinations. While they allow one to lower the dose and thus reduce side effects, (277,278) they come with an inherent risk of treatment failure through resistance: If resistance to one drug occurs, synergistic effects are lost, resulting in the low-dose exposure to a single antibiotic. (279−283) Even with nonsynergistic antibiotic combinations, the risk for increased resistance development is evident. A recent study found that the development of tolerance, i.e., the ability of bacteria to survive longer under antibiotic exposure without changing the antibiotic’s minimal inhibitory concentration, to one drug may promote the transmission of resistance to the second drug. (284) These unwanted effects of combination treatments seem to be due to the prolonged survival of bacteria and their exposure to sublethal antibiotic concentrations. Therefore, the concept of “hitting them fast and hard”, which has been proposed to be a key to successful antibiotic treatment, should be paid particular attention in combination regimes, even if lowering drug doses can be tempting to reduce adverse effects. (6,276)

Conclusion

Click to copy section linkSection link copied!

Many fascinating approaches have been and are currently being developed to target multiple molecules in bacterial cells. From antibiotics that have multiple downstream effects, true multitargeting compounds, and dual-activity hybrid molecules to combination approaches with antibiotic adjuvants, all of these strategies have shown a certain promise and give hope for one to see light at the end of the tunnel of antibiotic development. Recent research gives the concept of polypharmacology another dimension by designing antibiotic adjuvants that possess multiple mechanisms themselves, such as outer membrane permeabilization and efflux pump inhibition, which synergistically increase the intracellular antibiotic concentration. (197) While more research is needed to truly understand the complex mechanisms underlying some of these multiple activities, they have already taught us one important thing, namely, that we should not shy away from complex mechanisms and multiple targets but try to exploit their full potential for future drug development.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Author
  • Author
    • Declan Alan Gray - Newcastle University Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, United Kingdom
  • Author Contributions

    Conceptualization, writing, and visualization: D.A.G. and M.W.

  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

M.W. received funding from Chalmers University of Technology and the Swedish Research Council (VR Starting Grant 2019-04521). The funders had no role in the design of the paper, in the writing of the manuscript, or in the decision to publish the results.

References

Click to copy section linkSection link copied!

This article references 284 other publications.

