ACS Publications. Most Trusted. Most Cited. Most Read
Chemical and Mechanical Tunability of 3D-Printed Dynamic Covalent Networks Based on Boronate Esters
My Activity
    Letter

    Chemical and Mechanical Tunability of 3D-Printed Dynamic Covalent Networks Based on Boronate Esters
    Click to copy article linkArticle link copied!

    • Lindsay L. Robinson
      Lindsay L. Robinson
      Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
    • Jeffrey L. Self
      Jeffrey L. Self
      Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
    • Alexander D. Fusi
      Alexander D. Fusi
      Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
    • Morgan W. Bates
      Morgan W. Bates
      California NanoSystems Institute, University of California, Santa Barbara, California 93106, United States
    • Javier Read de Alaniz
      Javier Read de Alaniz
      Department of Chemistry and Biochemistry  and  California NanoSystems Institute, University of California, Santa Barbara, California 93106, United States
    • Craig J. Hawker
      Craig J. Hawker
      Department of Chemistry and Biochemistry,  Materials Research Laboratory,  Materials Department  and  California NanoSystems Institute, University of California, Santa Barbara, California 93106, United States
    • Christopher M. Bates*
      Christopher M. Bates
      Department of Chemistry and Biochemistry,  Materials Research Laboratory,  Materials Department  and  Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
      *E-mail: [email protected]
    • Caitlin S. Sample*
      Caitlin S. Sample
      Materials Department, University of California, Santa Barbara, California 93106, United States
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (2)

    ACS Macro Letters

    Cite this: ACS Macro Lett. 2021, 10, 7, 857–863
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsmacrolett.1c00257
    Published June 23, 2021
    Copyright © 2021 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    As the scope of additive manufacturing broadens, interest has developed in 3D-printed objects that are derived from recyclable resins with chemical and mechanical tunability. Dynamic covalent bonds have the potential to not only increase the sustainability of 3D-printed objects, but also serve as reactive sites for postprinting derivatization. In this study, we use boronate esters as a key building block for the development of catalyst-free, 3D-printing resins with the ability to undergo room-temperature exchange at the cross-linking sites. The orthogonality of boronate esters is exploited in fast-curing, oxygen-tolerant thiol–ene resins in which the dynamic character of 3D-printed objects can be modulated by the addition of a static, covalent cross-linker with no room-temperature bond exchange. This allows the mechanical properties of printed parts to be varied between those of a traditional thermoset and a vitrimer. Objects printed with a hybrid dynamic/static resin exhibit a balance of structural stability (residual stress = 18%) and rapid exchange (characteristic relaxation time = 7 s), allowing for interfacial welding and postprinting functionalization. Modulation of the cross-linking density postprinting is enabled by selective hydrolysis of the boronate esters to generate networks with swelling capacities tunable from 1.3 to 3.3.

    Copyright © 2021 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsmacrolett.1c00257.

    • Experimental details and supporting figures and tables (PDF)

    • Welding demonstration (MP4)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 59 publications.

