ACS Publications. Most Trusted. Most Cited. Most Read
[Cu23(PhSe)16(Ph3P)8(H)6]·BF4: Atomic-Level Insights into Cuboidal Polyhydrido Copper Nanoclusters and Their Quasi-simple Cubic Self-Assembly
My Activity
    Letter

    [Cu23(PhSe)16(Ph3P)8(H)6]·BF4: Atomic-Level Insights into Cuboidal Polyhydrido Copper Nanoclusters and Their Quasi-simple Cubic Self-Assembly
    Click to copy article linkArticle link copied!

    • Ren-Wu Huang
      Ren-Wu Huang
      Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
      KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
      More by Ren-Wu Huang
    • Jun Yin
      Jun Yin
      Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
      More by Jun Yin
    • Chunwei Dong
      Chunwei Dong
      Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
      KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
      More by Chunwei Dong
    • Partha Maity
      Partha Maity
      Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
      More by Partha Maity
    • Mohamed Nejib Hedhili
      Mohamed Nejib Hedhili
      Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
    • Saidkhodzha Nematulloev
      Saidkhodzha Nematulloev
      Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
      KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
    • Badriah Alamer
      Badriah Alamer
      Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
      KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
      Department of Chemistry, College of Sciences, Taif University, Taif 11099, Saudi Arabia
    • Atanu Ghosh
      Atanu Ghosh
      Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
      KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
      More by Atanu Ghosh
    • Omar F. Mohammed
      Omar F. Mohammed
      Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
    • Osman M. Bakr*
      Osman M. Bakr
      Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
      KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (2)

    ACS Materials Letters

    Cite this: ACS Materials Lett. 2021, 3, 1, 90–99
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsmaterialslett.0c00513
    Published December 17, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Polyhydrido copper nanoclusters are an emerging class of nanomaterials. Unfortunately, insights into the structural evolution and structure–property relationship of such copper nanoclusters are scant, because of the difficulty of synthesizing and crystallizing nanoclusters with high nuclearity and new morphologies. Here, we report an anisotropic cuboidal polyhydrido copper nanocluster, [Cu23(PhSe)16(Ph3P)8(H)6]·BF4, with a distorted cuboctahedral Cu13 core stabilized by two square protecting motifs and six hydrides. The cuboidal nanoclusters self-assemble into a quasi-simple cubic packing pattern with perfect face-to-face contact of neighboring nanoclusters and interdigitation of intercluster surface ligands. Atomic-level observations reveal the crucial role that subtle synergies between nanocluster geometry and intercluster noncovalent interactions play in guiding nanocluster self-assembly. In addition, a comparison with previously reported analogous metal nanoclusters points to bulky monodentate phosphine ligands as a potent inducing agent for the formation of rectangular hexahedral nanoclusters. These findings have significant implications for the controllable synthesis of polyhedral nanomaterials and their superstructures.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website. (PDF) (CIF) The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsmaterialslett.0c00513.

    • Details regarding instrumentation and characterization, including UV–vis, ESI-MS, NMR, X-ray crystallography, XPS, fs-TA analysis, and DFT calculations; supporting Figures S1–S27 and Tables S1–S3;CheckCIF/PLATON report of [Cu23(PhSe)16(Ph3P)8(H)6]·BF4 (PDF)

    • Crystallographic structure of the [Cu23(PhSe)16(Ph3P)8(H)6]·BF4 (CIF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 52 publications.

