ACS Publications. Most Trusted. Most Cited. Most Read
Developing Pantetheinase-Resistant Pantothenamide Antibacterials: Structural Modification Impacts on PanK Interaction and Mode of Action
My Activity

    Letter

    Developing Pantetheinase-Resistant Pantothenamide Antibacterials: Structural Modification Impacts on PanK Interaction and Mode of Action
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    ACS Infectious Diseases

    Cite this: ACS Infect. Dis. 2018, 4, 5, 736–743
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsinfecdis.7b00240
    Published January 14, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Pantothenamides (PanAms) are analogues of pantothenate, the biosynthetic precursor of coenzyme A (CoA), and show potent antimicrobial activity against several bacteria and the malaria parasite in vitro. However, pantetheinase enzymes that normally degrade pantetheine in human serum also act on the PanAms, thereby reducing their potency. In this study, we designed analogues of the known antibacterial PanAm N-heptylpantothenamide (N7-Pan) to be resistant to pantetheinase by using three complementary structural modification strategies. We show that, while two of these are effective in imparting resistance, the introduced modifications have an impact on the analogues’ interaction with pantothenate kinase (PanK, the first CoA biosynthetic enzyme), which acts as a metabolic activator and/or target of the PanAms. This, in turn, directly affects their mode of action. Importantly, we discover that the phosphorylated version of N7-Pan shows pantetheinase resistance and antistaphylococcal activity, providing a lead for future studies in the ongoing search of PanAm analogues that show in vivo efficacy.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsinfecdis.7b00240.

    • Kinetic parameter data (Table S1) and all synthetic procedures and compound characterization data (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 20 publications.