    1. Alex Bonacini, Elena Saccani, Corrado Sciancalepore, Daniel Milanese, Gabriele Drago, Alessandro Pedrini, Roberta Pinalli, Renaud Nicolaÿ, Enrico Dalcanale. Boronate Esters Dynamic Networks for the Reduction of Mechanical Anisotropy in Vat 3D Printed Manufacts. ACS Applied Polymer Materials 2025, Article ASAP.
    2. Jen-Chieh Yu, Ryan A. Browne, Soyoung E. Seo. Mechanically Robust, Self-Healing Polymer Nanocomposites with Tailorable Nanoparticle-Based Bonds. Macromolecules 2024, 57 (19) , 9059-9066. https://doi.org/10.1021/acs.macromol.4c01013
    3. Griffen J. Desroches, Carl J. Thrasher, Nicholas S. Diaco, Ibrahim O. Raji, Dominik Konkolewicz, A. John Hart, Robert J. Macfarlane. Multivalent Polymer-Grafted Nanoparticles as Reinforcing Fillers for 3D Printable Self-Healing Elastomers. ACS Materials Letters 2024, 6 (9) , 4175-4182. https://doi.org/10.1021/acsmaterialslett.4c01291
    4. Jared A. Nettles, Saleh Alfarhan, Cameron A. Pascoe, Clarissa Westover, Margaret D. Madsen, Jose I. Sintas, Aadhi Subbiah, Timothy E. Long, Kailong Jin. Functional Upcycling of Polyurethane Thermosets into Value-Added Thermoplastics via Small-Molecule Carbamate-Assisted Decross-Linking Extrusion. JACS Au 2024, 4 (8) , 3058-3069. https://doi.org/10.1021/jacsau.4c00403
    5. Zeyu Xing, Zehao Wang, Xiaoli Zhao, Xiaoniu Yang. Bulk Synthesis of Phase-Separated Polyurethane Vitrimers by Slowing Down Cross-Linking at a High Catalyst Content. ACS Applied Polymer Materials 2024, 6 (14) , 8687-8696. https://doi.org/10.1021/acsapm.4c01752
    6. Colton A. D’Ambra, Patrick T. Getty, Taejun Eom, Michael Czuczola, Elizabeth A. Murphy, Souvagya Biswas, Allison Abdilla, Jodi M. Mecca, Thomas D. Bekemeier, Steven Swier, Alyssa Fielitz, Craig J. Hawker, Christopher M. Bates. Facile Preparation of Tunable Polyborosiloxane Networks via Hydrosilylation. Chemistry of Materials 2024, 36 (12) , 5935-5942. https://doi.org/10.1021/acs.chemmater.4c00224
    7. Laura Ballester-Bayarri, Alodi Pascal, Jon Ayestaran, Alba Gonzalez, Nicholas Ballard, Robert Aguirresarobe. 3D Printing of Vinylogous Urethane-Based Methacrylic Covalent Adaptable Networks by Vat Photopolymerization. ACS Applied Polymer Materials 2024, 6 (5) , 2594-2603. https://doi.org/10.1021/acsapm.3c02777
    8. Neil D. Dolinski, Ran Tao, Nicholas R. Boynton, Anthony P. Kotula, Charlie A. Lindberg, Kyle J. Petersen, Aaron M. Forster, Stuart J. Rowan. Connecting Molecular Exchange Dynamics to Stress Relaxation in Phase-Separated Dynamic Covalent Networks. ACS Macro Letters 2024, 13 (2) , 174-180. https://doi.org/10.1021/acsmacrolett.3c00717
    9. Lisa Sinawehl, Raffael Wolff, Thomas Koch, Jürgen Stampfl, Robert Liska, Stefan Baudis. Photopolymers Based on Boronic Esters for the Enhanced Degradation of 3D-Printed Scaffolds. ACS Applied Polymer Materials 2023, 5 (7) , 5758-5771. https://doi.org/10.1021/acsapm.3c01000
    10. Yunchao Jia, Fei Ling, Jingjing Qian, Qianqian Chen, Zhiwei Zhao, Yilong Li. Fast Damage-Healing of Rigid Photocuring 3D Printing Materials Capable of Directly Recycling in 3D Printing. ACS Macro Letters 2023, 12 (6) , 719-724. https://doi.org/10.1021/acsmacrolett.3c00116
    11. Jie-Wei Wong, Xuxu Yang, Qian Zhao, Yaoting Xue, Tow-Jie Lok, Li Wang, Xiulin Fan, Xuezhang Xiao, Tuck-Whye Wong, Tiefeng Li, Lixin Chen, Ahmad Fauzi Ismail. Sustainable Approach for the Synthesis of a Semicrystalline Polymer with a Reversible Shape-Memory Effect. ACS Macro Letters 2023, 12 (5) , 563-569. https://doi.org/10.1021/acsmacrolett.3c00017