    1. Jing Sun, Qingyuan Wu, Xiaodan Yan, Lei Li, Xiongkai Tang, Xuekun Gong, Bingzheng Yan, Qinghua Xu, Qingxiang Guo, Jinlu He, Hui Shen. Structure Distortion Endows Copper Nanoclusters with Surface-Active Uncoordinated Sites for Boosting Catalysis. JACS Au 2024, 4 (9) , 3427-3435. https://doi.org/10.1021/jacsau.4c00574
    2. Badriah Alamer, Arunachalam Sagadevan, Mohammad Bodiuzzaman, Kathiravan Murugesan, Salman Alsharif, Ren-Wu Huang, Atanu Ghosh, Malenahalli H. Naveen, Chunwei Dong, Saidkhodzha Nematulloev, Jun Yin, Aleksander Shkurenko, Mutalifu Abulikemu, Xinglong Dong, Yu Han, Mohamed Eddaoudi, Magnus Rueping, Osman M. Bakr. Planar Core and Macrocyclic Shell Stabilized Atomically Precise Copper Nanocluster Catalyst for Efficient Hydroboration of C–C Multiple Bond. Journal of the American Chemical Society 2024, 146 (23) , 16295-16305. https://doi.org/10.1021/jacs.4c05077
    3. Bingzheng Yan, Xuexin You, Xiongkai Tang, Jing Sun, Qinghua Xu, Lin Wang, Zong-Jie Guan, Fengyu Li, Hui Shen. Carboxylate-Protected “Isostructural” Cu20 Nanoclusters as a Model System: Carboxylate Effect on Controlling Catalysis. Chemistry of Materials 2024, 36 (2) , 1004-1012. https://doi.org/10.1021/acs.chemmater.3c03131
    4. Jing Sun, Xiongkai Tang, Zhuang-Hua Liu, Zhenlang Xie, Bingzheng Yan, Runfang Yin, Chaolumen Chaolumen, Jian Zhang, Weihui Fang, Jianyu Wei, Hui Shen. Labile Ligands Protected Cu50 Nanoclusters with Tailorable Optical Limiting Effect. ACS Materials Letters 2024, 6 (1) , 281-289. https://doi.org/10.1021/acsmaterialslett.3c01305
    5. Cheng Xu, Yuhao Jin, Hao Fang, Huijuan Zheng, Jesse C. Carozza, Yanxiong Pan, Ping-Jie Wei, Zhenyi Zhang, Zheng Wei, Zheng Zhou, Haixiang Han. A High-Nuclearity Copper Sulfide Nanocluster [S-Cu50] Featuring a Double-Shell Structure Configuration with Cu(II)/Cu(I) Valences. Journal of the American Chemical Society 2023, 145 (47) , 25673-25685. https://doi.org/10.1021/jacs.3c08549
    6. Xiaoxuan Xu, Ying Liu, Fang Sun, Yanyuan Jia, Qinghua Xu, Jiaqi Tang, Zhenlang Xie, Jing Sun, Simin Li, Qing Tang, Shuo Guo, Hui Shen, Nanfeng Zheng. Array-Based Clusters of Copper with Largely Exposed Metal Sites for Promoting Catalysis. Chemistry of Materials 2023, 35 (18) , 7588-7596. https://doi.org/10.1021/acs.chemmater.3c01277
    7. Qiu-Qin Huang, Jian Chen, Mei-Yue Hu, Yu-Ling Wang, Yi Li, FengFu Fu, Qiao-Hua Wei. Ionic Liquids-Driven Cluster-to-Cluster Conversion of Polyhydrido Copper(I) Clusters Cu7H5 to Cu8H6 and Cu12H9. Inorganic Chemistry 2023, 62 (37) , 14998-15005. https://doi.org/10.1021/acs.inorgchem.3c01830
    8. Simin Li, Xiaodan Yan, Jiaqi Tang, Dongxu Cao, Xueli Sun, Guolong Tian, Xiongkai Tang, Huifang Guo, Qingyuan Wu, Jing Sun, Jinlu He, Hui Shen. Cu26 Nanoclusters with Quintuple Ligand Shells for CO2 Electrocatalytic Reduction. Chemistry of Materials 2023, 35 (15) , 6123-6132. https://doi.org/10.1021/acs.chemmater.3c01247
    9. Jing Sun, Xiaodan Yan, Lingzheng Wang, Zhenlang Xie, Guolong Tian, Lin Wang, Ayisha He, Simin Li, Qingxiang Guo, Chaolumen, Jinlu He, Hui Shen. Decorating an Anticuboctahedral Copper Kernel with Labile Surface Coatings for Controlling Optical and Catalytic Properties. Inorganic Chemistry 2023, 62 (23) , 9005-9013. https://doi.org/10.1021/acs.inorgchem.3c00710