  1. 1
    Sprenger, M. and Fukuda, K. (2016) New Mechanisms, New Worries. Science (Washington, DC, U. S.) 351, 12631264,  DOI: 10.1126/science.aad9450
  2. 2
    WHO. (accessed 2020-03-10) Antimicrobial resistance fact sheet, http://www.who.int/mediacentre/factsheets/fs194/en/.
  3. 3
    Ventola, C. L. (2015) The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharm. Ther. 40, 277283
  4. 4
    Wenzel, M. and Bandow, J. E. (2011) Proteomic Signatures in Antibiotic Research. Proteomics 11, 32563268,  DOI: 10.1002/pmic.201100046
  5. 5
    Brötz-Oesterhelt, H. and Brunner, N. (2008) How Many Modes of Action Should an Antibiotic Have?. Curr. Opin. Pharmacol. 8, 564573,  DOI: 10.1016/j.coph.2008.06.008
  6. 6
    Gajdács, M. (2019) The Concept of an Ideal Antibiotic: Implications for Drug Design. Molecules 24, 892,  DOI: 10.3390/molecules24050892
  7. 7
    Silver, L. L. (2007) Multi-Targeting by Monotherapeutic Antibacterials. Nat. Rev. Drug Discovery 6, 4155,  DOI: 10.1038/nrd2202
  8. 8
    Scheffers, D.-J. and Pinho, M. G. (2005) Bacterial Cell Wall Synthesis: New Insights from Localization Studies. Microbiol. Mol. Biol. Rev. 69, 585607,  DOI: 10.1128/MMBR.69.4.585-607.2005
  9. 9
    Drlica, K., Malik, M., Kerns, R. J., and Zhao, X. (2008) Quinolone-Mediated Bacterial Death. Antimicrob. Agents Chemother. 52, 385392,  DOI: 10.1128/AAC.01617-06
  10. 10
    Chopra, I. (2007) Bacterial RNA Polymerase: A Promising Target for the Discovery of New Antimicrobial Agents. Curr. Opin. Investig. Drugs 8, 600607
  11. 11
    Sköld, O. (2000) Sulfonamide Resistance: Mechanisms and Trends. Drug Resist. Updates 3, 155160,  DOI: 10.1054/drup.2000.0146
  12. 12
    Yeaman, M. R. and Yount, N. Y. (2003) Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacol. Rev. 55, 2755,  DOI: 10.1124/pr.55.1.2
  13. 13
    Brotz, H., Josten, M., Wiedemann, I., Schneider, U., Gotz, F., Bierbaum, G., and Sahl, H. G. (1998) Role of Lipid-Bound Peptidoglycan Precursors in the Formation of Pores by Nisin, Epidermin and Other Lantibiotics. Mol. Microbiol. 30, 317327,  DOI: 10.1046/j.1365-2958.1998.01065.x
  14. 14
    Velkov, Y., Thompson, P., Azad, M., Roberts, K., and Bergen, P. (2019) History, Chemistry and Antibacterial Spectrum. In Polymyxin Antibiotics: From Laboratory Bench to Bedside (Li, J., Nation, R., and Kaye, K., Eds.) 1st ed., Vol. 1145, p 17, Spinger Nature, Switzerland AG,  DOI: 10.1007/978-3-030-16373-0_3 .
  15. 15
    Tang, X.-J., Thibault, P., and Boyd, R. K. (1992) Characterisation of the Tyrocidine and Gramicidin Fractions of the Tyrothricin Complex from Bacillus Brevis Using Liquid Chromatography and Mass Spectrometry. Int. J. Mass Spectrom. Ion Processes 122, 153179,  DOI: 10.1016/0168-1176(92)87015-7
  16. 16
    Loll, P. J., Upton, E. C., Nahoum, V., Economou, N. J., and Cocklin, S. (2014) The High Resolution Structure of Tyrocidine A Reveals an Amphipathic Dimer. Biochim. Biophys. Acta, Biomembr. 1838, 11991207,  DOI: 10.1016/j.bbamem.2014.01.033
  17. 17
    Munyuki, G., Jackson, G. E., Venter, G. A., Kover, K. E., Szilagyi, L., Rautenbach, M., Spathelf, B. M., Bhattacharya, B., and van der Spoel, D. (2013) Beta-Sheet Structures and Dimer Models of the Two Major Tyrocidines, Antimicrobial Peptides from Bacillus Aneurinolyticus. Biochemistry 52, 77987806,  DOI: 10.1021/bi401363m
  18. 18
    Leussa, A. N.-N. and Rautenbach, M. (2014) Detailed SAR and PCA of the Tyrocidines and Analogues towards Leucocin A-Sensitive and Leucocin A-Resistant Listeria Monocytogenes. Chem. Biol. Drug Des. 84, 543557,  DOI: 10.1111/cbdd.12344
  19. 19
    Spathelf, B. M. and Rautenbach, M. (2009) Anti-Listerial Activity and Structure-Activity Relationships of the Six Major Tyrocidines, Cyclic Decapeptides from Bacillus Aneurinolyticus. Bioorg. Med. Chem. 17, 55415548,  DOI: 10.1016/j.bmc.2009.06.029
  20. 20
    Wenzel, M., Rautenbach, M., Vosloo, J. A., Siersma, T., Aisenbrey, C. H. M., Zaitseva, E., Laubscher, W. E., van Rensburg, W., Behrends, J., Bechinger, B., and Hamoen, L. W. (2018) The Multifaceted Antibacterial Mechanisms of the Pioneering Peptide Antibiotics Tyrocidine and Gramicidin S. mBio 9, e00802-18  DOI: 10.1128/mBio.00802-18
  21. 21
    Palm, J., Fuchs, K., Stammer, H., Schumacher-Stimpfl, A., and Milde, J. (2018) Efficacy and Safety of a Triple Active Sore Throat Lozenge in the Treatment of Patients with Acute Pharyngitis: Results of a Multi-Centre, Randomised, Placebo-Controlled, Double-Blind, Parallel-Group Trial (DoriPha). Int. J. Clin. Pract. 72, e13272  DOI: 10.1111/ijcp.13272
  22. 22
    Bosscha, M. I., van Dissel, J. T., Kuijper, E. J., Swart, W., and Jager, M. J. (2004) The Efficacy and Safety of Topical Polymyxin B, Neomycin and Gramicidin for Treatment of Presumed Bacterial Corneal Ulceration. Br. J. Ophthalmol. 88, 2528,  DOI: 10.1136/bjo.88.1.25
  23. 23
    Jia, J., Zhu, F., Ma, X., Cao, Z. W., Li, Y. X., and Chen, Y. Z. (2009) Mechanisms of Drug Combinations: Interaction and Network Perspectives. Nat. Rev. Drug Discovery 8, 111,  DOI: 10.1038/nrd2683
  24. 24
    Reddy, A. S. and Zhang, S. (2013) Polypharmacology: Drug Discovery for the Future. Expert Rev. Clin. Pharmacol. 6, 4147,  DOI: 10.1586/ecp.12.74
  25. 25
    Müller, A., Wenzel, M., Strahl, H., Grein, F., Saaki, T. N. V, Kohl, B., Siersma, T., Bandow, J. E., Sahl, H.-G., Schneider, T., and Hamoen, L. W. (2016) Daptomycin Inhibits Cell Envelope Synthesis by Interfering with Fluid Membrane Microdomains. Proc. Natl. Acad. Sci. U. S. A. 113, E7077E7086,  DOI: 10.1073/pnas.1611173113
  26. 26
    Hachmann, A. B., Sevim, E., Gaballa, A., Popham, D. L., Antelmann, H., and Helmann, J. D. (2011) Reduction in Membrane Phosphatidylglycerol Content Leads to Daptomycin Resistance in Bacillus Subtilis. Antimicrob. Agents Chemother. 55, 43264337,  DOI: 10.1128/AAC.01819-10
  27. 27
    Reynolds, P. E. (1989) Structure, Biochemistry and Mechanism of Action of Glycopeptide Antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 8, 943950,  DOI: 10.1007/BF01967563
  28. 28
    Singh, M., Chang, J., Coffman, L., and Kim, S. J. (2017) Hidden Mode of Action of Glycopeptide Antibiotics: Inhibition of Wall Teichoic Acid Biosynthesis. J. Phys. Chem. B 121, 39253932,  DOI: 10.1021/acs.jpcb.7b00324
  29. 29
    Stone, K. J. and Strominger, J. L. (1971) Mechanism of Action of Bacitracin: Complexation with Metal Ion and C55-Isoprenyl Pyrophosphate. Proc. Natl. Acad. Sci. U. S. A. 68, 32233227,  DOI: 10.1073/pnas.68.12.3223
  30. 30
    Tu, Y. and McCalla, D. R. (1975) Effect of Activated Nitrofurans on DNA. Biochim. Biophys. Acta, Nucleic Acids Protein Synth. 402, 142149,  DOI: 10.1016/0005-2787(75)90032-5
  31. 31
    Wenzel, M., Dekker, M. P., Wang, B., Burggraaf, M. J., Bitter, W., van Weering, J. R. T., and Hamoen, L. W. (2019) New Flat Embedding Method for Transmission Electron Microscopy Reveals an Unknown Mechanism of Tetracycline. bioRxiv 820191,  DOI: 10.1101/820191
  32. 32
    Brötz-Oesterhelt, H., Beyer, D., Kroll, H.-P., Endermann, R., Ladel, C., Schroeder, W., Hinzen, B., Raddatz, S., Paulsen, H., Henninger, K., Bandow, J. E., Sahl, H.-G., and Labischinski, H. (2005) Dysregulation of Bacterial Proteolytic Machinery by a New Class of Antibiotics. Nat. Med. 11, 10821087,  DOI: 10.1038/nm1306
  33. 33
    Sass, P., Josten, M., Famulla, K., Schiffer, G., Sahl, H.-G., Hamoen, L., and Brotz-Oesterhelt, H. (2011) Antibiotic Acyldepsipeptides Activate ClpP Peptidase to Degrade the Cell Division Protein FtsZ. Proc. Natl. Acad. Sci. U. S. A. 108, 1747417479,  DOI: 10.1073/pnas.1110385108
  34. 34
    Deoghare, S. (2013) Bedaquiline: A New Drug Approved for Treatment of Multidrug-Resistant Tuberculosis. Indian J. Pharmacol. 45, 536537,  DOI: 10.4103/0253-7613.117765
  35. 35
    Chopra, I. and Roberts, M. (2001) Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 65, 23260,  DOI: 10.1128/MMBR.65.2.232-260.2001
  36. 36
    Teuber, M. and Bader, J. (1976) Action of Polymyxin B on Bacterial Membranes. Binding Capacities for Polymyxin B of Inner and Outer Membranes Isolated from Salmonella Typhimurium G30. Arch. Microbiol. 109, 5158,  DOI: 10.1007/BF00425112
  37. 37
    Bohg, A. and Ristow, H. (1987) Tyrocidine-Induced Modulation of the DNA Conformation in Bacillus Brevis. Eur. J. Biochem. 170, 253258,  DOI: 10.1111/j.1432-1033.1987.tb13693.x
  38. 38
    Ristow, H., Schazschneider, B., Vater, J., and Kleinkauf, H. (1975) Some Characteristics of the DNA-Tyrocidine Complex and a Possible Mechanism of the Gramicidin Action. Biochim. Biophys. Acta, Nucleic Acids Protein Synth. 414, 18,  DOI: 10.1016/0005-2787(75)90120-3
  39. 39
    Weinkle, A. P., Doktor, V., and Emer, J. (2015) Update on the Management of Rosacea. Clin., Cosmet. Invest. Dermatol. 8, 159177,  DOI: 10.2147/CCID.S58940
  40. 40
    Del Rosso, J. Q. and Schmidt, N. F. (2010) A Review of the Anti-Inflammatory Properties of Clindamycin in the Treatment of Acne Vulgaris. Cutis 85, 1524
  41. 41
    Goihman-Yahr, M., Pari, T., George, S., Jacob, M., Chandi, S. M., Pulimood, S., and Rajagopalan, B. (1996) Malignant Pyoderma Responding to Clofazimine. Int. J. Dermatol. 35, 757,  DOI: 10.1111/j.1365-4362.1996.tb00660.x
  42. 42
    Seukeran, D. C., Stables, G. I., Cunliffe, W. J., and Sheehan-Dare, R. A. (1999) The Treatment of Acne Agminata with Clofazimine. Br. J. Dermatol. 141, 596597,  DOI: 10.1046/j.1365-2133.1999.03084.x
  43. 43
    Gomez-De la Fuente, E., del Rio, R., Rodriguez, M., Guerra, A., Rodriguez-Peralto, J. L., and Iglesias, L. (2000) Granuloma Faciale Mimicking Rhinophyma: Response to Clofazimine. Acta Derm.-Venereol. 80, 144
  44. 44
    Prendiville, J. S., Logan, R. A., and Russell-Jones, R. (1988) A Comparison of Dapsone with 13-Cis Retinoic Acid in the Treatment of Nodular Cystic Acne. Clin. Exp. Dermatol. 13, 6771,  DOI: 10.1111/j.1365-2230.1988.tb00659.x
  45. 45
    Tan, B. B., Lear, J. T., and Smith, A. G. (1997) Acne Fulminans and Erythema Nodosum during Isotretinoin Therapy Responding to Dapsone. Clin. Exp. Dermatol. 22, 2627,  DOI: 10.1046/j.1365-2230.1997.1830600.x
  46. 46
    Lopez-Boado, Y. S. and Rubin, B. K. (2008) Macrolides as Immunomodulatory Medications for the Therapy of Chronic Lung Diseases. Curr. Opin. Pharmacol. 8, 286291,  DOI: 10.1016/j.coph.2008.01.010
  47. 47
    Keicho, N. and Kudoh, S. (2002) Diffuse Panbronchiolitis: Role of Macrolides in Therapy. Am. J. Respir. Med. 1, 119131,  DOI: 10.1007/BF03256601
  48. 48
    Pradhan, S., Madke, B., Kabra, P., and Singh, A. L. (2016) Anti-Inflammatory and Immunomodulatory Effects of Antibiotics and Their Use in Dermatology. Indian J. Dermatol. 61, 469481,  DOI: 10.4103/0019-5154.190105
  49. 49
    Schaeverbeke, T., Lequen, L., de Barbeyrac, B., Labbe, L., Bebear, C. M., Morrier, Y., Bannwarth, B., Bebear, C. M., and Dehais, J. (1998) Propionibacterium Acnes Isolated from Synovial Tissue and Fluid in a Patient with Oligoarthritis Associated with Acne and Pustulosis. Arthritis Rheum. 41, 18891893,  DOI: 10.1002/1529-0131(199810)41:10<1889::AID-ART23>3.0.CO;2-F
  50. 50
    Nishimuta, K. and Ito, Y. (2003) Effects of Metronidazole and Tinidazole Ointments on Models for Inflammatory Dermatitis in Mice. Arch. Dermatol. Res. 294, 544551,  DOI: 10.1007/s00403-002-0381-4
  51. 51
    Mendonca, C. O. and Griffiths, C. E. M. (2006) Clindamycin and Rifampicin Combination Therapy for Hidradenitis Suppurativa. Br. J. Dermatol. 154, 977978,  DOI: 10.1111/j.1365-2133.2006.07155.x
  52. 52
    Mela, M., Mancuso, A., and Burroughs, A. K. (2003) Review Article: Pruritus in Cholestatic and Other Liver Diseases. Aliment. Pharmacol. Ther. 17, 857870,  DOI: 10.1046/j.1365-2036.2003.01458.x
  53. 53
    Sarici, G., Cinar, S., Armutcu, F., Altinyazar, C., Koca, R., and Tekin, N. S. (2010) Oxidative Stress in Acne Vulgaris. J. Eur. Acad. Dermatol. Venereol. 24, 763767,  DOI: 10.1111/j.1468-3083.2009.03505.x
  54. 54
    Webster, G. F., Leyden, J. J., McGinley, K. J., and McArthur, W. P. (1982) Suppression of Polymorphonuclear Leukocyte Chemotactic Factor Production in Propionibacterium Acnes by Subminimal Inhibitory Concentrations of Tetracycline, Ampicillin, Minocycline, and Erythromycin. Antimicrob. Agents Chemother. 21, 770772,  DOI: 10.1128/AAC.21.5.770
  55. 55
    Skidmore, R., Kovach, R., Walker, C., Thomas, J., Bradshaw, M., Leyden, J., Powala, C., and Ashley, R. (2003) Effects of Subantimicrobial-Dose Doxycycline in the Treatment of Moderate Acne. Arch. Dermatol. 139, 459464,  DOI: 10.1001/archderm.139.4.459
  56. 56
    Strahl, H. and Hamoen, L. W. (2010) Membrane Potential Is Important for Bacterial Cell Division. Proc. Natl. Acad. Sci. U. S. A. 107, 1228112286,  DOI: 10.1073/pnas.1005485107
  57. 57
    Strahl, H., Burmann, F., and Hamoen, L. W. (2014) The Actin Homologue MreB Organizes the Bacterial Cell Membrane. Nat. Commun. 5, 3442,  DOI: 10.1038/ncomms4442
  58. 58
    Wenzel, M., Chiriac, A. I., Otto, A., Zweytick, D., May, C., Schumacher, C., Gust, R., Albada, H. B., Penkova, M., Krämer, U., Erdmann, R., Metzler-Nolte, N., Straus, S. K., Bremer, E., Becher, D., Brötz-Oesterhelt, H., Sahl, H.-G., and Bandow, J. E. (2014) Small Cationic Antimicrobial Peptides Delocalize Peripheral Membrane Proteins. Proc. Natl. Acad. Sci. U. S. A. 111, E140918,  DOI: 10.1073/pnas.1319900111
  59. 59
    Pogliano, J., Pogliano, N., and Silverman, J. A. (2012) Daptomycin-Mediated Reorganization of Membrane Architecture Causes Mislocalization of Essential Cell Division Proteins. J. Bacteriol. 194, 44944504,  DOI: 10.1128/JB.00011-12
  60. 60
    Morgera, F., Antcheva, N., Pacor, S., Quaroni, L., Berti, F., Vaccari, L., and Tossi, A. (2008) Structuring and Interactions of Human Beta-Defensins 2 and 3 with Model Membranes. J. Pept. Sci. 14, 518523,  DOI: 10.1002/psc.981
  61. 61
    Sass, V., Schneider, T., Wilmes, M., Körner, C., Tossi, A., Novikova, N., Shamova, O., and Sahl, H. G. (2010) Human β-Defensin 3 Inhibits Cell Wall Biosynthesis in Staphylococci. Infect. Immun. 78, 27932800,  DOI: 10.1128/IAI.00688-09
  62. 62
    Kandaswamy, K., Liew, T. H., Wang, C. Y., Huston-Warren, E., Meyer-Hoffert, U., Hultenby, K., Schröder, J. M., Caparon, M. G., Normark, S., Henriques-Normark, B., Hultgren, S. J., and Kline, K. A. (2013) Focal Targeting by Human β-Defensin 2 Disrupts Localized Virulence Factor Assembly Sites in Enterococcus Faecalis. Proc. Natl. Acad. Sci. U. S. A. 110, 2023020235,  DOI: 10.1073/pnas.1319066110
  63. 63
    Kwakman, P. H. S., Krijgsveld, J., de Boer, L., Nguyen, L. T., Boszhard, L., Vreede, J., Dekker, H. L., Speijer, D., Drijfhout, J. W., te Velde, A. A., Crielaard, W., Vogel, H. J., Vandenbroucke-Grauls, C. M. J. E., and Zaat, S. A. J. (2011) Native Thrombocidin-1 and Unfolded Thrombocidin-1 Exert Antimicrobial Activity via Distinct Structural Elements. J. Biol. Chem. 286, 4350643514,  DOI: 10.1074/jbc.M111.248641
  64. 64
    Omardien, S., Drijfhout, J. W., Vaz, F. M., Wenzel, M., Hamoen, L. W., Zaat, S. A. J., and Brul, S. (2018) Bactericidal Activity of Amphipathic Cationic Antimicrobial Peptides Involves Altering the Membrane Fluidity When Interacting with the Phospholipid Bilayer. Biochim. Biophys. Acta, Biomembr. 1860, 2404,  DOI: 10.1016/j.bbamem.2018.06.004
  65. 65
    Omardien, S., Drijfhout, J. W., van Veen, H., Schachtschabel, S., Riool, M., Hamoen, L. W., Brul, S., and Zaat, S. A. J. (2018) Synthetic Antimicrobial Peptides Delocalize Membrane Bound Proteins Thereby Inducing a Cell Envelope Stress Response. Biochim. Biophys. Acta, Biomembr. 1860, 24162427,  DOI: 10.1016/j.bbamem.2018.06.005
  66. 66
    Omardien, S., Drijfhout, J. W., Zaat, S. A., and Brul, S. (2018) Cationic Amphipathic Antimicrobial Peptides Perturb the Inner Membrane of Germinated Spores Thus Inhibiting Their Outgrowth. Front. Microbiol. 9, 2277,  DOI: 10.3389/fmicb.2018.02277
  67. 67
    Gray, D. A. and Wenzel, M. (2020) More Than a Pore: A Current Perspective on the In Vivo Mode of Action of the Lipopeptide Antibiotic Daptomycin. Antibiotics (Basel, Switz.) 9, 17,  DOI: 10.3390/antibiotics9010017
  68. 68
    Scheinpflug, K., Wenzel, M., Krylova, O., Bandow, E. J., Dathe, M., and Strahl, H. (2017) Antimicrobial Peptide CWFW Kills by Combining Lipid Phase Separation with Autolysis. Sci. Rep. 7, 44332,  DOI: 10.1038/srep44332
  69. 69
    Saeloh, D., Tipmanee, V., Jim, K. K., Dekker, M. P., Bitter, W., Voravuthikunchai, S. P., Wenzel, M., and Hamoen, L. W. (2018) The Novel Antibiotic Rhodomyrtone Traps Membrane Proteins in Vesicles with Increased Fluidity. PLoS Pathog. 14, e1006876  DOI: 10.1371/journal.ppat.1006876
  70. 70
    Zhanel, G. G., Schweizer, F., and Karlowsky, J. A. (2012) Oritavancin: Mechanism of Action. Clin. Infect. Dis. 54, S214S219,  DOI: 10.1093/cid/cir920
  71. 71
    Higgins, D. L., Chang, R., Debabov, D. V., Leung, J., Wu, T., Krause, K. M., Sandvik, E., Hubbard, J. M., Kaniga, K., Schmidt, D. E., Gao, Q., Cass, R. T., Karr, D. E., Benton, B. M., and Humphrey, P. P. (2005) Telavancin, a Multifunctional Lipoglycopeptide, Disrupts Both Cell Wall Synthesis and Cell Membrane Integrity in Methicillin-Resistan Staphylococcus Aureus. Antimicrob. Agents Chemother. 49, 11271134,  DOI: 10.1128/AAC.49.3.1127-1134.2005
  72. 72
    Corti, A. and Cassani, G. (1985) Synthesis and Characterization of D-Alanyl-D-Alanine-Agarose. Appl. Biochem. Biotechnol. 11, 101109,  DOI: 10.1007/BF02798542
  73. 73
    Cheng, M., Ziora, Z. M., Hansford, K. A., Blaskovich, M. A., Butler, M. S., and Cooper, M. A. (2014) Anti-Cooperative Ligand Binding and Dimerisation in the Glycopeptide Antibiotic Dalbavancin. Org. Biomol. Chem. 12, 25682575,  DOI: 10.1039/C3OB42428F
  74. 74
    Wenzel, M., Kohl, B., Münch, D., Raatschen, N., Albada, H. B., Hamoen, L., Metzler-Nolte, N., Sahl, H. G., and Bandow, J. E. (2012) Proteomic Response of Bacillus Subtilis to Lantibiotics Reflects Differences in Interaction with the Cytoplasmic Membrane. Antimicrob. Agents Chemother. 56, 57495757,  DOI: 10.1128/AAC.01380-12
  75. 75
    Bonelli, R. R., Schneider, T., Sahl, H.-G., and Wiedemann, I. (2006) Insights into in Vivo Activities of Lantibiotics from Gallidermin and Epidermin Mode-of-Action Studies. Antimicrob. Agents Chemother. 50, 14491457,  DOI: 10.1128/AAC.50.4.1449-1457.2006
  76. 76
    Brötz, H., Bierbaum, G., Leopold, K., Reynolds, P. E., and Sahl, H. G. (1998) The Lantibiotic Mersacidin Inhibits Peptidoglycan Synthesis by Targeting Lipid II. Antimicrob. Agents Chemother. 42, 154160,  DOI: 10.1128/AAC.42.1.154
  77. 77
    Paris, J.-B., Seyer, D., Jouenne, T., and Thébault, P. (2017) Elaboration of Antibacterial Plastic Surfaces by a Combination of Antiadhesive and Biocidal Coatings of Natural Products. Colloids Surf., B 156, 186193,  DOI: 10.1016/j.colsurfb.2017.05.025
  78. 78
    Ulm, H. and Schneider, T. (2016) Targeting Bactoprenol-Coupled Cell Envelope Precursors. Appl. Microbiol. Biotechnol. 100, 78157825,  DOI: 10.1007/s00253-016-7732-0
  79. 79
    Weidenmaier, C. and Peschel, A. (2008) Teichoic Acids and Related Cell-Wall Glycopolymers in Gram-Positive Physiology and Host Interactions. Nat. Rev. Microbiol. 6, 276287,  DOI: 10.1038/nrmicro1861
  80. 80
    Kepplinger, B., Morton-Laing, S., Seistrup, K. H., Marrs, E. C. L., Hopkins, A. P., Perry, J. D., Strahl, H., Hall, M. J., Errington, J., and Allenby, N. E. E. (2018) Mode of Action and Heterologous Expression of the Natural Product Antibiotic Vancoresmycin. ACS Chem. Biol. 13, 207214,  DOI: 10.1021/acschembio.7b00733
  81. 81
    Wenzel, M., Patra, M., Senges, C. H. R., Ott, I., Stepanek, J. J., Pinto, A., Prochnow, P., Vuong, C., Langklotz, S., Metzler-Nolte, N., and Bandow, J. E. (2013) Analysis of the Mechanism of Action of Potent Antibacterial Hetero-Tri-Organometallic Compounds: A Structurally New Class of Antibiotics. ACS Chem. Biol. 8, 14421450,  DOI: 10.1021/cb4000844
  82. 82
    Andrés, M. T. and Fierro, J. F. (2010) Antimicrobial Mechanism of Action of Transferrins: Selective Inhibition of H+-ATPase. Antimicrob. Agents Chemother. 54, 43354342,  DOI: 10.1128/AAC.01620-09
  83. 83
    Azarkina, N. and Konstantinov, A. A. (2002) Stimulation of Menaquinone-Dependent Electron Transfer in the Respiratory Chain of Bacillus Subtilis by Membrane Energization. J. Bacteriol. 184, 53395347,  DOI: 10.1128/JB.184.19.5339-5347.2002
  84. 84
    Schirawski, J. and Unden, G. (1998) Menaquinone-Dependent Succinate Dehydrogenase of Bacteria Catalyzes Reversed Electron Transport Driven by the Proton Potential. Eur. J. Biochem. 257, 210215,  DOI: 10.1046/j.1432-1327.1998.2570210.x
  85. 85
    Mesa-Arango, A. C., Trevijano-Contador, N., Roman, E., Sanchez-Fresneda, R., Casas, C., Herrero, E., Arguelles, J. C., Pla, J., Cuenca-Estrella, M., and Zaragoza, O. (2014) The Production of Reactive Oxygen Species Is a Universal Action Mechanism of Amphotericin B against Pathogenic Yeasts and Contributes to the Fungicidal Effect of This Drug. Antimicrob. Agents Chemother. 58, 66276638,  DOI: 10.1128/AAC.03570-14
  86. 86
    Nagao, T., Nakayama-Imaohji, H., Elahi, M., Tada, A., Toyonaga, E., Yamasaki, H., Okazaki, K., Miyoshi, H., Tsuchiya, K., and Kuwahara, T. (2018) Lhistidine Augments the Oxidative Damage against Gram-negative Bacteria by Hydrogen Peroxide. Int. J. Mol. Med. 41, 28472854,  DOI: 10.3892/ijmm.2018.3473
  87. 87
    Beavers, W. N. and Skaar, E. P. (2016) Neutrophil-Generated Oxidative Stress and Protein Damage in Staphylococcus Aureus. Pathog. Dis. 74, ftw060,  DOI: 10.1093/femspd/ftw060
  88. 88
    Kirstein, J., Hoffmann, A., Lilie, H., Schmidt, R., Rubsamen-Waigmann, H., Brotz-Oesterhelt, H., Mogk, A., and Turgay, K. (2009) The Antibiotic ADEP Reprogrammes ClpP, Switching It from a Regulated to an Uncontrolled Protease. EMBO Mol. Med. 1, 3749,  DOI: 10.1002/emmm.200900002
  89. 89
    Klappenbach, J. A., Saxman, P. R., Cole, J. R., and Schmidt, T. M. (2001) Rrndb: The Ribosomal RNA Operon Copy Number Database. Nucleic Acids Res. 29, 181184,  DOI: 10.1093/nar/29.1.181
  90. 90
    Spratt, B. G. (1977) Properties of the Penicillin-Binding Proteins of Escherichia Coli K12. Eur. J. Biochem. 72, 341352,  DOI: 10.1111/j.1432-1033.1977.tb11258.x
  91. 91
    Denome, S. A., Elf, P. K., Henderson, T. A., Nelson, D. E., and Young, K. D. (1999) Escherichia Coli Mutants Lacking All Possible Combinations of Eight Penicillin Binding Proteins: Viability, Characteristics, and Implications for Peptidoglycan Synthesis. J. Bacteriol. 181, 39813993,  DOI: 10.1128/JB.181.13.3981-3993.1999
  92. 92
    Kocaoglu, O. and Carlson, E. E. (2015) Profiling of β-Lactam Selectivity for Penicillin-Binding Proteins in Escherichia Coli Strain DC2. Antimicrob. Agents Chemother. 59, 27852790,  DOI: 10.1128/AAC.04552-14
  93. 93
    Du, W., Brown, J. R., Sylvester, D. R., Huang, J., Chalker, A. F., So, C. Y., Holmes, D. J., Payne, D. J., and Wallis, N. G. (2000) Two Active Forms of UDP-N-Acetylglucosamine Enolpyruvyl Transferase in Gram-Positive Bacteria. J. Bacteriol. 182, 41464152,  DOI: 10.1128/JB.182.15.4146-4152.2000
  94. 94
    Noda, M., Kawahara, Y., Ichikawa, A., Matoba, Y., Matsuo, H., Lee, D.-G., Kumagai, T., and Sugiyama, M. (2004) Self-Protection Mechanism in D-Cycloserine-Producing Streptomyces Lavendulae. Gene Cloning, Characterization, and Kinetics of Its Alanine Racemase and D-Alanyl-D-Alanine Ligase, Which Are Target Enzymes of D-Cycloserine. J. Biol. Chem. 279, 4614346152,  DOI: 10.1074/jbc.M404603200
  95. 95
    Rudolf, J. D., Dong, L.-B., and Shen, B. (2017) Platensimycin and Platencin: Inspirations for Chemistry, Biology, Enzymology, and Medicine. Biochem. Pharmacol. 133, 139151,  DOI: 10.1016/j.bcp.2016.11.013
  96. 96
    Jayasuriya, H., Herath, K. B., Zhang, C., Zink, D. L., Basilio, A., Genilloud, O., Diez, M. T., Vicente, F., Gonzalez, I., Salazar, O., Pelaez, F., Cummings, R., Ha, S., Wang, J., and Singh, S. B. (2007) Isolation and Structure of Platencin: A FabH and FabF Dual Inhibitor with Potent Broad-Spectrum Antibiotic Activity. Angew. Chem., Int. Ed. 46, 46844688,  DOI: 10.1002/anie.200701058
  97. 97
    Wang, J., Kodali, S., Lee, S. H., Galgoci, A., Painter, R., Dorso, K., Racine, F., Motyl, M., Hernandez, L., Tinney, E. (2007) Discovery of Platencin, a Dual FabF and FabH Inhibitor with in Vivo Antibiotic Properties. Proc. Natl. Acad. Sci. U. S. A. 104, 76127616,  DOI: 10.1073/pnas.0700746104
  98. 98
    Velkov, T., Roberts, K. D., Nation, R. L., Thompson, P. E., and Li, J. (2013) Pharmacology of Polymyxins: New Insights into an “old” Class of Antibiotics. Future Microbiol. 8, 711724,  DOI: 10.2217/fmb.13.39
  99. 99
    Fu, L., Wan, M., Zhang, S., Gao, L., and Fang, W. (2020) Polymyxin B Loosens Lipopolysaccharide Bilayer but Stiffens Phospholipid Bilayer. Biophys. J. 118, 138150,  DOI: 10.1016/j.bpj.2019.11.008
  100. 100
    Deris, Z. Z., Akter, J., Sivanesan, S., Roberts, K. D., Thompson, P. E., Nation, R. L., Li, J., and Velkov, T. (2014) A Secondary Mode of Action of Polymyxins against Gram-Negative Bacteria Involves the Inhibition of NADH-Quinone Oxidoreductase Activity. J. Antibiot. 67, 147151,  DOI: 10.1038/ja.2013.111
  101. 101
    Stuart, M. C., Kouimtzi, M., and Hill, S. (2009) WHO Model Formulary 2008, WHO, Geneva.
  102. 102
    Arbiser, J. L. and Moschella, S. L. (1995) Clofazimine: A Review of Its Medical Uses and Mechanisms of Action. J. Am. Acad. Dermatol. 32, 241247,  DOI: 10.1016/0190-9622(95)90134-5
  103. 103
    Lesnik, U., Lukezic, T., Podgorsek, A., Horvat, J., Polak, T., Sala, M., Jenko, B., Harmrolfs, K., Ocampo-Sosa, A., Martinez-Martinez, L., Herron, P. R., Fujs, S., Kosec, G., Hunter, I. S., Muller, R., and Petkovic, H. (2015) Construction of a New Class of Tetracycline Lead Structures with Potent Antibacterial Activity through Biosynthetic Engineering. Angew. Chem., Int. Ed. 54, 39373940,  DOI: 10.1002/anie.201411028
  104. 104
    Herrmann, J., Lukezic, T., Kling, A., Baumann, S., Huttel, S., Petkovic, H., and Muller, R. (2016) Strategies for the Discovery and Development of New Antibiotics from Natural Products: Three Case Studies. Curr. Top. Microbiol. Immunol. 398, 339363,  DOI: 10.1007/82_2016_498
  105. 105
    Stepanek, J. J., Lukezic, T., Teichert, I., Petkovic, H., and Bandow, J. E. (2016) Dual Mechanism of Action of the Atypical Tetracycline Chelocardin. Biochim. Biophys. Acta, Proteins Proteomics 1864, 645654,  DOI: 10.1016/j.bbapap.2016.03.004
  106. 106
    Herskovits, A. A. and Bibi, E. (2000) Association of Escherichia Coli Ribosomes with the Inner Membrane Requires the Signal Recognition Particle Receptor but Is Independent of the Signal Recognition Particle. Proc. Natl. Acad. Sci. U. S. A. 97, 46214626,  DOI: 10.1073/pnas.080077197
  107. 107
    Ruhr, E. and Sahl, H. G. (1985) Mode of Action of the Peptide Antibiotic Nisin and Influence on the Membrane Potential of Whole Cells and on Cytoplasmic and Artificial Membrane Vesicles. Antimicrob. Agents Chemother. 27, 841845,  DOI: 10.1128/AAC.27.5.841
  108. 108
    Breukink, E., Wiedemann, I., van Kraaij, C., Kuipers, O. P., Sahl, H. G., and de Kruijff, B. (1999) Use of the Cell Wall Precursor Lipid II by a Pore-Forming Peptide Antibiotic. Science 286, 23612364,  DOI: 10.1126/science.286.5448.2361
  109. 109
    Hasper, H. E., de Kruijff, B., and Breukink, E. (2004) Assembly and Stability of Nisin-Lipid II Pores. Biochemistry 43, 1156711575,  DOI: 10.1021/bi049476b
  110. 110
    ’t Hart, P., Oppedijk, S. F., Breukink, E., and Martin, N. I. (2016) New Insights into Nisin’s Antibacterial Mechanism Revealed by Binding Studies with Synthetic Lipid II Analogues. Biochemistry 55, 232237,  DOI: 10.1021/acs.biochem.5b01173
  111. 111
    Bonev, B. B., Chan, W. C., Bycroft, B. W., Roberts, G. C., and Watts, A. (2000) Interaction of the Lantibiotic Nisin with Mixed Lipid Bilayers: A 31P and 2H NMR Study. Biochemistry 39, 1142511433,  DOI: 10.1021/bi0001170
  112. 112
    Christ, K., Al-Kaddah, S., Wiedemann, I., Rattay, B., Sahl, H.-G., and Bendas, G. (2008) Membrane Lipids Determine the Antibiotic Activity of the Lantibiotic Gallidermin. J. Membr. Biol. 226, 916,  DOI: 10.1007/s00232-008-9134-4
  113. 113
    Muraih, J. K. and Palmer, M. (2012) Estimation of the Subunit Stoichiometry of the Membrane-Associated Daptomycin Oligomer by FRET. Biochim. Biophys. Acta, Biomembr. 1818, 16421647,  DOI: 10.1016/j.bbamem.2012.02.019
  114. 114
    Muraih, J. K., Pearson, A., Silverman, J., and Palmer, M. (2011) Oligomerization of Daptomycin on Membranes. Biochim. Biophys. Acta, Biomembr. 1808, 11541160,  DOI: 10.1016/j.bbamem.2011.01.001
  115. 115
    Muraih, J. K., Harris, J., Taylor, S. D., and Palmer, M. (2012) Characterization of Daptomycin Oligomerization with Perylene Excimer Fluorescence: Stoichiometric Binding of Phosphatidylglycerol Triggers Oligomer Formation. Biochim. Biophys. Acta, Biomembr. 1818, 673678,  DOI: 10.1016/j.bbamem.2011.10.027
  116. 116
    Kreutzberger, M. A., Pokorny, A., and Almeida, P. F. (2017) Daptomycin-Phosphatidylglycerol Domains in Lipid Membranes. Langmuir 33, 1366913679,  DOI: 10.1021/acs.langmuir.7b01841
  117. 117
    Domalaon, R., Idowu, T., Zhanel, G. G., and Schweizer, F. (2018) Antibiotic Hybrids: The Next Generation of Agents and Adjuvants against Gram-Negative Pathogens?. Clin. Microbiol. Rev. 31, e00077-17  DOI: 10.1128/CMR.00077-17
  118. 118
    Georgopapadakou, N. H., Bertasso, A., Chan, K. K., Chapman, J. S., Cleeland, R., Cummings, L. M., Dix, B. A., and Keith, D. D. (1989) Mode of Action of the Dual-Action Cephalosporin Ro 23–9424. Antimicrob. Agents Chemother. 33, 10671071,  DOI: 10.1128/AAC.33.7.1067
  119. 119
    Stone, G. W., Zhang, Q., Castillo, R., Doppalapudi, V. R., Bueno, A. R., Lee, J. Y., Li, Q., Sergeeva, M., Khambatta, G., and Georgopapadakou, N. H. (2004) Mechanism of Action of NB2001 and NB2030, Novel Antibacterial Agents Activated by Beta-Lactamases. Antimicrob. Agents Chemother. 48, 477483,  DOI: 10.1128/AAC.48.2.477-483.2004
  120. 120
    Ma, Z. and Lynch, A. S. (2016) Development of a Dual-Acting Antibacterial Agent (TNP-2092) for the Treatment of Persistent Bacterial Infections. J. Med. Chem. 59, 66456657,  DOI: 10.1021/acs.jmedchem.6b00485
  121. 121
    Gupta, V. and Datta, P. (2019) Next-Generation Strategy for Treating Drug Resistant Bacteria: Antibiotic Hybrids. Indian J. Med. Res. 149, 97106,  DOI: 10.4103/ijmr.IJMR_755_18
  122. 122
    Endres, B. T., Basseres, E., Alam, M. J., and Garey, K. W. (2017) Cadazolid for the Treatment of Clostridium Difficile. Expert Opin. Invest. Drugs 26, 509514,  DOI: 10.1080/13543784.2017.1304538
  123. 123
    Stryjewski, M. E., Potgieter, P. D., Li, Y.-P., Barriere, S. L., Churukian, A., Kingsley, J., and Corey, G. R. (2012) TD-1792 versus Vancomycin for Treatment of Complicated Skin and Skin Structure Infections. Antimicrob. Agents Chemother. 56, 54765483,  DOI: 10.1128/AAC.00712-12
  124. 124
    Webb, E. (accessed 2020-03-10) FDA grants QIDP and Fast Track Designations to MCB3837, Morphochem’s novel intravenous antibacterial to treat C. difficile infections, https://www.tvm-lifescience.com/fda-grants-qidp-fast-track-designations-mcb3837-morphochems-novel-intravenous-antibacterial-treat-c-difficile-infections/.
  125. 125
    Parkes, A. L. and Yule, I. A. (2016) Hybrid Antibiotics - Clinical Progress and Novel Designs. Expert Opin. Drug Discovery 11, 665680,  DOI: 10.1080/17460441.2016.1187597
  126. 126
    Locher, H. H., Seiler, P., Chen, X., Schroeder, S., Pfaff, P., Enderlin, M., Klenk, A., Fournier, E., Hubschwerlen, C., Ritz, D., Kelly, C. P., and Keck, W. (2014) In Vitro and in Vivo Antibacterial Evaluation of Cadazolid, a New Antibiotic for Treatment of Clostridium Difficile Infections. Antimicrob. Agents Chemother. 58, 892900,  DOI: 10.1128/AAC.01830-13
  127. 127
    Locher, H. H., Caspers, P., Bruyère, T., Schroeder, S., Pfaff, P., Knezevic, A., Keck, W., and Ritz, D. (2014) Investigations of the Mode of Action and Resistance Development of Cadazolid, a New Antibiotic for Treatment of Clostridium Difficile Infections. Antimicrob. Agents Chemother. 58, 901908,  DOI: 10.1128/AAC.01831-13
  128. 128
    Leuthner, K. D., Vidaillac, C., Cheung, C. M., and Rybak, M. J. (2010) In Vitro Activity of the New Multivalent Glycopeptide-Cephalosporin Antibiotic TD-1792 against Vancomycin-Nonsusceptible Staphylococcus Isolates. Antimicrob. Agents Chemother. 54, 37993803,  DOI: 10.1128/AAC.00452-10
  129. 129
    Blais, J., Lewis, S. R., Krause, K. M., and Benton, B. M. (2012) Antistaphylococcal Activity of TD-1792, a Multivalent Glycopeptide-Cephalosporin Antibiotic. Antimicrob. Agents Chemother. 56, 15841587,  DOI: 10.1128/AAC.05532-11
  130. 130
    Pokrovskaya, V. and Baasov, T. (2010) Dual-Acting Hybrid Antibiotics: A Promising Strategy to Combat Bacterial Resistance. Expert Opin. Drug Discovery 5, 883902,  DOI: 10.1517/17460441.2010.508069
  131. 131
    Deinove. (accessed 2020-03-10) DNV3837/DNV3681: First-in-class antibiotic candidate, https://www.deinove.com/en/antibiotics/portfolio/dnv3837/dnv3681.
  132. 132
    Deinove. (accessed 2020-03-10) An Exploratory, Open-Label, Oligo-Center Study to Evaluate the Safety, Efficacy, and Pharmacokinetics of Intravenous DNV3837 in Subjects With Clostridium Difficile Infection, https://clinicaltrials.gov/ct2/show/NCT03988855?term=DNV3681&draw=2&rank=1.
  133. 133
    Wang, B., Zhao, Q., Yin, W., Yuan, Y., Wang, X., Wang, Y.-H., Wang, H., Ye, W., Chen, S., Guo, H.-L., and Xie, Y. (2018) In-Vitro Characterisation of a Novel Antimicrobial Agent, TNP-2092, against Helicobacter Pylori Clinical Isolates. Swiss Med. Wkly. 148, w14630  DOI: 10.4414/smw.2018.14630
  134. 134
    Burrows, L. L. (2018) The Therapeutic Pipeline for Pseudomonas Aeruginosa Infections. ACS Infect. Dis. 4, 10411047,  DOI: 10.1021/acsinfecdis.8b00112
  135. 135
    Luther, A., Urfer, M., Zahn, M., Muller, M., Wang, S.-Y., Mondal, M., Vitale, A., Hartmann, J.-B., Sharpe, T., Monte, F. Lo (2019) Chimeric Peptidomimetic Antibiotics against Gram-Negative Bacteria. Nature 576, 452458,  DOI: 10.1038/s41586-019-1665-6
  136. 136
    Zhu, Y. I. and Stiller, M. J. (2001) Dapsone and Sulfones in Dermatology: Overview and Update. J. Am. Acad. Dermatol. 45, 420434,  DOI: 10.1067/mjd.2001.114733
  137. 137
    Trivedi, H. D., Lizaola, B., Tapper, E. B., and Bonder, A. (2017) Management of Pruritus in Primary Biliary Cholangitis: A Narrative Review. Am. J. Med. 130, 744.e1744.e7,  DOI: 10.1016/j.amjmed.2017.01.037
  138. 138
    Nakano, T., Hiramatsu, K., Kishi, K., Hirata, N., Kadota, J.-I., and Nasu, M. (2003) Clindamycin Modulates Inflammatory-Cytokine Induction in Lipopolysaccharide-Stimulated Mouse Peritoneal Macrophages. Antimicrob. Agents Chemother. 47, 363367,  DOI: 10.1128/AAC.47.1.363-367.2003
  139. 139
    van Rensburg, C. E., Gatner, E. M., Imkamp, F. M., and Anderson, R. (1982) Effects of Clofazimine Alone or Combined with Dapsone on Neutrophil and Lymphocyte Functions in Normal Individuals and Patients with Lepromatous Leprosy. Antimicrob. Agents Chemother. 21, 693697,  DOI: 10.1128/AAC.21.5.693
  140. 140
    Gatner, E. M., Anderson, R., van Remsburg, C. E., and Imkamp, F. M. (1982) The in Vitro and in Vivo Effects of Clofazimine on the Motility of Neutrophils and Transformation of Lymphocytes from Normal Individuals. Lepr. Rev. 53, 8590,  DOI: 10.5935/0305-7518.19820010
  141. 141
    Zimmermann, P., Ziesenitz, V. C., Curtis, N., and Ritz, N. (2018) The Immunomodulatory Effects of Macrolides—A Systematic Review of the Underlying Mechanisms. Front. Immunol. 9, 302,  DOI: 10.3389/fimmu.2018.00302
  142. 142
    Pasquale, T. R. and Tan, J. S. (2005) Nonantimicrobial Effects of Antibacterial Agents. Clin. Infect. Dis. 40, 127135,  DOI: 10.1086/426545
  143. 143
    Tauber, S. C. and Nau, R. (2008) Immunomodulatory Properties of Antibiotics. Curr. Mol. Pharmacol. 1, 6879,  DOI: 10.2174/1874467210801010068
  144. 144
    Ye, Y., Xia, Z., Zhang, D., Sheng, Z., Zhang, P., Zhu, H., Xu, N., and Liang, S. (2019) Multifunctional Pharmaceutical Effects of the Antibiotic Daptomycin. BioMed Res. Int. 2019, 8609218,  DOI: 10.1155/2019/8609218
  145. 145