    12. Alexa S. Kuenstler, Juan J. Hernandez, Marianela Trujillo-Lemon, Alexander Osterbaan, Christopher N. Bowman. Vat Photopolymerization Additive Manufacturing of Tough, Fully Recyclable Thermosets. ACS Applied Materials & Interfaces 2023, 15 (8) , 11111-11121. https://doi.org/10.1021/acsami.2c22081
    13. Vincent S. D. Voet. Closed-Loop Additive Manufacturing: Dynamic Covalent Networks in Vat Photopolymerization. ACS Materials Au 2023, 3 (1) , 18-23. https://doi.org/10.1021/acsmaterialsau.2c00058
    14. Sean J. D. Lugger, Ruth M. C. Verbroekken, Dirk J. Mulder, Albert P. H. J. Schenning. Direct Ink Writing of Recyclable Supramolecular Soft Actuators. ACS Macro Letters 2022, 11 (7) , 935-940. https://doi.org/10.1021/acsmacrolett.2c00359
    15. Mitra Asadi-Eydivand, Trevor C. Brown, Ali Bagheri. RAFT-Mediated 3D Printing of “Living” Materials with Tailored Hierarchical Porosity. ACS Applied Polymer Materials 2022, 4 (7) , 4940-4948. https://doi.org/10.1021/acsapm.2c00500
    16. Alina M. Martinez, Lewis M. Cox, Amir Darabi, Nicholas J. Bongiardina, Christopher N. Bowman. Tunable Surfaces and Films from Thioester Containing Microparticles. ACS Applied Materials & Interfaces 2022, 14 (23) , 27177-27186. https://doi.org/10.1021/acsami.2c05113
    17. Boyeong Kang, Julia A. Kalow. Internal and External Catalysis in Boronic Ester Networks. ACS Macro Letters 2022, 11 (3) , 394-401. https://doi.org/10.1021/acsmacrolett.2c00056
    18. Leslie S. Hamachi, Daniel A. Rau, Clay B. Arrington, Daylan T. Sheppard, David J. Fortman, Timothy E. Long, Christopher B. Williams, William R. Dichtel. Dissociative Carbamate Exchange Anneals 3D Printed Acrylates. ACS Applied Materials & Interfaces 2021, 13 (32) , 38680-38687. https://doi.org/10.1021/acsami.1c09373
    19. Yijie Liu, Jichi Zhang, Yuan Ji, Jiawei Cao, Sen Xu, Peng Luo, Jianpeng Liu, Lina Ma, Guolin Gao, Yadong Wu, Zaixing Jiang. Self-healing polyurethane elastomers with dynamic crosslinked networks for complex structure 3D printing. Chemical Engineering Journal 2025, 507 , 160193. https://doi.org/10.1016/j.cej.2025.160193
    20. Loc Tan Nguyen, Filip E. Du Prez. Direct restoration of photocurable cross-linkers for repeated light-based 3D printing of covalent adaptable networks. Materials Horizons 2024, 11 (24) , 6408-6415. https://doi.org/10.1039/D4MH00823E
    21. Jing Zhang, Mingkun Xu, Nan Zhang, Liming Tao, Mingchao Shao, Tingmei Wang, Zenghui Yang, Qihua Wang, Yaoming Zhang. Exploring the Adaptability of 4D Printed Shape Memory Polymer Featuring Dynamic Covalent Bonds. Small 2024, 20 (49) https://doi.org/10.1002/smll.202406358
    22. Tiantian Zhang, Siqi Huo, Guofeng Ye, Cheng Wang, Qi Zhang, Zhitian Liu. Tough, high-strength, flame-retardant and recyclable polyurethane elastomers based on dynamic borate acid esters. Reactive and Functional Polymers 2024, 205 , 106056. https://doi.org/10.1016/j.reactfunctpolym.2024.106056
    23. Jérémy Odent, Nicolas Baleine, Serena Maria Torcasio, Sarah Gautier, Olivier Coulembier, Jean-Marie Raquez. 3D-Printed Phenylboronic Acid-Bearing Hydrogels for Glucose-Triggered Drug Release. Polymers 2024, 16 (17) , 2502. https://doi.org/10.3390/polym16172502
    24. Minju Pu, Huan Cao, Hengjie Zhang, Tianyou Wang, Yiwen Li, Shimeng Xiao, Zhipeng Gu. ROS-responsive hydrogels: from design and additive manufacturing to biomedical applications. Materials Horizons 2024, 11 (16) , 3721-3746. https://doi.org/10.1039/D4MH00289J