    10. Xiao-Zhao Zhu, Tao Jia, Zong-Jie Guan, Qian Zhang, Yang Yang. Elongation of a Trigonal-Prismatic Copper Cluster by Diphosphine Ligands with Longer Spacers. Inorganic Chemistry 2022, 61 (38) , 15144-15151. https://doi.org/10.1021/acs.inorgchem.2c02306
    11. Jia-Yin Wang, Ya-Ke Li, Xu Jing, Peng Luo, Xi-Yan Dong, Shuang-Quan Zang. Co-assembly of Ag29 Nanoclusters with Ru(bpy)32+ for Two-Photon Up-Conversion and Singlet Oxygen Generation. ACS Materials Letters 2022, 4 (5) , 960-966. https://doi.org/10.1021/acsmaterialslett.1c00848
    12. Xiao Wei, Xi Kang, Tengfei Duan, Hao Li, Shuxin Wang, Yong Pei, Manzhou Zhu. [Au16Ag43H12(SPhCl2)34]5–: An Au–Ag Alloy Nanocluster with 12 Hydrides and Its Enlightenment on Nanocluster Structural Evolution. Inorganic Chemistry 2021, 60 (15) , 11640-11647. https://doi.org/10.1021/acs.inorgchem.1c01624
    13. Chunwei Dong, Ren-Wu Huang, Cailing Chen, Jie Chen, Saidkhodzha Nematulloev, Xianrong Guo, Atanu Ghosh, Badriah Alamer, Mohamed Nejib Hedhili, Tayirjan T. Isimjan, Yu Han, Omar F. Mohammed, Osman M. Bakr. [Cu36H10(PET)24(PPh3)6Cl2] Reveals Surface Vacancy Defects in Ligand-Stabilized Metal Nanoclusters. Journal of the American Chemical Society 2021, 143 (29) , 11026-11035. https://doi.org/10.1021/jacs.1c03402
    14. Xuekun Gong, Zhuang-Hua Liu, Qinghua Xu, Lin Wang, Qingxiang Guo, Jian Zhang, Qiao-Hong Li, Wei-Hui Fang, Hui Shen. Single-molecule manipulation of copper nanoclusters for modulating nonlinear optics. Polyoxometalates 2025, 4 (1) , 9140072. https://doi.org/10.26599/POM.2024.9140072
    15. Ayisha He, Dongjie Zuo, Guangmei Jiang, Xiongkai Tang, Lin Wang, Liubin Feng, Zaiwang Zhao, Jianyu Wei, Nanfeng Zheng, Hui Shen. Eight-electron Pt/Cu superatom encapsulating three “electron-donating” hydrides. Science Advances 2025, 11 (2) https://doi.org/10.1126/sciadv.ads4488
    16. Junfei Wu., Chen Wang, Ling Chen, Ying Lv, Mengting Cui, Qingliang Li, Xiangyu Zhang, Chen Wang, Haizhu Yu, Manzhou Zhu. Chiral Amphiphilic Au 23 Cluster and Its Specific Recognition to Remote Di‐amines. Chemistry – A European Journal 2024, 30 (65) https://doi.org/10.1002/chem.202403034
    17. Qiaofeng Yao, Moshuqi Zhu, Zhucheng Yang, Xiaorong Song, Xun Yuan, Zhipu Zhang, Wenping Hu, Jianping Xie. Molecule-like synthesis of ligand-protected metal nanoclusters. Nature Reviews Materials 2024, 8 https://doi.org/10.1038/s41578-024-00741-7
    18. Rong Huo, Rui Ren, Lin Wang, Qinghua Xu, Bingzheng Yan, Jiangwei Zhang, Qingxiang Guo, Zongjie Guan, Hui Shen, Nanfeng Zheng. Atomically precise Cu 32 nanoclusters with selenide doping: Synthesis, bonding, and catalysis. Aggregate 2024, 6 https://doi.org/10.1002/agt2.679
    19. Xiaoli Meng, Ayisha He, Xiaodan Yan, Lin Wang, Zaiwang Zhao, Yanyuan Jia, Jinlu He, Shuo Guo, Hui Shen. One-pot gram-scale synthesis of robust copper nanoclusters for photocatalytic difluoroalkylarylation of alkenes. Polyoxometalates 2024, https://doi.org/10.26599/POM.2024.9140080
