ACS Publications. Most Trusted. Most Cited. Most Read
Impact of Oligo(Ethylene Glycol) Side Chains on the Thermoelectric Properties of Naphthalenediimide–Dialkoxybithiazole Polymers
My Activity

Figure 1Loading Img
  • Open Access
Letter

Impact of Oligo(Ethylene Glycol) Side Chains on the Thermoelectric Properties of Naphthalenediimide–Dialkoxybithiazole Polymers
Click to copy article linkArticle link copied!

  • Xuwen Yang
    Xuwen Yang
    Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
    More by Xuwen Yang
  • Gang Ye*
    Gang Ye
    Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, China
    State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
    Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
    *E-mail: [email protected]
    More by Gang Ye
  • Karolina Tran
    Karolina Tran
    Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
  • Yuru Liu
    Yuru Liu
    Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
    More by Yuru Liu
  • Jiamin Cao
    Jiamin Cao
    Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
    More by Jiamin Cao
  • Jingjin Dong
    Jingjin Dong
    Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
    Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, Jiangsu 211816, China
    More by Jingjin Dong
  • Giuseppe Portale
    Giuseppe Portale
    Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
  • Jian Liu
    Jian Liu
    State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
    More by Jian Liu
  • Ping Zhang
    Ping Zhang
    School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
    More by Ping Zhang
  • Maria Antonietta Loi
    Maria Antonietta Loi
    Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
  • Ryan C. Chiechi*
    Ryan C. Chiechi
    Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
    Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
    *E-mail: [email protected]
  • L. Jan Anton Koster*
    L. Jan Anton Koster
    Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
    *E-mail: [email protected]
Open PDFSupporting Information (1)

ACS Materials Letters

Cite this: ACS Materials Lett. 2024, 6, 4, 1207–1215
Click to copy citationCitation copied!
https://doi.org/10.1021/acsmaterialslett.4c00068
Published February 29, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Abstract

Click to copy section linkSection link copied!

Organic thermoelectric materials have garnered significant interest as promising candidates for energy harvesting applications. In recent years, ethylene-glycol side-chain engineering in organic semiconductors has gradually become an efficient approach to boost the performance of organic thermoelectrics. Although this strategy is widely utilized, the impact of their volume and branching structure remains unknown. This contribution describes a trade-off phenomenon between the oligo(ethylene glycol) (OEG) side chains and thermoelectric properties based on the n-type doped low-bandgap conjugated polymers, achieved through the modification of the volume and structure of side chains. Three conjugated polymers comprising a naphthalenediimide-dialkoxybithiazole backbone and different linear length or branched OEG side chains exhibit good host/dopant miscibility after doping. We find that, in the linear OEG side-chain-based polymers, the increased volume of side chains slightly influences the planarity of backbones, thereby leading to similar and satisfactory thermoelectric performances. The high fraction of side chains does not consistently yield enhanced performance, as the branched OEG side-chain introduces steric hindrance. Consequently, the accordingly conjugated backbones become less planar and rigid, resulting in critical molecular packing changes and low charge carrier mobility and doping efficiency and thus low thermoelectric performance. Our work provides a unique insight into the fundamental understanding of the relationship between molecular packing and thermoelectric properties and guides the future rational design of efficient n-type organic semiconductors.

This publication is licensed under

CC-BY 4.0 .
  • cc licence
  • by licence
Copyright © 2024 The Authors. Published by American Chemical Society

Organic thermoelectric (OTE) materials have attracted attention recently as potential energy generators because of their mechanical flexibility, low toxicity, low-cost energy generation, and printing techniques. (1−5) Thermoelectric efficiency is defined by the figure of merit (ZT = S2σT/κ, where S, σ, T, and κ are the Seebeck coefficient, electrical conductivity, absolute temperature, and thermal conductivity, respectively). (6,7) The power factor (PF = S2σ) is another metric used to evaluate thermoelectric performance in organic semiconductors, particularly when measuring κ is complicated or κ does not vary considerably when the other parameters are optimized. (8,9) Currently, the thermoelectric properties and mechanisms of p-type thermoelectric materials have been well investigated; (10−16) however, research into n-type thermoelectric materials still lags substantially behind that of p-type thermoelectric materials. Developing n-type doped semiconducting polymers with high thermoelectric performance is critical to ensuring further practical applications in thermoelectric generators.

Advances in molecular design and process engineering over the past decade have resulted in much improved n-type doping efficiency and thermoelectric performance. One key strategy for optimizing the PF is to modify conjugated backbones, which influence the electronic structures, frontier energy levels, and interchain interactions. The Bao group (17) proposed a breakthrough design concept in n-channel thermoelectric polymers in 2016 with the development of an acceptor–acceptor-type conjugated polymer rather than the conventional donor–acceptor (D–A) backbone. Following this trend, numerous acceptor–acceptor or acceptor–weak donor-type semiconducting conjugated polymers based on strong acceptor building blocks, such as naphthalenediimide (NDI), (18−25) diketopyrrolopyrrole (DPP), (26−28) benzodifurandione-based oligo(p-phenylenevinylene) (BDOPV), (29−33) bithiophene imide (BTI), (34−37) and double B←N bridged bipyridine (BNBP), (38) have been developed for thermoelectric applications. For example, Pei and coauthors (29) developed an acceptor–acceptor character BDOPV-based conjugated polymer for thermoelectrics, achieving a high n-type doping level, high σ (>90 S cm–1), and high PF value (106 μW m–1 K–2). The Fabiano group (18) proposed another cardinal molecular design principle for n-type thermoelectric polymers in 2018, in which fully ladder-conjugated polymers are employed because of their torsion-free backbone and large polaron delocalization length. Following this concept, highly n-doped thermoelectric materials with a fully fused conjugated backbone, such as polybenzimidazobenzophenanthroline (BBL), (39,40) poly(p-phenylenevinylene) derivatives (LPPV), (41) naphthalene–naphthalene (N–N), (42−44) and poly(benzodifurandione) (PBFDO), (45) were developed and achieved high performance.