    25. Intanon Lapkriengkri, Kaitlin R. Albanese, Andrew Rhode, Austin Cunniff, Angela A. Pitenis, Michael L. Chabinyc, Christopher M. Bates. Chemical Botany: Bottlebrush Polymers in Materials Science. Annual Review of Materials Research 2024, 54 (1) , 27-46. https://doi.org/10.1146/annurev-matsci-091522-024148
    26. Alberto Andreu, Haeseung Lee, Jiheong Kang, Yong‐Jin Yoon. Self‐Healing Materials for 3D Printing. Advanced Functional Materials 2024, 34 (30) https://doi.org/10.1002/adfm.202315046
    27. Yu Li, Guangmeng Ma, Fawei Guo, Chunyi Luo, Han Wu, Xin Luo, Mingtao Zhang, Chenyun Wang, Qingxin Jin, Yu Long. 3D-printed self-healing, biodegradable materials and their applications. Frontiers of Mechanical Engineering 2024, 19 (3) https://doi.org/10.1007/s11465-024-0787-1
    28. Guangda Zhu, Hannes A. Houck, Christoph A. Spiegel, Christine Selhuber‐Unkel, Yi Hou, Eva Blasco. Introducing Dynamic Bonds in Light‐based 3D Printing. Advanced Functional Materials 2024, 34 (20) https://doi.org/10.1002/adfm.202300456
    29. Sangbin Shin, Yonghwan Kwon, Chiwon Hwang, Woojin Jeon, Youngchang Yu, Hyun‐Jong Paik, Wonjoo Lee, Min Sang Kwon, Dowon Ahn. Visible‐Light‐Driven Rapid 3D Printing of Photoresponsive Resins for Optically Clear Multifunctional 3D Objects. Advanced Materials 2024, 36 (19) https://doi.org/10.1002/adma.202311917
    30. Jessica Lopez Lara, Manuel S. Zayas, Jacob Blankenship, Christopher M. Bates, Jeffrey L. Self, Javier Read de Alaniz. Self‐healing and reprocessing of saturated hydroxyl‐terminated polybutadiene‐based networks enabled by dynamic covalent chemistry. Journal of Polymer Science 2024, 62 (9) , 1800-1807. https://doi.org/10.1002/pol.20230837
    31. Kenneth Cerdan, Marlies Thys, Aleix Costa Cornellà, Fatma Demir, Sophie Norvez, Richard Vendamme, Niko Van den Brande, Peter Van Puyvelde, Joost Brancart. Sustainability of self-healing polymers: A holistic perspective towards circularity in polymer networks. Progress in Polymer Science 2024, 152 , 101816. https://doi.org/10.1016/j.progpolymsci.2024.101816
    32. Ruibin Mo, Duo Yu, Weijie Li, Xinxin Sheng, Xinya Zhang. Storage-stable and self-crosslinkable combinations of boronic acid containing polymers and diol containing polymers enabled by the latex system. Polymer 2024, 299 , 126977. https://doi.org/10.1016/j.polymer.2024.126977
    33. Yun Liu, Sheng Wang, Jidong Dong, Pengfei Huo, Dawei Zhang, Shuaiyuan Han, Jie Yang, Zaixing Jiang. External Stimuli-Induced Welding of Dynamic Cross-Linked Polymer Networks. Polymers 2024, 16 (5) , 621. https://doi.org/10.3390/polym16050621
    34. Viranchika Bijalwan, Sravendra Rana, Gun Jin Yun, Krishna Pal Singh, Muhammad Jamil, Sandra Schlögl. 3D Printing of Covalent Adaptable Networks: Overview, Applications and Future Prospects. Polymer Reviews 2024, 64 (1) , 36-79. https://doi.org/10.1080/15583724.2023.2227692
    35. Yunchao Jia, Haodi Xie, Jingjing Qian, Yueshuai Zhang, Hongjuan Zheng, Fengchun Wei, Yilong Li, Zhiwei Zhao. Recent Progress on the 3D Printing of Dynamically Cross‐Linked Polymers. Advanced Functional Materials 2024, 34 (2) https://doi.org/10.1002/adfm.202307279
    36. Xiao-Hai Wu, Xiao-Jian Bai, Dong-Mei CHEN, Xian-Ming Zhang. Reversible Multifunctional Mural Protective Material with High Durability, Anti-Aging, Breathability, and Harsh-Environment Resistance. 2024https://doi.org/10.2139/ssrn.4830697
