ACS Publications. Most Trusted. Most Cited. Most Read
Rigid Oligomer from Lignin in Designing of Tough, Self-Healing Elastomers
My Activity

Figure 1Loading Img
    Letter

    Rigid Oligomer from Lignin in Designing of Tough, Self-Healing Elastomers
    Click to copy article linkArticle link copied!

    • Mengmeng Cui*
      Mengmeng Cui
      Carbon and Composite Group, Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
      *E-mail: [email protected] (M. Cui).
      More by Mengmeng Cui
    • Ngoc A. Nguyen
      Ngoc A. Nguyen
      Carbon and Composite Group, Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
    • Peter V. Bonnesen
      Peter V. Bonnesen
      Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
    • David Uhrig
      David Uhrig
      Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
      More by David Uhrig
    • Jong K. Keum
      Jong K. Keum
      Neutron Science Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
      More by Jong K. Keum
    • Amit K. Naskar*
      Amit K. Naskar
      Carbon and Composite Group, Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
      *E-mail: [email protected] (A. K. Naskar).
    Other Access OptionsSupporting Information (3)

    ACS Macro Letters

    Cite this: ACS Macro Lett. 2018, 7, 11, 1328–1332
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsmacrolett.8b00600
    Published October 16, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Converting lignin into well-defined compounds is often challenged by structural complexation and inorganic contamination induced by the pulping process. In this report, instead of breaking down lignin into small molecules, we extracted a uniform and rigid oligomer from the lignin waste stream. The multifunctional polyphenol oligomer containing carboxylic acid, alcohol, and phenol groups is highly reactive and brings stiffness into the material matrix. Tough and self-healing elastomers are economically prepared from this oligomer by a reaction with epoxy-terminated polyethylene glycol, without needing any solvent. Specifically, the polyaromatic backbone’s rigidity enhances the elastomer’s toughness, and the multiple polar substituents form a network of hydrogen bonding that heals the elastomer. Many other applications, including adhesives, hydrogels, coating, and metal scavengers, are envisioned based on this oligomer’s unique properties.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsmacrolett.8b00600.

    • Additional characterization data (PDF)

    • Movie of tensile test of tough elastomer (AVI)

    • Movie of instant self-healing (AVI)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 59 publications.