    Jorgensen, S. C. J., Zasowski, E. J., Trinh, T. D., Lagnf, A. M., Bhatia, S., Sabagha, N., Abdul-Mutakabbir, J. C., Alosaimy, S., Mynatt, R. P., Davis, S. L., and Rybak, M. J. (2019) Daptomycin plus Beta-Lactam Combination Therapy for Methicillin-Resistant Staphylococcus Aureus Bloodstream Infections: A Retrospective, Comparative Cohort Study. Clin. Infect. Dis. ciz746  DOI: 10.1093/cid/ciz746
  146. 146
    Meletiadis, J., Petraitis, V., Petraitiene, R., Lin, P., Stergiopoulou, T., Kelaher, A. M., Sein, T., Schaufele, R. L., Bacher, J., and Walsh, T. J. (2006) Triazole-Polyene Antagonism in Experimental Invasive Pulmonary Aspergillosis: In Vitro and in Vivo Correlation. J. Infect. Dis. 194, 10081018,  DOI: 10.1086/506617
  147. 147
    Gonzalez-Bello, C. (2017) Antibiotic Adjuvants - A Strategy to Unlock Bacterial Resistance to Antibiotics. Bioorg. Med. Chem. Lett. 27, 42214228,  DOI: 10.1016/j.bmcl.2017.08.027
  148. 148
    Kwapong, A. A., Stapleton, P., and Gibbons, S. (2019) Inhibiting Plasmid Mobility: The Effect of Isothiocyanates on Bacterial Conjugation. Int. J. Antimicrob. Agents 53, 629636,  DOI: 10.1016/j.ijantimicag.2019.01.011
  149. 149
    Zhao, W. H., Hu, Z. Q., Okubo, S., Hara, Y., and Shimamura, T. (2001) Mechanism of Synergy between Epigallocatechin Gallate and Beta-Lactams against Methicillin-Resistant Staphylococcus Aureus. Antimicrob. Agents Chemother. 45, 17371742,  DOI: 10.1128/AAC.45.6.1737-1742.2001
  150. 150
    Rand, K. H. and Houck, H. (2004) Daptomycin Synergy with Rifampicin and Ampicillin against Vancomycin-Resistant Enterococci. J. Antimicrob. Chemother. 53, 530532,  DOI: 10.1093/jac/dkh104
  151. 151
    Paul, T. R., Venter, A., Blaszczak, L. C., Parr, T. R. J., Labischinski, H., and Beveridge, T. J. (1995) Localization of Penicillin-Binding Proteins to the Splitting System of Staphylococcus Aureus Septa by Using a Mercury-Penicillin V Derivative. J. Bacteriol. 177, 36313640,  DOI: 10.1128/JB.177.13.3631-3640.1995
  152. 152
    Biebricher, C. K. and Druminski, M. (1980) Inhibition of RNA Polymerase Activity by the Escherichia Coli Protein Biosynthesis Elongation Factor Ts. Proc. Natl. Acad. Sci. U. S. A. 77, 866869,  DOI: 10.1073/pnas.77.2.866
  153. 153
    Nasher, M. A. and Hay, R. J. (1998) Synergy of Antibiotics against Streptomyces Somaliensis Isolates in Vitro. J. Antimicrob. Chemother. 41, 281284,  DOI: 10.1093/jac/41.2.281
  154. 154
    Lowe, P. A. and Malcolm, A. D. (1976) Rifampicin Binding as a Probe for Subunit Interactions in Escherchia Coli RNA Polymerase. Biochim. Biophys. Acta, Nucleic Acids Protein Synth. 454, 129137,  DOI: 10.1016/0005-2787(76)90360-9
  155. 155
    Lee-Huang, S., Lee, H., and Ochoa, S. (1974) Inhibition of Polypeptide Chain Initiation in Escherichia Coli by Elongation Factor G. Proc. Natl. Acad. Sci. U. S. A. 71, 29282931,  DOI: 10.1073/pnas.71.8.2928
  156. 156
    Dinos, G. P., Connell, S. R., Nierhaus, K. H., and Kalpaxis, D. L. (2003) Erythromycin, Roxithromycin, and Clarithromycin: Use of Slow-Binding Kinetics to Compare Their in Vitro Interaction with a Bacterial Ribosomal Complex Active in Peptide Bond Formation. Mol. Pharmacol. 63, 617623,  DOI: 10.1124/mol.63.3.617
  157. 157
    Allen, N. E. and Epp, J. K. (1978) Mechanism of Penicillin-Erythromycin Synergy on Antibiotic-Resistant Staphylococcus Aureus. Antimicrob. Agents Chemother. 13, 849853,  DOI: 10.1128/AAC.13.5.849
  158. 158
    Guignard, B., Entenza, J. M., and Moreillon, P. (2005) Beta-Lactams against Methicillin-Resistant Staphylococcus Aureus. Curr. Opin. Pharmacol. 5, 479489,  DOI: 10.1016/j.coph.2005.06.002
  159. 159
    Brandt, C. M., Rouse, M. S., Laue, N. W., Stratton, C. W., Wilson, W. R., and Steckelberg, J. M. (1996) Effective Treatment of Multidrug-Resistant Enterococcal Experimental Endocarditis with Combinations of Cell Wall-Active Agents. J. Infect. Dis. 173, 909913,  DOI: 10.1093/infdis/173.4.909
  160. 160
    Drew, R. H. and Gallis, H. A. (1992) Azithromycin--Spectrum of Activity, Pharmacokinetics, and Clinical Applications. Pharmacotherapy 12, 161173,  DOI: 10.1002/j.1875-9114.1992.tb04504.x
  161. 161
    Ono, S., Muratani, T., and Matsumoto, T. (2005) Mechanisms of Resistance to Imipenem and Ampicillin in Enterococcus Faecalis. Antimicrob. Agents Chemother. 49, 29542958,  DOI: 10.1128/AAC.49.7.2954-2958.2005
  162. 162
    Brumfitt, W. and Hamilton-Miller, J. M. (1993) Reassessment of the Rationale for the Combinations of Sulphonamides with Diaminopyrimidines. J. Chemother. 5, 465469,  DOI: 10.1080/1120009X.1993.11741097
  163. 163
    Voeller, D., Kovacs, J., Andrawis, V., Chu, E., Masur, H., and Allegra, C. (1994) Interaction of Pneumocystis Carinii Dihydropteroate Synthase with Sulfonamides and Diaminodiphenyl Sulfone (Dapsone). J. Infect. Dis. 169, 456459,  DOI: 10.1093/infdis/169.2.456
  164. 164
    Greenwood, D. and O’Grady, F. (1976) Activity and Interaction of Trimethoprim and Sulphamethoxazole against Escherichia Coli. J. Clin. Pathol. 29, 162166,  DOI: 10.1136/jcp.29.2.162
  165. 165
    Matsuura, M., Nakazawa, H., Hashimoto, T., and Mitsuhashi, S. (1980) Combined Antibacterial Activity of Amoxicillin with Clavulanic Acid against Ampicillin-Resistant Strains. Antimicrob. Agents Chemother. 17, 908911,  DOI: 10.1128/AAC.17.6.908
  166. 166
    Brogden, R. N., Carmine, A., Heel, R. C., Morley, P. A., Speight, T. M., and Avery, G. S. (1981) Amoxycillin/Clavulanic Acid: A Review of Its Antibacterial Activity, Pharmacokinetics and Therapeutic Use. Drugs 22, 337362,  DOI: 10.2165/00003495-198122050-00001
  167. 167
    Breidenstein, E. B. M., Courvalin, P., and Meziane-Cherif, D. (2015) Antimicrobial Activity of Plectasin NZ2114 in Combination with Cell Wall Targeting Antibiotics Against VanA-Type Enterococcus Faecalis. Microb. Drug Resist. 21, 373379,  DOI: 10.1089/mdr.2014.0221
  168. 168
    Schneider, T. and Sahl, H. G. (2010) An Oldie but a Goodie - Cell Wall Biosynthesis as Antibiotic Target Pathway. Int. J. Med. Microbiol. 300, 161169,  DOI: 10.1016/j.ijmm.2009.10.005
  169. 169
    Steinmann, J., Buer, J., Pietschmann, T., and Steinmann, E. (2013) Anti-Infective Properties of Epigallocatechin-3-Gallate (EGCG), a Component of Green Tea. Br. J. Pharmacol. 168, 10591073,  DOI: 10.1111/bph.12009
  170. 170
    Zhao, W.-H., Hu, Z.-Q., Hara, Y., and Shimamura, T. (2002) Inhibition of Penicillinase by Epigallocatechin Gallate Resulting in Restoration of Antibacterial Activity of Penicillin against Penicillinase-Producing Staphylococcus Aureus. Antimicrob. Agents Chemother. 46, 22662268,  DOI: 10.1128/AAC.46.7.2266-2268.2002
  171. 171
    Berti, A. D., Theisen, E., Sauer, J.-D., Nonejuie, P., Olson, J., Pogliano, J., Sakoulas, G., Nizet, V., Proctor, R. A., and Rose, W. E. (2016) Penicillin Binding Protein 1 Is Important in the Compensatory Response of Staphylococcus Aureus to Daptomycin-Induced Membrane Damage and Is a Potential Target for Beta-Lactam-Daptomycin Synergy. Antimicrob. Agents Chemother. 60, 451458,  DOI: 10.1128/AAC.02071-15
  172. 172
    Smith, J. R., Barber, K. E., Raut, A., Aboutaleb, M., Sakoulas, G., and Rybak, M. J. (2015) Beta-Lactam Combinations with Daptomycin Provide Synergy against Vancomycin-Resistant Enterococcus Faecalis and Enterococcus Faecium. J. Antimicrob. Chemother. 70, 17381743,  DOI: 10.1093/jac/dkv007
  173. 173
    Koppen, B. C., Mulder, P. P. G., de Boer, L., Riool, M., Drijfhout, J. W., and Zaat, S. A. J. (2019) Synergistic Microbicidal Effect of Cationic Antimicrobial Peptides and Teicoplanin against Planktonic and Biofilm-Encased Staphylococcus Aureus. Int. J. Antimicrob. Agents 53, 143151,  DOI: 10.1016/j.ijantimicag.2018.10.002
  174. 174
    Fernandez-Cuenca, F., Martinez-Martinez, L., Pascual, A., and Perea, E. J. (2003) In Vitro Activity of Azithromycin in Combination with Amikacin, Ceftazidime, Ciprofloxacin or Imipenem against Clinical Isolates of Acinobacter Baumannii. Chemotherapy 49, 2426,  DOI: 10.1159/000069774
  175. 175
    Sertcelik, A., Baran, I., Akinci, E., Mumcuoglu, I., and Bodur, H. (2019) Synergistic Activities of Colistin Combinations with Meropenem, Sulbactam, Minocycline, Disodium Fosfomycin, or Vancomycin Against Different Clones of Carbapenem-Resistant Acinetobacter Baumannii Strains. Microb. Drug Resist. DOI: 10.1089/mdr.2019.0088 .
  176. 176
    Langeveld, W. T., Veldhuizen, E. J. A., and Burt, S. A. (2014) Synergy between Essential Oil Components and Antibiotics: A Review. Crit. Rev. Microbiol. 40, 7694,  DOI: 10.3109/1040841X.2013.763219
  177. 177
    Owen, L. and Laird, K. (2018) Synchronous Application of Antibiotics and Essential Oils: Dual Mechanisms of Action as a Potential Solution to Antibiotic Resistance. Crit. Rev. Microbiol. 44, 414435,  DOI: 10.1080/1040841X.2018.1423616
  178. 178
    Mathur, H., Field, D., Rea, M. C., Cotter, P. D., Hill, C., and Ross, R. P. (2017) Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Front. Microbiol. 8, 1205,  DOI: 10.3389/fmicb.2017.01205
  179. 179
    Wolska, K. I., Grzes, K., and Kurek, A. (2012) Synergy between Novel Antimicrobials and Conventional Antibiotics or Bacteriocins. Pol. J. Microbiol. 61, 95104,  DOI: 10.33073/pjm-2012-012
  180. 180
    Wittekind, M. and Schuch, R. (2016) Cell Wall Hydrolases and Antibiotics: Exploiting Synergy to Create Efficacious New Antimicrobial Treatments. Curr. Opin. Microbiol. 33, 1824,  DOI: 10.1016/j.mib.2016.05.006
  181. 181
    Zusman, O., Avni, T., Leibovici, L., Adler, A., Friberg, L., Stergiopoulou, T., Carmeli, Y., and Paul, M. (2013) Systematic Review and Meta-Analysis of in Vitro Synergy of Polymyxins and Carbapenems. Antimicrob. Agents Chemother. 57, 51045111,  DOI: 10.1128/AAC.01230-13
  182. 182
    Lenhard, J. R., Nation, R. L., and Tsuji, B. T. (2016) Synergistic Combinations of Polymyxins. Int. J. Antimicrob. Agents 48, 607613,  DOI: 10.1016/j.ijantimicag.2016.09.014
  183. 183
    Alakomi, H.-L., Saarela, M., and Helander, I. M. (2003) Effect of EDTA on Salmonella Enterica Serovar Typhimurium Involves a Component Not Assignable to Lipopolysaccharide Release. Microbiology 149, 20152021,  DOI: 10.1099/mic.0.26312-0
  184. 184
    Vaara, M. (1992) Agents That Increase the Permeability of the Outer Membrane. Microbiol. Rev. 56, 395411,  DOI: 10.1128/MMBR.56.3.395-411.1992
  185. 185
    Bellio, P., Luzi, C., Mancini, A., Cracchiolo, S., Passacantando, M., Di Pietro, L., Perilli, M., Amicosante, G., Santucci, S., and Celenza, G. (2018) Cerium Oxide Nanoparticles as Potential Antibiotic Adjuvant. Effects of CeO2 Nanoparticles on Bacterial Outer Membrane Permeability. Biochim. Biophys. Acta, Biomembr. 1860, 24282435,  DOI: 10.1016/j.bbamem.2018.07.002
  186. 186
    Saikia, K. and Chaudhary, N. (2018) Antimicrobial Peptides from C-Terminal Amphipathic Region of E. Coli FtsA. Biochim. Biophys. Acta, Biomembr. 1860, 25062514,  DOI: 10.1016/j.bbamem.2018.09.011
  187. 187
    Wiese, A., Gutsmann, T., and Seydel, U. (2003) Towards Antibacterial Strategies: Studies on the Mechanisms of Interaction between Antibacterial Peptides and Model Membranes. J. Endotoxin Res. 9, 6784,  DOI: 10.1179/096805103125001441
  188. 188
    Vaara, M. and Porro, M. (1996) Group of Peptides That Act Synergistically with Hydrophobic Antibiotics against Gram-Negative Enteric Bacteria. Antimicrob. Agents Chemother. 40, 18011805,  DOI: 10.1128/AAC.40.8.1801
  189. 189
    Ando, M., Kamei, R., Komagoe, K., Inoue, T., Yamada, K., and Katsu, T. (2012) In Situ Potentiometric Method to Evaluate Bacterial Outer Membrane-Permeabilizing Ability of Drugs: Example Using Antiprotozoal Diamidines. J. Microbiol. Methods 91, 497500,  DOI: 10.1016/j.mimet.2012.09.033
  190. 190
    Stokes, J. M., MacNair, C. R., Ilyas, B., French, S., Cote, J.-P., Bouwman, C., Farha, M. A., Sieron, A. O., Whitfield, C., Coombes, B. K., and Brown, E. D. (2017) Pentamidine Sensitizes Gram-Negative Pathogens to Antibiotics and Overcomes Acquired Colistin Resistance. Nat. Microbiol. 2, 17028,  DOI: 10.1038/nmicrobiol.2017.28
  191. 191
    Yarlagadda, V., Manjunath, G. B., Sarkar, P., Akkapeddi, P., Paramanandham, K., Shome, B. R., Ravikumar, R., and Haldar, J. (2016) Glycopeptide Antibiotic To Overcome the Intrinsic Resistance of Gram-Negative Bacteria. ACS Infect. Dis. 2, 132139,  DOI: 10.1021/acsinfecdis.5b00114
  192. 192
    Zhou, L., van Heel, A. J., Montalban-Lopez, M., and Kuipers, O. P. (2016) Potentiating the Activity of Nisin against Escherichia Coli. Front. Cell Dev. Biol. 4, 7,  DOI: 10.3389/fcell.2016.00007
  193. 193
    Li, Q., Montalban-Lopez, M., and Kuipers, O. P. (2018) Increasing the Antimicrobial Activity of Nisin-Based Lantibiotics against Gram-Negative Pathogens. Appl. Environ. Microbiol. 84, e00052-18  DOI: 10.1128/AEM.00052-18
  194. 194
    Schweizer, F. (2019) Enhancing Uptake of Antibiotics into Gram-Negative Bacteria Using Nonribosome-Targeting Aminoglycoside-Based Adjuvants. Future Med. Chem. 11, 15191522,  DOI: 10.4155/fmc-2019-0131
  195. 195
    Raulston, J. E. and Montie, T. C. (1989) Early Cell Envelope Alterations by Tobramycin Associated with Its Lethal Action on Pseudomonas Aeruginosa. Microbiology 135, 30233034,  DOI: 10.1099/00221287-135-11-3023
  196. 196
    Bulitta, J. B., Ly, N. S., Landersdorfer, C. B., Wanigaratne, N. A., Velkov, T., Yadav, R., Oliver, A., Martin, L., Shin, B. S., Forrest, A., and Tsuji, B. T. (2015) Two Mechanisms of Killing of Pseudomonas Aeruginosa by Tobramycin Assessed at Multiple Inocula via Mechanism-Based Modeling. Antimicrob. Agents Chemother. 59, 23152327,  DOI: 10.1128/AAC.04099-14
  197. 197
    Yang, X., Goswami, S., Gorityala, B. K., Domalaon, R., Lyu, Y., Kumar, A., Zhanel, G. G., and Schweizer, F. (2017) A Tobramycin Vector Enhances Synergy and Efficacy of Efflux Pump Inhibitors against Multidrug-Resistant Gram-Negative Bacteria. J. Med. Chem. 60, 39133932,  DOI: 10.1021/acs.jmedchem.7b00156
  198. 198
    Gorityala, B. K., Guchhait, G., Goswami, S., Fernando, D. M., Kumar, A., Zhanel, G. G., and Schweizer, F. (2016) Hybrid Antibiotic Overcomes Resistance in P. Aeruginosa by Enhancing Outer Membrane Penetration and Reducing Efflux. J. Med. Chem. 59, 84418455,  DOI: 10.1021/acs.jmedchem.6b00867
  199. 199
    Gorityala, B. K., Guchhait, G., Fernando, D. M., Deo, S., McKenna, S. A., Zhanel, G. G., Kumar, A., and Schweizer, F. (2016) Adjuvants Based on Hybrid Antibiotics Overcome Resistance in Pseudomonas Aeruginosa and Enhance Fluoroquinolone Efficacy. Angew. Chem., Int. Ed. 55, 555559,  DOI: 10.1002/anie.201508330
  200. 200
    Idowu, T., Ammeter, D., Arthur, G., Zhanel, G. G., and Schweizer, F. (2019) Potentiation of Beta-Lactam Antibiotics and Beta-Lactam/Beta-Lactamase Inhibitor Combinations against MDR and XDR Pseudomonas Aeruginosa Using Non-Ribosomal Tobramycin-Cyclam Conjugates. J. Antimicrob. Chemother. 74, 26402648,  DOI: 10.1093/jac/dkz228
  201. 201
    Idowu, T., Zhanel, G. G., and Schweizer, F. (2020) A Dimer, but Not Monomer, of Tobramycin Potentiates Ceftolozane against Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas Aeruginosa and Delays Resistance Development. Antimicrob. Agents Chemother. 64, e02055-19  DOI: 10.1128/AAC.02055-19
  202. 202
    Saikia, K. and Chaudhary, N. (2018) Interaction of MreB-Derived Antimicrobial Peptides with Membranes. Biochem. Biophys. Res. Commun. 498, 5863,  DOI: 10.1016/j.bbrc.2018.02.176
  203. 203
    Saikia, K., Sravani, Y. D., Ramakrishnan, V., and Chaudhary, N. (2017) Highly Potent Antimicrobial Peptides from N-Terminal Membrane-Binding Region of E. Coli MreB. Sci. Rep. 7, 42994,  DOI: 10.1038/srep42994
  204. 204
    Falagas, M. E. and Kasiakou, S. K. (2006) Toxicity of Polymyxins: A Systematic Review of the Evidence from Old and Recent Studies. Crit. Care 10, R27R27,  DOI: 10.1186/cc3995
  205. 205
    Vattimo, M. de F. F., Watanabe, M., da Fonseca, C. D., Neiva, L. B. de M., Pessoa, E. A., and Borges, F. T. (2016) Polymyxin B Nephrotoxicity: From Organ to Cell Damage. PLoS One 11, e0161057  DOI: 10.1371/journal.pone.0161057
  206. 206
    Pirri, G., Giuliani, A., Nicoletto, S. F., Pizzuto, L., and Rinaldi, A. C. (2009) Lipopeptides as Anti-Infectives: A Practical Perspective. Cent. Eur. J. Biol. 4, 258273,  DOI: 10.2478/s11535-009-0031-3
  207. 207
    Vaara, M. and Vaara, T. (1983) Polycations Sensitize Enteric Bacteria to Antibiotics. Antimicrob. Agents Chemother. 24, 107113,  DOI: 10.1128/AAC.24.1.107
  208. 208
    Vaara, M. and Vaara, T. (1983) Sensitization of Gram-Negative Bacteria to Antibiotics and Complement by a Nontoxic Oligopeptide. Nature 303, 526528,  DOI: 10.1038/303526a0
  209. 209
    Keirstead, N. D., Wagoner, M. P., Bentley, P., Blais, M., Brown, C., Cheatham, L., Ciaccio, P., Dragan, Y., Ferguson, D., Fikes, J. (2014) Early Prediction of Polymyxin-Induced Nephrotoxicity with next-Generation Urinary Kidney Injury Biomarkers. Toxicol. Sci. 137, 278291,  DOI: 10.1093/toxsci/kft247
  210. 210
    Danner, R. L., Joiner, K. A., Rubin, M., Patterson, W. H., Johnson, N., Ayers, K. M., and Parrillo, J. E. (1989) Purification, Toxicity, and Antiendotoxin Activity of Polymyxin B Nonapeptide. Antimicrob. Agents Chemother. 33, 14281434,  DOI: 10.1128/AAC.33.9.1428
  211. 211
    Vaara, M. (2019) Polymyxin Derivatives That Sensitize Gram-Negative Bacteria to Other Antibiotics. Molecules 24, 249,  DOI: 10.3390/molecules24020249
  212. 212
    Recacha, E., Machuca, J., Diaz de Alba, P., Ramos-Guelfo, M., Docobo-Perez, F., Rodriguez-Beltran, J., Blazquez, J., Pascual, A., and Rodriguez-Martinez, J. M. (2017) Quinolone Resistance Reversion by Targeting the SOS Response. mBio 8, e00971-17,  DOI: 10.1128/mBio.00971-17
  213. 213
    Ojha, D. and Patil, K. N. (2019) P-Coumaric Acid Inhibits the Listeria Monocytogenes RecA Protein Functions and SOS Response: An Antimicrobial Target. Biochem. Biophys. Res. Commun. 517, 655661,  DOI: 10.1016/j.bbrc.2019.07.093
  214. 214
    Crane, J. K., Cheema, M. B., Olyer, M. A., and Sutton, M. D. (2018) Zinc Blockade of SOS Response Inhibits Horizontal Transfer of Antibiotic Resistance Genes in Enteric Bacteria. Front. Cell. Infect. Microbiol. 8, 410,  DOI: 10.3389/fcimb.2018.00410
  215. 215
    Xue, J., Moyer, A., Peng, B., Wu, J., Hannafon, B. N., and Ding, W.-Q. (2014) Chloroquine Is a Zinc Ionophore. PLoS One 9, e109180  DOI: 10.1371/journal.pone.0109180
  216. 216
    Mo, C. Y., Culyba, M. J., Selwood, T., Kubiak, J. M., Hostetler, Z. M., Jurewicz, A. J., Keller, P. M., Pope, A. J., Quinn, A., Schneck, J., Widdowson, K. L., and Kohli, R. M. (2018) Inhibitors of LexA Autoproteolysis and the Bacterial SOS Response Discovered by an Academic-Industry Partnership. ACS Infect. Dis. 4, 349359,  DOI: 10.1021/acsinfecdis.7b00122
  217. 217
    Lim, C. S. Q., Ha, K. P., Clarke, R. S., Gavin, L.-A., Cook, D. T., Hutton, J. A., Sutherell, C. L., Edwards, A. M., Evans, L. E., Tate, E. W., and Lanyon-Hogg, T. (2019) Identification of a Potent Small-Molecule Inhibitor of Bacterial DNA Repair That Potentiates Quinolone Antibiotic Activity in Methicillin-Resistant Staphylococcus Aureus. Bioorg. Med. Chem. 27, 114962,  DOI: 10.1016/j.bmc.2019.06.025
  218. 218
    Lee, S., Hinz, A., Bauerle, E., Angermeyer, A., Juhaszova, K., Kaneko, Y., Singh, P. K., and Manoil, C. (2009) Targeting a Bacterial Stress Response to Enhance Antibiotic Action. Proc. Natl. Acad. Sci. U. S. A. 106, 1457014575,  DOI: 10.1073/pnas.0903619106
  219. 219
    Poole, K., Gilmour, C., Farha, M. A., Mullen, E., Lau, C. H.-F., and Brown, E. D. (2016) Potentiation of Aminoglycoside Activity in Pseudomonas Aeruginosa by Targeting the AmgRS Envelope Stress-Responsive Two-Component System. Antimicrob. Agents Chemother. 60, 35093518,  DOI: 10.1128/AAC.03069-15
  220. 220
    Mikalauskas, A., Parkins, M. D., and Poole, K. (2017) Rifampicin Potentiation of Aminoglycoside Activity against Cystic Fibrosis Isolates of Pseudomonas Aeruginosa. J. Antimicrob. Chemother. 72, 33493352,  DOI: 10.1093/jac/dkx296
  221. 221
    Docquier, J.-D. and Mangani, S. (2018) An Update on Beta-Lactamase Inhibitor Discovery and Development. Drug Resist. Updates 36, 1329,  DOI: 10.1016/j.drup.2017.11.002
  222. 222
    Chiem, K., Jani, S., Fuentes, B., Lin, D. L., Rasche, M. E., and Tolmasky, M. E. (2016) Identification of an Inhibitor of the Aminoglycoside 6’-N-Acetyltransferase Type Ib [AAC(6’)-Ib] by Glide Molecular Docking. MedChemComm 7, 184189,  DOI: 10.1039/C5MD00316D
  223. 223
    Lomovskaya, O., Warren, M. S., Lee, A., Galazzo, J., Fronko, R., Lee, M., Blais, J., Cho, D., Chamberland, S., Renau, T., Leger, R., Hecker, S., Watkins, W., Hoshino, K., Ishida, H., and Lee, V. J. (2001) Identification and Characterization of Inhibitors of Multidrug Resistance Efflux Pumps in Pseudomonas Aeruginosa: Novel Agents for Combination Therapy. Antimicrob. Agents Chemother. 45, 105116,  DOI: 10.1128/AAC.45.1.105-116.2001
  224. 224
    Gupta, S., Cohen, K. A., Winglee, K., Maiga, M., Diarra, B., and Bishai, W. R. (2014) Efflux Inhibition with Verapamil Potentiates Bedaquiline in Mycobacterium Tuberculosis. Antimicrob. Agents Chemother. 58, 574576,  DOI: 10.1128/AAC.01462-13
  225. 225
    Singh, M., Jadaun, G. P. S., Ramdas Srivastava, K., Chauhan, V., Mishra, R., Gupta, K., Nair, S., Chauhan, D. S., Sharma, V. D., Venkatesan, K., and Katoch, V. M. (2011) Effect of Efflux Pump Inhibitors on Drug Susceptibility of Ofloxacin Resistant Mycobacterium Tuberculosis Isolates. Indian J. Med. Res. 133, 535540
  226. 226
    Hogg, G. M., Barr, J. G., and Webb, C. H. (1998) In-Vitro Activity of the Combination of Colistin and Rifampicin against Multidrug-Resistant Strains of Acinetobacter Baumannii. J. Antimicrob. Chemother. 41, 494450,  DOI: 10.1093/jac/41.4.494
  227. 227
    MacGowan, A. P., Rynn, C., Wootton, M., Bowker, K. E., Holt, H. A., Reeves, D. S. (1999) In Vitro Assessment of Colistin’s Antipseudomonal Antimicrobial Interactions with Other Antibiotics. Clin. Microbiol. Infect. 5, 3236,  DOI: 10.1111/j.1469-0691.1999.tb00095.x
  228. 228
    Petrosillo, N., Chinello, P., Proietti, M. F., Cecchini, L., Masala, M., Franchi, C., Venditti, M., Esposito, S., and Nicastri, E. (2005) Combined Colistin and Rifampicin Therapy for Carbapenem-Resistant Acinetobacter Baumannii Infections: Clinical Outcome and Adverse Events. Clin. Microbiol. Infect. 11, 682683,  DOI: 10.1111/j.1469-0691.2005.01198.x
  229. 229
    Kerrigan, J. E., Ragunath, C., Kandra, L., Gyemant, G., Liptak, A., Janossy, L., Kaplan, J. B., and Ramasubbu, N. (2008) Modeling and Biochemical Analysis of the Activity of Antibiofilm Agent Dispersin B. Acta Biol. Hung. 59, 439451,  DOI: 10.1556/ABiol.59.2008.4.5
  230. 230
    Ramasubbu, N., Thomas, L. M., Ragunath, C., and Kaplan, J. B. (2005) Structural Analysis of Dispersin B, a Biofilm-Releasing Glycoside Hydrolase from the Periodontopathogen Actinobacillus Actinomycetemcomitans. J. Mol. Biol. 349, 475486,  DOI: 10.1016/j.jmb.2005.03.082
  231. 231
    Brindle, E. R., Miller, D. A., and Stewart, P. S. (2011) Hydrodynamic Deformation and Removal of Staphylococcus Epidermidis Biofilms Treated with Urea, Chlorhexidine, Iron Chloride, or DispersinB. Biotechnol. Bioeng. 108, 29682977,  DOI: 10.1002/bit.23245
  232. 232
    Fernandez-Lopez, R., Machon, C., Longshaw, C. M., Martin, S., Molin, S., Zechner, E. L., Espinosa, M., Lanka, E., and de la Cruz, F. (2005) Unsaturated Fatty Acids Are Inhibitors of Bacterial Conjugation. Microbiology 151, 35173526,  DOI: 10.1099/mic.0.28216-0
  233. 233
    Perry, J. A., Koteva, K., Verschoor, C. P., Wang, W., Bowdish, D. M. E., and Wright, G. D. (2015) A Macrophage-Stimulating Compound from a Screen of Microbial Natural Products. J. Antibiot. 68, 4046,  DOI: 10.1038/ja.2014.83
  234. 234
    Gonzalez-Bello, C., Rodriguez, D., Pernas, M., Rodriguez, A., and Colchon, E. (2020) Beta-Lactamase Inhibitors To Restore the Efficacy of Antibiotics against Superbugs. J. Med. Chem. 63, 1859,  DOI: 10.1021/acs.jmedchem.9b01279
  235. 235
    Drawz, S. M. and Bonomo, R. A. (2010) Three Decades of β-Lactamase Inhibitors. Clin. Microbiol. Rev. 23, 160201,  DOI: 10.1128/CMR.00037-09
  236. 236
    Garneau-Tsodikova, S. and Labby, K. J. (2016) Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives. MedChemComm 7, 1127,  DOI: 10.1039/C5MD00344J
  237. 237
    Li, Y., Green, K. D., Johnson, B. R., and Garneau-Tsodikova, S. (2015) Inhibition of Aminoglycoside Acetyltransferase Resistance Enzymes by Metal Salts. Antimicrob. Agents Chemother. 59, 41484156,  DOI: 10.1128/AAC.00885-15
  238. 238
    Lin, D. L., Tran, T., Adams, C., Alam, J. Y., Herron, S. R., and Tolmasky, M. E. (2013) Inhibitors of the Aminoglycoside 6’-N-Acetyltransferase Type Ib [AAC(6’)-Ib] Identified by in Silico Molecular Docking. Bioorg. Med. Chem. Lett. 23, 56945698,  DOI: 10.1016/j.bmcl.2013.08.016
  239. 239
    Green, K. D., Chen, W., and Garneau-Tsodikova, S. (2012) Identification and Characterization of Inhibitors of the Aminoglycoside Resistance Acetyltransferase Eis from Mycobacterium Tuberculosis. ChemMedChem 7, 7377,  DOI: 10.1002/cmdc.201100332
  240. 240
    Li, X.-Z., Plesiat, P., and Nikaido, H. (2015) The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria. Clin. Microbiol. Rev. 28, 337418,  DOI: 10.1128/CMR.00117-14
  241. 241
    Sharma, A., Gupta, V. K., and Pathania, R. (2019) Efflux Pump Inhibitors for Bacterial Pathogens: From Bench to Bedside. Indian J. Med. Res. 149, 129145,  DOI: 10.4103/ijmr.IJMR_2079_17
  242. 242
    Handzlik, J., Matys, A., and Kieć-Kononowicz, K. (2013) Recent Advances in Multi-Drug Resistance (MDR) Efflux Pump Inhibitors of Gram-Positive Bacteria S. Aureus. Antibiotics 2, 2845,  DOI: 10.3390/antibiotics2010028
  243. 243
    Spengler, G., Kincses, A., Gajdacs, M., and Amaral, L. (2017) New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria. Molecules 22, 468,  DOI: 10.3390/molecules22030468
  244. 244
    Song, L. and Wu, X. (2016) Development of Efflux Pump Inhibitors in Antituberculosis Therapy. Int. J. Antimicrob. Agents 47, 421429,  DOI: 10.1016/j.ijantimicag.2016.04.007
  245. 245
    Schillaci, D., Spano, V., Parrino, B., Carbone, A., Montalbano, A., Barraja, P., Diana, P., Cirrincione, G., and Cascioferro, S. (2017) Pharmaceutical Approaches to Target Antibiotic Resistance Mechanisms. J. Med. Chem. 60, 82688297,  DOI: 10.1021/acs.jmedchem.7b00215
  246. 246
    Soucy, S. M., Huang, J., and Gogarten, J. P. (2015) Horizontal Gene Transfer: Building the Web of Life. Nat. Rev. Genet. 16, 472482,  DOI: 10.1038/nrg3962
  247. 247
    Graf, F. E., Palm, M., Warringer, J., and Farewell, A. (2019) Inhibiting Conjugation as a Tool in the Fight against Antibiotic Resistance. Drug Dev. Res. 80, 1923,  DOI: 10.1002/ddr.21457
  248. 248
    Cabezón, E., de la Cruz, F., and Arechaga, I. (2017) Conjugation Inhibitors and Their Potential Use to Prevent Dissemination of Antibiotic Resistance Genes in Bacteria. Front. Microbiol. 8, 2329,  DOI: 10.3389/fmicb.2017.02329
  249. 249
    Getino, M., Sanabria-Rios, D. J., Fernandez-Lopez, R., Campos-Gomez, J., Sanchez-Lopez, J. M., Fernandez, A., Carballeira, N. M., and de la Cruz, F. (2015) Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer. mBio 6, e01032-15  DOI: 10.1128/mBio.01032-15
  250. 250
    Zhu, L. and Lau, G. W. (2011) Inhibition of Competence Development, Horizontal Gene Transfer and Virulence in Streptococcus Pneumoniae by a Modified Competence Stimulating Peptide. PLoS Pathog. 7, e1002241  DOI: 10.1371/journal.ppat.1002241
  251. 251
    Shaffer, C. L., Good, J. A. D., Kumar, S., Krishnan, K. S., Gaddy, J. A., Loh, J. T., Chappell, J., Almqvist, F., Cover, T. L., and Hadjifrangiskou, M. (2016) Peptidomimetic Small Molecules Disrupt Type IV Secretion System Activity in Diverse Bacterial Pathogens. mBio 7, e00221-16  DOI: 10.1128/mBio.00221-16
  252. 252
    Grassi, L., Maisetta, G., Esin, S., and Batoni, G. (2017) Combination Strategies to Enhance the Efficacy of Antimicrobial Peptides against Bacterial Biofilms. Front. Microbiol. 8, 2409,  DOI: 10.3389/fmicb.2017.02409
  253. 253
    Roy, R., Tiwari, M., Donelli, G., and Tiwari, V. (2018) Strategies for Combating Bacterial Biofilms: A Focus on Anti-Biofilm Agents and Their Mechanisms of Action. Virulence 9, 522554,  DOI: 10.1080/21505594.2017.1313372
  254. 254
    Chen, X., Zhang, L., Zhang, M., Liu, H., Lu, P., and Lin, K. (2018) Quorum Sensing Inhibitors: A Patent Review (2014–2018). Expert Opin. Ther. Pat. 28, 849865,  DOI: 10.1080/13543776.2018.1541174
  255. 255
    Xiang, H., Cao, F., Ming, D., Zheng, Y., Dong, X., Zhong, X., Mu, D., Li, B., Zhong, L., Cao, J., Wang, L., Ma, H., Wang, T., and Wang, D. (2017) Aloe-Emodin Inhibits Staphylococcus Aureus Biofilms and Extracellular Protein Production at the Initial Adhesion Stage of Biofilm Development. Appl. Microbiol. Biotechnol. 101, 66716681,  DOI: 10.1007/s00253-017-8403-5
  256. 256
    Wang, J., Nong, X.-H., Amin, M., and Qi, S.-H. (2018) Hygrocin C from Marine-Derived Streptomyces Sp. SCSGAA 0027 Inhibits Biofilm Formation in Bacillus Amyloliquefaciens SCSGAB0082 Isolated from South China Sea Gorgonian. Appl. Microbiol. Biotechnol. 102, 14171427,  DOI: 10.1007/s00253-017-8672-z
  257. 257
    Wunnoo, S., Saising, J., and Voravuthikunchai, S. P. (2017) Rhodomyrtone Inhibits Lipase Production, Biofilm Formation, and Disorganizes Established Biofilm in Propionibacterium Acnes. Anaerobe 43, 6168,  DOI: 10.1016/j.anaerobe.2016.12.002
  258. 258
    Falagas, M. E. and Bliziotis, I. A. (2007) Pandrug-Resistant Gram-Negative Bacteria: The Dawn of the Post-Antibiotic Era?. Int. J. Antimicrob. Agents 29, 630636,  DOI: 10.1016/j.ijantimicag.2006.12.012
  259. 259
    Asker, D., Awad, T. S., Baker, P., Howell, P. L., and Hatton, B. D. (2018) Non-Eluting, Surface-Bound Enzymes Disrupt Surface Attachment of Bacteria by Continuous Biofilm Polysaccharide Degradation. Biomaterials 167, 168176,  DOI: 10.1016/j.biomaterials.2018.03.016
  260. 260
    Pritchard, M. F., Powell, L. C., Jack, A. A., Powell, K., Beck, K., Florance, H., Forton, J., Rye, P. D., Dessen, A., Hill, K. E., and Thomas, D. W. (2017) A Low-Molecular-Weight Alginate Oligosaccharide Disrupts Pseudomonal Microcolony Formation and Enhances Antibiotic Effectiveness. Antimicrob. Agents Chemother. 61, 61,  DOI: 10.1128/AAC.00762-17
  261. 261
    de la Fuente-Nunez, C., Reffuveille, F., Haney, E. F., Straus, S. K., and Hancock, R. E. W. (2014) Broad-Spectrum Anti-Biofilm Peptide That Targets a Cellular Stress Response. PLoS Pathog. 10, e1004152  DOI: 10.1371/journal.ppat.1004152
  262. 262
    Pletzer, D., Wolfmeier, H., Bains, M., and Hancock, R. E. W. (2017) Synthetic Peptides to Target Stringent Response-Controlled Virulence in a Pseudomonas Aeruginosa Murine Cutaneous Infection Model. Front. Microbiol. 8, 1867,  DOI: 10.3389/fmicb.2017.01867
  263. 263
    Christensen, L. D., van Gennip, M., Jakobsen, T. H., Alhede, M., Hougen, H. P., Hoiby, N., Bjarnsholt, T., and Givskov, M. (2012) Synergistic Antibacterial Efficacy of Early Combination Treatment with Tobramycin and Quorum-Sensing Inhibitors against Pseudomonas Aeruginosa in an Intraperitoneal Foreign-Body Infection Mouse Model. J. Antimicrob. Chemother. 67, 11981206,  DOI: 10.1093/jac/dks002
  264. 264
    Kissoyan, K. A. B., Bazzi, W., Hadi, U., and Matar, G. M. (2016) The Inhibition of Pseudomonas Aeruginosa Biofilm Formation by Micafungin and the Enhancement of Antimicrobial Agent Effectiveness in BALB/c Mice. Biofouling 32, 779786,  DOI: 10.1080/08927014.2016.1199021
  265. 265
    Maiden, M. M., Hunt, A. M. A., Zachos, M. P., Gibson, J. A., Hurwitz, M. E., Mulks, M. H., and Waters, C. M. (2018) Triclosan Is an Aminoglycoside Adjuvant for Eradication of Pseudomonas Aeruginosa Biofilms. Antimicrob. Agents Chemother. 62, e00146-18  DOI: 10.1128/AAC.00146-18
  266. 266
    Worthington, R. J. and Melander, C. (2013) Combination Approaches to Combat Multidrug-Resistant Bacteria. Trends Biotechnol. 31, 177184,  DOI: 10.1016/j.tibtech.2012.12.006
  267. 267
    Tyers, M. and Wright, G. D. (2019) Drug Combinations: A Strategy to Extend the Life of Antibiotics in the 21st Century. Nat. Rev. Microbiol. 17, 141155,  DOI: 10.1038/s41579-018-0141-x
  268. 268
    Schmid, A., Wolfensberger, A., Nemeth, J., Schreiber, P. W., Sax, H., and Kuster, S. P. (2019) Monotherapy versus Combination Therapy for Multidrug-Resistant Gram-Negative Infections: Systematic Review and Meta-Analysis. Sci. Rep. 9, 15290,  DOI: 10.1038/s41598-019-51711-x
  269. 269
    Drusano, G. L., Hope, W., MacGowan, A., and Louie, A. (2016) Suppression of Emergence of Resistance in Pathogenic Bacteria: Keeping Our Powder Dry, Part 1. Antimicrob. Agents Chemother. 60, 11941201,  DOI: 10.1128/AAC.02231-15
  270. 270
    Lee, J., Patel, G., Huprikar, S., Calfee, D. P., and Jenkins, S. G. (2009) Decreased Susceptibility to Polymyxin B during Treatment for Carbapenem-Resistant Klebsiella Pneumoniae Infection. J. Clin. Microbiol. 47, 16112,  DOI: 10.1128/JCM.02466-08
  271. 271
    Goss, C. H. and Muhlebach, M. S. (2011) Review: Staphylococcus Aureus and MRSA in Cystic Fibrosis. J. Cystic Fibrosis 10, 298306,  DOI: 10.1016/j.jcf.2011.06.002
  272. 272
    McCaughey, G., Diamond, P., Elborn, J. S., McKevitt, M., and Tunney, M. M. (2013) Resistance Development of Cystic Fibrosis Respiratory Pathogens When Exposed to Fosfomycin and Tobramycin Alone and in Combination under Aerobic and Anaerobic Conditions. PLoS One 8, e69763  DOI: 10.1371/journal.pone.0069763
  273. 273
    Monedero, I. and Caminero, J. A. (2010) Management of Multidrug-Resistant Tuberculosis: An Update. Ther. Adv. Respir. Dis. 4, 117127,  DOI: 10.1177/1753465810365884
  274. 274
    REX Consortium (2013) Heterogeneity of Selection and the Evolution of Resistance. Trends Ecol. Evol. 28, 110118,  DOI: 10.1016/j.tree.2012.09.001
  275. 275
    Takesue, Y., Nakajima, K., Ichiki, K., Ishihara, M., Wada, Y., Takahashi, Y., Tsuchida, T., and Ikeuchi, H. (2010) Impact of a Hospital-Wide Programme of Heterogeneous Antibiotic Use on the Development of Antibiotic-Resistant Gram-Negative Bacteria. J. Hosp. Infect. 75, 2832,  DOI: 10.1016/j.jhin.2009.11.022
  276. 276
    Raymond, B. (2019) Five Rules for Resistance Management in the Antibiotic Apocalypse, a Road Map for Integrated Microbial Management. Evol. Appl. 12, 10791091,  DOI: 10.1111/eva.12808
  277. 277
    Paul, M., Lador, A., Grozinsky-Glasberg, S., and Leibovici, L. (2014) Beta Lactam Antibiotic Monotherapy versus Beta Lactam-Aminoglycoside Antibiotic Combination Therapy for Sepsis. Cochrane database Syst. Rev. (1), CD003344,  DOI: 10.1002/14651858.CD003344.pub3
  278. 278
    Tamma, P. D., Cosgrove, S. E., and Maragakis, L. L. (2012) Combination Therapy for Treatment of Infections with Gram-Negative Bacteria. Clin. Microbiol. Rev. 25, 450470,  DOI: 10.1128/CMR.05041-11
  279. 279
    Lipsitch, M. and Levin, B. R. (1997) The Population Dynamics of Antimicrobial Chemotherapy. Antimicrob. Agents Chemother. 41, 363373,  DOI: 10.1128/AAC.41.2.363
  280. 280
    Raymond, B., Wright, D. J., Crickmore, N., and Bonsall, M. B. (2013) The Impact of Strain Diversity and Mixed Infections on the Evolution of Resistance to Bacillus Thuringiensis. Proc. R. Soc. London, Ser. B 280, 20131497,  DOI: 10.1098/rspb.2013.1497
  281. 281
    Pena-Miller, R., Laehnemann, D., Jansen, G., Fuentes-Hernandez, A., Rosenstiel, P., Schulenburg, H., and Beardmore, R. (2013) When the Most Potent Combination of Antibiotics Selects for the Greatest Bacterial Load: The Smile-Frown Transition. PLoS Biol. 11, e1001540  DOI: 10.1371/journal.pbio.1001540
  282. 282
    MacLean, R. C., Hall, A. R., Perron, G. G., and Buckling, A. (2010) The Population Genetics of Antibiotic Resistance: Integrating Molecular Mechanisms and Treatment Contexts. Nat. Rev. Genet. 11, 405414,  DOI: 10.1038/nrg2778
  283. 283
    Hegreness, M., Shoresh, N., Damian, D., Hartl, D., and Kishony, R. (2008) Accelerated Evolution of Resistance in Multidrug Environments. Proc. Natl. Acad. Sci. U. S. A. 105, 1397713981,  DOI: 10.1073/pnas.0805965105
  284. 284
    Liu, J., Gefen, O., Ronin, I., Bar-Meir, M., and Balaban, N. Q. (2020) Effect of Tolerance on the Evolution of Antibiotic Resistance under Drug Combinations. Science 367, 200204,  DOI: 10.1126/science.aay3041