    37. Zizheng Fang, Yunpeng Shi, Hongfeng Mu, Runzhi Lu, Jingjun Wu, Tao Xie. 3D printing of dynamic covalent polymer network with on-demand geometric and mechanical reprogrammability. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-37085-9
    38. Yahui Lu, Xing Chen, Fang Han, Qian Zhao, Tao Xie, Jingjun Wu, Yuhua Zhang. 3D printing of self-healing personalized liver models for surgical training and preoperative planning. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-44324-6
    39. Riccardo Levato, Oksana Dudaryeva, Carlos Ezio Garciamendez-Mijares, Bruce E. Kirkpatrick, Riccardo Rizzo, Jacob Schimelman, Kristi S. Anseth, Shaochen Chen, Marcy Zenobi-Wong, Yu Shrike Zhang. Light-based vat-polymerization bioprinting. Nature Reviews Methods Primers 2023, 3 (1) https://doi.org/10.1038/s43586-023-00231-0
    40. You-Chi Mason Wu, Gloria Chyr, Hyunchang Park, Anna Makar-Limanov, Yuran Shi, Joseph M. DeSimone, Zhenan Bao. Stretchable, recyclable thermosets via photopolymerization and 3D printing of hemiacetal ester-based resins. Chemical Science 2023, 14 (44) , 12535-12540. https://doi.org/10.1039/D3SC03623E
    41. Junjie Zhu, Jixun Chen, Zihan An, Ranjith Kumar Kankala, Ai-Zheng Chen, Shi-Bin Wang, Yuewei Li. Photocuring 3D printable self-healing polymers. European Polymer Journal 2023, 199 , 112471. https://doi.org/10.1016/j.eurpolymj.2023.112471
    42. Dan Zheng, Miao Tang, Chenfeng Ke. 3D-printed ketoenamine crosslinked polyrotaxane hydrogels and their mechanochromic responsiveness. Polymer Chemistry 2023, 14 (18) , 2159-2163. https://doi.org/10.1039/D3PY00337J
    43. Soonyoung Choi, Junhee Kim, Eunyong Seo, Hyocheol Jung, Ji-Eun Jeong, Young Il Park, Jin Chul Kim, Dong Woog Lee, Byeong-Su Kim, Sang-Ho Lee. Dual crosslinking polymer networks: correlation between polymer topologies and self-healing efficiency. Polymer Chemistry 2023, 14 (11) , 1184-1194. https://doi.org/10.1039/D3PY00025G
    44. Jianrong Dong, Hongye Yan, Xinhai Lv, Zhenbang Wang, Zixuan Rao, Bailin Zhu, Jun Wu, Yu Zhou, Hongxiang Chen. Reprocessable polyurethane elastomers based on reversible ketal exchange: dielectric properties and water resistance. Journal of Materials Chemistry C 2023, 11 (4) , 1369-1380. https://doi.org/10.1039/D2TC04603B
    45. Xiwei Xu, Jiahui Wu, Mingzhe Li, Sheng Wang, Hongzhi Feng, Binbo Wang, Kezhen Hu, Chuanzhi Zhang, Jin Zhu, Songqi Ma. Synergistic catalytic effect of triple dynamic bonds for fast-reprocessing and high-performance cross-linked polymers. Polymer Chemistry 2023, 14 (4) , 523-532. https://doi.org/10.1039/D2PY01370C
    46. Balaji Krishna Kumar, Tarik J. Dickens. Dynamic bond exchangeable thermoset vitrimers in 3D‐printing. Journal of Applied Polymer Science 2023, 140 (2) https://doi.org/10.1002/app.53304
    47. Xixi Yu, Yun Hu, Wen Lei, Chengguo Liu, Yonghong Zhou. Development of Catalyst-Free Self-Healing Biobased UV-Curable Coatings via Maleate Monoester Transesterification. Coatings 2023, 13 (1) , 110. https://doi.org/10.3390/coatings13010110
    48. Min Lü, Aimei Yang, Yu Zhang, Jianting Sun, Bangguo Wei. Fe(OTf) 3 -Catalyzed Synthesis of Boronic Ester Containing N , O -Acetal Structure. Chinese Journal of Organic Chemistry 2023, 43 (5) , 1777. https://doi.org/10.6023/cjoc202301017
    49. Logan D. Dugas, William D. Walker, Rahul Shankar, Keely S. Hoppmeyer, Travis L. Thornell, Sarah E. Morgan, Robson F. Storey, Derek L. Patton, Yoan C. Simon. Diketoenamine‐Based Vitrimers via Thiol‐ene Photopolymerization. Macromolecular Rapid Communications 2022, 43 (24) https://doi.org/10.1002/marc.202200249