    1. Naresh C. Osti, Roddel A. Remy, Eugene Mamontov, Rigoberto Advincula, Ngoc A. Nguyen. Designing a Dynamic Material via Interlocking Kraft Lignin with Ultrahigh Molecular Weight Poly(ethylene oxide). ACS Applied Polymer Materials 2024, 6 (19) , 11877-11888. https://doi.org/10.1021/acsapm.4c01971
    2. Yehan Tao, Siying Zhou, Qi Luo, Fei Song, Xiaoyu Gong, Zhicheng Wang, Haisong Wang, Changzhi Li. Replacing Phenol and Formaldehyde for Green Adhesive Synthesis by Lignin and Furfural. ACS Applied Polymer Materials 2024, 6 (12) , 6897-6905. https://doi.org/10.1021/acsapm.3c03087
    3. Jiang Yang, Xintong Wang, Hailing Liu. Lignins and Lignin Derivatives as Dispersants for Copper Phthalocyanine Pigment Nanoparticles. ACS Sustainable Chemistry & Engineering 2023, 11 (22) , 8199-8207. https://doi.org/10.1021/acssuschemeng.2c04657
    4. Hongyan Wang, Gavin J. Giardino, Rong Chen, Cangjie Yang, Jia Niu, Dunwei Wang. Photocatalytic Depolymerization of Native Lignin toward Chemically Recyclable Polymer Networks. ACS Central Science 2023, 9 (1) , 48-55. https://doi.org/10.1021/acscentsci.2c01257
    5. Arun Ghosh. Organosolv Lignin Improved Thermoplastic Elastomeric Behavior of Polyethylene/Polyisoprene Blend. ACS Omega 2022, 7 (10) , 8483-8492. https://doi.org/10.1021/acsomega.1c06062
    6. Rui Tang, Bailiang Xue, Jiaojun Tan, Ying Guan, Jialong Wen, Xinping Li, Wei Zhao. Regulating Lignin-Based Epoxy Vitrimer Performance by Fine-Tuning the Lignin Structure. ACS Applied Polymer Materials 2022, 4 (2) , 1117-1125. https://doi.org/10.1021/acsapm.1c01541
    7. Adrian Moreno, Mohammad Morsali, Mika H. Sipponen. Catalyst-Free Synthesis of Lignin Vitrimers with Tunable Mechanical Properties: Circular Polymers and Recoverable Adhesives. ACS Applied Materials & Interfaces 2021, 13 (48) , 57952-57961. https://doi.org/10.1021/acsami.1c17412
    8. Nihal Kanbargi, Monojoy Goswami, Liam Collins, Logan T Kearney, Christopher C Bowland, Keonhee Kim, Kalavathy Rajan, Nicole Labbe, Amit K Naskar. Synthesis of High-Performance Lignin-Based Inverse Thermoplastic Vulcanizates with Tailored Morphology and Properties. ACS Applied Polymer Materials 2021, 3 (6) , 2911-2920. https://doi.org/10.1021/acsapm.0c01387
    9. Yi Meng, Fuyu Song, Hang Chen, Yi Cheng, Jie Lu, Haisong Wang. Composited Gels from Nature Growing Scaffold: Synthesis, Properties, and Application. ACS Applied Materials & Interfaces 2021, 13 (4) , 5498-5507. https://doi.org/10.1021/acsami.0c18504
    10. Shou Zhao, Mahdi M. Abu-Omar. Materials Based on Technical Bulk Lignin. ACS Sustainable Chemistry & Engineering 2021, 9 (4) , 1477-1493. https://doi.org/10.1021/acssuschemeng.0c08882
    11. Richard Vendamme, Jean Behaghel de Bueren, Jaime Gracia-Vitoria, Florence Isnard, Mikael Monga Mulunda, Pablo Ortiz, Mohan Wadekar, Karolien Vanbroekhoven, Chloé Wegmann, Raymond Buser, Florent Héroguel, Jeremy S. Luterbacher, Walter Eevers. Aldehyde-Assisted Lignocellulose Fractionation Provides Unique Lignin Oligomers for the Design of Tunable Polyurethane Bioresins. Biomacromolecules 2020, 21 (10) , 4135-4148. https://doi.org/10.1021/acs.biomac.0c00927
    12. Wenpeng Zhao, Yaoyao Liu, Zixiang Zhang, Xianqi Feng, Hong Xu, Jun Xu, Jian Hu, Shouguo Wang, Yumin Wu, Shouke Yan. High-Strength, Fast Self-Healing, Aging-Insensitive Elastomers with Shape Memory Effect. ACS Applied Materials & Interfaces 2020, 12 (31) , 35445-35452. https://doi.org/10.1021/acsami.0c09045