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 127 publications.

  1. Shengqiang Shen, Baokang Ding, Meiling Yang, Jiahao Zhang, Shenmeng Bai, Shujie Ma, Lihui Zhang, Jingao Dong, Lili Dong. Modification of Azo-Aminopyrimidines as Potent Multitarget Inhibitors of Insect Chitinolytic Enzymes OfChi-h and OfHex1. Journal of Agricultural and Food Chemistry 2024, 72 (48) , 26957-26966. https://doi.org/10.1021/acs.jafc.4c06797
  2. Elizabeth G. Wiita, Zenon Toprakcioglu, Akhila K. Jayaram, Tuomas P. J. Knowles. Formation of Nanofibrillar Self-Healing Hydrogels Using Antimicrobial Peptides. ACS Applied Materials & Interfaces 2024, 16 (35) , 46167-46176. https://doi.org/10.1021/acsami.4c11542
  3. Hanxiang Jiang, Jiaqin Chen, Xinyang Du, Dong Feng, Yanjun Zhang, Jiangfeng Qi, Yajing He, Zhilong An, Yuanyuan Lu, Chun Ge, Ying Wang. Unveiling Synergistic Potency: Exploring Butyrolactone I to Enhance Gentamicin Efficacy against Methicillin-Resistant Staphylococcus aureus (MRSA) Strain USA300. ACS Infectious Diseases 2024, 10 (1) , 196-214. https://doi.org/10.1021/acsinfecdis.3c00534
  4. Ahmed M. Kamal El-sagheir, Ireny Abdelmesseh Nekhala, Mohammed K. Abd El-Gaber, Ahmed S. Aboraia, Jonatan Persson, Ann-Britt Schäfer, Michaela Wenzel, Farghaly A. Omar. N4-Substituted Piperazinyl Norfloxacin Derivatives with Broad-Spectrum Activity and Multiple Mechanisms on Gyrase, Topoisomerase IV, and Bacterial Cell Wall Synthesis. ACS Bio & Med Chem Au 2023, 3 (6) , 494-506. https://doi.org/10.1021/acsbiomedchemau.3c00038
  5. Maytham Hussein, Rafah Allobawi, Jinxin Zhao, Heidi Yu, Stephanie L. Neville, Jonathan Wilksch, Labell J. M. Wong, Mark Baker, Christopher A. McDevitt, Gauri G. Rao, Jian Li, Tony Velkov. Integrated Transcriptomic and Metabolomic Mapping Reveals the Mechanism of Action of Ceftazidime/Avibactam against Pan-Drug-Resistant Klebsiella pneumoniae. ACS Infectious Diseases 2023, 9 (12) , 2409-2422. https://doi.org/10.1021/acsinfecdis.3c00264
  6. Zuoyue Liu, Yuta Okada, Yuma Ichinose, Daisuke Saitoh, Naoya Ieda, Seiji Yamasaki, Kunihiko Nishino, Hidehiko Nakagawa, Mamoru Fujitsuka, Yasuko Osakada. Vanadyl Naphthalocyanine-Doped Polymer Dots for Near-Infrared Light-Induced Nitric Oxide Release and Bactericidal Effects. ACS Applied Nano Materials 2023, 6 (2) , 1487-1495. https://doi.org/10.1021/acsanm.2c05566
  7. Samson Olaitan Oselusi, Adewale Oluwaseun Fadaka, Gerald J. Wyckoff, Samuel Ayodele Egieyeh. Computational Target-Based Screening of Anti-MRSA Natural Products Reveals Potential Multitarget Mechanisms of Action through Peptidoglycan Synthesis Proteins. ACS Omega 2022, 7 (42) , 37896-37906. https://doi.org/10.1021/acsomega.2c05061
  8. Eddy E. Alfonso, Zifang Deng, Daniel Boaretto, Becky L. Hood, Stefan Vasile, Layton H. Smith, Jeremy W. Chambers, Prem Chapagain, Fenfei Leng. Novel and Structurally Diversified Bacterial DNA Gyrase Inhibitors Discovered through a Fluorescence-Based High-Throughput Screening Assay. ACS Pharmacology & Translational Science 2022, 5 (10) , 932-944. https://doi.org/10.1021/acsptsci.2c00113
  9. Jiyu Li, Pengfei Zhang, Mei Yang, Zixu Xie, Guofeng Li, Xing Wang. Antimicrobial Modification of PET by Insertion of Menthoxy-Triazine. ACS Applied Polymer Materials 2022, 4 (3) , 1922-1930. https://doi.org/10.1021/acsapm.1c01775
  10. Shakil Ahmed Polash, Tushar Khare, Vinay Kumar, Ravi Shukla. Prospects of Exploring the Metal–Organic Framework for Combating Antimicrobial Resistance. ACS Applied Bio Materials 2021, 4 (12) , 8060-8079. https://doi.org/10.1021/acsabm.1c00832
  11. Clément Monsarrat, Guillaume Compain, Christophe André, Sylvain Engilberge, Isabelle Martiel, Vincent Oliéric, Philippe Wolff, Karl Brillet, Marie Landolfo, Cyrielle Silva da Veiga, Jérôme Wagner, Gilles Guichard, Dominique Y. Burnouf. Iterative Structure-Based Optimization of Short Peptides Targeting the Bacterial Sliding Clamp. Journal of Medicinal Chemistry 2021, 64 (23) , 17063-17078. https://doi.org/10.1021/acs.jmedchem.1c00918
  12. Weize Sun, Yao Jian, Mengxue Zhou, Yishan Yao, Na Tian, Chao Li, Jun Chen, Xuesong Wang, Qianxiong Zhou. Selective and Efficient Photoinactivation of Intracellular Staphylococcus aureus and MRSA with Little Accumulation of Drug Resistance: Application of a Ru(II) Complex with Photolabile Ligands. Journal of Medicinal Chemistry 2021, 64 (11) , 7359-7370. https://doi.org/10.1021/acs.jmedchem.0c02257
  13. Steven L. Regen. Membrane-Disrupting Molecules as Therapeutic Agents: A Cautionary Note. JACS Au 2021, 1 (1) , 3-7. https://doi.org/10.1021/jacsau.0c00037
  14. Helen I. Zgurskaya (Associate Editor). An Old Problem in a New Light: Antibiotic Permeation Barriers. ACS Infectious Diseases 2020, 6 (12) , 3090-3091. https://doi.org/10.1021/acsinfecdis.0c00780
  15. Ye Gao, Avijit Pramanik, Shamily Patibandla, Kaelin Gates, Glake Hill, Andrew Ignatius, Paresh Chandra Ray. Development of Human Host Defense Antimicrobial Peptide-Conjugated Biochar Nanocomposites for Combating Broad-Spectrum Superbugs. ACS Applied Bio Materials 2020, 3 (11) , 7696-7705. https://doi.org/10.1021/acsabm.0c00880
  16. Anh K. Lam, Erika L. Moen, Jennifer Pusavat, Cassandra L. Wouters, Hannah Panlilio, Maya J. Ferrell, Matthew B. Houck, Daniel T. Glatzhofer, Charles V. Rice. PEGylation of Polyethylenimine Lowers Acute Toxicity while Retaining Anti-Biofilm and β-Lactam Potentiation Properties against Antibiotic-Resistant Pathogens. ACS Omega 2020, 5 (40) , 26262-26270. https://doi.org/10.1021/acsomega.0c04111
  17. Ghazal Ghaznavi, Parisa Vosough, Abdolmajid Ghasemian, Mohammad Mahdi Mokhtari Tabar, Lobat Tayebi, Saeed Taghizadeh, Amir Savardashtaki. Engineering bacteriophages for targeted superbug eradication. Molecular Biology Reports 2025, 52 (1) https://doi.org/10.1007/s11033-025-10332-6
  18. Silvia T. Cardona, A. S. M. Zisanur Rahman, Julieta Novomisky Nechcoff. Innovative perspectives on the discovery of small molecule antibiotics. npj Antimicrobials and Resistance 2025, 3 (1) https://doi.org/10.1038/s44259-025-00089-0
  19. Lu-Lu He, Lan-Tu Xiong, Xin Wang, Yu-Zhen Li, Jia-Bao Li, Yu Shi, Xin Deng, Zi-Ning Cui. Application of inhibitors targeting the type III secretion system in phytopathogenic bacteria. Chinese Chemical Letters 2025, 36 (4) , 110044. https://doi.org/10.1016/j.cclet.2024.110044
  20. Nagmi Bano, Salman Arafath Mohammed, Khalid Raza. Integrating machine learning and multitargeted drug design to combat antimicrobial resistance: a systematic review. Journal of Drug Targeting 2025, 33 (3) , 384-396. https://doi.org/10.1080/1061186X.2024.2428984
  21. Roderich D. Süssmuth, Marcel Kulike‐Koczula, Peng Gao, Simone Kosol. Fighting Antimicrobial Resistance: Innovative Drugs in Antibacterial Research. Angewandte Chemie International Edition 2025, 64 (10) https://doi.org/10.1002/anie.202414325
  22. Roderich D. Süssmuth, Marcel Kulike‐Koczula, Peng Gao, Simone Kosol. Innovative Wirkstoffe aus der antibakteriellen Forschung im Kampf gegen mikrobielle Resistenzen. Angewandte Chemie 2025, 137 (10) https://doi.org/10.1002/ange.202414325
  23. Nourah A. Al Zahrani, Huda A. Al-Ghamdi, Reda M. El‐Shishtawy. Phenothiazine derivatives: Synthesis, docking studies and antimicrobial activity. Journal of Molecular Structure 2025, 1324 , 140885. https://doi.org/10.1016/j.molstruc.2024.140885
  24. Joshua A. Homer, Robert M. Johnson, Rebecca A. Koelln, Adam D. Moorhouse, John E. Moses. Strategic re-engineering of antibiotics. Nature Reviews Bioengineering 2025, 3 (3) , 213-229. https://doi.org/10.1038/s44222-024-00250-w
  25. Lynn L. Silver. Polypharmacology. 2025, 127-140. https://doi.org/10.1002/9781394182862.ch10
  26. Giovanni Stelitano, Mario Cocorullo, Laurent R. Chiarelli. Multi‐target Compounds for Tuberculosis. 2025, 437-449. https://doi.org/10.1002/9781394182862.ch28
  27. Maya A Farha, Megan M Tu, Eric D Brown. Important challenges to finding new leads for new antibiotics. Current Opinion in Microbiology 2025, 83 , 102562. https://doi.org/10.1016/j.mib.2024.102562
  28. Valeria V. Kleandrova, M. Natália D. S. Cordeiro, Alejandro Speck-Planche. Perturbation-Theory Machine Learning for Multi-Objective Antibacterial Discovery: Current Status and Future Perspectives. Applied Sciences 2025, 15 (3) , 1166. https://doi.org/10.3390/app15031166
  29. Yu-Xi Li, Xiang Geng, Qi Tao, Ruo-Chen Hao, Ya-Jun Yang, Xi-Wang Liu, Jian-Yong Li. Synthesis, Antimicrobial Activities, and Model of Action of Indolyl Derivatives Containing Amino-Guanidinium Moieties. Molecules 2025, 30 (4) , 887. https://doi.org/10.3390/molecules30040887
  30. Ana Martins, Fanni Judák, Zoltán Farkas, Petra Szili, Gábor Grézal, Bálint Csörgő, Márton Simon Czikkely, Elvin Maharramov, Lejla Daruka, Réka Spohn, Dávid Balogh, Andreea Daraba, Szilvia Juhász, Máté Vágvölgyi, Attila Hunyadi, Yihui Cao, Zhenquan Sun, Xuechen Li, Balázs Papp, Csaba Pál. Antibiotic candidates for Gram-positive bacterial infections induce multidrug resistance. Science Translational Medicine 2025, 17 (780) https://doi.org/10.1126/scitranslmed.adl2103
  31. Vimarishi Koul, Akshi Sharma, Diksha Kumari, Vishwani Jamwal, Tashi Palmo, Kuljit Singh. Breaking the resistance: integrative approaches with novel therapeutics against Klebsiella pneumoniae. Archives of Microbiology 2025, 207 (1) https://doi.org/10.1007/s00203-024-04205-y
  32. Miguel A. Liuzzi-Vaamonde, Jackson B. Lancaster, Samantha A. Mason, Yuanning Feng. Piling up multidecker pyrgos[n]cages as antibacterial materials. Science China Materials 2025, 68 (1) , 314-316. https://doi.org/10.1007/s40843-024-3108-5
  33. Muhammad Aamir Hassan, Sadaf Noor, Jungmi Park, Ahmed Nabawy, Maitri Dedhiya, Robin Patel, Vincent M. Rotello. Gelatin Nanoemulsion-Based Co-Delivery of Terbinafine and Essential Oils for Treatment of Candida albicans Biofilms. Microorganisms 2025, 13 (1) , 127. https://doi.org/10.3390/microorganisms13010127
  34. Miguel M. Leitão, Ariana S.C. Gonçalves, Fernanda Borges, Manuel Simões, Anabela Borges. Polypharmacological strategies for infectious bacteria. Pharmacological Reviews 2025, 55 , 100038. https://doi.org/10.1016/j.pharmr.2025.100038
  35. Adrian Campey, Urszula Łapińska, Remy Chait, Krasimira Tsaneva-Atanasova, Stefano Pagliara, . Antibiotic resistant bacteria survive treatment by doubling while shrinking. mBio 2024, 15 (12) https://doi.org/10.1128/mbio.02375-24
  36. Julia Werner, Florian Umstätter, Manuel B. Böhmann, Hannah Müller, Barbro Beijer, Tobias Hertlein, Laura Kaschnitz, Veronika Bram, Christian Kleist, Karel D. Klika, Eric Mühlberg, Gabriel Braune, Sabrina Wohlfart, Martin Gärtner, Silke Peter, Stefan Zimmermann, Uwe Haberkorn, Knut Ohlsen, Heike Brötz‐Oesterhelt, Walter Mier, Philipp Uhl. Conjugation of Polycationic Peptides Extends the Efficacy Spectrum of β‐Lactam Antibiotics. Advanced Science 2024, 11 (48) https://doi.org/10.1002/advs.202411406
  37. Andrii Lekhan, Raymond J. Turner, . Exploring antimicrobial interactions between metal ions and quaternary ammonium compounds toward synergistic metallo-antimicrobial formulations. Microbiology Spectrum 2024, 12 (10) https://doi.org/10.1128/spectrum.01047-24
  38. Antoine Danchin. Artificial intelligence‐based prediction of pathogen emergence and evolution in the world of synthetic biology. Microbial Biotechnology 2024, 17 (10) https://doi.org/10.1111/1751-7915.70014
  39. Shruti Nandkishor Tanwar, Yatish Ratn Parauha, Yogesh There, Faud Ameen, Sanjay Janraoji Dhoble. Inorganic nanoparticles: An effective antibiofilm strategy. Luminescence 2024, 39 (9) https://doi.org/10.1002/bio.4878
  40. Noor Fatima, Shehla Khalid, Nasir Rasool, Muhammad Imran, Bushra Parveen, Aqsa Kanwal, Marius Irimie, Codrut Ioan Ciurea. Approachable Synthetic Methodologies for Second-Generation β-Lactamase Inhibitors: A Review. Pharmaceuticals 2024, 17 (9) , 1108. https://doi.org/10.3390/ph17091108
  41. Wan Li, Menghan Liu, Panos Oikonomou, Sydney B Blattman, Julia Hettleman, Joseph Gonzalez, Howe Chen, Saeed Tavazoie, Wenyan Jiang. The genetic landscape of antibiotic sensitivity in Staphylococcus aureus. 2024https://doi.org/10.1101/2024.08.15.608136
  42. Franklin V. Amandy, Gabriel L.L. Neri, Joe A.H. Manzano, Adrian D. Go, Allan P.G. Macabeo. Polypharmacology-Driven Discovery and Design of Highly Selective, Dual and Multitargeting Inhibitors of Mycobacterium tuberculosis - A Review. Current Drug Targets 2024, 25 (9) , 620-634. https://doi.org/10.2174/0113894501306302240526160804
  43. Adrian Campey, Remy Chait, Krasimira Tsaneva-Atanasova, Stefano Pagliara. Antibiotic resistant bacteria survive treatment by doubling while shrinking. 2024https://doi.org/10.1101/2024.06.27.601114
  44. Amani H. Al-Fadhli, Wafaa Yousef Jamal. Recent advances in gene-editing approaches for tackling antibiotic resistance threats: a review. Frontiers in Cellular and Infection Microbiology 2024, 14 https://doi.org/10.3389/fcimb.2024.1410115
  45. Bo Wang, Sen Chen, Weichen Feng, Xiaohui Shan, Xiyu Zhu, Ruizhi Yuan, Yingjie Cao, Linlin Fan, Bo Yuan, Hongzhang Wang, Gang Zhou, Jing Liu. Antimicrobial Peptide‐Modified Liquid Metal Nanomaterials for Enhanced Antibacterial Photothermal Therapy. Advanced Engineering Materials 2024, 26 (12) https://doi.org/10.1002/adem.202400189
  46. Lifang Wang, Yaowen Liang, Pan Luo, Manna Huang, Yiqian Wan. Novel partially reversible NDM-1 inhibitors based on the naturally occurring houttuynin. Bioorganic Chemistry 2024, 147 , 107328. https://doi.org/10.1016/j.bioorg.2024.107328
  47. A. A. Starikova, A. A. Tsibizova, N. V. Zolotareva, D. V. Merezhkina, A. A. Ozerov, M. A. Samotrueva. New derivatives of quinazolinone as an object in the search for substances that exhibit a multi-target effect. Сибирский научный медицинский журнал 2024, 44 (1) , 155-171. https://doi.org/10.18699/SSMJ20240116
  48. Ann-Britt Schäfer, Margareth Sidarta, Ireny Abdelmesseh Nekhala, Gabriela Marinho Righetto, Aysha Arshad, Michaela Wenzel, . Dissecting antibiotic effects on the cell envelope using bacterial cytological profiling: a phenotypic analysis starter kit. Microbiology Spectrum 2024, 12 (3) https://doi.org/10.1128/spectrum.03275-23
  49. Abdulrahman Abdullahi, Keng Yoon Yeong. Targeting disease with benzoxazoles: a comprehensive review of recent developments. Medicinal Chemistry Research 2024, 33 (3) , 406-438. https://doi.org/10.1007/s00044-024-03190-7
  50. Ernessto Mahizhchi, Diveyaa Sivakumar, Megala Jayaraman. Antimicrobial Resistance: Techniques to Fight AMR in Bacteria – A Review. Journal of Pure and Applied Microbiology 2024, 18 (1) , 16-28. https://doi.org/10.22207/JPAM.18.1.53
  51. Margarita Karapetian, Evgenia Alimbarashvili, Boris Vishnepolsky, Andrei Gabrielian, Alex Rosenthal, Darrell E. Hurt, Michael Tartakovsky, Mariam Mchedlishvili, Davit Arsenadze, Malak Pirtskhalava, Giorgi Zaalishvili. Evaluation of the synergistic potential and mechanisms of action for de novo designed cationic antimicrobial peptides. Heliyon 2024, 10 (6) , e27852. https://doi.org/10.1016/j.heliyon.2024.e27852
  52. Olatunde S. Oladeji, Thokozani Xaba. Green syhthesis of aluminium oxide nanoparticles using Chrysophyllum albidum, Terminalia catappa and Mimusops Coriacea leaf extracts for antibacterial and antifungal activities. Nano-Structures & Nano-Objects 2024, 37 , 101094. https://doi.org/10.1016/j.nanoso.2024.101094
  53. Pawan Nandkishor Karwa, Ritesh P Bhole, Mahesh Gawade. Assessment of critical impact of superbugs in human health: A known beyond. IP Indian Journal of Clinical and Experimental Dermatology 2024, 9 (4) , 176-183. https://doi.org/10.18231/j.ijced.2023.035
  54. Rohit Kumar, Anita Sudhaik, Pankaj Raizada, Sourbh Thakur. Photocatalytic inactivation of harmful algae and bacteria in water. 2024, 305-326. https://doi.org/10.1016/B978-0-323-95953-7.00014-X
  55. Ehssan Moglad, Engy Elekhnawy, Walaa A. Negm, Duaa Eliwa, Salwa Sami Younis, Basma Mohamed Elmansory, Sebaey Mahgoub, Eman A. Ahmed, Omnia Momtaz Al-Fakhrany. Antibacterial and anti-Toxoplasma activities of Aspergillus niger endophytic fungus isolated from Ficus retusa : in vitro and in vivo approach. Artificial Cells, Nanomedicine, and Biotechnology 2023, 51 (1) , 297-308. https://doi.org/10.1080/21691401.2023.2215531
  56. Qing Luo, Sheng Wang, Hoi Yeung Li, Liangzhen Zheng, Yuguang Mu, Jingjing Guo. Benchmarking Reverse Docking through AlphaFold2 Human Proteome. 2023https://doi.org/10.1101/2023.12.16.572027
  57. Ahmed M. Kamal El-sagheir, Ireny Abdelmesseh Nekhala, Mohammed K. Abd El-Gaber, Ahmed S. Aboraia, Jonatan Persson, Ann-Britt Schäfer, Michaela Wenzel, Farghaly A. Omar. Rational design, synthesis, molecular modeling, biological activity, and mechanism of action of polypharmacological norfloxacin hydroxamic acid derivatives. RSC Medicinal Chemistry 2023, 14 (12) , 2593-2610. https://doi.org/10.1039/D3MD00309D
  58. Jin Feng, Youle Zheng, Wanqing Ma, Awais Ihsan, Haihong Hao, Guyue Cheng, Xu Wang. Multitarget antibacterial drugs: An effective strategy to combat bacterial resistance. Pharmacology & Therapeutics 2023, 252 , 108550. https://doi.org/10.1016/j.pharmthera.2023.108550
  59. Snežana Kuzmanović Nedeljković, Milica Radan, Nada Ćujić Nikolić, Zorana Mutavski, Nemanja Krgović, Smilja Marković, Tatjana Stević, Jelena Živković, Katarina Šavikin. Microencapsulated Bilberry and Chokeberry Leaf Extracts with Potential Health Benefits. Plants 2023, 12 (23) , 3979. https://doi.org/10.3390/plants12233979
  60. Valeria V. Kleandrova, M. Natália D. S. Cordeiro, Alejandro Speck-Planche. Optimizing drug discovery using multitasking models for quantitative structure–biological effect relationships: an update of the literature. Expert Opinion on Drug Discovery 2023, 18 (11) , 1231-1243. https://doi.org/10.1080/17460441.2023.2251385
  61. Matthew Dias, Trisha Chapagain, Fenfei Leng. A Fluorescence-Based, T5 Exonuclease-Amplified DNA Cleavage Assay for Discovering Bacterial DNA Gyrase Poisons. 2023https://doi.org/10.1101/2023.10.16.562555
  62. Ali A. Rabaan, Mona A. Al Fares, Manar Almaghaslah, Tariq Alpakistany, Nawal A. Al Kaabi, Saleh A. Alshamrani, Ahmad A. Alshehri, Ibrahim Abdullah Almazni, Ahmed Saif, Abdulrahim R. Hakami, Faryal Khamis, Mubarak Alfaresi, Zainab Alsalem, Zainab A. Alsoliabi, Kawthar Amur Salim Al Amri, Amal K. Hassoueh, Ranjan K. Mohapatra, Kovy Arteaga-Livias, Mohammed Alissa. Application of CRISPR-Cas System to Mitigate Superbug Infections. Microorganisms 2023, 11 (10) , 2404. https://doi.org/10.3390/microorganisms11102404
  63. Sarah Naomi Bolz, Michael Schroeder. Promiscuity in drug discovery on the verge of the structural revolution: recent advances and future chances. Expert Opinion on Drug Discovery 2023, 18 (9) , 973-985. https://doi.org/10.1080/17460441.2023.2239700
  64. , Mariia Kozak, Oksana Zelenina, , Dmytro Ostapiv, , Maryna Skrypka, , Volodymyr Samaryk, , Vasyl Vlizlo, . Blood creatinine content and rat kidney structure after intramuscular injection of pegylated antibiotic enrofloxacin. Studia Biologica 2023, 17 (3) , 47-56. https://doi.org/10.30970/sbi.1703.720
  65. Noor ul Ain Zahra, Aimilia-Christina Vagiona, Reaz Uddin, Miguel A. Andrade-Navarro. Selection of Multi-Drug Targets against Drug-Resistant Mycobacterium tuberculosis XDR1219 Using the Hyperbolic Mapping of the Protein Interaction Network. International Journal of Molecular Sciences 2023, 24 (18) , 14050. https://doi.org/10.3390/ijms241814050
  66. Satakshi Hazra, Risha Hazarika, Sanjukta Patra. Multitargeting: An Alternative Approach to Tackle Multidrug Resistance in Tuberculosis. Current Drug Targets 2023, 24 (9) , 751-775. https://doi.org/10.2174/1389450124666230505145335
  67. Minsang Kim, Yeongmi Cheon, Dongmin Shin, Jieun Choi, Josefine Eilsø Nielsen, Myeong Seon Jeong, Ho Yeon Nam, Sung‐Hak Kim, Reidar Lund, Håvard Jenssen, Annelise E. Barron, Seongsoo Lee, Jiwon Seo. Real‐Time Monitoring of Multitarget Antimicrobial Mechanisms of Peptoids Using Label‐Free Imaging with Optical Diffraction Tomography. Advanced Science 2023, 10 (24) https://doi.org/10.1002/advs.202302483
  68. Cassandra L. Wouters, Neda Heydarian, Jennifer Pusavat, Hannah Panlilio, Anh K. Lam, Erika L. Moen, Robert E. Brennan, Charles V. Rice. Breaking membrane barriers to neutralize E. coli and K. pneumoniae virulence with PEGylated branched polyethylenimine. Biochimica et Biophysica Acta (BBA) - Biomembranes 2023, 1865 (6) , 184172. https://doi.org/10.1016/j.bbamem.2023.184172
  69. Anna A. Baranova, Anton P. Tyurin, Vladimir A. Korshun, Vera A. Alferova. Sensing of Antibiotic–Bacteria Interactions. Antibiotics 2023, 12 (8) , 1340. https://doi.org/10.3390/antibiotics12081340
  70. Geraldine J. Sullivan, Lars Barquist, Amy K. Cain. A method to correct for local alterations in DNA copy number that bias functional genomics assays applied to antibiotic-treated bacteria. 2023https://doi.org/10.1101/2023.07.10.548391
  71. Jack Opwoko Dennis, Wachira Timothy, Mwanzia Nguta Joseph. A review of phylogeny, medicinal values, phytochemistry and toxicity of Sarcophyte piriei Hutch (Balanophoraceae). African Journal of Pharmacy and Pharmacology 2023, 17 (5) , 89-99. https://doi.org/10.5897/AJPP2023.5353
  72. Firoj Hassan, Iqbal Azad, Mohd Asif, Deepanjali Shukla, Atif Husain, Abdul Rahman Khan, Mohammad Saquib, Malik Nasibullah. Isatin Conjugates as Antibacterial Agents: A Brief Review. Medicinal Chemistry 2023, 19 (5) , 413-430. https://doi.org/10.2174/1573406418666220930145336
  73. Stephanie Kate Sandiford. What is an ideal antibiotic and what does this mean for future drug discovery and design?. Expert Opinion on Drug Discovery 2023, 18 (5) , 485-490. https://doi.org/10.1080/17460441.2023.2198701
  74. Zhangping Xiao, Janine L. Gray, Edward W. Tate. Weaponizing the proteasome to overcome antimalarial drug resistance. Cell Chemical Biology 2023, 30 (5) , 415-417. https://doi.org/10.1016/j.chembiol.2023.04.012
  75. Lian Xu, Hao Wang, Wenqi Xiao, Wenhui Zhang, Callum Stewart, Hui Huang, Fei Li, Jinsong Han. PAMAM dendrimer-based tongue rapidly identifies multiple antibiotics. Sensors and Actuators B: Chemical 2023, 382 , 133519. https://doi.org/10.1016/j.snb.2023.133519
  76. John B. Bremner. An Update Review of Approaches to Multiple Action-Based Antibacterials. Antibiotics 2023, 12 (5) , 865. https://doi.org/10.3390/antibiotics12050865
  77. Dong Ding, Bin Wang, Xiaoan Zhang, Junxi Zhang, Huanhuan Zhang, Xinxin Liu, Zhan Gao, Zengli Yu. The spread of antibiotic resistance to humans and potential protection strategies. Ecotoxicology and Environmental Safety 2023, 254 , 114734. https://doi.org/10.1016/j.ecoenv.2023.114734
  78. Guiqin Wu, Laleh Khodaparast, Ladan Khodaparast, Matthias De Vleeschouwer, Nikolaos Louros, Rodrigo Gallardo, Pengpeng Yi, Frederic Rousseau, Joost Schymkowitz, . Enhanced therapeutic window for antimicrobial Pept-ins by investigating their structure-activity relationship. PLOS ONE 2023, 18 (3) , e0283674. https://doi.org/10.1371/journal.pone.0283674
  79. Ashelyn E Sidders, Katarzyna M Kedziora, Melina Arts, Jan-Martin Daniel, Stefania de Benedetti, Jenna E Beam, Duyen T Bui, Joshua B Parsons, Tanja Schneider, Sarah E Rowe, Brian P Conlon. Antibiotic-induced accumulation of lipid II synergizes with antimicrobial fatty acids to eradicate bacterial populations. eLife 2023, 12 https://doi.org/10.7554/eLife.80246
  80. Michael G. Darnowski, Taylor D. Lanosky, André R. Paquette, Christopher N. Boddy. Armeniaspirol analogues disrupt the electrical potential (ΔΨ) of the proton motive force. Bioorganic & Medicinal Chemistry Letters 2023, 84 , 129210. https://doi.org/10.1016/j.bmcl.2023.129210
  81. Erik L. Moen, Anh K. Lam, Jennifer Pusavat, Cassandra L. Wouters, Hannah Panlilio, Neda Heydarian, Zongkai Peng, Yunpeng Lan, Charles V. Rice. Dimerization of 600 Da branched polyethylenimine improves β‐lactam antibiotic potentiation against antibiotic‐resistant Staphylococcus epidermidis and Pseudomonas aeruginosa. Chemical Biology & Drug Design 2023, 101 (3) , 489-499. https://doi.org/10.1111/cbdd.14009
  82. Hongyan Shen, Mingru Yang, Jing Wang, Xiaoming Zou, Danqing Tong, Yulian Zhang, Liang Tang, Haoyu Sun, Lei Yang. Dose-dependent joint resistance action of antibacterial mixtures in their hormetic effects on bacterial resistance based on concentration addition model. Science of The Total Environment 2023, 861 , 160574. https://doi.org/10.1016/j.scitotenv.2022.160574
  83. Murugadas Vaiyapuri, Ahamed Basha Kusunur, Madhusudana Rao Badireddy. Molecular Mechanisms of Antimicrobial Resistance. 2023, 1-18. https://doi.org/10.1007/978-981-16-9723-4_28-1
  84. Murugadas Vaiyapuri, Ahamed Basha Kusunur, Madhusudana Rao Badireddy. Molecular Mechanisms of Antimicrobial Resistance. 2023, 601-619. https://doi.org/10.1007/978-981-19-9279-7_28
  85. Sameh S. Ali, Asmaa Ali, Tamer Elsamahy, Kamal M. Okasha, Jianzhong Sun. Toxicity consideration of antibiotics. 2023, 297-328. https://doi.org/10.1016/B978-0-323-95388-7.00008-5
  86. Josef Jampílek, Katarína Kráľová. Mycosynthesis of metal-based nanoparticles and their perspectives in agri-food and veterinary/medical applications. 2023, 423-482. https://doi.org/10.1016/B978-0-323-99922-9.00013-1
  87. Ping Zeng, Qipeng Cheng, Lanhua Yi, Sharon Shui Yee Leung, Sheng Chen, Kin-Fai Chan, Kwok-Yin Wong. C-terminal modification of a de novo designed antimicrobial peptide via capping of macrolactam rings. Bioorganic Chemistry 2023, 130 , 106251. https://doi.org/10.1016/j.bioorg.2022.106251
  88. Telmah Lluka, Jonathan M. Stokes. Antibiotic discovery in the artificial intelligence era. Annals of the New York Academy of Sciences 2023, 1519 (1) , 74-93. https://doi.org/10.1111/nyas.14930
  89. Christopher Heuer, John-Alexander Preuss, Marc Buttkewitz, Thomas Scheper, Ester Segal, Janina Bahnemann. A 3D-printed microfluidic gradient generator with integrated photonic silicon sensors for rapid antimicrobial susceptibility testing. Lab on a Chip 2022, 22 (24) , 4950-4961. https://doi.org/10.1039/D2LC00640E
  90. Maria Bartolomeu, Cátia Vieira, Marina Dias, Tiago Conde, Daniela Couto, Diana Lopes, Bruna Neves, Tânia Melo, Felisa Rey, Eliana Alves, Joana Silva, Helena Abreu, Adelaide Almeida, M Rosário Domingues. Bioprospecting antibiotic properties in photodynamic therapy of lipids from Codium tomemtosum and Chlorella vulgaris. Biochimie 2022, 203 , 32-39. https://doi.org/10.1016/j.biochi.2022.09.012
  91. Nicole A Vita, Shelby M Anderson, Michael D LaFleur, Richard E Lee. Targeting Helicobacter pylori for antibacterial drug discovery with novel therapeutics. Current Opinion in Microbiology 2022, 70 , 102203. https://doi.org/10.1016/j.mib.2022.102203
  92. Saikat Mitra, Sifat Ara Sultana, Shajuthi Rahman Prova, Tanvir Mahtab Uddin, Fahadul Islam, Rajib Das, Firzan Nainu, Sartini Sartini, Kumarappan Chidambaram, Fahad A. Alhumaydhi, Talha Bin Emran, Jesus Simal-Gandara. Investigating forthcoming strategies to tackle deadly superbugs: current status and future vision. Expert Review of Anti-infective Therapy 2022, 20 (10) , 1309-1332. https://doi.org/10.1080/14787210.2022.2122442
  93. Lijuan Zhai, Jian Sun, Jingwen Ji, Lili He, Yuanyu Gao, Jinbo Ji, Yuanbai Liu, Yangxiu Mu, Xueqin Ma, Dong Tang, Haikang Yang, Zafar Iqbal, Zhixiang Yang. Synthesis and β-Lactamase Inhibition Activity of Imidates of Diazabicyclooctane. Russian Journal of Bioorganic Chemistry 2022, 48 (5) , 1059-1067. https://doi.org/10.1134/S1068162022050120
  94. Jian Sun, Lili He, Jingwen Ji, Lijuan Zhai, Jinbo Ji, Xueqin Ma, Dong Tang, Yangxiu Mu, Yuanyu Gao, Lin Wang, Haikang Yang, Zafar Iqbal, Zhixiang Yang. Synergistic Antibacterial Activity of Meropenem and Imipenem in Combination with Diazabicyclooctane Derivatives. Russian Journal of General Chemistry 2022, 92 (10) , 2070-2081. https://doi.org/10.1134/S1070363222100218
  95. Dominika Pindjakova, Eliska Pilarova, Karel Pauk, Hana Michnova, Jan Hosek, Pratibha Magar, Alois Cizek, Ales Imramovsky, Josef Jampilek. Study of Biological Activities and ADMET-Related Properties of Salicylanilide-Based Peptidomimetics. International Journal of Molecular Sciences 2022, 23 (19) , 11648. https://doi.org/10.3390/ijms231911648
  96. Nicholas M. Thomson, A. Keith Turner, Muhammad Yasir, Sarah Bastkowski, Martin Lott, Mark A. Webber, Ian G. Charles. A whole-genome assay identifies four principal gene functions that confer tolerance of meropenem stress upon Escherichia coli. Frontiers in Antibiotics 2022, 1 https://doi.org/10.3389/frabi.2022.957942
  97. Kai Zhang, Kuangjia Li, Ziyi Liu, Qidi Li, Wenpeng Li, Qi Chen, Yangchun Xia, Feiyue Hu, Fengxia Yang. The Sources and Potential Hosts Identification of Antibiotic Resistance Genes in the Yellow River, Revealed by Metagenomic Analysis. International Journal of Environmental Research and Public Health 2022, 19 (16) , 10420. https://doi.org/10.3390/ijerph191610420
  98. Soffi Kei Kei Law, Hock Siew Tan. The role of quorum sensing, biofilm formation, and iron acquisition as key virulence mechanisms in Acinetobacter baumannii and the corresponding anti-virulence strategies. Microbiological Research 2022, 260 , 127032. https://doi.org/10.1016/j.micres.2022.127032
  99. Marcin Jakubiec, Michał Abram, Mirosław Zagaja, Marta Andres-Mach, Aleksandra Szewczyk, Gniewomir Latacz, Bartłomiej Szulczyk, Katarzyna Socała, Dorota Nieoczym, Piotr Wlaź, Cameron S. Metcalf, Karen Wilcox, Rafał M. Kamiński, Krzysztof Kamiński. New Phenylglycinamide Derivatives with Hybrid Structure as Candidates for New Broad-Spectrum Anticonvulsants. Cells 2022, 11 (12) , 1862. https://doi.org/10.3390/cells11121862
  100. Tomas Gonec, Dominika Pindjakova, Lucia Vrablova, Tomas Strharsky, Hana Michnova, Tereza Kauerova, Peter Kollar, Michal Oravec, Izabela Jendrzejewska, Alois Cizek, Josef Jampilek. Antistaphylococcal Activities and ADME-Related Properties of Chlorinated Arylcarbamoylnaphthalenylcarbamates. Pharmaceuticals 2022, 15 (6) , 715. https://doi.org/10.3390/ph15060715
Load all citations