In addition to the development of new conjugated backbones, side-chain engineering is extremely important in increasing host–dopant miscibility and charge transport properties. Conjugated polymer side chains not only enhance polymer solubility in organic solvents but also affect interchain packing and thin film morphology. For instance, Takimiya and coauthors (46) reported two acceptor–acceptor-type thermoelectric conjugated polymers with different alkyl side-chain branching positions. They found that the polymer with a one carbon atom farther branching position avoided the bulky effect and exhibited stronger molecular packing in both pristine and doped films, which is important for charge carrier transport. Zhang and coauthors (19) recently modulated the performance of n-doped thermoelectric materials by varying the ratio of linear/branching alkyl side chains to reduce the steric hindrance of the bulky side chain and promote interchain packing, thereby enhancing charge carrier mobility and thermoelectric performance. It was recently discovered (21,22,24,25,47−49) that host–dopant miscibility in n-doped thermoelectric materials can be enhanced simply by replacing traditional alkyl side chains with ethylene glycol-type side chains, which possess a higher dipole moment and polarity that promotes dopant solubility in the polymer matrix, thereby increasing doping efficiency and σ. Although oligo(ethylene glycol) (OEG) side chains are frequently employed to increase the polarity of polymers, the impact of their volume and branching has not yet been studied. Thus, a concise investigation of the influence of side chain volume and configuration in n-type OTE materials is required.

In this contribution, we report that n-type OTEs show a composed behavior by modifying the volume and structures of the OEG side chains. A series of conjugated polymers comprising a naphthalenediimide–dialkoxybithiazole (NDI-2Tz) backbone with OEG side chains having different volumes (PNDI2TEG-2Tz and PNDI2HexEG-2Tz) or a branched structure (PNDI2BTEG-2Tz) were designed and used as the host matrix, with 4-(2,3-dihydro-1,3-dimethyl-1H-benzoimidazol-2-yl)phenyl–N,N-dimethylbenzenamine (N-DMBI) used as the dopant. We found that all polymers exhibited good host–dopant miscibility without phase separation, owing to functionalization with the polar OEG side chains. Moreover, the thermoelectric parameters were maintained as the number of the OEG units in the linear side chains increased because of the excellent intermolecular packing. Conversely, the branched side chains hindered molecular packing due to the twisted backbones, causing reduced doping efficiency and a simultaneous decrease in conductivity and PF. This investigation offers unique insight into the fundamental understanding of molecular packing and provides guidance for the future rational design of efficient n-type organic semiconductors.

Figure 1 presents the chemical structures of the NDI-2Tz-based copolymers functionalized with different polar OEG side chains (PNDI2TEG-2Tz (P-3O), PNDI2HexEG-2Tz (P-6O), and PNDI2BTEG-2Tz (P-B3O)) and the n-type dopant, N-DMBI. The synthesis of P-3O (50) and P-6O (24) was reported in our previous work. The synthetic route and synthesis details for P-B3O and the corresponding monomer are in the Supporting Information (Schemes S1 and S2 and Figures S1–S3). The polymers were synthesized via a copper iodide-assisted palladium-catalyzed Stille cross coupling polycondensation of a dibromo-NDI-based monomer with a distannyl-alkoxybithiazole-based monomer after refluxing the polymerization mixture for 3 days. The polymers were purified using a Soxhlet extractor and continuous extraction with hot methanol, followed by hexane and chloroform, to remove impurities and low-molecular-weight fractions. Finally, the polymers with high molecular weight (P-3O with Mn = 46 kDa, P-6O with Mn = 21 kDa, and P-B3O with Mn = 72 kDa) were extracted using chloroform (Figure S4, Supporting Information). Then, the polymer was dissolved, precipitated into cold methanol, collected, and dried in vacuo. The structures were characterized using proton nuclear magnetic resonance (1HNMR) and Fourier-transform infrared (FT-IR) spectroscopy (Figures S5 and S6, Supporting Information). The relative molecular weights and dispersities were determined using gel permeation chromatography (GPC) against polystyrene standards with hexafluoroisopropyl alcohol (HFIP) as the eluent. The resulting data are listed in Figure S6 (Supporting Information).

Figure 1

Figure 1. Chemical structures of NDI-2Tz-based D–A copolymers with different substituted OEG side chains and n-type dopant N-DMBI.

We performed thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) to evaluate the thermal properties of the three NDI-2Tz-based conjugated polymers (Figure S7, Supporting Information). The temperature at 5% weight loss was considered the onset point of decomposition (Td). All copolymers exhibited excellent thermal stability with Td values of 350 °C, 350 °C, and 347 °C for P-3O, P-6O, and P-B3O, respectively. These Td values indicated that all copolymers were sufficiently stable for thermoelectric device applications. No distinct transitions were observed in the DSC curves of the polymers, revealing the absence of significant degrees of crystallinity or phase transitions across the measured temperature range.