    13. Robert M. O’Dea, Jordan A. Willie, Thomas H. Epps, III. 100th Anniversary of Macromolecular Science Viewpoint: Polymers from Lignocellulosic Biomass. Current Challenges and Future Opportunities. ACS Macro Letters 2020, 9 (4) , 476-493. https://doi.org/10.1021/acsmacrolett.0c00024
    14. Songjia Han, Chunrui Liu, Xiaoyun Lin, Jiwen Zheng, Jin Wu, Chuan Liu. Dual Conductive Network Hydrogel for a Highly Conductive, Self-Healing, Anti-Freezing, and Non-Drying Strain Sensor. ACS Applied Polymer Materials 2020, 2 (2) , 996-1005. https://doi.org/10.1021/acsapm.9b01198
    15. Arun Ghosh, Keonhee Kim, Kalavathy Rajan, Christopher C. Bowland, Raghu N. Gurram, Robert W. Montgomery, Ali Manesh, Nicole Labbé, Amit K. Naskar. Butanol-Based Organosolv Lignin and Reactive Modification of Poly(ethylene-glycidyl methacrylate). Industrial & Engineering Chemistry Research 2019, 58 (44) , 20300-20308. https://doi.org/10.1021/acs.iecr.9b04071
    16. Antoine Adjaoud, Nicolas Brosse, Pierre Verge. Lignin-derived thermosets and vitrimers: Bridging the gap between renewable and recyclable materials. Materials Today Chemistry 2024, 42 , 102342. https://doi.org/10.1016/j.mtchem.2024.102342
    17. Rizki Utami, My Ha Tran, Eun Yeol Lee. Mini-review on lignin-based self-healing polymer. International Journal of Biological Macromolecules 2024, 23 , 135295. https://doi.org/10.1016/j.ijbiomac.2024.135295
    18. Philip Verdross, Robert T. Woodward, Alexander Bismarck. Flexing with lignin: lignin-based elastomers synthesised from untreated kraft black liquor. Polymer Chemistry 2024, 15 (26) , 2687-2697. https://doi.org/10.1039/D4PY00490F
    19. Yu Miao, Yipeng Liang, Enfu Wang, Chunping Dai, Changying Ren, Yizhong Cao, Long-Hai Zou, Wenbiao Zhang, Jingda Huang. Magnetic superhydrophobic cellulose nanofibril based aerogel with rope-ladder like structure incorporating both superelasticity and excellent oil absorption. Journal of Environmental Management 2024, 358 , 120909. https://doi.org/10.1016/j.jenvman.2024.120909
    20. Rohan Shorey, Ayyoub Salaghi, Pedram Fatehi, Tizazu H. Mekonnen. Valorization of lignin for advanced material applications: a review. RSC Sustainability 2024, 2 (4) , 804-831. https://doi.org/10.1039/D3SU00401E
    21. Xiaoxue Wu, Zhiqiang Qi, Xinyi Li, Hao Wang, Keyan Yang, Hongzhen Cai, Xiangsheng Han. Polymerizable deep eutectic solvent treated lignocellulose: Green strategy for synergetic production of tough strain sensing elastomers and nanocellulose. International Journal of Biological Macromolecules 2024, 264 , 130670. https://doi.org/10.1016/j.ijbiomac.2024.130670
    22. Zeyang Yu, Nihal Kanbargi, Sumit Gupta, Yongsoon Shin, Yao Qiao, Christopher C. Bowland, Daniel R. Merkel, Kevin L. Simmons, Amit K. Naskar. Acrylonitrile‐butadiene‐lignin thermoplastic rubber adhesive for enhanced metal‐to‐metal joining. Polymer Composites 2024, https://doi.org/10.1002/pc.28258
    23. Hao Jiang, Wuting Pang, Meng Cheng, Tong Yan, Zhikun Wang, Zhihao Zhao, Chunling Li, Shuangqing Sun, Songqing Hu. Construction and mechanism of phase-locked structured PU elastomers with tunable mechanical and self-healing properties. Applied Surface Science 2024, 649 , 159136. https://doi.org/10.1016/j.apsusc.2023.159136
    24. Sargun Singh Rohewal, Nihal Kanbargi, Rebecca Young, Logan T. Kearney, Joshua T. Damron, Holly Hinton, Laurene Tetard, Amit K. Naskar. Fast relaxing sustainable soft vitrimer with enhanced recyclability. Polymer Chemistry 2024, 19 https://doi.org/10.1039/D3PY01177A