ACS Infectious Diseases

Cite this: ACS Infect. Dis. 2020, 6, 6, 1346–1365
Click to copy citationCitation copied!
https://doi.org/10.1021/acsinfecdis.0c00001
Published March 10, 2020

Copyright © 2020 American Chemical Society. This publication is licensed under CC-BY.

Article Views

13k

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Examples for multiple mechanisms of action of antibiotics. (A–C) Antibiotics with intrinsically multi-effective properties. (A) Disrupting cytoplasmic membrane integrity, e.g., by gramicidin S, affects membrane-bound processes, most prominently respiration and lipid II synthesis. (B) Binding of antibiotics to lipid II or its carrier molecule undecaprenyl(pyro)phosphate (here: bacitracin binding UDP-PP) depletes the carrier pool, affecting both the synthesis of wall teichoic acids (WTA) and lipid II. (C) Inhibition of ATP synthase, e.g., by bedaquiline, leads to the depletion of the cellular ATP pool and thus inhibition of multiple metabolic processes. (D–F) Antibiotics with multiple targets. (D) β-Lactams (here imipenem) typically inhibit more than one penicillin-binding protein (PBP). (E) Polymyxins like polymyxin B or colistin disrupt both the outer and inner membrane of Gram-negative bacteria. (F) Type A lantibiotics like nisin bind to lipid II and use it as a docking molecule to form a transmembrane pore.

    Figure 2

    Figure 2. Prevention of resistance development by combination therapy. Sulfonamide antibiotics are typically given together with trimethoprim to prevent fast target mutation of a single enzyme.

    Figure 3

    Figure 3. Mechanisms of synergy. (A) Targeting the same molecule (here, plectasin in red–yellow and dalbavancin in green–blue), (B) targeting the same pathway (here, plectasin in red–yellow and moenomycin in green–blue), (C) targeting a related process (here, LL-37 in green–blue and teicoplanin in red–yellow), and (D) improving target accessibility (here, colistin in red–yellow and minocycline in green–blue).

    Figure 4

    Figure 4. Mechanisms of resistance-breaking and antibiotic-potentiating compounds. (A) Cell envelope permeabilizers, (B) antibiotic sensitizers, (C) β-lactamase inhibitors, (D) inhibitors of aminoglycoside-modifying enzymes, (E) efflux pump inhibitors, and (F) biofilm inhibitors. red–yellow: antibiotic; magenta–turquoise: potentiator.

  • References


    This article references 284 other publications.