Figure 2 shows ultraviolet–visible-near-infrared (UV–vis-NIR) absorption spectroscopy for pristine P-3O, P-6O, and P-B3O in chloroform and thin films. All polymer pristine samples exhibited two characteristic neutral absorption bands in both solution and thin film states. We assigned the high-energy bands from 300 to 600 nm to the π–π* transition and the low-energy bands between 600 and 1200 nm to intramolecular charge transfer (ICT). The absorption maxima of P-3O, P-6O, and P-B3O in solution were located at 930, 967, and 807 nm, respectively. The P-3O, P-6O, and P-B3O solid thin films all showed red shifts at the absorption maxima (972, 972, and 914 nm, respectively) due to the enhanced interchain π–π stacking in the solid state. Compared with P-3O and P-6O with linear OEG side chains, the absorption maxima peak of P-B3O with branched OEG side chains displayed a slight bathochromic shift, indicating that the branched OEG side chains could have a steric effect, influencing the π-conjugation efficiency along the polymer backbone.

Figure 2

Figure 2. Normalized UV–vis–NIR absorption spectra of P-3O, P-6O, and P-B3O in dilute chloroform (CHCl3) (10–5 M) and in films (spin coated from CHCl3 solutions).

Previous research (51) has demonstrated that the rigidity and coplanarity of the conjugated polymer backbone could be determined from the absorption properties. Conjugated polymers with flexible and nonplanar backbones will become more planar in the solid state due to interchain π–π stacking, leading to a red shift in the solid state absorption spectra. As shown in Figure S8 and Table 1, P-6O and P-3O did not exhibit a noticeable red shift, suggesting that the P-6O molecule has a rigid and coplanar backbone configuration in both the solution and solid states. Conversely, P-B3O exhibited an obvious red shift compared to those of P-3O and P-6O, suggesting that it has a relatively flexible and nonplanar backbone conformation. This observed outcome also accounts for the considerable red shift in P-B3O relative to those of P-6O and P-3O in the solution state. In addition, P-B3O showed stronger absorption in the π–π* transition region than P-3O and P-6O in both solution and thin film states, indicating that the ICT in P-B3O was not as efficient as in P-3O and P-6O, resulting from its nonplanar molecular backbone conformation. Consequently, differences in molecular structure were the primary reason for the observed outcomes in our case. Because P-3O, P-6O, and P-B3O share the same backbone molecular structure, the different absorption profiles of the polymers were the result of their different side chains. As previously reported, the incorporation of side chains alters the planarity of polymer molecules with identical backbones and thus the molecular order. (52−55) In our case, the branched OEG side chain may have caused disordered molecular packing in P-B3O, which did not occur in the linear OEG side chain-substituted polymers. The optical band gaps of P-3O, P-6O, and P-B3O calculated from the thin film absorption onsets were 1.03, 0.95, and 0.96 eV, respectively.

Table 1. Optical Properties, Electrochemical Properties, and Energy Levels of the NDI-2Tz-Based Conjugated Polymers
polymersλmaxsol. (nm)λmaxfilm (nm)λonsetfilm (nm)red-shift (nm)Egopt. (eV)Eredonset (eV)HOMO (eV)LUMO (eV)
P-3O9309721203421.03–0.80–5.33–4.30
P-6O967972130450.95–0.80–5.25–4.30
P-B3O80791412881070.96–0.85–5.21–4.25

Cyclic voltammetry (CV) measurements of P-3O, P-6O, and P-B3O versus ferrocene/ferrocenium (Fc/Fc+) using an Ag/AgCl pseudoreference were conducted on thin films to determine their electronic energy levels. The resulting plots from the first cycle are shown in Figure S10, and the corresponding data are summarized in Table 1. All three copolymers exhibited distinctive reduction peaks in an acetonitrile solution containing 0.1 M tetrabutylammonium hexafluorophosphate electrolyte, corresponding to the n-doping (reduction) of the strongly electron-deficient nature of the NDI-2Tz backbone. The lowest unoccupied molecular orbital (LUMO) energy levels of these three polymers were calculated from the onset reduction potentials (Eonsetred.) using the equation ELUMO = −(5.10 + Eonsetred.) eV. The Eonsetred values of P-3O, P-6O, and P-B3O were −0.80, –0.80, and −0.85 V, respectively, which corresponded to the estimated LUMO energies of −4.30, −4.30, and −4.25 eV. Based on the optical bandgap and LUMO levels, the highest occupied molecular orbital (HOMO) levels of P-3O, P-6O, and P-B3O were calculated to be −5.33, −5.25, and −5.21 eV. The deep LUMO levels verify the strong electron affinity of the NDI backbone. All copolymers were expected to be efficiently doped by N-DMBI because charges can be transferred from the singly occupied molecular orbital (−2.36 eV) of N-DMBI to the LUMO level of the host molecules upon doping activation by energetics. From the slight difference and measurement error of the CV measurements, we can exclude the influence of the side chains on the energetics.

To gain insight into how the volume and branching of the OEG side chains influence the molecular configuration and the electronic structure of the conjugated polymers, we performed density functional theory (DFT) calculations at the B3LYP/6-31G(d,p) level using Gaussian 16. To simplify the calculations, we considered one repeat unit of each polymer and truncated the side chains of the bithiazole units to the methoxyl group. As shown in Figure S11, all the optimized model molecules for the polymers exhibited planar backbone geometries, and the dihedral angle between the NDI and the adjacent thiazole subunit was quite small (<6°) due to reduced steric hindrance by sp2-N, whereas the dihedral angle between the two adjacent thiazole units was close to 0°. The fully planar structure may lead to strong coupling between adjacent building blocks and promote delocalization of the frontier molecular orbitals (HOMO and LUMO) along the entire model molecule backbone. Such delocalization, particularly full LUMO delocalization in n-type polymers, might facilitate the formation of extended excitons/polarons with long delocalized lengths, be beneficial for intra- and intermolecular hopping, and finally enhance charge carrier transport. These calculated results indicate that the volume and type of the OEG side chain had a negligible effect on the molecular configuration and electronic structure in monomers. This is attributed to the DFT calculations being performed under a gas-phase condition, in which the impact of bulky side chains is less pronounced. The HOMO/LUMO values were calculated to be −5.52/–3.50 eV for the P-3O monomer, −5.53/–3.51 eV for the P-6O monomer, and −5.44/–3.40 eV for the P-B3O monomer (Figure S12). The calculated LUMO level trend agreed well with the CV data.