    25. Wei Tian, Xiaoyi Wang, Yuhang Ye, Weijie Wu, Yuli Wang, Shaohua Jiang, Jiangbo Wang, Xiaoshuai Han. Recent progress of biomass in conventional wood adhesives: a review. Green Chemistry 2023, 25 (24) , 10304-10337. https://doi.org/10.1039/D3GC03441K
    26. Zhiyi Huang, Huan Wang, Jiahao Du, Xiaochun Liu, Guoyi Pan, Xingshan Yin, Wenjing Lin, Xiaofeng Lin, Yingjuan Sun, Guobin Yi, Li Niu. High-strength, self-reinforcing and recyclable multifunctional lignin-based polyurethanes based on multi-level dynamic cross-linking. Chemical Engineering Journal 2023, 473 , 145423. https://doi.org/10.1016/j.cej.2023.145423
    27. Shrabana Sarkar, Bhavya Parameswaran, Nikhil K. Singha. Room temperature healable elastomer composite based on light induced supramolecular chemistry. European Polymer Journal 2023, 195 , 112194. https://doi.org/10.1016/j.eurpolymj.2023.112194
    28. Ngoc A. Nguyen, Christopher C. Bowland, Lilin He, Naresh C. Osti, Minh D. Phan, Jong K. Keum, Madhusudan Tyagi, Kelly M. Meek, Kenneth C. Littrell, Eugene Mamontov, John Ankner, Amit K. Naskar. A Sustainable Multi‐Dimensional Printable Material. Advanced Sustainable Systems 2023, 7 (7) https://doi.org/10.1002/adsu.202300079
    29. Alison J. Shapiro, Robert M. O'Dea, Sonia C. Li, Jamael C. Ajah, Garrett F. Bass, Thomas H. Epps,. Engineering Innovations, Challenges, and Opportunities for Lignocellulosic Biorefineries: Leveraging Biobased Polymer Production. Annual Review of Chemical and Biomolecular Engineering 2023, 14 (1) , 109-140. https://doi.org/10.1146/annurev-chembioeng-101121-084152
    30. Nihal Kanbargi, David Hoskins, Sumit Gupta, Zeyang Yu, Yongsoon Shin, Yao Qiao, Daniel R. Merkel, Christopher C. Bowland, Nicole Labbé, Kevin L. Simmons, Amit K. Naskar. A renewable lignin-based thermoplastic adhesive for steel joining. European Polymer Journal 2023, 189 , 111981. https://doi.org/10.1016/j.eurpolymj.2023.111981
    31. Jost Ruwoldt, Fredrik Heen Blindheim, Gary Chinga-Carrasco. Functional surfaces, films, and coatings with lignin – a critical review. RSC Advances 2023, 13 (18) , 12529-12553. https://doi.org/10.1039/D2RA08179B
    32. Zakariya Zubair, Ahmad Usman, Asif Hafeez. Self-healing Elastomers. 2023, 101-128. https://doi.org/10.1007/978-981-99-0787-8_6
    33. Alessandro Gandini, Talita M. Lacerda. Polymers from Renewable Resources: Macromolecular Materials for the Twenty‐First Century?. 2022, 1-79. https://doi.org/10.1002/9783527815562.mme0019
    34. Robert M. O’Dea, Paula A. Pranda, Yuqing Luo, Alice Amitrano, Elvis O. Ebikade, Eric R. Gottlieb, Olumoye Ajao, Marzouk Benali, Dionisios G. Vlachos, Marianthi Ierapetritou, Thomas H. Epps. Ambient-pressure lignin valorization to high-performance polymers by intensified reductive catalytic deconstruction. Science Advances 2022, 8 (3) https://doi.org/10.1126/sciadv.abj7523
    35. Weijun Yang, Yanlin Zhu, Qingwen Wang, Rongxian Ou, Piming Ma. Biopolymer/nanolignin films with enhanced toughness. 2022, 433-458. https://doi.org/10.1016/B978-0-12-823702-1.00008-6
    36. Pallabi Sinha Roy, Matthieu M. Mention, Matthew A. P. Turner, Fanny Brunissen, Vasilios G. Stavros, Gil Garnier, Florent Allais, Kei Saito. Bio-based photo-reversible self-healing polymer designed from lignin. Green Chemistry 2021, 23 (24) , 10050-10061. https://doi.org/10.1039/D1GC02957F
    37. Nan Sun, Zhaofeng Wang, Xi Ma, Kaixin Zhang, Zeyu Wang, Zhenyu Guo, Yun Chen, Lihao Sun, Wang Lu, Yang Liu, Mingwei Di. Preparation and characterization of lignin-containing self-healing polyurethane elastomers with hydrogen and disulfide bonds. Industrial Crops and Products 2021, 174 , 114178. https://doi.org/10.1016/j.indcrop.2021.114178