    1. 1
      Sprenger, M. and Fukuda, K. (2016) New Mechanisms, New Worries. Science (Washington, DC, U. S.) 351, 12631264,  DOI: 10.1126/science.aad9450
    2. 2
      WHO. (accessed 2020-03-10) Antimicrobial resistance fact sheet, http://www.who.int/mediacentre/factsheets/fs194/en/.
    3. 3
      Ventola, C. L. (2015) The Antibiotic Resistance Crisis: Part 1: Causes and Threats. Pharm. Ther. 40, 277283
    4. 4
      Wenzel, M. and Bandow, J. E. (2011) Proteomic Signatures in Antibiotic Research. Proteomics 11, 32563268,  DOI: 10.1002/pmic.201100046
    5. 5
      Brötz-Oesterhelt, H. and Brunner, N. (2008) How Many Modes of Action Should an Antibiotic Have?. Curr. Opin. Pharmacol. 8, 564573,  DOI: 10.1016/j.coph.2008.06.008
    6. 6
      Gajdács, M. (2019) The Concept of an Ideal Antibiotic: Implications for Drug Design. Molecules 24, 892,  DOI: 10.3390/molecules24050892
    7. 7
      Silver, L. L. (2007) Multi-Targeting by Monotherapeutic Antibacterials. Nat. Rev. Drug Discovery 6, 4155,  DOI: 10.1038/nrd2202
    8. 8
      Scheffers, D.-J. and Pinho, M. G. (2005) Bacterial Cell Wall Synthesis: New Insights from Localization Studies. Microbiol. Mol. Biol. Rev. 69, 585607,  DOI: 10.1128/MMBR.69.4.585-607.2005
    9. 9
      Drlica, K., Malik, M., Kerns, R. J., and Zhao, X. (2008) Quinolone-Mediated Bacterial Death. Antimicrob. Agents Chemother. 52, 385392,  DOI: 10.1128/AAC.01617-06
    10. 10
      Chopra, I. (2007) Bacterial RNA Polymerase: A Promising Target for the Discovery of New Antimicrobial Agents. Curr. Opin. Investig. Drugs 8, 600607
    11. 11
      Sköld, O. (2000) Sulfonamide Resistance: Mechanisms and Trends. Drug Resist. Updates 3, 155160,  DOI: 10.1054/drup.2000.0146
    12. 12
      Yeaman, M. R. and Yount, N. Y. (2003) Mechanisms of Antimicrobial Peptide Action and Resistance. Pharmacol. Rev. 55, 2755,  DOI: 10.1124/pr.55.1.2
    13. 13
      Brotz, H., Josten, M., Wiedemann, I., Schneider, U., Gotz, F., Bierbaum, G., and Sahl, H. G. (1998) Role of Lipid-Bound Peptidoglycan Precursors in the Formation of Pores by Nisin, Epidermin and Other Lantibiotics. Mol. Microbiol. 30, 317327,  DOI: 10.1046/j.1365-2958.1998.01065.x
    14. 14
      Velkov, Y., Thompson, P., Azad, M., Roberts, K., and Bergen, P. (2019) History, Chemistry and Antibacterial Spectrum. In Polymyxin Antibiotics: From Laboratory Bench to Bedside (Li, J., Nation, R., and Kaye, K., Eds.) 1st ed., Vol. 1145, p 17, Spinger Nature, Switzerland AG,  DOI: 10.1007/978-3-030-16373-0_3 .
    15. 15
      Tang, X.-J., Thibault, P., and Boyd, R. K. (1992) Characterisation of the Tyrocidine and Gramicidin Fractions of the Tyrothricin Complex from Bacillus Brevis Using Liquid Chromatography and Mass Spectrometry. Int. J. Mass Spectrom. Ion Processes 122, 153179,  DOI: 10.1016/0168-1176(92)87015-7
    16. 16
      Loll, P. J., Upton, E. C., Nahoum, V., Economou, N. J., and Cocklin, S. (2014) The High Resolution Structure of Tyrocidine A Reveals an Amphipathic Dimer. Biochim. Biophys. Acta, Biomembr. 1838, 11991207,  DOI: 10.1016/j.bbamem.2014.01.033
    17. 17
      Munyuki, G., Jackson, G. E., Venter, G. A., Kover, K. E., Szilagyi, L., Rautenbach, M., Spathelf, B. M., Bhattacharya, B., and van der Spoel, D. (2013) Beta-Sheet Structures and Dimer Models of the Two Major Tyrocidines, Antimicrobial Peptides from Bacillus Aneurinolyticus. Biochemistry 52, 77987806,  DOI: 10.1021/bi401363m
    18. 18
      Leussa, A. N.-N. and Rautenbach, M. (2014) Detailed SAR and PCA of the Tyrocidines and Analogues towards Leucocin A-Sensitive and Leucocin A-Resistant Listeria Monocytogenes. Chem. Biol. Drug Des. 84, 543557,  DOI: 10.1111/cbdd.12344
    19. 19
      Spathelf, B. M. and Rautenbach, M. (2009) Anti-Listerial Activity and Structure-Activity Relationships of the Six Major Tyrocidines, Cyclic Decapeptides from Bacillus Aneurinolyticus. Bioorg. Med. Chem. 17, 55415548,  DOI: 10.1016/j.bmc.2009.06.029
    20. 20
      Wenzel, M., Rautenbach, M., Vosloo, J. A., Siersma, T., Aisenbrey, C. H. M., Zaitseva, E., Laubscher, W. E., van Rensburg, W., Behrends, J., Bechinger, B., and Hamoen, L. W. (2018) The Multifaceted Antibacterial Mechanisms of the Pioneering Peptide Antibiotics Tyrocidine and Gramicidin S. mBio 9, e00802-18  DOI: 10.1128/mBio.00802-18
    21. 21
      Palm, J., Fuchs, K., Stammer, H., Schumacher-Stimpfl, A., and Milde, J. (2018) Efficacy and Safety of a Triple Active Sore Throat Lozenge in the Treatment of Patients with Acute Pharyngitis: Results of a Multi-Centre, Randomised, Placebo-Controlled, Double-Blind, Parallel-Group Trial (DoriPha). Int. J. Clin. Pract. 72, e13272  DOI: 10.1111/ijcp.13272
    22. 22
      Bosscha, M. I., van Dissel, J. T., Kuijper, E. J., Swart, W., and Jager, M. J. (2004) The Efficacy and Safety of Topical Polymyxin B, Neomycin and Gramicidin for Treatment of Presumed Bacterial Corneal Ulceration. Br. J. Ophthalmol. 88, 2528,  DOI: 10.1136/bjo.88.1.25
    23. 23
      Jia, J., Zhu, F., Ma, X., Cao, Z. W., Li, Y. X., and Chen, Y. Z. (2009) Mechanisms of Drug Combinations: Interaction and Network Perspectives. Nat. Rev. Drug Discovery 8, 111,  DOI: 10.1038/nrd2683
    24. 24
      Reddy, A. S. and Zhang, S. (2013) Polypharmacology: Drug Discovery for the Future. Expert Rev. Clin. Pharmacol. 6, 4147,  DOI: 10.1586/ecp.12.74
    25. 25
      Müller, A., Wenzel, M., Strahl, H., Grein, F., Saaki, T. N. V, Kohl, B., Siersma, T., Bandow, J. E., Sahl, H.-G., Schneider, T., and Hamoen, L. W. (2016) Daptomycin Inhibits Cell Envelope Synthesis by Interfering with Fluid Membrane Microdomains. Proc. Natl. Acad. Sci. U. S. A. 113, E7077E7086,  DOI: 10.1073/pnas.1611173113
    26. 26
      Hachmann, A. B., Sevim, E., Gaballa, A., Popham, D. L., Antelmann, H., and Helmann, J. D. (2011) Reduction in Membrane Phosphatidylglycerol Content Leads to Daptomycin Resistance in Bacillus Subtilis. Antimicrob. Agents Chemother. 55, 43264337,  DOI: 10.1128/AAC.01819-10
    27. 27
      Reynolds, P. E. (1989) Structure, Biochemistry and Mechanism of Action of Glycopeptide Antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 8, 943950,  DOI: 10.1007/BF01967563
    28. 28
      Singh, M., Chang, J., Coffman, L., and Kim, S. J. (2017) Hidden Mode of Action of Glycopeptide Antibiotics: Inhibition of Wall Teichoic Acid Biosynthesis. J. Phys. Chem. B 121, 39253932,  DOI: 10.1021/acs.jpcb.7b00324
    29. 29
      Stone, K. J. and Strominger, J. L. (1971) Mechanism of Action of Bacitracin: Complexation with Metal Ion and C55-Isoprenyl Pyrophosphate. Proc. Natl. Acad. Sci. U. S. A. 68, 32233227,  DOI: 10.1073/pnas.68.12.3223
    30. 30
      Tu, Y. and McCalla, D. R. (1975) Effect of Activated Nitrofurans on DNA. Biochim. Biophys. Acta, Nucleic Acids Protein Synth. 402, 142149,  DOI: 10.1016/0005-2787(75)90032-5
    31. 31
      Wenzel, M., Dekker, M. P., Wang, B., Burggraaf, M. J., Bitter, W., van Weering, J. R. T., and Hamoen, L. W. (2019) New Flat Embedding Method for Transmission Electron Microscopy Reveals an Unknown Mechanism of Tetracycline. bioRxiv 820191,  DOI: 10.1101/820191
    32. 32
      Brötz-Oesterhelt, H., Beyer, D., Kroll, H.-P., Endermann, R., Ladel, C., Schroeder, W., Hinzen, B., Raddatz, S., Paulsen, H., Henninger, K., Bandow, J. E., Sahl, H.-G., and Labischinski, H. (2005) Dysregulation of Bacterial Proteolytic Machinery by a New Class of Antibiotics. Nat. Med. 11, 10821087,  DOI: 10.1038/nm1306
    33. 33
      Sass, P., Josten, M., Famulla, K., Schiffer, G., Sahl, H.-G., Hamoen, L., and Brotz-Oesterhelt, H. (2011) Antibiotic Acyldepsipeptides Activate ClpP Peptidase to Degrade the Cell Division Protein FtsZ. Proc. Natl. Acad. Sci. U. S. A. 108, 1747417479,  DOI: 10.1073/pnas.1110385108
    34. 34
      Deoghare, S. (2013) Bedaquiline: A New Drug Approved for Treatment of Multidrug-Resistant Tuberculosis. Indian J. Pharmacol. 45, 536537,  DOI: 10.4103/0253-7613.117765
    35. 35
      Chopra, I. and Roberts, M. (2001) Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 65, 23260,  DOI: 10.1128/MMBR.65.2.232-260.2001
    36. 36
      Teuber, M. and Bader, J. (1976) Action of Polymyxin B on Bacterial Membranes. Binding Capacities for Polymyxin B of Inner and Outer Membranes Isolated from Salmonella Typhimurium G30. Arch. Microbiol. 109, 5158,  DOI: 10.1007/BF00425112
    37. 37
      Bohg, A. and Ristow, H. (1987) Tyrocidine-Induced Modulation of the DNA Conformation in Bacillus Brevis. Eur. J. Biochem. 170, 253258,  DOI: 10.1111/j.1432-1033.1987.tb13693.x
    38. 38
      Ristow, H., Schazschneider, B., Vater, J., and Kleinkauf, H. (1975) Some Characteristics of the DNA-Tyrocidine Complex and a Possible Mechanism of the Gramicidin Action. Biochim. Biophys. Acta, Nucleic Acids Protein Synth. 414, 18,  DOI: 10.1016/0005-2787(75)90120-3
    39. 39
      Weinkle, A. P., Doktor, V., and Emer, J. (2015) Update on the Management of Rosacea. Clin., Cosmet. Invest. Dermatol. 8, 159177,  DOI: 10.2147/CCID.S58940
    40. 40
      Del Rosso, J. Q. and Schmidt, N. F. (2010) A Review of the Anti-Inflammatory Properties of Clindamycin in the Treatment of Acne Vulgaris. Cutis 85, 1524
    41. 41
      Goihman-Yahr, M., Pari, T., George, S., Jacob, M., Chandi, S. M., Pulimood, S., and Rajagopalan, B. (1996) Malignant Pyoderma Responding to Clofazimine. Int. J. Dermatol. 35, 757,  DOI: 10.1111/j.1365-4362.1996.tb00660.x
    42. 42
      Seukeran, D. C., Stables, G. I., Cunliffe, W. J., and Sheehan-Dare, R. A. (1999) The Treatment of Acne Agminata with Clofazimine. Br. J. Dermatol. 141, 596597,  DOI: 10.1046/j.1365-2133.1999.03084.x
    43. 43
      Gomez-De la Fuente, E., del Rio, R., Rodriguez, M., Guerra, A., Rodriguez-Peralto, J. L., and Iglesias, L. (2000) Granuloma Faciale Mimicking Rhinophyma: Response to Clofazimine. Acta Derm.-Venereol. 80, 144
    44. 44
      Prendiville, J. S., Logan, R. A., and Russell-Jones, R. (1988) A Comparison of Dapsone with 13-Cis Retinoic Acid in the Treatment of Nodular Cystic Acne. Clin. Exp. Dermatol. 13, 6771,  DOI: 10.1111/j.1365-2230.1988.tb00659.x
    45. 45
      Tan, B. B., Lear, J. T., and Smith, A. G. (1997) Acne Fulminans and Erythema Nodosum during Isotretinoin Therapy Responding to Dapsone. Clin. Exp. Dermatol. 22, 2627,  DOI: 10.1046/j.1365-2230.1997.1830600.x
    46. 46
      Lopez-Boado, Y. S. and Rubin, B. K. (2008) Macrolides as Immunomodulatory Medications for the Therapy of Chronic Lung Diseases. Curr. Opin. Pharmacol. 8, 286291,  DOI: 10.1016/j.coph.2008.01.010
    47. 47
      Keicho, N. and Kudoh, S. (2002) Diffuse Panbronchiolitis: Role of Macrolides in Therapy. Am. J. Respir. Med. 1, 119131,  DOI: 10.1007/BF03256601
    48. 48
      Pradhan, S., Madke, B., Kabra, P., and Singh, A. L. (2016) Anti-Inflammatory and Immunomodulatory Effects of Antibiotics and Their Use in Dermatology. Indian J. Dermatol. 61, 469481,  DOI: 10.4103/0019-5154.190105
    49. 49
      Schaeverbeke, T., Lequen, L., de Barbeyrac, B., Labbe, L., Bebear, C. M., Morrier, Y., Bannwarth, B., Bebear, C. M., and Dehais, J. (1998) Propionibacterium Acnes Isolated from Synovial Tissue and Fluid in a Patient with Oligoarthritis Associated with Acne and Pustulosis. Arthritis Rheum. 41, 18891893,  DOI: 10.1002/1529-0131(199810)41:10<1889::AID-ART23>3.0.CO;2-F
    50. 50
      Nishimuta, K. and Ito, Y. (2003) Effects of Metronidazole and Tinidazole Ointments on Models for Inflammatory Dermatitis in Mice. Arch. Dermatol. Res. 294, 544551,  DOI: 10.1007/s00403-002-0381-4
    51. 51
      Mendonca, C. O. and Griffiths, C. E. M. (2006) Clindamycin and Rifampicin Combination Therapy for Hidradenitis Suppurativa. Br. J. Dermatol. 154, 977978,  DOI: 10.1111/j.1365-2133.2006.07155.x
    52. 52
      Mela, M., Mancuso, A., and Burroughs, A. K. (2003) Review Article: Pruritus in Cholestatic and Other Liver Diseases. Aliment. Pharmacol. Ther. 17, 857870,  DOI: 10.1046/j.1365-2036.2003.01458.x
    53. 53
      Sarici, G., Cinar, S., Armutcu, F., Altinyazar, C., Koca, R., and Tekin, N. S. (2010) Oxidative Stress in Acne Vulgaris. J. Eur. Acad. Dermatol. Venereol. 24, 763767,  DOI: 10.1111/j.1468-3083.2009.03505.x
    54. 54
      Webster, G. F., Leyden, J. J., McGinley, K. J., and McArthur, W. P. (1982) Suppression of Polymorphonuclear Leukocyte Chemotactic Factor Production in Propionibacterium Acnes by Subminimal Inhibitory Concentrations of Tetracycline, Ampicillin, Minocycline, and Erythromycin. Antimicrob. Agents Chemother. 21, 770772,  DOI: 10.1128/AAC.21.5.770
    55. 55
      Skidmore, R., Kovach, R., Walker, C., Thomas, J., Bradshaw, M., Leyden, J., Powala, C., and Ashley, R. (2003) Effects of Subantimicrobial-Dose Doxycycline in the Treatment of Moderate Acne. Arch. Dermatol. 139, 459464,  DOI: 10.1001/archderm.139.4.459
    56. 56
      Strahl, H. and Hamoen, L. W. (2010) Membrane Potential Is Important for Bacterial Cell Division. Proc. Natl. Acad. Sci. U. S. A. 107, 1228112286,  DOI: 10.1073/pnas.1005485107
    57. 57
      Strahl, H., Burmann, F., and Hamoen, L. W. (2014) The Actin Homologue MreB Organizes the Bacterial Cell Membrane. Nat. Commun. 5, 3442,  DOI: 10.1038/ncomms4442
    58. 58
      Wenzel, M., Chiriac, A. I., Otto, A., Zweytick, D., May, C., Schumacher, C., Gust, R., Albada, H. B., Penkova, M., Krämer, U., Erdmann, R., Metzler-Nolte, N., Straus, S. K., Bremer, E., Becher, D., Brötz-Oesterhelt, H., Sahl, H.-G., and Bandow, J. E. (2014) Small Cationic Antimicrobial Peptides Delocalize Peripheral Membrane Proteins. Proc. Natl. Acad. Sci. U. S. A. 111, E140918,  DOI: 10.1073/pnas.1319900111
    59. 59
      Pogliano, J., Pogliano, N., and Silverman, J. A. (2012) Daptomycin-Mediated Reorganization of Membrane Architecture Causes Mislocalization of Essential Cell Division Proteins. J. Bacteriol. 194, 44944504,  DOI: 10.1128/JB.00011-12
    60. 60
      Morgera, F., Antcheva, N., Pacor, S., Quaroni, L., Berti, F., Vaccari, L., and Tossi, A. (2008) Structuring and Interactions of Human Beta-Defensins 2 and 3 with Model Membranes. J. Pept. Sci. 14, 518523,  DOI: 10.1002/psc.981
    61. 61
      Sass, V., Schneider, T., Wilmes, M., Körner, C., Tossi, A., Novikova, N., Shamova, O., and Sahl, H. G. (2010) Human β-Defensin 3 Inhibits Cell Wall Biosynthesis in Staphylococci. Infect. Immun. 78, 27932800,  DOI: 10.1128/IAI.00688-09
    62. 62
      Kandaswamy, K., Liew, T. H., Wang, C. Y., Huston-Warren, E., Meyer-Hoffert, U., Hultenby, K., Schröder, J. M., Caparon, M. G., Normark, S., Henriques-Normark, B., Hultgren, S. J., and Kline, K. A. (2013) Focal Targeting by Human β-Defensin 2 Disrupts Localized Virulence Factor Assembly Sites in Enterococcus Faecalis. Proc. Natl. Acad. Sci. U. S. A. 110, 2023020235,  DOI: 10.1073/pnas.1319066110
    63. 63
      Kwakman, P. H. S., Krijgsveld, J., de Boer, L., Nguyen, L. T., Boszhard, L., Vreede, J., Dekker, H. L., Speijer, D., Drijfhout, J. W., te Velde, A. A., Crielaard, W., Vogel, H. J., Vandenbroucke-Grauls, C. M. J. E., and Zaat, S. A. J. (2011) Native Thrombocidin-1 and Unfolded Thrombocidin-1 Exert Antimicrobial Activity via Distinct Structural Elements. J. Biol. Chem. 286, 4350643514,  DOI: 10.1074/jbc.M111.248641
    64. 64
      Omardien, S., Drijfhout, J. W., Vaz, F. M., Wenzel, M., Hamoen, L. W., Zaat, S. A. J., and Brul, S. (2018) Bactericidal Activity of Amphipathic Cationic Antimicrobial Peptides Involves Altering the Membrane Fluidity When Interacting with the Phospholipid Bilayer. Biochim. Biophys. Acta, Biomembr. 1860, 2404,  DOI: 10.1016/j.bbamem.2018.06.004
    65. 65
      Omardien, S., Drijfhout, J. W., van Veen, H., Schachtschabel, S., Riool, M., Hamoen, L. W., Brul, S., and Zaat, S. A. J. (2018) Synthetic Antimicrobial Peptides Delocalize Membrane Bound Proteins Thereby Inducing a Cell Envelope Stress Response. Biochim. Biophys. Acta, Biomembr. 1860, 24162427,  DOI: 10.1016/j.bbamem.2018.06.005
    66. 66
      Omardien, S., Drijfhout, J. W., Zaat, S. A., and Brul, S. (2018) Cationic Amphipathic Antimicrobial Peptides Perturb the Inner Membrane of Germinated Spores Thus Inhibiting Their Outgrowth. Front. Microbiol. 9, 2277,  DOI: 10.3389/fmicb.2018.02277
    67. 67
      Gray, D. A. and Wenzel, M. (2020) More Than a Pore: A Current Perspective on the In Vivo Mode of Action of the Lipopeptide Antibiotic Daptomycin. Antibiotics (Basel, Switz.) 9, 17,  DOI: 10.3390/antibiotics9010017
    68. 68
      Scheinpflug, K., Wenzel, M., Krylova, O., Bandow, E. J., Dathe, M., and Strahl, H. (2017) Antimicrobial Peptide CWFW Kills by Combining Lipid Phase Separation with Autolysis. Sci. Rep. 7, 44332,  DOI: 10.1038/srep44332
    69. 69
      Saeloh, D., Tipmanee, V., Jim, K. K., Dekker, M. P., Bitter, W., Voravuthikunchai, S. P., Wenzel, M., and Hamoen, L. W. (2018) The Novel Antibiotic Rhodomyrtone Traps Membrane Proteins in Vesicles with Increased Fluidity. PLoS Pathog. 14, e1006876  DOI: 10.1371/journal.ppat.1006876
    70. 70
      Zhanel, G. G., Schweizer, F., and Karlowsky, J. A. (2012) Oritavancin: Mechanism of Action. Clin. Infect. Dis. 54, S214S219,  DOI: 10.1093/cid/cir920
    71. 71
      Higgins, D. L., Chang, R., Debabov, D. V., Leung, J., Wu, T., Krause, K. M., Sandvik, E., Hubbard, J. M., Kaniga, K., Schmidt, D. E., Gao, Q., Cass, R. T., Karr, D. E., Benton, B. M., and Humphrey, P. P. (2005) Telavancin, a Multifunctional Lipoglycopeptide, Disrupts Both Cell Wall Synthesis and Cell Membrane Integrity in Methicillin-Resistan Staphylococcus Aureus. Antimicrob. Agents Chemother. 49, 11271134,  DOI: 10.1128/AAC.49.3.1127-1134.2005
    72. 72
      Corti, A. and Cassani, G. (1985) Synthesis and Characterization of D-Alanyl-D-Alanine-Agarose. Appl. Biochem. Biotechnol. 11, 101109,  DOI: 10.1007/BF02798542
    73. 73
      Cheng, M., Ziora, Z. M., Hansford, K. A., Blaskovich, M. A., Butler, M. S., and Cooper, M. A. (2014) Anti-Cooperative Ligand Binding and Dimerisation in the Glycopeptide Antibiotic Dalbavancin. Org. Biomol. Chem. 12, 25682575,  DOI: 10.1039/C3OB42428F
    74. 74
      Wenzel, M., Kohl, B., Münch, D., Raatschen, N., Albada, H. B., Hamoen, L., Metzler-Nolte, N., Sahl, H. G., and Bandow, J. E. (2012) Proteomic Response of Bacillus Subtilis to Lantibiotics Reflects Differences in Interaction with the Cytoplasmic Membrane. Antimicrob. Agents Chemother. 56, 57495757,  DOI: 10.1128/AAC.01380-12
    75. 75
      Bonelli, R. R., Schneider, T., Sahl, H.-G., and Wiedemann, I. (2006) Insights into in Vivo Activities of Lantibiotics from Gallidermin and Epidermin Mode-of-Action Studies. Antimicrob. Agents Chemother. 50, 14491457,  DOI: 10.1128/AAC.50.4.1449-1457.2006
    76. 76
      Brötz, H., Bierbaum, G., Leopold, K., Reynolds, P. E., and Sahl, H. G. (1998) The Lantibiotic Mersacidin Inhibits Peptidoglycan Synthesis by Targeting Lipid II. Antimicrob. Agents Chemother. 42, 154160,  DOI: 10.1128/AAC.42.1.154
    77. 77
      Paris, J.-B., Seyer, D., Jouenne, T., and Thébault, P. (2017) Elaboration of Antibacterial Plastic Surfaces by a Combination of Antiadhesive and Biocidal Coatings of Natural Products. Colloids Surf., B 156, 186193,  DOI: 10.1016/j.colsurfb.2017.05.025
    78. 78
      Ulm, H. and Schneider, T. (2016) Targeting Bactoprenol-Coupled Cell Envelope Precursors. Appl. Microbiol. Biotechnol. 100, 78157825,  DOI: 10.1007/s00253-016-7732-0
    79. 79
      Weidenmaier, C. and Peschel, A. (2008) Teichoic Acids and Related Cell-Wall Glycopolymers in Gram-Positive Physiology and Host Interactions. Nat. Rev. Microbiol. 6, 276287,  DOI: 10.1038/nrmicro1861
    80. 80
      Kepplinger, B., Morton-Laing, S., Seistrup, K. H., Marrs, E. C. L., Hopkins, A. P., Perry, J. D., Strahl, H., Hall, M. J., Errington, J., and Allenby, N. E. E. (2018) Mode of Action and Heterologous Expression of the Natural Product Antibiotic Vancoresmycin. ACS Chem. Biol. 13, 207214,  DOI: 10.1021/acschembio.7b00733
    81. 81
      Wenzel, M., Patra, M., Senges, C. H. R., Ott, I., Stepanek, J. J., Pinto, A., Prochnow, P., Vuong, C., Langklotz, S., Metzler-Nolte, N., and Bandow, J. E. (2013) Analysis of the Mechanism of Action of Potent Antibacterial Hetero-Tri-Organometallic Compounds: A Structurally New Class of Antibiotics. ACS Chem. Biol. 8, 14421450,  DOI: 10.1021/cb4000844
    82. 82
      Andrés, M. T. and Fierro, J. F. (2010) Antimicrobial Mechanism of Action of Transferrins: Selective Inhibition of H+-ATPase. Antimicrob. Agents Chemother. 54, 43354342,  DOI: 10.1128/AAC.01620-09
    83. 83
      Azarkina, N. and Konstantinov, A. A. (2002) Stimulation of Menaquinone-Dependent Electron Transfer in the Respiratory Chain of Bacillus Subtilis by Membrane Energization. J. Bacteriol. 184, 53395347,  DOI: 10.1128/JB.184.19.5339-5347.2002
    84. 84
      Schirawski, J. and Unden, G. (1998) Menaquinone-Dependent Succinate Dehydrogenase of Bacteria Catalyzes Reversed Electron Transport Driven by the Proton Potential. Eur. J. Biochem. 257, 210215,  DOI: 10.1046/j.1432-1327.1998.2570210.x
    85. 85
      Mesa-Arango, A. C., Trevijano-Contador, N., Roman, E., Sanchez-Fresneda, R., Casas, C., Herrero, E., Arguelles, J. C., Pla, J., Cuenca-Estrella, M., and Zaragoza, O. (2014) The Production of Reactive Oxygen Species Is a Universal Action Mechanism of Amphotericin B against Pathogenic Yeasts and Contributes to the Fungicidal Effect of This Drug. Antimicrob. Agents Chemother. 58, 66276638,  DOI: 10.1128/AAC.03570-14
    86. 86
      Nagao, T., Nakayama-Imaohji, H., Elahi, M., Tada, A., Toyonaga, E., Yamasaki, H., Okazaki, K., Miyoshi, H., Tsuchiya, K., and Kuwahara, T. (2018) Lhistidine Augments the Oxidative Damage against Gram-negative Bacteria by Hydrogen Peroxide. Int. J. Mol. Med. 41, 28472854,  DOI: 10.3892/ijmm.2018.3473
    87. 87
      Beavers, W. N. and Skaar, E. P. (2016) Neutrophil-Generated Oxidative Stress and Protein Damage in Staphylococcus Aureus. Pathog. Dis. 74, ftw060,  DOI: 10.1093/femspd/ftw060
    88. 88
      Kirstein, J., Hoffmann, A., Lilie, H., Schmidt, R., Rubsamen-Waigmann, H., Brotz-Oesterhelt, H., Mogk, A., and Turgay, K. (2009) The Antibiotic ADEP Reprogrammes ClpP, Switching It from a Regulated to an Uncontrolled Protease. EMBO Mol. Med. 1, 3749,  DOI: 10.1002/emmm.200900002
    89. 89
      Klappenbach, J. A., Saxman, P. R., Cole, J. R., and Schmidt, T. M. (2001) Rrndb: The Ribosomal RNA Operon Copy Number Database. Nucleic Acids Res. 29, 181184,  DOI: 10.1093/nar/29.1.181
    90. 90
      Spratt, B. G. (1977) Properties of the Penicillin-Binding Proteins of Escherichia Coli K12. Eur. J. Biochem. 72, 341352,  DOI: 10.1111/j.1432-1033.1977.tb11258.x
    91. 91
      Denome, S. A., Elf, P. K., Henderson, T. A., Nelson, D. E., and Young, K. D. (1999) Escherichia Coli Mutants Lacking All Possible Combinations of Eight Penicillin Binding Proteins: Viability, Characteristics, and Implications for Peptidoglycan Synthesis. J. Bacteriol. 181, 39813993,  DOI: 10.1128/JB.181.13.3981-3993.1999
    92. 92
      Kocaoglu, O. and Carlson, E. E. (2015) Profiling of β-Lactam Selectivity for Penicillin-Binding Proteins in Escherichia Coli Strain DC2. Antimicrob. Agents Chemother. 59, 27852790,  DOI: 10.1128/AAC.04552-14
    93. 93
      Du, W., Brown, J. R., Sylvester, D. R., Huang, J., Chalker, A. F., So, C. Y., Holmes, D. J., Payne, D. J., and Wallis, N. G. (2000) Two Active Forms of UDP-N-Acetylglucosamine Enolpyruvyl Transferase in Gram-Positive Bacteria. J. Bacteriol. 182, 41464152,  DOI: 10.1128/JB.182.15.4146-4152.2000
    94. 94
      Noda, M., Kawahara, Y., Ichikawa, A., Matoba, Y., Matsuo, H., Lee, D.-G., Kumagai, T., and Sugiyama, M. (2004) Self-Protection Mechanism in D-Cycloserine-Producing Streptomyces Lavendulae. Gene Cloning, Characterization, and Kinetics of Its Alanine Racemase and D-Alanyl-D-Alanine Ligase, Which Are Target Enzymes of D-Cycloserine. J. Biol. Chem. 279, 4614346152,  DOI: 10.1074/jbc.M404603200
    95. 95
      Rudolf, J. D., Dong, L.-B., and Shen, B. (2017) Platensimycin and Platencin: Inspirations for Chemistry, Biology, Enzymology, and Medicine. Biochem. Pharmacol. 133, 139151,  DOI: 10.1016/j.bcp.2016.11.013
    96. 96
      Jayasuriya, H., Herath, K. B., Zhang, C., Zink, D. L., Basilio, A., Genilloud, O., Diez, M. T., Vicente, F., Gonzalez, I., Salazar, O., Pelaez, F., Cummings, R., Ha, S., Wang, J., and Singh, S. B. (2007) Isolation and Structure of Platencin: A FabH and FabF Dual Inhibitor with Potent Broad-Spectrum Antibiotic Activity. Angew. Chem., Int. Ed. 46, 46844688,  DOI: 10.1002/anie.200701058
    97. 97