To highlight how OEG side chains of the OEG interact with the conjugate backbone in the polymer, we then did DFT calculations to investigate the effect of side chains on the monocular geometry by using the method of local minima of geometry minimization which partially sacrifices the orbital energies. We chose trimers as the calculation model and used the ωB97X-D4 functional and def2-TZP basis set. The calculation results are shown in the Figure S13. P-3O trimer displays a perfectly planar backbone, and the OEG side chains do not interact strongly. The dihedral angle between the NDI and the adjacent thiazole subunit is 1.4°, 1.4°, and 1.6°. In the P-6O trimer, the OEG side chains interact with each other to create some torsional strain on the backbone, with the actual torsional angles remaining small (2.8°, 5.6°, and 8.0°). In the P-B3O trimer, the branched OEG side chains have more steric congestion that is causing the backbone twist. The dihedral angle in the P-B3O trimer is 1.7°, 12.6°, and 8.1°, much higher than that in P-3O and P-6O. This qualitative trend in the degree of twisting of the polymer backbone is consistent with the trends in the aforementioned absorption spectra experimental data.

Previous studies have demonstrated that N-DMBI is a good n-type dopant because of its strong n-doping ability and good solution processability. (21,22,24,25,47,48,56) Therefore, we employed N-DMBI to dope the three NDI-2Tz-based copolymers. Figure S9 shows the UV–vis–NIR absorption spectra for pristine and doped NDI-2Tz-based copolymer thin films with different dopant ratios. With the addition of the dopant, all NDI-2Tz-based polymers showed a substantial reduction in the neutral ICT transition absorbance associated with sub-band gap polaronic absorption bands in the range of 1000–2000 nm, indicating that all NDI-2Tz-based polymers were strongly n-doped with N-DMBI.

Figure 3a displays the σ values of the doped P-3O, P-6O, and P-B3O thin films at different doping concentrations (see the details in the Supporting Information, device fabrication and characterization sections). The σ values of the pristine polymer thin films were below the measurement limit. After molecular doping, the σ increased, indicating the generation of free charge carriers. The σ of the doped P-3O films gradually increased to 9 S cm–1 at a doping concentration of 3-wt % and then decreased at much higher dopant ratios. For P-6O, the optimized σ of 3.3 S cm–1 occurred at a doping concentration of 5-wt %, which was consistent with our previous work. (24) Conversely, P-B3O exhibited a maximum σ of 0.03 S cm–1 at a 5-wt % doping concentration, representing a reduction of more than 2 orders of magnitude over the doped P-3O and P-6O films. The σ results demonstrate that the charging behavior of NDI-based conjugated polymers can be modified by adjusting the OEG unit structure and density in the side chains.

Figure 3

Figure 3. (a) Electrical conductivities, (b) Seebeck coefficients, and (c) power factors recorded for P-3O, P-6O, and P-B3O as functions of the N-DMBI ratio employed.

We then evaluated the S values of the doped films by imposing a temperature difference across the sample (Figure 3b). The negative S values of all of the doped polymer thin films suggest that the dominant charge carriers were electrons. The S values of all polymers decreased as the dopant ratio increased, indicating that more charge carriers were produced with doping. The absolute S values of the doped polymers showed a consistent trend at each doping concentration, with P-B3O exhibiting the highest S followed by P-3O and P-6O having an S value comparable to P-3O. For example, at a 5-wt % doping concentration, the S values were −238.9 μV K–1 for P-B3O, −114 μV K–1 for P-3O, and −114.5 μV K–1 for P-6O. This difference can be attributed to the more disordered configuration of P-B3O. Based on the σ and S values, we calculated the PFs of the doped films, which are summarized in Figure 3c. Owing to its low conductivity, the P-B3O film with a 5-wt % doping concentration showed a relatively low PF of 0.15 μW m–1 K–2. The P-6O film doped with 5-wt % N-DMBI showed an optimal PF of 4.3 μW m–1 K–2, which was consistent with our previous study. Remarkably, a slightly higher PF of 6.6 μW m–1 K–2 was achieved for the P-3O film with a 5-wt % doping concentration, and the highest PF of ∼15.3 μW m–1 K–2 was achieved with a 3-wt % N-DMBI doping concentration.

The contribution of charge carrier density (n) and charge carrier mobility (μ) to the σ in the doped film is described as σ = μnq, where q represents the charge carried by the electron. The charge carrier density of doped films is related to doping efficiency, which can be affected by the energy offset between the host and dopant, doping mechanism, and host–dopant miscibility, among other factors. The charge transport is mainly influenced by the film morphology and microstructures.