    38. Wenyan Wang, Zijian Guo, Zongxu Liu, Shuai Qiu, Chunmei Li, Qiuyu Zhang. A spontaneously healable robust ABA tri-block polyacrylate elastomer with a multiphase structure. Polymer Chemistry 2021, 12 (40) , 5851-5860. https://doi.org/10.1039/D1PY00907A
    39. Bailiang Xue, Rui Tang, Danwei Xue, Ying Guan, Yongchang Sun, Wei Zhao, Jiaojun Tan, Xinping Li. Sustainable alternative for bisphenol A epoxy resin high-performance and recyclable lignin-based epoxy vitrimers. Industrial Crops and Products 2021, 168 , 113583. https://doi.org/10.1016/j.indcrop.2021.113583
    40. Xiaoyu Gong, Yi Meng, Junjie Zhu, Xing Wang, Jie Lu, Yi Cheng, Yehan Tao, Haisong Wang. Construct a stable super-hydrophobic surface through acetonitrile extracted lignin and nano-silica and its application in oil-water separation. Industrial Crops and Products 2021, 166 , 113471. https://doi.org/10.1016/j.indcrop.2021.113471
    41. Jiake Wang, Yongqi Deng, Zhongzheng Ma, Yan Wang, Shangzhong Zhang, Lifeng Yan. Lignin promoted the fast formation of a robust and highly conductive deep eutectic solvent ionic gel at room temperature for a flexible quasi-solid-state supercapacitor and strain sensors. Green Chemistry 2021, 23 (14) , 5120-5128. https://doi.org/10.1039/D1GC01512E
    42. Sakrit Hait, Debapriya De, Prasenjit Ghosh, Jagannath Chanda, Rabindra Mukhopadhyay, Saikat Dasgupta, Aladdin Sallat, Muhannad Al Aiti, Klaus Werner Stöckelhuber, Sven Wießner, Gert Heinrich, Amit Das. Understanding the Coupling Effect between Lignin and Polybutadiene Elastomer. Journal of Composites Science 2021, 5 (6) , 154. https://doi.org/10.3390/jcs5060154
    43. Badri Narayanan Narasimhan, Gerrit Sjoerd Deijs, Sesha Manuguri, Matthew Sheng Hao Ting, M. A. K. Williams, Jenny Malmström. A comparative study of tough hydrogen bonding dissipating hydrogels made with different network structures. Nanoscale Advances 2021, 3 (10) , 2934-2947. https://doi.org/10.1039/D1NA00103E
    44. Yongjian Zhang, Hao Wang, Thomas L. Eberhardt, Qiang Gu, Hui Pan. Preparation of carboxylated lignin-based epoxy resin with excellent mechanical properties. European Polymer Journal 2021, 150 , 110389. https://doi.org/10.1016/j.eurpolymj.2021.110389
    45. Somaye Akbari, Addie Bahi, Ali Farahani, Abbas S. Milani, Frank Ko. Fabrication and Characterization of Lignin/Dendrimer Electrospun Blended Fiber Mats. Molecules 2021, 26 (3) , 518. https://doi.org/10.3390/molecules26030518
    46. Haisong Wang, Xiaoyu Gong, Jingwei Gong. Current and Future Challenges of Bio-Based Adhesives for Wood Composite Industries. 2021, 147-164. https://doi.org/10.1007/978-981-33-4749-6_8
    47. Weiqi Huang, Mang Wu, Kalavathy Rajan, Zhongkai Wang, Liang Zhou. Valorization of organosolv lignin: Architectural strategy to enhance mechanical strength and UV protection in self-healing polymers. Industrial Crops and Products 2021, 159 , 113062. https://doi.org/10.1016/j.indcrop.2020.113062
    48. Gyoung G. Jang, Ngoc A. Nguyen, Christopher C. Bowland, Hoi Chun Ho, Jong K. Keum, Amit K. Naskar. Effects of graphene surface functionalities towards controlled reinforcement of a lignin based renewable thermoplastic rubber. Composites Science and Technology 2020, 199 , 108352. https://doi.org/10.1016/j.compscitech.2020.108352