      Wang, J., Kodali, S., Lee, S. H., Galgoci, A., Painter, R., Dorso, K., Racine, F., Motyl, M., Hernandez, L., Tinney, E. (2007) Discovery of Platencin, a Dual FabF and FabH Inhibitor with in Vivo Antibiotic Properties. Proc. Natl. Acad. Sci. U. S. A. 104, 76127616,  DOI: 10.1073/pnas.0700746104
    98. 98
      Velkov, T., Roberts, K. D., Nation, R. L., Thompson, P. E., and Li, J. (2013) Pharmacology of Polymyxins: New Insights into an “old” Class of Antibiotics. Future Microbiol. 8, 711724,  DOI: 10.2217/fmb.13.39
    99. 99
      Fu, L., Wan, M., Zhang, S., Gao, L., and Fang, W. (2020) Polymyxin B Loosens Lipopolysaccharide Bilayer but Stiffens Phospholipid Bilayer. Biophys. J. 118, 138150,  DOI: 10.1016/j.bpj.2019.11.008
    100. 100
      Deris, Z. Z., Akter, J., Sivanesan, S., Roberts, K. D., Thompson, P. E., Nation, R. L., Li, J., and Velkov, T. (2014) A Secondary Mode of Action of Polymyxins against Gram-Negative Bacteria Involves the Inhibition of NADH-Quinone Oxidoreductase Activity. J. Antibiot. 67, 147151,  DOI: 10.1038/ja.2013.111
    101. 101
      Stuart, M. C., Kouimtzi, M., and Hill, S. (2009) WHO Model Formulary 2008, WHO, Geneva.
    102. 102
      Arbiser, J. L. and Moschella, S. L. (1995) Clofazimine: A Review of Its Medical Uses and Mechanisms of Action. J. Am. Acad. Dermatol. 32, 241247,  DOI: 10.1016/0190-9622(95)90134-5
    103. 103
      Lesnik, U., Lukezic, T., Podgorsek, A., Horvat, J., Polak, T., Sala, M., Jenko, B., Harmrolfs, K., Ocampo-Sosa, A., Martinez-Martinez, L., Herron, P. R., Fujs, S., Kosec, G., Hunter, I. S., Muller, R., and Petkovic, H. (2015) Construction of a New Class of Tetracycline Lead Structures with Potent Antibacterial Activity through Biosynthetic Engineering. Angew. Chem., Int. Ed. 54, 39373940,  DOI: 10.1002/anie.201411028
    104. 104
      Herrmann, J., Lukezic, T., Kling, A., Baumann, S., Huttel, S., Petkovic, H., and Muller, R. (2016) Strategies for the Discovery and Development of New Antibiotics from Natural Products: Three Case Studies. Curr. Top. Microbiol. Immunol. 398, 339363,  DOI: 10.1007/82_2016_498
    105. 105
      Stepanek, J. J., Lukezic, T., Teichert, I., Petkovic, H., and Bandow, J. E. (2016) Dual Mechanism of Action of the Atypical Tetracycline Chelocardin. Biochim. Biophys. Acta, Proteins Proteomics 1864, 645654,  DOI: 10.1016/j.bbapap.2016.03.004
    106. 106
      Herskovits, A. A. and Bibi, E. (2000) Association of Escherichia Coli Ribosomes with the Inner Membrane Requires the Signal Recognition Particle Receptor but Is Independent of the Signal Recognition Particle. Proc. Natl. Acad. Sci. U. S. A. 97, 46214626,  DOI: 10.1073/pnas.080077197
    107. 107
      Ruhr, E. and Sahl, H. G. (1985) Mode of Action of the Peptide Antibiotic Nisin and Influence on the Membrane Potential of Whole Cells and on Cytoplasmic and Artificial Membrane Vesicles. Antimicrob. Agents Chemother. 27, 841845,  DOI: 10.1128/AAC.27.5.841
    108. 108
      Breukink, E., Wiedemann, I., van Kraaij, C., Kuipers, O. P., Sahl, H. G., and de Kruijff, B. (1999) Use of the Cell Wall Precursor Lipid II by a Pore-Forming Peptide Antibiotic. Science 286, 23612364,  DOI: 10.1126/science.286.5448.2361
    109. 109
      Hasper, H. E., de Kruijff, B., and Breukink, E. (2004) Assembly and Stability of Nisin-Lipid II Pores. Biochemistry 43, 1156711575,  DOI: 10.1021/bi049476b
    110. 110
      ’t Hart, P., Oppedijk, S. F., Breukink, E., and Martin, N. I. (2016) New Insights into Nisin’s Antibacterial Mechanism Revealed by Binding Studies with Synthetic Lipid II Analogues. Biochemistry 55, 232237,  DOI: 10.1021/acs.biochem.5b01173
    111. 111
      Bonev, B. B., Chan, W. C., Bycroft, B. W., Roberts, G. C., and Watts, A. (2000) Interaction of the Lantibiotic Nisin with Mixed Lipid Bilayers: A 31P and 2H NMR Study. Biochemistry 39, 1142511433,  DOI: 10.1021/bi0001170
    112. 112
      Christ, K., Al-Kaddah, S., Wiedemann, I., Rattay, B., Sahl, H.-G., and Bendas, G. (2008) Membrane Lipids Determine the Antibiotic Activity of the Lantibiotic Gallidermin. J. Membr. Biol. 226, 916,  DOI: 10.1007/s00232-008-9134-4
    113. 113
      Muraih, J. K. and Palmer, M. (2012) Estimation of the Subunit Stoichiometry of the Membrane-Associated Daptomycin Oligomer by FRET. Biochim. Biophys. Acta, Biomembr. 1818, 16421647,  DOI: 10.1016/j.bbamem.2012.02.019
    114. 114
      Muraih, J. K., Pearson, A., Silverman, J., and Palmer, M. (2011) Oligomerization of Daptomycin on Membranes. Biochim. Biophys. Acta, Biomembr. 1808, 11541160,  DOI: 10.1016/j.bbamem.2011.01.001
    115. 115
      Muraih, J. K., Harris, J., Taylor, S. D., and Palmer, M. (2012) Characterization of Daptomycin Oligomerization with Perylene Excimer Fluorescence: Stoichiometric Binding of Phosphatidylglycerol Triggers Oligomer Formation. Biochim. Biophys. Acta, Biomembr. 1818, 673678,  DOI: 10.1016/j.bbamem.2011.10.027
    116. 116
      Kreutzberger, M. A., Pokorny, A., and Almeida, P. F. (2017) Daptomycin-Phosphatidylglycerol Domains in Lipid Membranes. Langmuir 33, 1366913679,  DOI: 10.1021/acs.langmuir.7b01841
    117. 117
      Domalaon, R., Idowu, T., Zhanel, G. G., and Schweizer, F. (2018) Antibiotic Hybrids: The Next Generation of Agents and Adjuvants against Gram-Negative Pathogens?. Clin. Microbiol. Rev. 31, e00077-17  DOI: 10.1128/CMR.00077-17
    118. 118
      Georgopapadakou, N. H., Bertasso, A., Chan, K. K., Chapman, J. S., Cleeland, R., Cummings, L. M., Dix, B. A., and Keith, D. D. (1989) Mode of Action of the Dual-Action Cephalosporin Ro 23–9424. Antimicrob. Agents Chemother. 33, 10671071,  DOI: 10.1128/AAC.33.7.1067
    119. 119
      Stone, G. W., Zhang, Q., Castillo, R., Doppalapudi, V. R., Bueno, A. R., Lee, J. Y., Li, Q., Sergeeva, M., Khambatta, G., and Georgopapadakou, N. H. (2004) Mechanism of Action of NB2001 and NB2030, Novel Antibacterial Agents Activated by Beta-Lactamases. Antimicrob. Agents Chemother. 48, 477483,  DOI: 10.1128/AAC.48.2.477-483.2004
    120. 120
      Ma, Z. and Lynch, A. S. (2016) Development of a Dual-Acting Antibacterial Agent (TNP-2092) for the Treatment of Persistent Bacterial Infections. J. Med. Chem. 59, 66456657,  DOI: 10.1021/acs.jmedchem.6b00485
    121. 121
      Gupta, V. and Datta, P. (2019) Next-Generation Strategy for Treating Drug Resistant Bacteria: Antibiotic Hybrids. Indian J. Med. Res. 149, 97106,  DOI: 10.4103/ijmr.IJMR_755_18
    122. 122
      Endres, B. T., Basseres, E., Alam, M. J., and Garey, K. W. (2017) Cadazolid for the Treatment of Clostridium Difficile. Expert Opin. Invest. Drugs 26, 509514,  DOI: 10.1080/13543784.2017.1304538
    123. 123
      Stryjewski, M. E., Potgieter, P. D., Li, Y.-P., Barriere, S. L., Churukian, A., Kingsley, J., and Corey, G. R. (2012) TD-1792 versus Vancomycin for Treatment of Complicated Skin and Skin Structure Infections. Antimicrob. Agents Chemother. 56, 54765483,  DOI: 10.1128/AAC.00712-12
    124. 124
      Webb, E. (accessed 2020-03-10) FDA grants QIDP and Fast Track Designations to MCB3837, Morphochem’s novel intravenous antibacterial to treat C. difficile infections, https://www.tvm-lifescience.com/fda-grants-qidp-fast-track-designations-mcb3837-morphochems-novel-intravenous-antibacterial-treat-c-difficile-infections/.
    125. 125
      Parkes, A. L. and Yule, I. A. (2016) Hybrid Antibiotics - Clinical Progress and Novel Designs. Expert Opin. Drug Discovery 11, 665680,  DOI: 10.1080/17460441.2016.1187597
    126. 126
      Locher, H. H., Seiler, P., Chen, X., Schroeder, S., Pfaff, P., Enderlin, M., Klenk, A., Fournier, E., Hubschwerlen, C., Ritz, D., Kelly, C. P., and Keck, W. (2014) In Vitro and in Vivo Antibacterial Evaluation of Cadazolid, a New Antibiotic for Treatment of Clostridium Difficile Infections. Antimicrob. Agents Chemother. 58, 892900,  DOI: 10.1128/AAC.01830-13
    127. 127
      Locher, H. H., Caspers, P., Bruyère, T., Schroeder, S., Pfaff, P., Knezevic, A., Keck, W., and Ritz, D. (2014) Investigations of the Mode of Action and Resistance Development of Cadazolid, a New Antibiotic for Treatment of Clostridium Difficile Infections. Antimicrob. Agents Chemother. 58, 901908,  DOI: 10.1128/AAC.01831-13
    128. 128
      Leuthner, K. D., Vidaillac, C., Cheung, C. M., and Rybak, M. J. (2010) In Vitro Activity of the New Multivalent Glycopeptide-Cephalosporin Antibiotic TD-1792 against Vancomycin-Nonsusceptible Staphylococcus Isolates. Antimicrob. Agents Chemother. 54, 37993803,  DOI: 10.1128/AAC.00452-10
    129. 129
      Blais, J., Lewis, S. R., Krause, K. M., and Benton, B. M. (2012) Antistaphylococcal Activity of TD-1792, a Multivalent Glycopeptide-Cephalosporin Antibiotic. Antimicrob. Agents Chemother. 56, 15841587,  DOI: 10.1128/AAC.05532-11
    130. 130
      Pokrovskaya, V. and Baasov, T. (2010) Dual-Acting Hybrid Antibiotics: A Promising Strategy to Combat Bacterial Resistance. Expert Opin. Drug Discovery 5, 883902,  DOI: 10.1517/17460441.2010.508069
    131. 131
      Deinove. (accessed 2020-03-10) DNV3837/DNV3681: First-in-class antibiotic candidate, https://www.deinove.com/en/antibiotics/portfolio/dnv3837/dnv3681.
    132. 132
      Deinove. (accessed 2020-03-10) An Exploratory, Open-Label, Oligo-Center Study to Evaluate the Safety, Efficacy, and Pharmacokinetics of Intravenous DNV3837 in Subjects With Clostridium Difficile Infection, https://clinicaltrials.gov/ct2/show/NCT03988855?term=DNV3681&draw=2&rank=1.
    133. 133
      Wang, B., Zhao, Q., Yin, W., Yuan, Y., Wang, X., Wang, Y.-H., Wang, H., Ye, W., Chen, S., Guo, H.-L., and Xie, Y. (2018) In-Vitro Characterisation of a Novel Antimicrobial Agent, TNP-2092, against Helicobacter Pylori Clinical Isolates. Swiss Med. Wkly. 148, w14630  DOI: 10.4414/smw.2018.14630
    134. 134
      Burrows, L. L. (2018) The Therapeutic Pipeline for Pseudomonas Aeruginosa Infections. ACS Infect. Dis. 4, 10411047,  DOI: 10.1021/acsinfecdis.8b00112
    135. 135
      Luther, A., Urfer, M., Zahn, M., Muller, M., Wang, S.-Y., Mondal, M., Vitale, A., Hartmann, J.-B., Sharpe, T., Monte, F. Lo (2019) Chimeric Peptidomimetic Antibiotics against Gram-Negative Bacteria. Nature 576, 452458,  DOI: 10.1038/s41586-019-1665-6
    136. 136
      Zhu, Y. I. and Stiller, M. J. (2001) Dapsone and Sulfones in Dermatology: Overview and Update. J. Am. Acad. Dermatol. 45, 420434,  DOI: 10.1067/mjd.2001.114733
    137. 137
      Trivedi, H. D., Lizaola, B., Tapper, E. B., and Bonder, A. (2017) Management of Pruritus in Primary Biliary Cholangitis: A Narrative Review. Am. J. Med. 130, 744.e1744.e7,  DOI: 10.1016/j.amjmed.2017.01.037
    138. 138
      Nakano, T., Hiramatsu, K., Kishi, K., Hirata, N., Kadota, J.-I., and Nasu, M. (2003) Clindamycin Modulates Inflammatory-Cytokine Induction in Lipopolysaccharide-Stimulated Mouse Peritoneal Macrophages. Antimicrob. Agents Chemother. 47, 363367,  DOI: 10.1128/AAC.47.1.363-367.2003
    139. 139
      van Rensburg, C. E., Gatner, E. M., Imkamp, F. M., and Anderson, R. (1982) Effects of Clofazimine Alone or Combined with Dapsone on Neutrophil and Lymphocyte Functions in Normal Individuals and Patients with Lepromatous Leprosy. Antimicrob. Agents Chemother. 21, 693697,  DOI: 10.1128/AAC.21.5.693
    140. 140
      Gatner, E. M., Anderson, R., van Remsburg, C. E., and Imkamp, F. M. (1982) The in Vitro and in Vivo Effects of Clofazimine on the Motility of Neutrophils and Transformation of Lymphocytes from Normal Individuals. Lepr. Rev. 53, 8590,  DOI: 10.5935/0305-7518.19820010
    141. 141
      Zimmermann, P., Ziesenitz, V. C., Curtis, N., and Ritz, N. (2018) The Immunomodulatory Effects of Macrolides—A Systematic Review of the Underlying Mechanisms. Front. Immunol. 9, 302,  DOI: 10.3389/fimmu.2018.00302
    142. 142
      Pasquale, T. R. and Tan, J. S. (2005) Nonantimicrobial Effects of Antibacterial Agents. Clin. Infect. Dis. 40, 127135,  DOI: 10.1086/426545
    143. 143
      Tauber, S. C. and Nau, R. (2008) Immunomodulatory Properties of Antibiotics. Curr. Mol. Pharmacol. 1, 6879,  DOI: 10.2174/1874467210801010068
    144. 144
      Ye, Y., Xia, Z., Zhang, D., Sheng, Z., Zhang, P., Zhu, H., Xu, N., and Liang, S. (2019) Multifunctional Pharmaceutical Effects of the Antibiotic Daptomycin. BioMed Res. Int. 2019, 8609218,  DOI: 10.1155/2019/8609218
    145. 145
      Jorgensen, S. C. J., Zasowski, E. J., Trinh, T. D., Lagnf, A. M., Bhatia, S., Sabagha, N., Abdul-Mutakabbir, J. C., Alosaimy, S., Mynatt, R. P., Davis, S. L., and Rybak, M. J. (2019) Daptomycin plus Beta-Lactam Combination Therapy for Methicillin-Resistant Staphylococcus Aureus Bloodstream Infections: A Retrospective, Comparative Cohort Study. Clin. Infect. Dis. ciz746  DOI: 10.1093/cid/ciz746
    146. 146
      Meletiadis, J., Petraitis, V., Petraitiene, R., Lin, P., Stergiopoulou, T., Kelaher, A. M., Sein, T., Schaufele, R. L., Bacher, J., and Walsh, T. J. (2006) Triazole-Polyene Antagonism in Experimental Invasive Pulmonary Aspergillosis: In Vitro and in Vivo Correlation. J. Infect. Dis. 194, 10081018,  DOI: 10.1086/506617
    147. 147
      Gonzalez-Bello, C. (2017) Antibiotic Adjuvants - A Strategy to Unlock Bacterial Resistance to Antibiotics. Bioorg. Med. Chem. Lett. 27, 42214228,  DOI: 10.1016/j.bmcl.2017.08.027
    148. 148
      Kwapong, A. A., Stapleton, P., and Gibbons, S. (2019) Inhibiting Plasmid Mobility: The Effect of Isothiocyanates on Bacterial Conjugation. Int. J. Antimicrob. Agents 53, 629636,  DOI: 10.1016/j.ijantimicag.2019.01.011
    149. 149
      Zhao, W. H., Hu, Z. Q., Okubo, S., Hara, Y., and Shimamura, T. (2001) Mechanism of Synergy between Epigallocatechin Gallate and Beta-Lactams against Methicillin-Resistant Staphylococcus Aureus. Antimicrob. Agents Chemother. 45, 17371742,  DOI: 10.1128/AAC.45.6.1737-1742.2001
    150. 150
      Rand, K. H. and Houck, H. (2004) Daptomycin Synergy with Rifampicin and Ampicillin against Vancomycin-Resistant Enterococci. J. Antimicrob. Chemother. 53, 530532,  DOI: 10.1093/jac/dkh104
    151. 151
      Paul, T. R., Venter, A., Blaszczak, L. C., Parr, T. R. J., Labischinski, H., and Beveridge, T. J. (1995) Localization of Penicillin-Binding Proteins to the Splitting System of Staphylococcus Aureus Septa by Using a Mercury-Penicillin V Derivative. J. Bacteriol. 177, 36313640,  DOI: 10.1128/JB.177.13.3631-3640.1995
    152. 152
      Biebricher, C. K. and Druminski, M. (1980) Inhibition of RNA Polymerase Activity by the Escherichia Coli Protein Biosynthesis Elongation Factor Ts. Proc. Natl. Acad. Sci. U. S. A. 77, 866869,  DOI: 10.1073/pnas.77.2.866
    153. 153
      Nasher, M. A. and Hay, R. J. (1998) Synergy of Antibiotics against Streptomyces Somaliensis Isolates in Vitro. J. Antimicrob. Chemother. 41, 281284,  DOI: 10.1093/jac/41.2.281
    154. 154
      Lowe, P. A. and Malcolm, A. D. (1976) Rifampicin Binding as a Probe for Subunit Interactions in Escherchia Coli RNA Polymerase. Biochim. Biophys. Acta, Nucleic Acids Protein Synth. 454, 129137,  DOI: 10.1016/0005-2787(76)90360-9
    155. 155
      Lee-Huang, S., Lee, H., and Ochoa, S. (1974) Inhibition of Polypeptide Chain Initiation in Escherichia Coli by Elongation Factor G. Proc. Natl. Acad. Sci. U. S. A. 71, 29282931,  DOI: 10.1073/pnas.71.8.2928
    156. 156
      Dinos, G. P., Connell, S. R., Nierhaus, K. H., and Kalpaxis, D. L. (2003) Erythromycin, Roxithromycin, and Clarithromycin: Use of Slow-Binding Kinetics to Compare Their in Vitro Interaction with a Bacterial Ribosomal Complex Active in Peptide Bond Formation. Mol. Pharmacol. 63, 617623,  DOI: 10.1124/mol.63.3.617
    157. 157
      Allen, N. E. and Epp, J. K. (1978) Mechanism of Penicillin-Erythromycin Synergy on Antibiotic-Resistant Staphylococcus Aureus. Antimicrob. Agents Chemother. 13, 849853,  DOI: 10.1128/AAC.13.5.849
    158. 158
      Guignard, B., Entenza, J. M., and Moreillon, P. (2005) Beta-Lactams against Methicillin-Resistant Staphylococcus Aureus. Curr. Opin. Pharmacol. 5, 479489,  DOI: 10.1016/j.coph.2005.06.002
    159. 159
      Brandt, C. M., Rouse, M. S., Laue, N. W., Stratton, C. W., Wilson, W. R., and Steckelberg, J. M. (1996) Effective Treatment of Multidrug-Resistant Enterococcal Experimental Endocarditis with Combinations of Cell Wall-Active Agents. J. Infect. Dis. 173, 909913,  DOI: 10.1093/infdis/173.4.909
    160. 160
      Drew, R. H. and Gallis, H. A. (1992) Azithromycin--Spectrum of Activity, Pharmacokinetics, and Clinical Applications. Pharmacotherapy 12, 161173,  DOI: 10.1002/j.1875-9114.1992.tb04504.x
    161. 161
      Ono, S., Muratani, T., and Matsumoto, T. (2005) Mechanisms of Resistance to Imipenem and Ampicillin in Enterococcus Faecalis. Antimicrob. Agents Chemother. 49, 29542958,  DOI: 10.1128/AAC.49.7.2954-2958.2005
    162. 162
      Brumfitt, W. and Hamilton-Miller, J. M. (1993) Reassessment of the Rationale for the Combinations of Sulphonamides with Diaminopyrimidines. J. Chemother. 5, 465469,  DOI: 10.1080/1120009X.1993.11741097
    163. 163
      Voeller, D., Kovacs, J., Andrawis, V., Chu, E., Masur, H., and Allegra, C. (1994) Interaction of Pneumocystis Carinii Dihydropteroate Synthase with Sulfonamides and Diaminodiphenyl Sulfone (Dapsone). J. Infect. Dis. 169, 456459,  DOI: 10.1093/infdis/169.2.456
    164. 164
      Greenwood, D. and O’Grady, F. (1976) Activity and Interaction of Trimethoprim and Sulphamethoxazole against Escherichia Coli. J. Clin. Pathol. 29, 162166,  DOI: 10.1136/jcp.29.2.162
    165. 165
      Matsuura, M., Nakazawa, H., Hashimoto, T., and Mitsuhashi, S. (1980) Combined Antibacterial Activity of Amoxicillin with Clavulanic Acid against Ampicillin-Resistant Strains. Antimicrob. Agents Chemother. 17, 908911,  DOI: 10.1128/AAC.17.6.908
    166. 166
      Brogden, R. N., Carmine, A., Heel, R. C., Morley, P. A., Speight, T. M., and Avery, G. S. (1981) Amoxycillin/Clavulanic Acid: A Review of Its Antibacterial Activity, Pharmacokinetics and Therapeutic Use. Drugs 22, 337362,  DOI: 10.2165/00003495-198122050-00001
    167. 167
      Breidenstein, E. B. M., Courvalin, P., and Meziane-Cherif, D. (2015) Antimicrobial Activity of Plectasin NZ2114 in Combination with Cell Wall Targeting Antibiotics Against VanA-Type Enterococcus Faecalis. Microb. Drug Resist. 21, 373379,  DOI: 10.1089/mdr.2014.0221
    168. 168
      Schneider, T. and Sahl, H. G. (2010) An Oldie but a Goodie - Cell Wall Biosynthesis as Antibiotic Target Pathway. Int. J. Med. Microbiol. 300, 161169,  DOI: 10.1016/j.ijmm.2009.10.005
    169. 169
      Steinmann, J., Buer, J., Pietschmann, T., and Steinmann, E. (2013) Anti-Infective Properties of Epigallocatechin-3-Gallate (EGCG), a Component of Green Tea. Br. J. Pharmacol. 168, 10591073,  DOI: 10.1111/bph.12009
    170. 170
      Zhao, W.-H., Hu, Z.-Q., Hara, Y., and Shimamura, T. (2002) Inhibition of Penicillinase by Epigallocatechin Gallate Resulting in Restoration of Antibacterial Activity of Penicillin against Penicillinase-Producing Staphylococcus Aureus. Antimicrob. Agents Chemother. 46, 22662268,  DOI: 10.1128/AAC.46.7.2266-2268.2002
    171. 171
      Berti, A. D., Theisen, E., Sauer, J.-D., Nonejuie, P., Olson, J., Pogliano, J., Sakoulas, G., Nizet, V., Proctor, R. A., and Rose, W. E. (2016) Penicillin Binding Protein 1 Is Important in the Compensatory Response of Staphylococcus Aureus to Daptomycin-Induced Membrane Damage and Is a Potential Target for Beta-Lactam-Daptomycin Synergy. Antimicrob. Agents Chemother. 60, 451458,  DOI: 10.1128/AAC.02071-15
    172. 172
      Smith, J. R., Barber, K. E., Raut, A., Aboutaleb, M., Sakoulas, G., and Rybak, M. J. (2015) Beta-Lactam Combinations with Daptomycin Provide Synergy against Vancomycin-Resistant Enterococcus Faecalis and Enterococcus Faecium. J. Antimicrob. Chemother. 70, 17381743,  DOI: 10.1093/jac/dkv007
    173. 173
      Koppen, B. C., Mulder, P. P. G., de Boer, L., Riool, M., Drijfhout, J. W., and Zaat, S. A. J. (2019) Synergistic Microbicidal Effect of Cationic Antimicrobial Peptides and Teicoplanin against Planktonic and Biofilm-Encased Staphylococcus Aureus. Int. J. Antimicrob. Agents 53, 143151,  DOI: 10.1016/j.ijantimicag.2018.10.002
    174. 174
      Fernandez-Cuenca, F., Martinez-Martinez, L., Pascual, A., and Perea, E. J. (2003) In Vitro Activity of Azithromycin in Combination with Amikacin, Ceftazidime, Ciprofloxacin or Imipenem against Clinical Isolates of Acinobacter Baumannii. Chemotherapy 49, 2426,  DOI: 10.1159/000069774
    175. 175
      Sertcelik, A., Baran, I., Akinci, E., Mumcuoglu, I., and Bodur, H. (2019) Synergistic Activities of Colistin Combinations with Meropenem, Sulbactam, Minocycline, Disodium Fosfomycin, or Vancomycin Against Different Clones of Carbapenem-Resistant Acinetobacter Baumannii Strains. Microb. Drug Resist. DOI: 10.1089/mdr.2019.0088 .
    176. 176
      Langeveld, W. T., Veldhuizen, E. J. A., and Burt, S. A. (2014) Synergy between Essential Oil Components and Antibiotics: A Review. Crit. Rev. Microbiol. 40, 7694,  DOI: 10.3109/1040841X.2013.763219
    177. 177
      Owen, L. and Laird, K. (2018) Synchronous Application of Antibiotics and Essential Oils: Dual Mechanisms of Action as a Potential Solution to Antibiotic Resistance. Crit. Rev. Microbiol. 44, 414435,  DOI: 10.1080/1040841X.2018.1423616
    178. 178
      Mathur, H., Field, D., Rea, M. C., Cotter, P. D., Hill, C., and Ross, R. P. (2017) Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Front. Microbiol. 8, 1205,  DOI: 10.3389/fmicb.2017.01205
    179. 179
      Wolska, K. I., Grzes, K., and Kurek, A. (2012) Synergy between Novel Antimicrobials and Conventional Antibiotics or Bacteriocins. Pol. J. Microbiol. 61, 95104,  DOI: 10.33073/pjm-2012-012
    180. 180
      Wittekind, M. and Schuch, R. (2016) Cell Wall Hydrolases and Antibiotics: Exploiting Synergy to Create Efficacious New Antimicrobial Treatments. Curr. Opin. Microbiol. 33, 1824,  DOI: 10.1016/j.mib.2016.05.006
    181. 181
      Zusman, O., Avni, T., Leibovici, L., Adler, A., Friberg, L., Stergiopoulou, T., Carmeli, Y., and Paul, M. (2013) Systematic Review and Meta-Analysis of in Vitro Synergy of Polymyxins and Carbapenems. Antimicrob. Agents Chemother. 57, 51045111,  DOI: 10.1128/AAC.01230-13
    182. 182
      Lenhard, J. R., Nation, R. L., and Tsuji, B. T. (2016) Synergistic Combinations of Polymyxins. Int. J. Antimicrob. Agents 48, 607613,  DOI: 10.1016/j.ijantimicag.2016.09.014
    183. 183
      Alakomi, H.-L., Saarela, M., and Helander, I. M. (2003) Effect of EDTA on Salmonella Enterica Serovar Typhimurium Involves a Component Not Assignable to Lipopolysaccharide Release. Microbiology 149, 20152021,  DOI: 10.1099/mic.0.26312-0
    184. 184
      Vaara, M. (1992) Agents That Increase the Permeability of the Outer Membrane. Microbiol. Rev. 56, 395411,  DOI: 10.1128/MMBR.56.3.395-411.1992
    185. 185
      Bellio, P., Luzi, C., Mancini, A., Cracchiolo, S., Passacantando, M., Di Pietro, L., Perilli, M., Amicosante, G., Santucci, S., and Celenza, G. (2018) Cerium Oxide Nanoparticles as Potential Antibiotic Adjuvant. Effects of CeO2 Nanoparticles on Bacterial Outer Membrane Permeability. Biochim. Biophys. Acta, Biomembr. 1860, 24282435,  DOI: 10.1016/j.bbamem.2018.07.002
    186. 186
      Saikia, K. and Chaudhary, N. (2018) Antimicrobial Peptides from C-Terminal Amphipathic Region of E. Coli FtsA. Biochim. Biophys. Acta, Biomembr. 1860, 25062514,  DOI: 10.1016/j.bbamem.2018.09.011
    187. 187
      Wiese, A., Gutsmann, T., and Seydel, U. (2003) Towards Antibacterial Strategies: Studies on the Mechanisms of Interaction between Antibacterial Peptides and Model Membranes. J. Endotoxin Res. 9, 6784,  DOI: 10.1179/096805103125001441
    188. 188
      Vaara, M. and Porro, M. (1996) Group of Peptides That Act Synergistically with Hydrophobic Antibiotics against Gram-Negative Enteric Bacteria. Antimicrob. Agents Chemother. 40, 18011805,  DOI: 10.1128/AAC.40.8.1801
    189. 189
      Ando, M., Kamei, R., Komagoe, K., Inoue, T., Yamada, K., and Katsu, T. (2012) In Situ Potentiometric Method to Evaluate Bacterial Outer Membrane-Permeabilizing Ability of Drugs: Example Using Antiprotozoal Diamidines. J. Microbiol. Methods 91, 497500,  DOI: 10.1016/j.mimet.2012.09.033
    190. 190
      Stokes, J. M., MacNair, C. R., Ilyas, B., French, S., Cote, J.-P., Bouwman, C., Farha, M. A., Sieron, A. O., Whitfield, C., Coombes, B. K., and Brown, E. D. (2017) Pentamidine Sensitizes Gram-Negative Pathogens to Antibiotics and Overcomes Acquired Colistin Resistance. Nat. Microbiol. 2, 17028,  DOI: 10.1038/nmicrobiol.2017.28
    191. 191