Previous studies have demonstrated that the performance of polymeric thermoelectric materials is limited by the extrinsic factor of poor miscibility between the host polymer and employed dopant. (22,23,57,58) To gain insight into this miscibility for our NDI-2Tz-based polymer systems, we utilized atomic force microscopy (AFM) to investigate the morphologies of the pristine and doped copolymer thin films (Figure S14). All of the pristine P-3O, P-6O, and P-B3O films showed a fibrous microstructure. The P-3O-, P-6O-, and P-B3O-doped film topologies showed no obvious change with increasing doping concentration, even in the highly doped films, revealing that all of the NDI-2Tz-based polymers had excellent dopant/polymer mixing due to the high-polarity glycol side chains. Therefore, the poor performance of P-B3O was not attributed to host–dopant miscibility, eliminating the miscibility between dopants and matrices as a factor for the thermoelectric performance.

Grazing-incidence wide-angle X-ray scattering (GIWAXS) was performed to further investigate the effect of the side chain on polymer film crystallinity and molecular packing and to correlate this with device performance. The two-dimensional (2D) patterns and corresponding line-cut profiles of P-3O, P-6O, and P-B3O films are displayed in Figures 4 and S18. Among the three neat films, P-3O exhibits greater crystallinity as evidenced by the stronger lamellar diffractions up to (300) qz = 0.75 Å–1 in the out-of-plane (OOP) direction and obvious (010) π–π scattering peak at qxy = 1.80 Å–1 in the in-plane (IP) directions, indicating the neat P-3O film preferentially packed with an edge-on orientation relative to the substrate, which is thought to be beneficial for lateral charge carrier transport. On the other hand, both neat P-6O and P-B3O films adopted a bimodal packing. The neat P-6O film showed lamellar diffractions (100) at qxy = 0.21 Å–1 in the IP direction with a π–π stacking peak at qz = 1.86 Å–1 for face-on orientation fraction and a (100) peak at qz = 0.18 Å–1 for the edge-on orientation fraction. The neat P-B3O film adopts a bimodal orientation with both face-on and edge-on fractions: a (100) peak at qxy = 0.28 Å–1 and (010) peaks at qz = 1.81 Å–1 in the OOP direction with an additional (100) peak at qz = 0.17 Å–1 in the OOP direction, lacking the π–π stacking peak in the IP direction. Thus, although the three polymers have the same NDI-2Tz backbone chain, increasing the OEG side chain density resulted in changes in the microstructure and molecular packing. The bimodal configuration in neat P-6O and P-B3O films reduces the proportion of the edge-on orientation, which is unfavorable for in-plane charge transport. The π–π stacking distances of neat films of P-3O, P-6O, and P-B3O were 3.47, 3.38, and 3.46 nm, respectively, as calculated from the (010) peaks. The smaller π–π stacking distances in neat P-6O film should facilitate charge transport, resulting in enhanced electron mobility. The crystal coherence lengths are 33.60, (59) 21.60, and 20.90 Å for neat films of P-3O, P-6O, and P-B3O, respectively. Thus, the unfavorable molecular packing and reduced crystallinity of the P-B3O film are the main contributing factors for poor charge carrier transport properties, which correlate with its low thermoelectric performance.

Figure 4

Figure 4. 2D GIWAXS patterns of pristine P-3O (a), P-6O (b), and P-B3O (c) films.

Although molecular doping had a minimal effect on the molecular orientations of the three polymers, its influence on crystallinity varies. The P-3O film exhibited only a slight increase in crystallinity when doped with 3-wt % N-DMBI. The 5-wt % N-DMBI-doped P-6O film showed slightly enhanced crystallinity, whereas the 5-wt % N-DMBI-doped P-B3O film showed reduced crystallinity. The reduced crystallinity of doped P-B3O was consistent with low charge transport properties.

To directly measure the charge carrier density and determine the doping levels of the doped copolymers, admittance spectroscopy on ion-gel-based metal–insulator–semiconductor (MIS) devices (Figure S15, Supporting Information) was employed to extract the free carrier density and understand the charge transport inside the doped polymer films. This technique was established in the weak accumulation region caused by carrier depletion under sweeping voltages and a particular frequency, which is reflected in the reduced capacitance. From the capacitive measurement in the depletion region, we determined the carrier density according to the Mott–Schottky equation (see the carrier density measurement section, Supporting Information). The CPV curves for doped P-3O, P-6O, and P-B3O are displayed in Figure S15. As shown in Figure 5, under the same doping concentration (5-wt % N-DMBI), the free charge carrier density extracted for the doped P-B3O film reached a maximum of ∼1.0 × 1018 cm–3, whereas P-3O and P-6O achieved carrier densities of ∼2.9 × 1019 and 1.4 × 1019 cm–3, respectively. The superior carrier densities of the doped P-3O and P-6O films resulted in higher doping efficiencies (∼25.9% for P-3O and ∼12.5% for P-6O) than those of the doped P-B3O films (∼0.9%) at the same doping concentration. According to the formula σ = μnq, the bulk charge mobilities in the in-plane direction of the doped films were calculated as 1.40 cm2 V–1 s–1 for P-3O, 1.47 cm2 V–1 s–1 for P-6O, and 0.15 cm2 V–1 s–1 for P-B3O based on the measured σ and charge carrier density. Considering the previously observed high absolute S, it can be concluded that P-B3O exhibited low carrier mobility due to its highly disordered molecular conformation. Furthermore, the relatively low charge mobility and doping efficiency of P-B3O were responsible for the poor thermoelectric performance.

Figure 5

Figure 5. Charge carrier density (a), doping efficiency (b), and mobility (c) of 5-wt %-doped P-3O, P-6O, and P-B3O thin films.