    49. Xiaoyu Gong, Tanglong Liu, Shanshan Yu, Yi Meng, Jie Lu, Yi Cheng, Haisong Wang. The preparation and performance of a novel lignin-based adhesive without formaldehyde. Industrial Crops and Products 2020, 153 , 112593. https://doi.org/10.1016/j.indcrop.2020.112593
    50. Yu-han Li, Wen-juan Guo, Wen-juan Li, Xin Liu, Hao Zhu, Jin-ping Zhang, Xing-jiang Liu, Liu-he Wei, Ai-ling Sun. Tuning hard phase towards synergistic improvement of toughness and self-healing ability of poly(urethane urea) by dual chain extenders and coordinative bonds. Chemical Engineering Journal 2020, 393 , 124583. https://doi.org/10.1016/j.cej.2020.124583
    51. Wuhou Fan, Yong Jin, Liangjie Shi, Rong Zhou, Weining Du. Developing visible-light-induced dynamic aromatic Schiff base bonds for room-temperature self-healable and reprocessable waterborne polyurethanes with high mechanical properties. Journal of Materials Chemistry A 2020, 8 (14) , 6757-6767. https://doi.org/10.1039/C9TA13928A
    52. Mengmeng Cui, Qiang Gao, Christopher C. Bowland, Eric M. Burgeson, Kunlun Hong, Pengtao Yue, Amit K. Naskar. A Cast Net Thrown onto an Interface: Wrapping 3D Objects with an Interfacially Jammed Amphiphilic Sheet. Advanced Materials Interfaces 2020, 7 (7) https://doi.org/10.1002/admi.201901751
    53. Ngoc Nguyen, Christopher Bowland, Peter Bonnesen, Kenneth Littrell, Jong Keum, Amit Naskar. Fractionation of Lignin for Selective Shape Memory Effects at Elevated Temperatures. Materials 2020, 13 (8) , 1940. https://doi.org/10.3390/ma13081940
    54. L.-S. Ebers, R. Auvergne, B. Boutevin, M.-P. Laborie. Impact of PEO structure and formulation on the properties of a Lignin/PEO blend. Industrial Crops and Products 2020, 143 , 111883. https://doi.org/10.1016/j.indcrop.2019.111883
    55. Yong Qian, Yijie Zhou, Lan Li, Weifeng Liu, Dongjie Yang, Xueqing Qiu. Facile preparation of active lignin capsules for developing self-healing and UV-blocking polyurea coatings. Progress in Organic Coatings 2020, 138 , 105354. https://doi.org/10.1016/j.porgcoat.2019.105354
    56. Shishuai Gao, Yupeng Liu, Chunpeng Wang, Fuxiang Chu, Feng Xu, Daihui Zhang. Synthesis of Lignin-Based Polyacid Catalyst and Its Utilization to Improve Water Resistance of Urea–formaldehyde Resins. Polymers 2020, 12 (1) , 175. https://doi.org/10.3390/polym12010175
    57. Siqi Huang, Su Shuyi, Haibo Gan, Wu Linjun, Chaohui Lin, Xu Danyuan, Haifeng Zhou, Xuliang Lin, Yanlin Qin. Facile fabrication and characterization of highly stretchable lignin-based hydroxyethyl cellulose self-healing hydrogel. Carbohydrate Polymers 2019, 223 , 115080. https://doi.org/10.1016/j.carbpol.2019.115080
    58. Ran Wang, Qingyu Yu, Ying He, Jiahui Bai, Tifeng Jiao, Lexin Zhang, Zhenhua Bai, Jingxin Zhou, Qiuming Peng. Self-assembled polyelectrolyte-based composite hydrogels with enhanced stretchable and adsorption performances. Journal of Molecular Liquids 2019, 294 , 111576. https://doi.org/10.1016/j.molliq.2019.111576
    59. Hanchao Liu, Hao Zhang, Hao Wang, Xin Huang, Guangsu Huang, Jinrong Wu. Weldable, malleable and programmable epoxy vitrimers with high mechanical properties and water insensitivity. Chemical Engineering Journal 2019, 368 , 61-70. https://doi.org/10.1016/j.cej.2019.02.177

    ACS Macro Letters

    Cite this: ACS Macro Lett. 2018, 7, 11, 1328–1332
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsmacrolett.8b00600
    Published October 16, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    3672

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.