    20. Peiling Du, Sachurilatu, Wenya Jiang, Jianyu Wei, Simin Li, Hui Shen. Ligand effects in photoluminescence of copper nanoclusters. Dalton Transactions 2024, 53 (36) , 15190-15197. https://doi.org/10.1039/D4DT02060J
    21. . Modification and Assembly of Copper Clusters. 2024, 65-91. https://doi.org/10.1002/9783527842094.ch3
    22. Phoebe R. Hertler, Xiaojuan Yu, Jordan D. Brower, Thuy‐Ai D. Nguyen, Guang Wu, Jochen Autschbach, Trevor W. Hayton. Exploring Spin‐Orbit Effects in a [Cu 6 Tl] + Nanocluster Featuring an Uncommon Tl−H Interaction. Chemistry – A European Journal 2024, 30 (25) https://doi.org/10.1002/chem.202400390
    23. Jing Sun, Xiongkai Tang, Xiaodan Yan, Wentong Jing, Zhenlang Xie, Haoqi Wang, Chaolumen, Jinlu He, Hui Shen. Atomically precise Cu41 clusters as model catalysts: Open metal sites matter. Next Materials 2024, 3 , 100091. https://doi.org/10.1016/j.nxmate.2023.100091
    24. Qian Zhang, Hao Zheng, Jie Zhou, Jia-Ji Yang, Kai-Yue Xu, Lian-Yun Shen, Zong-Jie Guan, Yang Yang. A bowl-shaped phosphangulene-protected cubic Cu 58 nanocluster. Chemical Communications 2024, 60 (17) , 2389-2392. https://doi.org/10.1039/D3CC05791G
    25. Huimin Zhou, Tengfei Duan, Zidong Lin, Tao Yang, Huijuan Deng, Shan Jin, Yong Pei, Manzhou Zhu. Total Structure, Structural Transformation and Catalytic Hydrogenation of [Cu 41 (SC 6 H 3 F 2 ) 15 Cl 3 (P(PhF) 3 ) 6 (H) 25 ] 2− Constructed from Twisted Cu 13 Units. Advanced Science 2024, 11 (7) https://doi.org/10.1002/advs.202307085
    26. Peiyao Pan, Di Zhang, Xuejuan Zou, Xi Kang, Manzhou Zhu. Ligand-correlated crystalline assembly of nanoclusters with atomic precision. Polyoxometalates 2023, 2 (4) , 9140035. https://doi.org/10.26599/POM.2023.9140035
    27. Meng Wang, Lin Wang, Haoyuan Wu, Jing Sun, Xiaoxuan Xu, Shuo Guo, Yanyuan Jia, Simin Li, Zong-Jie Guan, Hui Shen. PtAg 18 superatoms costabilized by phosphines and halides: synthesis, structure, and catalysis. Nanoscale 2023, 15 (44) , 17818-17824. https://doi.org/10.1039/D3NR02196C
    28. Yuping Liu, Jinli Yu, Yongfeng Lun, Yawen Wang, Yi Wang, Shuqin Song. Ligand Design in Atomically Precise Copper Nanoclusters and Their Application in Electrocatalytic Reactions. Advanced Functional Materials 2023, 33 (44) https://doi.org/10.1002/adfm.202304184
    29. Xueli Sun, Peng Wang, Xiaodan Yan, Huifang Guo, Lin Wang, Qinghua Xu, Bingzheng Yan, Simin Li, Jinlu He, Guangxu Chen, Hui Shen, Nanfeng Zheng. Hydride-doped Ag17Cu10 nanoclusters as high-performance electrocatalysts for CO2 reduction. iScience 2023, 26 (10) , 107850. https://doi.org/10.1016/j.isci.2023.107850
    30. Geng‐Geng Luo, Zhong‐Hua Pan, Bao‐Liang Han, Guang‐Lei Dong, Cheng‐Long Deng, Mohammad Azam, Yun‐Wen Tao, Jiao He, Cun‐Fa Sun, Di Sun. Total Structure, Electronic Structure and Catalytic Hydrogenation Activity of Metal‐Deficient Chiral Polyhydride Cu 57 Nanoclusters. Angewandte Chemie International Edition 2023, 62 (37) https://doi.org/10.1002/anie.202306849
    31. Geng‐Geng Luo, Zhong‐Hua Pan, Bao‐Liang Han, Guang‐Lei Dong, Cheng‐Long Deng, Mohammad Azam, Yun‐Wen Tao, Jiao He, Cun‐Fa Sun, Di Sun. Total Structure, Electronic Structure and Catalytic Hydrogenation Activity of Metal‐Deficient Chiral Polyhydride Cu 57 Nanoclusters. Angewandte Chemie 2023, 135 (37) https://doi.org/10.1002/ange.202306849