To further elucidate and understand the charge transport in undoped conjugated polymers with different OEG side chains, we fabricated bottom-gate/bottom-contact organic field-effect transistors (OFETs) with a device structure of doped silicon/neat polymer/Al. The corresponding output and transfer characteristics of the OFETs are displayed in Figures S16 and S17, respectively. Both P-3O and P-6O exhibited ambipolar transport properties, whereas P-B3O only showed p-type unipolar charge transport. The electron mobilities of P-3O and P-6O were 3.69 × 10–4 and 5.61 × 10–3 cm2 V–1 s–1. However, it was not possible to measure this parameter for P-B3O under our experimental conditions. The lower OFET/bulk charge mobility of P-B3O than that of P-3O and P-6O can be explained by the poor polymer chain packing of the former in the thin films, which was consistent with the GIWAXS data. The significant difference in charge mobility between OFETs and MIS devices can be attributed to the mobility in OFETs located at the interface between the polymer and the gate dielectric, which depends on the material and the device. In contrast, the mobility derived from the Mott–Schottky analysis represents a bulk property acquired through bulk doping.

The doping of organic semiconductors can be viewed as a two-step process. (60−62) First, integer or partial charge transfer occurs between the dopant and the semiconductor, forming a Coulombically bound charge transfer complex (CTC). In the second step, the CTC overcomes the Coulomb interactions, effectively generating free charge carriers. Generally, in the first step of CTC formation, the original absorption transitions of neat polymer films will bleach gradually as the doping level increases (Figure S9, Supporting Information). At a 5-wt % doping concentration, the original peak intensities of P-3O, P-6O, and P-B3O decrease by 26.1%, 17.5%, and 39.8%, respectively. These results suggest that P-B3O more easily reacts with the dopant to form the CTC, which may be because the branching OEG side chain provides more space for the dopant. However, the ease of forming the CTC does not necessarily translate into a larger number of free-charge carriers because the charges in the CTC must overcome the Coulomb interaction. As measured using MIS (see above), the doped P-B3O produced the lowest free charge carrier density at a 5-wt % doping concentration; thus, we infer that the low doping efficiency is because of the poor CTC dissociation. Because the bulky branching OEG side chain in P-B3O leads to a twisted backbone structure, disrupts the molecular packing, and limits the exciton/polaron delocalized length, the CTC dissociation into free charges is suppressed. (36)

Three n-type semiconducting conjugated polymers comprising naphthalenediimide and dialkoxybithiazole units but with different OEG side chains were synthesized, characterized, and evaluated as thermoelectric materials. Introducing OEG side chains into semiconductors endowed good host–dopant miscibility. Due to the excellent ordered packing, the increasing volume of ethylene glycol units in linear side chains maintains enhanced thermoelectric performances, even with a slight backbone twist. In contrast, the bulky branching OEG side chains introduce more steric congestion, causing the backbone to twist. This disruption also reflects on molecular packing in the thin film and adversely affects molecular doping and charge transport, consequently lowering the thermoelectric performance. These results suggest the existence of a compromise between the performance of the OTE and ethylene-glycol side-chain engineering. Our comprehensive study provides a unique insight into the fundamental understanding of molecular packing and sheds light on the rational design for the future development of high-performance n-type thermoelectric semiconducting polymers.

Supporting Information

Click to copy section linkSection link copied!

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c00068.

  • Additional synthesis details, materials, and characterization including 1H NMR spectra, 13C NMR spectra, HRMS spectra, GPC plots, TGA plots, IR spectra, DSC plots, UV–vis–NIR absorption spectra, cyclic voltammogram plots, DFT-optimized molecular geometries and orbitals, AFM image, Mott–Schottky analysis plots, OFET plots, and GIWAXS patterns and linecuts (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
    • Gang Ye - Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, 430062, ChinaState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. ChinaStratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands Email: [email protected]
    • Ryan C. Chiechi - Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The NetherlandsDepartment of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United StatesOrcidhttps://orcid.org/0000-0002-0895-2095 Email: [email protected]
    • L. Jan Anton Koster - Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The NetherlandsOrcidhttps://orcid.org/0000-0002-6558-5295 Email: [email protected]
  • Authors
    • Xuwen Yang - Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
    • Karolina Tran - Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The NetherlandsOrcidhttps://orcid.org/0000-0001-5432-5204
    • Yuru Liu - Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The NetherlandsOrcidhttps://orcid.org/0000-0003-4909-7782
    • Jiamin Cao - Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, ChinaOrcidhttps://orcid.org/0000-0003-2069-6976
    • Jingjin Dong - Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The NetherlandsKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, Jiangsu 211816, China
    • Giuseppe Portale - Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The NetherlandsOrcidhttps://orcid.org/0000-0002-4903-3159
    • Jian Liu - State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. ChinaOrcidhttps://orcid.org/0000-0002-6704-3895
    • Ping Zhang - School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, Jiangxi 341000, China
    • Maria Antonietta Loi - Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The NetherlandsOrcidhttps://orcid.org/0000-0002-7985-7431
  • Author Contributions

    CRediT: Xuwen Yang data curation, formal analysis, methodology, software, writing-original draft, writing-review & editing; Gang Ye funding acquisition, supervision, writing-original draft, writing-review & editing; Karolina Tran data curation, software; Yuru Liu data curation, software; Jiamin Cao resources; Jingjin Dong data curation, software; Giuseppe Portale resources, writing-review & editing; Jian Liu funding acquisition, resources; Ping Zhang resources; Maria Antonietta Loi resources, writing-review & editing; Ryan C. Chiechi methodology, software, supervision, writing-review & editing; L. Jan Anton Koster methodology, project administration, resources, supervision, writing-original draft, writing-review & editing.