    1. Isaac A. Paddy, Laura M. K. Dassama. Identifying Opportunity Targets in Gram-Negative Pathogens for Infectious Disease Mitigation. ACS Central Science 2025, 11 (1) , 25-35. https://doi.org/10.1021/acscentsci.4c01437
    2. Pankaj V. Khairnar, Sarah L. Aleshire, Ravi Kumar Ongolu, Limei Jin, Michael G. Laidlaw, Kai O. Donsbach, B. Frank Gupton, Ryan C. Nelson, Charles S. Shanahan. Highly Regioselective Protecting-Group-Free Synthesis of the Antimalarial Drug MMV693183. Organic Process Research & Development 2024, 28 (1) , 273-280. https://doi.org/10.1021/acs.oprd.3c00353
    3. Jinming Guan, Christina Spry, Erick T. Tjhin, Penghui Yang, Tanakorn Kittikool, Vanessa M. Howieson, Harriet Ling, Lora Starrs, Dustin Duncan, Gaetan Burgio, Kevin J. Saliba, Karine Auclair. Exploring Heteroaromatic Rings as a Replacement for the Labile Amide of Antiplasmodial Pantothenamides. Journal of Medicinal Chemistry 2021, 64 (8) , 4478-4497. https://doi.org/10.1021/acs.jmedchem.0c01755
    4. Christina Spry, Leanne Barnard, Michélle Kok, Andrew K. Powell, Darvina Mahesh, Erick T. Tjhin, Kevin J. Saliba, Erick Strauss, Marianne de Villiers. Toward a Stable and Potent Coenzyme A-Targeting Antiplasmodial Agent: Structure–Activity Relationship Studies of N-Phenethyl-α-methyl-pantothenamide. ACS Infectious Diseases 2020, 6 (7) , 1844-1854. https://doi.org/10.1021/acsinfecdis.0c00075
    5. Xiangning Liu, Sian Thistlethwaite, Rohit Kholiya, Jacob Pierscianowski, Kevin J. Saliba, Karine Auclair. Chemical synthesis and enzymatic late-stage diversification of novel pantothenate analogues with antiplasmodial activity. European Journal of Medicinal Chemistry 2024, 280 , 116902. https://doi.org/10.1016/j.ejmech.2024.116902
    6. Lindsey A. Carfrae, Eric D. Brown. Nutrient stress is a target for new antibiotics. Trends in Microbiology 2023, 31 (6) , 571-585. https://doi.org/10.1016/j.tim.2023.01.002
    7. Siobhan Ernan Brigg, Lizbé Koekemoer, Leisl A. Brand, Erick Strauss. Multifaceted Target Specificity Analysis as a Tool in Antimicrobial Drug Development: Type III Pantothenate Kinases as a Case Study. ChemMedChem 2023, 18 (7) https://doi.org/10.1002/cmdc.202200630
    8. Laura E. de Vries, Patrick A. M. Jansen, Catalina Barcelo, Justin Munro, Julie M. J. Verhoef, Charisse Flerida A. Pasaje, Kelly Rubiano, Josefine Striepen, Nada Abla, Luuk Berning, Judith M. Bolscher, Claudia Demarta-Gatsi, Rob W. M. Henderson, Tonnie Huijs, Karin M. J. Koolen, Patrick K. Tumwebaze, Tomas Yeo, Anna C. C. Aguiar, Iñigo Angulo-Barturen, Alisje Churchyard, Jake Baum, Benigno Crespo Fernández, Aline Fuchs, Francisco-Javier Gamo, Rafael V. C. Guido, María Belén Jiménez-Diaz, Dhelio B. Pereira, Rosemary Rochford, Camille Roesch, Laura M. Sanz, Graham Trevitt, Benoit Witkowski, Sergio Wittlin, Roland A. Cooper, Philip J. Rosenthal, Robert W. Sauerwein, Joost Schalkwijk, Pedro H. H. Hermkens, Roger V. Bonnert, Brice Campo, David A. Fidock, Manuel Llinás, Jacquin C. Niles, Taco W. A. Kooij, Koen J. Dechering. Preclinical characterization and target validation of the antimalarial pantothenamide MMV693183. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29688-5
    9. Dustin Duncan, Karine Auclair. Itaconate: an antimicrobial metabolite of macrophages. Canadian Journal of Chemistry 2022, 100 (2) , 104-113. https://doi.org/10.1139/cjc-2021-0117
    10. Subbi Rami Reddy Tadi, Ganesh Nehru, Senthilkumar Sivaprakasam. Microbial Production of Pantothenic Acid. 2022, 1-18. https://doi.org/10.1007/978-3-030-81403-8_6-1
    11. Laura E. de Vries, Matteo Lunghi, Aarti Krishnan, Taco W. A. Kooij, Dominique Soldati-Favre, . Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets. PLOS Pathogens 2021, 17 (12) , e1010124. https://doi.org/10.1371/journal.ppat.1010124
    12. Lalit Kumar Sharma, Mi Kyung Yun, Chitra Subramanian, Rajendra Tangallapally, Suzanne Jackowski, Charles O. Rock, Stephen W. White, Richard E. Lee. LipE guided discovery of isopropylphenyl pyridazines as pantothenate kinase modulators. Bioorganic & Medicinal Chemistry 2021, 52 , 116504. https://doi.org/10.1016/j.bmc.2021.116504
    13. Aleksandra Czumaj, Sylwia Szrok-Jurga, Areta Hebanowska, Jacek Turyn, Julian Swierczynski, Tomasz Sledzinski, Ewa Stelmanska. The Pathophysiological Role of CoA. International Journal of Molecular Sciences 2020, 21 (23) , 9057. https://doi.org/10.3390/ijms21239057
    14. Clinton G. L. Veale, Ronel Müller. Recent Highlights in Anti‐infective Medicinal Chemistry from South Africa. ChemMedChem 2020, 15 (10) , 809-826. https://doi.org/10.1002/cmdc.202000086
    15. Riyad Domingo, Renier van der Westhuyzen, Anton R. Hamann, Konrad J. Mostert, Leanne Barnard, Tanya Paquet, Erick T. Tjhin, Kevin J. Saliba, Willem A. L. van Otterlo, Erick Strauss. Overcoming synthetic challenges in targeting coenzyme A biosynthesis with the antimicrobial natural product CJ-15,801. MedChemComm 2019, 10 (12) , 2118-2125. https://doi.org/10.1039/C9MD00312F
    16. Dustin Duncan, Karine Auclair. The coenzyme A biosynthetic pathway: A new tool for prodrug bioactivation. Archives of Biochemistry and Biophysics 2019, 672 , 108069. https://doi.org/10.1016/j.abb.2019.108069
    17. Patrick A. M. Jansen, Danique A. van der Krieken, Peter N. M. Botman, Richard H. Blaauw, Lorenzo Cavina, Eline M. Raaijmakers, Erik de Heuvel, Julia Sandrock, Lian J. Pennings, Pedro H. H. Hermkens, Patrick L. J. M. Zeeuwen, Floris P. J. T. Rutjes, Joost Schalkwijk. Stable pantothenamide bioisosteres: novel antibiotics for Gram-positive bacteria. The Journal of Antibiotics 2019, 72 (9) , 682-692. https://doi.org/10.1038/s41429-019-0196-6
    18. Jinming Guan, Erick T. Tjhin, Vanessa M. Howieson, Tanakorn Kittikool, Christina Spry, Kevin J. Saliba, Karine Auclair. Structure–Activity Relationships of Antiplasmodial Pantothenamide Analogues Reveal a New Way by Which Triazoles Mimic Amide Bonds. ChemMedChem 2018, 13 (24) , 2677-2683. https://doi.org/10.1002/cmdc.201800327
    19. Jinming Guan, Leanne Barnard, Jeanne Cresson, Annabelle Hoegl, Justin H. Chang, Erick Strauss, Karine Auclair. Probing the ligand preferences of the three types of bacterial pantothenate kinase. Bioorganic & Medicinal Chemistry 2018, 26 (22) , 5896-5902. https://doi.org/10.1016/j.bmc.2018.10.042
    20. Mohammad Z. Abidin, Thangavelu Saravanan, Jielin Zhang, Pieter G. Tepper, Erick Strauss, Gerrit J. Poelarends. Modular Enzymatic Cascade Synthesis of Vitamin B 5 and Its Derivatives. Chemistry – A European Journal 2018, 24 (66) , 17434-17438. https://doi.org/10.1002/chem.201804151

    ACS Infectious Diseases

    Cite this: ACS Infect. Dis. 2018, 4, 5, 736–743
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsinfecdis.7b00240
    Published January 14, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    1012

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.