    32. Lin Wang, Xiongkai Tang, Rong Huo, Xiaoxuan Xu, Zhen Xu, Simin Li, Yanyuan Jia, Jinlu He, Hui Shen. Seven Nuclei Cluster of Copper: Synthesis, Structure and Assembly. ChemistrySelect 2023, 8 (31) https://doi.org/10.1002/slct.202301522
    33. Saidkhodzha Nematulloev, Arunachalam Sagadevan, Badriah Alamer, Aleksander Shkurenko, Renwu Huang, Jun Yin, Chunwei Dong, Peng Yuan, Khursand E. Yorov, Azimet A. Karluk, Wasim J. Mir, Bashir E. Hasanov, Mohamed Nejib Hedhili, Naveen M. Halappa, Mohamed Eddaoudi, Omar F. Mohammed, Magnus Rueping, Osman M. Bakr. Atomically Precise Defective Copper Nanocluster Catalysts for Highly Selective C−C Cross‐Coupling Reactions. Angewandte Chemie International Edition 2023, 62 (26) https://doi.org/10.1002/anie.202303572
    34. Saidkhodzha Nematulloev, Arunachalam Sagadevan, Badriah Alamer, Aleksander Shkurenko, Renwu Huang, Jun Yin, Chunwei Dong, Peng Yuan, Khursand E. Yorov, Azimet A. Karluk, Wasim J. Mir, Bashir E. Hasanov, Mohamed Nejib Hedhili, Naveen M. Halappa, Mohamed Eddaoudi, Omar F. Mohammed, Magnus Rueping, Osman M. Bakr. Atomically Precise Defective Copper Nanocluster Catalysts for Highly Selective C−C Cross‐Coupling Reactions. Angewandte Chemie 2023, 135 (26) https://doi.org/10.1002/ange.202303572
    35. Chunwei Dong, Saidkhodzha Nematulloev, Peng Yuan, Osman M. Bakr. Atomically Precise Copper Nanoclusters. 2023, 257-283. https://doi.org/10.1002/9781119788676.ch8
    36. Lin Wang, Xiaodan Yan, Guolong Tian, Zhenlang Xie, Shanshan Shi, Yuhao Zhang, Simin Li, Xueli Sun, Jing Sun, Jinlu He, Hui Shen. Chiral copper-hydride nanoclusters: synthesis, structure, and assembly. Dalton Transactions 2023, 52 (11) , 3371-3377. https://doi.org/10.1039/D2DT03788B
    37. Jie Tang, Chong Liu, Chenyu Zhu, Keju Sun, He Wang, Wen Yin, Chuting Xu, Yang Li, Weiguo Wang, Li Wang, Renan Wu, Chao Liu, Jiahui Huang. High-nuclearity and thiol protected core–shell [Cu 75 (S-Adm) 32 ] 2+ : distorted octahedra fixed to Cu 15 core via strong cuprophilic interactions. Nanoscale 2023, 15 (6) , 2843-2848. https://doi.org/10.1039/D2NR05921E
    38. Leon Li‐Min Zhang, Wai‐Yeung Wong. Atomically precise copper nanoclusters as ultrasmall molecular aggregates: Appealing compositions, structures, properties, and applications. Aggregate 2023, 4 (1) https://doi.org/10.1002/agt2.266
    39. Xinzhang Lin, Jie Tang, Chenyu Zhu, Li Wang, Yang Yang, Ren'an Wu, Hongjun Fan, Chao Liu, Jiahui Huang. Solvent-mediated precipitating synthesis and optical properties of polyhydrido Cu 13 nanoclusters with four vertex-sharing tetrahedrons. Chemical Science 2023, 14 (4) , 994-1002. https://doi.org/10.1039/D2SC06099J
    40. Ge Yang, Yali Xie, Yaru Wang, Ying Tang, Leng Leng Chng, Fuyi Jiang, Fanglin Du, Xianfeng Zhou, Jackie Y. Ying, Xun Yuan. Water-soluble Cu30 nanoclusters as a click chemistry catalyst for living cell labeling via azide-alkyne cycloaddition. Nano Research 2023, 16 (1) , 1748-1754. https://doi.org/10.1007/s12274-022-4821-5