  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

X.Y. acknowledges the China Scholarship Council. G.Y. and J.L. acknowledge the financial support by the National Natural Science Foundation of China (No. 52273201). G.Y. also acknowledges the China Postdoctoral Science Foundation Funded Project (No. grant 2022M723077). J.D. is grateful to the National Natural Science Foundation of China (grant number 62205143). J.L. is thankful for the financial support from the Jilin Scientific and Technological Development Program (No. 20230402070GH) and a grant for Distinguished Young Scholars of the National Natural Science Foundation of China (Overseas). K.T. and M.A.L. would like to acknowledge the financial support of CogniGron - Groningen Cognitive Systems and Materials Center.

References

Click to copy section linkSection link copied!

This article references 62 other publications.

  1. 1
    Wang, H.; Yu, C. Joule 2019, 3, 5380,  DOI: 10.1016/j.joule.2018.10.012
  2. 2
    Sun, Y.; Di, C. A.; Xu, W.; Zhu, D. Adv. Electron. Mater. 2019, 5, 1800825,  DOI: 10.1002/aelm.201800825
  3. 3
    Lu, N.; Li, L.; Liu, M. Phys. Chem. Chem. Phys. 2016, 18, 1950319525,  DOI: 10.1039/C6CP02830F
  4. 4
    Shi, W.; Wang, D.; Shuai, Z. Adv. Electron. Mater. 2019, 5, 1800882,  DOI: 10.1002/aelm.201800882
  5. 5
    Sun, H.; Guo, X.; Facchetti, A. Chem. 2020, 6, 13101326,  DOI: 10.1016/j.chempr.2020.05.012
  6. 6
    Mao, J.; Liu, Z.; Zhou, J.; Zhu, H.; Zhang, Q.; Chen, G.; Ren, Z. Adv. Phys. 2018, 67, 69147,  DOI: 10.1080/00018732.2018.1551715
  7. 7
    Kroon, R.; Mengistie, D. A.; Kiefer, D.; Hynynen, J.; Ryan, J. D.; Yu, L.; Müller, C. Chem. Soc. Rev. 2016, 45, 61476164,  DOI: 10.1039/C6CS00149A
  8. 8
    Lu, Y.; Wang, J.-Y.; Pei, J. Chem. Mater. 2019, 31, 64126423,  DOI: 10.1021/acs.chemmater.9b01422
  9. 9
    Russ, B.; Glaudell, A.; Urban, J. J.; Chabinyc, M. L.; Segalman, R. A. Nat. Rev. Mater. 2016, 1, 16050,  DOI: 10.1038/natrevmats.2016.50
  10. 10
    Li, Z. P.; Deng, L.; Lv, H. C.; Liang, L. R.; Deng, W. J.; Zhang, Y. C.; Chen, G. M. Adv. Funct. Mater. 2021, 31, 2104836,  DOI: 10.1002/adfm.202104836
  11. 11
    Villalva, D. R.; Haque, M. A.; Nugraha, M. I.; Baran, D. ACS Appl. Energy Mater. 2020, 3, 91269132,  DOI: 10.1021/acsaem.0c01511
  12. 12
    Xue, Y.; Gao, C.; Liang, L.; Wang, X.; Chen, G. J. Mater.Chem. A 2018, 6, 2238122390,  DOI: 10.1039/C8TA09656B
  13. 13
    Fan, Z.; Du, D.; Guan, X.; Ouyang, J. Nano Energy 2018, 51, 481488,  DOI: 10.1016/j.nanoen.2018.07.002
  14. 14
    Culebras, M.; Gómez, C. M.; Cantarero, A. J. Mater. Chem. A 2014, 2, 1010910115,  DOI: 10.1039/C4TA01012D
  15. 15
    Kim, G. H.; Shao, L.; Zhang, K.; Pipe, K. P. Nat. Mater. 2013, 12, 719723,  DOI: 10.1038/nmat3635
  16. 16
    Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X. Nat. Mater. 2011, 10, 429433,  DOI: 10.1038/nmat3012
  17. 17
    Naab, B. D.; Gu, X.; Kurosawa, T.; To, J. W. F.; Salleo, A.; Bao, Z. Adv. Electron. Mater. 2016, 2, 1600004,  DOI: 10.1002/aelm.201600004
  18. 18
    Wang, S.; Sun, H.; Erdmann, T.; Wang, G.; Fazzi, D.; Lappan, U.; Puttisong, Y.; Chen, Z.; Berggren, M.; Crispin, X.; Kiriy, A.; Voit, B.; Marks, T. J.; Fabiano, S.; Facchetti, A. Adv. Mater. 2018, 30, 1801898,  DOI: 10.1002/adma.201801898
  19. 19
    Song, Y.; Ding, J.; Dai, X.; Li, C.; Di, C.-a.; Zhang, D. ACS Mater. Lett. 2022, 4, 521527,  DOI: 10.1021/acsmaterialslett.2c00026
  20. 20
    Wang, Y.; Takimiya, K. Adv. Mater. 2020, 32, 2002060,  DOI: 10.1002/adma.202002060
  21. 21