      Yarlagadda, V., Manjunath, G. B., Sarkar, P., Akkapeddi, P., Paramanandham, K., Shome, B. R., Ravikumar, R., and Haldar, J. (2016) Glycopeptide Antibiotic To Overcome the Intrinsic Resistance of Gram-Negative Bacteria. ACS Infect. Dis. 2, 132139,  DOI: 10.1021/acsinfecdis.5b00114
    192. 192
      Zhou, L., van Heel, A. J., Montalban-Lopez, M., and Kuipers, O. P. (2016) Potentiating the Activity of Nisin against Escherichia Coli. Front. Cell Dev. Biol. 4, 7,  DOI: 10.3389/fcell.2016.00007
    193. 193
      Li, Q., Montalban-Lopez, M., and Kuipers, O. P. (2018) Increasing the Antimicrobial Activity of Nisin-Based Lantibiotics against Gram-Negative Pathogens. Appl. Environ. Microbiol. 84, e00052-18  DOI: 10.1128/AEM.00052-18
    194. 194
      Schweizer, F. (2019) Enhancing Uptake of Antibiotics into Gram-Negative Bacteria Using Nonribosome-Targeting Aminoglycoside-Based Adjuvants. Future Med. Chem. 11, 15191522,  DOI: 10.4155/fmc-2019-0131
    195. 195
      Raulston, J. E. and Montie, T. C. (1989) Early Cell Envelope Alterations by Tobramycin Associated with Its Lethal Action on Pseudomonas Aeruginosa. Microbiology 135, 30233034,  DOI: 10.1099/00221287-135-11-3023
    196. 196
      Bulitta, J. B., Ly, N. S., Landersdorfer, C. B., Wanigaratne, N. A., Velkov, T., Yadav, R., Oliver, A., Martin, L., Shin, B. S., Forrest, A., and Tsuji, B. T. (2015) Two Mechanisms of Killing of Pseudomonas Aeruginosa by Tobramycin Assessed at Multiple Inocula via Mechanism-Based Modeling. Antimicrob. Agents Chemother. 59, 23152327,  DOI: 10.1128/AAC.04099-14
    197. 197
      Yang, X., Goswami, S., Gorityala, B. K., Domalaon, R., Lyu, Y., Kumar, A., Zhanel, G. G., and Schweizer, F. (2017) A Tobramycin Vector Enhances Synergy and Efficacy of Efflux Pump Inhibitors against Multidrug-Resistant Gram-Negative Bacteria. J. Med. Chem. 60, 39133932,  DOI: 10.1021/acs.jmedchem.7b00156
    198. 198
      Gorityala, B. K., Guchhait, G., Goswami, S., Fernando, D. M., Kumar, A., Zhanel, G. G., and Schweizer, F. (2016) Hybrid Antibiotic Overcomes Resistance in P. Aeruginosa by Enhancing Outer Membrane Penetration and Reducing Efflux. J. Med. Chem. 59, 84418455,  DOI: 10.1021/acs.jmedchem.6b00867
    199. 199
      Gorityala, B. K., Guchhait, G., Fernando, D. M., Deo, S., McKenna, S. A., Zhanel, G. G., Kumar, A., and Schweizer, F. (2016) Adjuvants Based on Hybrid Antibiotics Overcome Resistance in Pseudomonas Aeruginosa and Enhance Fluoroquinolone Efficacy. Angew. Chem., Int. Ed. 55, 555559,  DOI: 10.1002/anie.201508330
    200. 200
      Idowu, T., Ammeter, D., Arthur, G., Zhanel, G. G., and Schweizer, F. (2019) Potentiation of Beta-Lactam Antibiotics and Beta-Lactam/Beta-Lactamase Inhibitor Combinations against MDR and XDR Pseudomonas Aeruginosa Using Non-Ribosomal Tobramycin-Cyclam Conjugates. J. Antimicrob. Chemother. 74, 26402648,  DOI: 10.1093/jac/dkz228
    201. 201
      Idowu, T., Zhanel, G. G., and Schweizer, F. (2020) A Dimer, but Not Monomer, of Tobramycin Potentiates Ceftolozane against Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas Aeruginosa and Delays Resistance Development. Antimicrob. Agents Chemother. 64, e02055-19  DOI: 10.1128/AAC.02055-19
    202. 202
      Saikia, K. and Chaudhary, N. (2018) Interaction of MreB-Derived Antimicrobial Peptides with Membranes. Biochem. Biophys. Res. Commun. 498, 5863,  DOI: 10.1016/j.bbrc.2018.02.176
    203. 203
      Saikia, K., Sravani, Y. D., Ramakrishnan, V., and Chaudhary, N. (2017) Highly Potent Antimicrobial Peptides from N-Terminal Membrane-Binding Region of E. Coli MreB. Sci. Rep. 7, 42994,  DOI: 10.1038/srep42994
    204. 204
      Falagas, M. E. and Kasiakou, S. K. (2006) Toxicity of Polymyxins: A Systematic Review of the Evidence from Old and Recent Studies. Crit. Care 10, R27R27,  DOI: 10.1186/cc3995
    205. 205
      Vattimo, M. de F. F., Watanabe, M., da Fonseca, C. D., Neiva, L. B. de M., Pessoa, E. A., and Borges, F. T. (2016) Polymyxin B Nephrotoxicity: From Organ to Cell Damage. PLoS One 11, e0161057  DOI: 10.1371/journal.pone.0161057
    206. 206
      Pirri, G., Giuliani, A., Nicoletto, S. F., Pizzuto, L., and Rinaldi, A. C. (2009) Lipopeptides as Anti-Infectives: A Practical Perspective. Cent. Eur. J. Biol. 4, 258273,  DOI: 10.2478/s11535-009-0031-3
    207. 207
      Vaara, M. and Vaara, T. (1983) Polycations Sensitize Enteric Bacteria to Antibiotics. Antimicrob. Agents Chemother. 24, 107113,  DOI: 10.1128/AAC.24.1.107
    208. 208
      Vaara, M. and Vaara, T. (1983) Sensitization of Gram-Negative Bacteria to Antibiotics and Complement by a Nontoxic Oligopeptide. Nature 303, 526528,  DOI: 10.1038/303526a0
    209. 209
      Keirstead, N. D., Wagoner, M. P., Bentley, P., Blais, M., Brown, C., Cheatham, L., Ciaccio, P., Dragan, Y., Ferguson, D., Fikes, J. (2014) Early Prediction of Polymyxin-Induced Nephrotoxicity with next-Generation Urinary Kidney Injury Biomarkers. Toxicol. Sci. 137, 278291,  DOI: 10.1093/toxsci/kft247
    210. 210
      Danner, R. L., Joiner, K. A., Rubin, M., Patterson, W. H., Johnson, N., Ayers, K. M., and Parrillo, J. E. (1989) Purification, Toxicity, and Antiendotoxin Activity of Polymyxin B Nonapeptide. Antimicrob. Agents Chemother. 33, 14281434,  DOI: 10.1128/AAC.33.9.1428
    211. 211
      Vaara, M. (2019) Polymyxin Derivatives That Sensitize Gram-Negative Bacteria to Other Antibiotics. Molecules 24, 249,  DOI: 10.3390/molecules24020249
    212. 212
      Recacha, E., Machuca, J., Diaz de Alba, P., Ramos-Guelfo, M., Docobo-Perez, F., Rodriguez-Beltran, J., Blazquez, J., Pascual, A., and Rodriguez-Martinez, J. M. (2017) Quinolone Resistance Reversion by Targeting the SOS Response. mBio 8, e00971-17,  DOI: 10.1128/mBio.00971-17
    213. 213
      Ojha, D. and Patil, K. N. (2019) P-Coumaric Acid Inhibits the Listeria Monocytogenes RecA Protein Functions and SOS Response: An Antimicrobial Target. Biochem. Biophys. Res. Commun. 517, 655661,  DOI: 10.1016/j.bbrc.2019.07.093
    214. 214
      Crane, J. K., Cheema, M. B., Olyer, M. A., and Sutton, M. D. (2018) Zinc Blockade of SOS Response Inhibits Horizontal Transfer of Antibiotic Resistance Genes in Enteric Bacteria. Front. Cell. Infect. Microbiol. 8, 410,  DOI: 10.3389/fcimb.2018.00410
    215. 215
      Xue, J., Moyer, A., Peng, B., Wu, J., Hannafon, B. N., and Ding, W.-Q. (2014) Chloroquine Is a Zinc Ionophore. PLoS One 9, e109180  DOI: 10.1371/journal.pone.0109180
    216. 216
      Mo, C. Y., Culyba, M. J., Selwood, T., Kubiak, J. M., Hostetler, Z. M., Jurewicz, A. J., Keller, P. M., Pope, A. J., Quinn, A., Schneck, J., Widdowson, K. L., and Kohli, R. M. (2018) Inhibitors of LexA Autoproteolysis and the Bacterial SOS Response Discovered by an Academic-Industry Partnership. ACS Infect. Dis. 4, 349359,  DOI: 10.1021/acsinfecdis.7b00122
    217. 217
      Lim, C. S. Q., Ha, K. P., Clarke, R. S., Gavin, L.-A., Cook, D. T., Hutton, J. A., Sutherell, C. L., Edwards, A. M., Evans, L. E., Tate, E. W., and Lanyon-Hogg, T. (2019) Identification of a Potent Small-Molecule Inhibitor of Bacterial DNA Repair That Potentiates Quinolone Antibiotic Activity in Methicillin-Resistant Staphylococcus Aureus. Bioorg. Med. Chem. 27, 114962,  DOI: 10.1016/j.bmc.2019.06.025
    218. 218
      Lee, S., Hinz, A., Bauerle, E., Angermeyer, A., Juhaszova, K., Kaneko, Y., Singh, P. K., and Manoil, C. (2009) Targeting a Bacterial Stress Response to Enhance Antibiotic Action. Proc. Natl. Acad. Sci. U. S. A. 106, 1457014575,  DOI: 10.1073/pnas.0903619106
    219. 219
      Poole, K., Gilmour, C., Farha, M. A., Mullen, E., Lau, C. H.-F., and Brown, E. D. (2016) Potentiation of Aminoglycoside Activity in Pseudomonas Aeruginosa by Targeting the AmgRS Envelope Stress-Responsive Two-Component System. Antimicrob. Agents Chemother. 60, 35093518,  DOI: 10.1128/AAC.03069-15
    220. 220
      Mikalauskas, A., Parkins, M. D., and Poole, K. (2017) Rifampicin Potentiation of Aminoglycoside Activity against Cystic Fibrosis Isolates of Pseudomonas Aeruginosa. J. Antimicrob. Chemother. 72, 33493352,  DOI: 10.1093/jac/dkx296
    221. 221
      Docquier, J.-D. and Mangani, S. (2018) An Update on Beta-Lactamase Inhibitor Discovery and Development. Drug Resist. Updates 36, 1329,  DOI: 10.1016/j.drup.2017.11.002
    222. 222
      Chiem, K., Jani, S., Fuentes, B., Lin, D. L., Rasche, M. E., and Tolmasky, M. E. (2016) Identification of an Inhibitor of the Aminoglycoside 6’-N-Acetyltransferase Type Ib [AAC(6’)-Ib] by Glide Molecular Docking. MedChemComm 7, 184189,  DOI: 10.1039/C5MD00316D
    223. 223
      Lomovskaya, O., Warren, M. S., Lee, A., Galazzo, J., Fronko, R., Lee, M., Blais, J., Cho, D., Chamberland, S., Renau, T., Leger, R., Hecker, S., Watkins, W., Hoshino, K., Ishida, H., and Lee, V. J. (2001) Identification and Characterization of Inhibitors of Multidrug Resistance Efflux Pumps in Pseudomonas Aeruginosa: Novel Agents for Combination Therapy. Antimicrob. Agents Chemother. 45, 105116,  DOI: 10.1128/AAC.45.1.105-116.2001
    224. 224
      Gupta, S., Cohen, K. A., Winglee, K., Maiga, M., Diarra, B., and Bishai, W. R. (2014) Efflux Inhibition with Verapamil Potentiates Bedaquiline in Mycobacterium Tuberculosis. Antimicrob. Agents Chemother. 58, 574576,  DOI: 10.1128/AAC.01462-13
    225. 225
      Singh, M., Jadaun, G. P. S., Ramdas Srivastava, K., Chauhan, V., Mishra, R., Gupta, K., Nair, S., Chauhan, D. S., Sharma, V. D., Venkatesan, K., and Katoch, V. M. (2011) Effect of Efflux Pump Inhibitors on Drug Susceptibility of Ofloxacin Resistant Mycobacterium Tuberculosis Isolates. Indian J. Med. Res. 133, 535540
    226. 226
      Hogg, G. M., Barr, J. G., and Webb, C. H. (1998) In-Vitro Activity of the Combination of Colistin and Rifampicin against Multidrug-Resistant Strains of Acinetobacter Baumannii. J. Antimicrob. Chemother. 41, 494450,  DOI: 10.1093/jac/41.4.494
    227. 227
      MacGowan, A. P., Rynn, C., Wootton, M., Bowker, K. E., Holt, H. A., Reeves, D. S. (1999) In Vitro Assessment of Colistin’s Antipseudomonal Antimicrobial Interactions with Other Antibiotics. Clin. Microbiol. Infect. 5, 3236,  DOI: 10.1111/j.1469-0691.1999.tb00095.x
    228. 228
      Petrosillo, N., Chinello, P., Proietti, M. F., Cecchini, L., Masala, M., Franchi, C., Venditti, M., Esposito, S., and Nicastri, E. (2005) Combined Colistin and Rifampicin Therapy for Carbapenem-Resistant Acinetobacter Baumannii Infections: Clinical Outcome and Adverse Events. Clin. Microbiol. Infect. 11, 682683,  DOI: 10.1111/j.1469-0691.2005.01198.x
    229. 229
      Kerrigan, J. E., Ragunath, C., Kandra, L., Gyemant, G., Liptak, A., Janossy, L., Kaplan, J. B., and Ramasubbu, N. (2008) Modeling and Biochemical Analysis of the Activity of Antibiofilm Agent Dispersin B. Acta Biol. Hung. 59, 439451,  DOI: 10.1556/ABiol.59.2008.4.5
    230. 230
      Ramasubbu, N., Thomas, L. M., Ragunath, C., and Kaplan, J. B. (2005) Structural Analysis of Dispersin B, a Biofilm-Releasing Glycoside Hydrolase from the Periodontopathogen Actinobacillus Actinomycetemcomitans. J. Mol. Biol. 349, 475486,  DOI: 10.1016/j.jmb.2005.03.082
    231. 231
      Brindle, E. R., Miller, D. A., and Stewart, P. S. (2011) Hydrodynamic Deformation and Removal of Staphylococcus Epidermidis Biofilms Treated with Urea, Chlorhexidine, Iron Chloride, or DispersinB. Biotechnol. Bioeng. 108, 29682977,  DOI: 10.1002/bit.23245
    232. 232
      Fernandez-Lopez, R., Machon, C., Longshaw, C. M., Martin, S., Molin, S., Zechner, E. L., Espinosa, M., Lanka, E., and de la Cruz, F. (2005) Unsaturated Fatty Acids Are Inhibitors of Bacterial Conjugation. Microbiology 151, 35173526,  DOI: 10.1099/mic.0.28216-0
    233. 233
      Perry, J. A., Koteva, K., Verschoor, C. P., Wang, W., Bowdish, D. M. E., and Wright, G. D. (2015) A Macrophage-Stimulating Compound from a Screen of Microbial Natural Products. J. Antibiot. 68, 4046,  DOI: 10.1038/ja.2014.83
    234. 234
      Gonzalez-Bello, C., Rodriguez, D., Pernas, M., Rodriguez, A., and Colchon, E. (2020) Beta-Lactamase Inhibitors To Restore the Efficacy of Antibiotics against Superbugs. J. Med. Chem. 63, 1859,  DOI: 10.1021/acs.jmedchem.9b01279
    235. 235
      Drawz, S. M. and Bonomo, R. A. (2010) Three Decades of β-Lactamase Inhibitors. Clin. Microbiol. Rev. 23, 160201,  DOI: 10.1128/CMR.00037-09
    236. 236
      Garneau-Tsodikova, S. and Labby, K. J. (2016) Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives. MedChemComm 7, 1127,  DOI: 10.1039/C5MD00344J
    237. 237
      Li, Y., Green, K. D., Johnson, B. R., and Garneau-Tsodikova, S. (2015) Inhibition of Aminoglycoside Acetyltransferase Resistance Enzymes by Metal Salts. Antimicrob. Agents Chemother. 59, 41484156,  DOI: 10.1128/AAC.00885-15
    238. 238
      Lin, D. L., Tran, T., Adams, C., Alam, J. Y., Herron, S. R., and Tolmasky, M. E. (2013) Inhibitors of the Aminoglycoside 6’-N-Acetyltransferase Type Ib [AAC(6’)-Ib] Identified by in Silico Molecular Docking. Bioorg. Med. Chem. Lett. 23, 56945698,  DOI: 10.1016/j.bmcl.2013.08.016
    239. 239
      Green, K. D., Chen, W., and Garneau-Tsodikova, S. (2012) Identification and Characterization of Inhibitors of the Aminoglycoside Resistance Acetyltransferase Eis from Mycobacterium Tuberculosis. ChemMedChem 7, 7377,  DOI: 10.1002/cmdc.201100332
    240. 240
      Li, X.-Z., Plesiat, P., and Nikaido, H. (2015) The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria. Clin. Microbiol. Rev. 28, 337418,  DOI: 10.1128/CMR.00117-14
    241. 241
      Sharma, A., Gupta, V. K., and Pathania, R. (2019) Efflux Pump Inhibitors for Bacterial Pathogens: From Bench to Bedside. Indian J. Med. Res. 149, 129145,  DOI: 10.4103/ijmr.IJMR_2079_17
    242. 242
      Handzlik, J., Matys, A., and Kieć-Kononowicz, K. (2013) Recent Advances in Multi-Drug Resistance (MDR) Efflux Pump Inhibitors of Gram-Positive Bacteria S. Aureus. Antibiotics 2, 2845,  DOI: 10.3390/antibiotics2010028
    243. 243
      Spengler, G., Kincses, A., Gajdacs, M., and Amaral, L. (2017) New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria. Molecules 22, 468,  DOI: 10.3390/molecules22030468
    244. 244
      Song, L. and Wu, X. (2016) Development of Efflux Pump Inhibitors in Antituberculosis Therapy. Int. J. Antimicrob. Agents 47, 421429,  DOI: 10.1016/j.ijantimicag.2016.04.007
    245. 245
      Schillaci, D., Spano, V., Parrino, B., Carbone, A., Montalbano, A., Barraja, P., Diana, P., Cirrincione, G., and Cascioferro, S. (2017) Pharmaceutical Approaches to Target Antibiotic Resistance Mechanisms. J. Med. Chem. 60, 82688297,  DOI: 10.1021/acs.jmedchem.7b00215
    246. 246
      Soucy, S. M., Huang, J., and Gogarten, J. P. (2015) Horizontal Gene Transfer: Building the Web of Life. Nat. Rev. Genet. 16, 472482,  DOI: 10.1038/nrg3962
    247. 247
      Graf, F. E., Palm, M., Warringer, J., and Farewell, A. (2019) Inhibiting Conjugation as a Tool in the Fight against Antibiotic Resistance. Drug Dev. Res. 80, 1923,  DOI: 10.1002/ddr.21457
    248. 248
      Cabezón, E., de la Cruz, F., and Arechaga, I. (2017) Conjugation Inhibitors and Their Potential Use to Prevent Dissemination of Antibiotic Resistance Genes in Bacteria. Front. Microbiol. 8, 2329,  DOI: 10.3389/fmicb.2017.02329
    249. 249
      Getino, M., Sanabria-Rios, D. J., Fernandez-Lopez, R., Campos-Gomez, J., Sanchez-Lopez, J. M., Fernandez, A., Carballeira, N. M., and de la Cruz, F. (2015) Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer. mBio 6, e01032-15  DOI: 10.1128/mBio.01032-15
    250. 250
      Zhu, L. and Lau, G. W. (2011) Inhibition of Competence Development, Horizontal Gene Transfer and Virulence in Streptococcus Pneumoniae by a Modified Competence Stimulating Peptide. PLoS Pathog. 7, e1002241  DOI: 10.1371/journal.ppat.1002241
    251. 251
      Shaffer, C. L., Good, J. A. D., Kumar, S., Krishnan, K. S., Gaddy, J. A., Loh, J. T., Chappell, J., Almqvist, F., Cover, T. L., and Hadjifrangiskou, M. (2016) Peptidomimetic Small Molecules Disrupt Type IV Secretion System Activity in Diverse Bacterial Pathogens. mBio 7, e00221-16  DOI: 10.1128/mBio.00221-16
    252. 252
      Grassi, L., Maisetta, G., Esin, S., and Batoni, G. (2017) Combination Strategies to Enhance the Efficacy of Antimicrobial Peptides against Bacterial Biofilms. Front. Microbiol. 8, 2409,  DOI: 10.3389/fmicb.2017.02409
    253. 253
      Roy, R., Tiwari, M., Donelli, G., and Tiwari, V. (2018) Strategies for Combating Bacterial Biofilms: A Focus on Anti-Biofilm Agents and Their Mechanisms of Action. Virulence 9, 522554,  DOI: 10.1080/21505594.2017.1313372
    254. 254
      Chen, X., Zhang, L., Zhang, M., Liu, H., Lu, P., and Lin, K. (2018) Quorum Sensing Inhibitors: A Patent Review (2014–2018). Expert Opin. Ther. Pat. 28, 849865,  DOI: 10.1080/13543776.2018.1541174
    255. 255
      Xiang, H., Cao, F., Ming, D., Zheng, Y., Dong, X., Zhong, X., Mu, D., Li, B., Zhong, L., Cao, J., Wang, L., Ma, H., Wang, T., and Wang, D. (2017) Aloe-Emodin Inhibits Staphylococcus Aureus Biofilms and Extracellular Protein Production at the Initial Adhesion Stage of Biofilm Development. Appl. Microbiol. Biotechnol. 101, 66716681,  DOI: 10.1007/s00253-017-8403-5
    256. 256
      Wang, J., Nong, X.-H., Amin, M., and Qi, S.-H. (2018) Hygrocin C from Marine-Derived Streptomyces Sp. SCSGAA 0027 Inhibits Biofilm Formation in Bacillus Amyloliquefaciens SCSGAB0082 Isolated from South China Sea Gorgonian. Appl. Microbiol. Biotechnol. 102, 14171427,  DOI: 10.1007/s00253-017-8672-z
    257. 257
      Wunnoo, S., Saising, J., and Voravuthikunchai, S. P. (2017) Rhodomyrtone Inhibits Lipase Production, Biofilm Formation, and Disorganizes Established Biofilm in Propionibacterium Acnes. Anaerobe 43, 6168,  DOI: 10.1016/j.anaerobe.2016.12.002
    258. 258
      Falagas, M. E. and Bliziotis, I. A. (2007) Pandrug-Resistant Gram-Negative Bacteria: The Dawn of the Post-Antibiotic Era?. Int. J. Antimicrob. Agents 29, 630636,  DOI: 10.1016/j.ijantimicag.2006.12.012
    259. 259
      Asker, D., Awad, T. S., Baker, P., Howell, P. L., and Hatton, B. D. (2018) Non-Eluting, Surface-Bound Enzymes Disrupt Surface Attachment of Bacteria by Continuous Biofilm Polysaccharide Degradation. Biomaterials 167, 168176,  DOI: 10.1016/j.biomaterials.2018.03.016
    260. 260
      Pritchard, M. F., Powell, L. C., Jack, A. A., Powell, K., Beck, K., Florance, H., Forton, J., Rye, P. D., Dessen, A., Hill, K. E., and Thomas, D. W. (2017) A Low-Molecular-Weight Alginate Oligosaccharide Disrupts Pseudomonal Microcolony Formation and Enhances Antibiotic Effectiveness. Antimicrob. Agents Chemother. 61, 61,  DOI: 10.1128/AAC.00762-17
    261. 261
      de la Fuente-Nunez, C., Reffuveille, F., Haney, E. F., Straus, S. K., and Hancock, R. E. W. (2014) Broad-Spectrum Anti-Biofilm Peptide That Targets a Cellular Stress Response. PLoS Pathog. 10, e1004152  DOI: 10.1371/journal.ppat.1004152
    262. 262
      Pletzer, D., Wolfmeier, H., Bains, M., and Hancock, R. E. W. (2017) Synthetic Peptides to Target Stringent Response-Controlled Virulence in a Pseudomonas Aeruginosa Murine Cutaneous Infection Model. Front. Microbiol. 8, 1867,  DOI: 10.3389/fmicb.2017.01867
    263. 263
      Christensen, L. D., van Gennip, M., Jakobsen, T. H., Alhede, M., Hougen, H. P., Hoiby, N., Bjarnsholt, T., and Givskov, M. (2012) Synergistic Antibacterial Efficacy of Early Combination Treatment with Tobramycin and Quorum-Sensing Inhibitors against Pseudomonas Aeruginosa in an Intraperitoneal Foreign-Body Infection Mouse Model. J. Antimicrob. Chemother. 67, 11981206,  DOI: 10.1093/jac/dks002
    264. 264
      Kissoyan, K. A. B., Bazzi, W., Hadi, U., and Matar, G. M. (2016) The Inhibition of Pseudomonas Aeruginosa Biofilm Formation by Micafungin and the Enhancement of Antimicrobial Agent Effectiveness in BALB/c Mice. Biofouling 32, 779786,  DOI: 10.1080/08927014.2016.1199021
    265. 265
      Maiden, M. M., Hunt, A. M. A., Zachos, M. P., Gibson, J. A., Hurwitz, M. E., Mulks, M. H., and Waters, C. M. (2018) Triclosan Is an Aminoglycoside Adjuvant for Eradication of Pseudomonas Aeruginosa Biofilms. Antimicrob. Agents Chemother. 62, e00146-18  DOI: 10.1128/AAC.00146-18
    266. 266
      Worthington, R. J. and Melander, C. (2013) Combination Approaches to Combat Multidrug-Resistant Bacteria. Trends Biotechnol. 31, 177184,  DOI: 10.1016/j.tibtech.2012.12.006
    267. 267
      Tyers, M. and Wright, G. D. (2019) Drug Combinations: A Strategy to Extend the Life of Antibiotics in the 21st Century. Nat. Rev. Microbiol. 17, 141155,  DOI: 10.1038/s41579-018-0141-x
    268. 268
      Schmid, A., Wolfensberger, A., Nemeth, J., Schreiber, P. W., Sax, H., and Kuster, S. P. (2019) Monotherapy versus Combination Therapy for Multidrug-Resistant Gram-Negative Infections: Systematic Review and Meta-Analysis. Sci. Rep. 9, 15290,  DOI: 10.1038/s41598-019-51711-x
    269. 269
      Drusano, G. L., Hope, W., MacGowan, A., and Louie, A. (2016) Suppression of Emergence of Resistance in Pathogenic Bacteria: Keeping Our Powder Dry, Part 1. Antimicrob. Agents Chemother. 60, 11941201,  DOI: 10.1128/AAC.02231-15
    270. 270
      Lee, J., Patel, G., Huprikar, S., Calfee, D. P., and Jenkins, S. G. (2009) Decreased Susceptibility to Polymyxin B during Treatment for Carbapenem-Resistant Klebsiella Pneumoniae Infection. J. Clin. Microbiol. 47, 16112,  DOI: 10.1128/JCM.02466-08
    271. 271
      Goss, C. H. and Muhlebach, M. S. (2011) Review: Staphylococcus Aureus and MRSA in Cystic Fibrosis. J. Cystic Fibrosis 10, 298306,  DOI: 10.1016/j.jcf.2011.06.002
    272. 272
      McCaughey, G., Diamond, P., Elborn, J. S., McKevitt, M., and Tunney, M. M. (2013) Resistance Development of Cystic Fibrosis Respiratory Pathogens When Exposed to Fosfomycin and Tobramycin Alone and in Combination under Aerobic and Anaerobic Conditions. PLoS One 8, e69763  DOI: 10.1371/journal.pone.0069763
    273. 273
      Monedero, I. and Caminero, J. A. (2010) Management of Multidrug-Resistant Tuberculosis: An Update. Ther. Adv. Respir. Dis. 4, 117127,  DOI: 10.1177/1753465810365884
    274. 274
      REX Consortium (2013) Heterogeneity of Selection and the Evolution of Resistance. Trends Ecol. Evol. 28, 110118,  DOI: 10.1016/j.tree.2012.09.001
    275. 275
      Takesue, Y., Nakajima, K., Ichiki, K., Ishihara, M., Wada, Y., Takahashi, Y., Tsuchida, T., and Ikeuchi, H. (2010) Impact of a Hospital-Wide Programme of Heterogeneous Antibiotic Use on the Development of Antibiotic-Resistant Gram-Negative Bacteria. J. Hosp. Infect. 75, 2832,  DOI: 10.1016/j.jhin.2009.11.022
    276. 276
      Raymond, B. (2019) Five Rules for Resistance Management in the Antibiotic Apocalypse, a Road Map for Integrated Microbial Management. Evol. Appl. 12, 10791091,  DOI: 10.1111/eva.12808
    277. 277
      Paul, M., Lador, A., Grozinsky-Glasberg, S., and Leibovici, L. (2014) Beta Lactam Antibiotic Monotherapy versus Beta Lactam-Aminoglycoside Antibiotic Combination Therapy for Sepsis. Cochrane database Syst. Rev. (1), CD003344,  DOI: 10.1002/14651858.CD003344.pub3
    278. 278
      Tamma, P. D., Cosgrove, S. E., and Maragakis, L. L. (2012) Combination Therapy for Treatment of Infections with Gram-Negative Bacteria. Clin. Microbiol. Rev. 25, 450470,  DOI: 10.1128/CMR.05041-11
    279. 279
      Lipsitch, M. and Levin, B. R. (1997) The Population Dynamics of Antimicrobial Chemotherapy. Antimicrob. Agents Chemother. 41, 363373,  DOI: 10.1128/AAC.41.2.363
    280. 280
      Raymond, B., Wright, D. J., Crickmore, N., and Bonsall, M. B. (2013) The Impact of Strain Diversity and Mixed Infections on the Evolution of Resistance to Bacillus Thuringiensis. Proc. R. Soc. London, Ser. B 280, 20131497,  DOI: 10.1098/rspb.2013.1497
    281. 281
      Pena-Miller, R., Laehnemann, D., Jansen, G., Fuentes-Hernandez, A., Rosenstiel, P., Schulenburg, H., and Beardmore, R. (2013) When the Most Potent Combination of Antibiotics Selects for the Greatest Bacterial Load: The Smile-Frown Transition. PLoS Biol. 11, e1001540  DOI: 10.1371/journal.pbio.1001540
    282. 282
      MacLean, R. C., Hall, A. R., Perron, G. G., and Buckling, A. (2010) The Population Genetics of Antibiotic Resistance: Integrating Molecular Mechanisms and Treatment Contexts. Nat. Rev. Genet. 11, 405414,  DOI: 10.1038/nrg2778
    283. 283
      Hegreness, M., Shoresh, N., Damian, D., Hartl, D., and Kishony, R. (2008) Accelerated Evolution of Resistance in Multidrug Environments. Proc. Natl. Acad. Sci. U. S. A. 105, 1397713981,  DOI: 10.1073/pnas.0805965105
    284. 284
      Liu, J., Gefen, O., Ronin, I., Bar-Meir, M., and Balaban, N. Q. (2020) Effect of Tolerance on the Evolution of Antibiotic Resistance under Drug Combinations. Science 367, 200204,  DOI: 10.1126/science.aay3041