    41. Manzhou Zhu, Qinzhen Li. Characterizations and atomically precise structures of metal nanoclusters. 2023, 45-78. https://doi.org/10.1016/B978-0-323-90474-2.00004-6
    42. Indranath Chakraborty, Thalappil Pradeep. Other metal nanoclusters. 2023, 497-518. https://doi.org/10.1016/B978-0-323-90879-5.00006-8
    43. . Appendix. 2023, 601-637. https://doi.org/10.1016/B978-0-323-90879-5.00026-3
    44. Papri Chakraborty, Thalappil Pradeep. Mass spectrometry of atomically precise clusters. 2023, 203-227. https://doi.org/10.1016/B978-0-323-90879-5.00022-6
    45. Yizheng Bao, Xiaohang Wu, Bing Yin, Xi Kang, Zidong Lin, Huijuan Deng, Haizhu Yu, Shan Jin, Shuang Chen, Manzhou Zhu. Structured copper-hydride nanoclusters provide insight into the surface-vacancy-defect to non-defect structural evolution. Chemical Science 2022, 13 (48) , 14357-14365. https://doi.org/10.1039/D2SC03239B
    46. Chun-Yu Liu, Shang-Fu Yuan, Song Wang, Zong-Jie Guan, De-en Jiang, Quan-Ming Wang. Structural transformation and catalytic hydrogenation activity of amidinate-protected copper hydride clusters. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-29819-y
    47. Jinlan Li, Xuejie Liu, Jing Jin, Nan Yan, Wei Jiang. Self-assembly of anisotropy gold nanocubes into large area two-dimensional monolayer superlattices. Nanotechnology 2022, 33 (38) , 385601. https://doi.org/10.1088/1361-6528/ac7812
    48. Xianhu Liu, Hui Shen, Yang Gao, Guocheng Deng, Hongwen Deng, Ying-Zi Han, Boon K. Teo, Nanfeng Zheng. Cu 28 H 20 : a peculiar chiral nanocluster with an exposed Cu atom and 13 surface hydrides. Chemical Communications 2022, 58 (55) , 7670-7673. https://doi.org/10.1039/D1CC06415K
    49. Anish Kumar Das, Sourav Biswas, Vaibhav S. Wani, Akhil S. Nair, Biswarup Pathak, Sukhendu Mandal. [Cu 18 H 3 (S-Adm) 12 (PPh 3 ) 4 Cl 2 ]: fusion of Platonic and Johnson solids through a Cu(0) center and its photophysical properties. Chemical Science 2022, 13 (25) , 7616-7625. https://doi.org/10.1039/D2SC02544B
    50. Junjie Fang, Zheng Liu, Yun-Peng Xie, Xing Lu. Synthesis, crystal structures and photoelectric properties of copper(I) alkynyl nanoclusters. Chinese Science Bulletin 2022, 67 (11) , 1119-1136. https://doi.org/10.1360/TB-2021-1084
    51. Qi-Lin Guo, Bao-Liang Han, Cun-Fa Sun, Zhi Wang, Yunwen Tao, Jin-Qing Lin, Geng-Geng Luo, Chen-Ho Tung, Di Sun. Observation of a bcc-like framework in polyhydrido copper nanoclusters. Nanoscale 2021, 13 (46) , 19642-19649. https://doi.org/10.1039/D1NR05567D
    52. Yun-Dong Cao, Hui-Ping Hao, Hua-Shi Liu, Di Yin, Ming-Liang Wang, Guang-Gang Gao, Lin-Lin Fan, Hong Liu. A 20-core copper( i ) nanocluster as electron–hole recombination inhibitor on TiO 2 nanosheets for enhancing photocatalytic H 2 evolution. Nanoscale 2021, 13 (38) , 16182-16188. https://doi.org/10.1039/D1NR04683G

    ACS Materials Letters

    Cite this: ACS Materials Lett. 2021, 3, 1, 90–99
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsmaterialslett.0c00513
    Published December 17, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    2830

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.