    50. Jin Dong, Congze He, Chaoran Xu, Jie Yun, Xiangcheng Pan. Vinyl boronate polymers with dynamic exchange properties. Polymer Chemistry 2022, 13 (46) , 6408-6414. https://doi.org/10.1039/D2PY01274J
    51. Yunchuan Qi, Olof Ramström. Polymerization, Stimuli‐induced Depolymerization, and Precipitation‐driven Macrocyclization in a Nitroaldol Reaction System**. Chemistry – A European Journal 2022, 28 (64) https://doi.org/10.1002/chem.202201863
    52. Sevinc Gulyuz, Yusuf Yagci, Baris Kiskan. Exploiting the reversible covalent bonding of boronic acids for self-healing/recycling of main-chain polybenzoxazines. Polymer Chemistry 2022, 13 (24) , 3631-3638. https://doi.org/10.1039/D2PY00068G
    53. Chungryong Choi, Yoichi Okayama, Parker T. Morris, Lindsay L. Robinson, Matthias Gerst, Joshua C. Speros, Craig J. Hawker, Javier Read de Alaniz, Christopher M. Bates. Digital Light Processing of Dynamic Bottlebrush Materials. Advanced Functional Materials 2022, 32 (25) https://doi.org/10.1002/adfm.202200883
    54. Peerawat Prathumrat, Mostafa Nikzad, Elnaz Hajizadeh, Reza Arablouei, Igor Sbarski. Shape memory elastomers: A review of synthesis, design, advanced manufacturing, and emerging applications. Polymers for Advanced Technologies 2022, 33 (6) , 1782-1808. https://doi.org/10.1002/pat.5652
    55. Weibo Kong, Yunyun Yang, Jingyi Ning, Xiaowei Fu, Yanjun Wang, Anqian Yuan, Lei Huang, Jie Cao, Jingxin Lei. A highly stable covalent adaptable network through π-π conjugated confinement effect. Polymer 2022, 252 , 124923. https://doi.org/10.1016/j.polymer.2022.124923
    56. Noémie Gil, Constance Thomas, Rana Mhanna, Jessica Mauriello, Romain Maury, Benjamin Leuschel, Jean‐Pierre Malval, Jean‐Louis Clément, Didier Gigmes, Catherine Lefay, Olivier Soppera, Yohann Guillaneuf. Thionolactone as a Resin Additive to Prepare (Bio)degradable 3D Objects via VAT Photopolymerization**. Angewandte Chemie 2022, 134 (18) https://doi.org/10.1002/ange.202117700
    57. Noémie Gil, Constance Thomas, Rana Mhanna, Jessica Mauriello, Romain Maury, Benjamin Leuschel, Jean‐Pierre Malval, Jean‐Louis Clément, Didier Gigmes, Catherine Lefay, Olivier Soppera, Yohann Guillaneuf. Thionolactone as a Resin Additive to Prepare (Bio)degradable 3D Objects via VAT Photopolymerization**. Angewandte Chemie International Edition 2022, 61 (18) https://doi.org/10.1002/anie.202117700
    58. Shuyi Peng, Ye Sun, Chunming Ma, Gaigai Duan, Zhenzhong Liu, Chunxin Ma. Recent advances in dynamic covalent bond-based shape memory polymers. e-Polymers 2022, 22 (1) , 285-300. https://doi.org/10.1515/epoly-2022-0032
    59. Mateusz Gosecki, Monika Gosecka. Boronic Acid Esters and Anhydrates as Dynamic Cross-Links in Vitrimers. Polymers 2022, 14 (4) , 842. https://doi.org/10.3390/polym14040842
    60. Robert D. Murphy, Ronnie V. Garcia, Andreas Heise, Craig J. Hawker. Peptides as 3D printable feedstocks: Design strategies and emerging applications. Progress in Polymer Science 2022, 124 , 101487. https://doi.org/10.1016/j.progpolymsci.2021.101487

    ACS Macro Letters

    Cite this: ACS Macro Lett. 2021, 10, 7, 857–863
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsmacrolett.1c00257
    Published June 23, 2021
    Copyright © 2021 American Chemical Society

    Article Views

    5842

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.