    Liu, J.; Ye, G.; Zee, B. V.; Dong, J.; Qiu, X.; Liu, Y.; Portale, G.; Chiechi, R. C.; Koster, L. J. A. Adv. Mater. 2018, 30, e1804290,  DOI: 10.1002/adma.201804290
  22. 22
    Liu, J.; Qiu, L.; Alessandri, R.; Qiu, X.; Portale, G.; Dong, J.; Talsma, W.; Ye, G.; Sengrian, A. A.; Souza, P. C. T.; Loi, M. A.; Chiechi, R. C.; Marrink, S. J.; Hummelen, J. C.; Koster, L. J. A. Adv. Mater. 2018, 30, 1704630,  DOI: 10.1002/adma.201704630
  23. 23
    Kiefer, D.; Giovannitti, A.; Sun, H.; Biskup, T.; Hofmann, A.; Koopmans, M.; Cendra, C.; Weber, S.; Anton Koster, L. J.; Olsson, E.; Rivnay, J.; Fabiano, S.; McCulloch, I.; Müller, C. ACS Energy Lett. 2018, 3, 278285,  DOI: 10.1021/acsenergylett.7b01146
  24. 24
    Liu, J.; Ye, G.; Potgieser, H. G. O.; Koopmans, M.; Sami, S.; Nugraha, M. I.; Villalva, D. R.; Sun, H.; Dong, J.; Yang, X.; Qiu, X.; Yao, C.; Portale, G.; Fabiano, S.; Anthopoulos, T. D.; Baran, D.; Havenith, R. W. A.; Chiechi, R. C.; Koster, L. J. A. Adv. Mater. 2021, 33, e2006694,  DOI: 10.1002/adma.202006694
  25. 25
    Ye, G.; Liu, J.; Qiu, X.; Stater, S.; Qiu, L.; Liu, Y.; Yang, X.; Hildner, R.; Koster, L. J. A.; Chiechi, R. C. Macromolecules 2021, 54, 38863896,  DOI: 10.1021/acs.macromol.1c00317
  26. 26
    Yang, C.-Y.; Jin, W.-L.; Wang, J.; Ding, Y.-F.; Nong, S.; Shi, K.; Lu, Y.; Dai, Y.-Z.; Zhuang, F.-D.; Lei, T.; Di, C.-A.; Zhu, D.; Wang, J.-Y.; Pei, J. Adv. Mater. 2018, 30, 1802850,  DOI: 10.1002/adma.201802850
  27. 27
    Yan, X.; Xiong, M.; Li, J.-T.; Zhang, S.; Ahmad, Z.; Lu, Y.; Wang, Z.-Y.; Yao, Z.-F.; Wang, J.-Y.; Gu, X.; Lei, T. J. Am. Chem. Soc. 2019, 141, 2021520221,  DOI: 10.1021/jacs.9b10107
  28. 28
    Yan, X.; Xiong, M.; Deng, X.-Y.; Liu, K.-K.; Li, J.-T.; Wang, X.-Q.; Zhang, S.; Prine, N.; Zhang, Z.; Huang, W.; Wang, Y.; Wang, J.-Y.; Gu, X.; So, S. K.; Zhu, J.; Lei, T. Nat. Commun. 2021, 12, 5723,  DOI: 10.1038/s41467-021-26043-y
  29. 29
    Lu, Y.; Yu, Z.-D.; Un, H.-I.; Yao, Z.-F.; You, H.-Y.; Jin, W.; Li, L.; Wang, Z.-Y.; Dong, B.-W.; Barlow, S.; Longhi, E.; Di, C.-a.; Zhu, D.; Wang, J.-Y.; Silva, C.; Marder, S. R.; Pei, J. Adv. Mater. 2021, 33, 2005946,  DOI: 10.1002/adma.202005946
  30. 30
    Lu, Y.; Yu, Z.-D.; Liu, Y.; Ding, Y.-F.; Yang, C.-Y.; Yao, Z.-F.; Wang, Z.-Y.; You, H.-Y.; Cheng, X.-F.; Tang, B.; Wang, J.-Y.; Pei, J. J. Am. Chem. Soc. 2020, 142, 1534015348,  DOI: 10.1021/jacs.0c05699
  31. 31
    Shi, K.; Zhang, F.; Di, C.-A.; Yan, T.-W.; Zou, Y.; Zhou, X.; Zhu, D.; Wang, J.-Y.; Pei, J. J. Am. Chem. Soc. 2015, 137, 69796982,  DOI: 10.1021/jacs.5b00945
  32. 32
    Zhao, X.; Madan, D.; Cheng, Y.; Zhou, J.; Li, H.; Thon, S. M.; Bragg, A. E.; DeCoster, M. E.; Hopkins, P. E.; Katz, H. E. Adv. Mater. 2017, 29, 1606928,  DOI: 10.1002/adma.201606928
  33. 33
    Han, J.; Fan, H.; Zhang, Q.; Hu, Q.; Russell, T. P.; Katz, H. E. Adv. Funct. Mater. 2021, 31, 2005901,  DOI: 10.1002/adfm.202005901
  34. 34
    Feng, K.; Guo, H.; Wang, J.; Shi, Y.; Wu, Z.; Su, M.; Zhang, X.; Son, J. H.; Woo, H. Y.; Guo, X. J. Am. Chem. Soc. 2021, 143, 15391552,  DOI: 10.1021/jacs.0c11608
  35. 35
    Shi, Y.; Li, J.; Sun, H.; Li, Y.; Wang, Y.; Wu, Z.; Jeong, S. Y.; Woo, H. Y.; Fabiano, S.; Guo, X. Angew. Chem., Int. Ed. 2022, 61, e202214192,  DOI: 10.1002/anie.202214192
  36. 36
    Liu, J.; Shi, Y.; Dong, J.; Nugraha, M. I.; Qiu, X.; Su, M.; Chiechi, R. C.; Baran, D.; Portale, G.; Guo, X.; Koster, L. J. A. ACS Energy Lett. 2019, 4, 15561564,  DOI: 10.1021/acsenergylett.9b00977
  37. 37
    Guo, H.; Yang, C.-Y.; Zhang, X.; Motta, A.; Feng, K.; Xia, Y.; Shi, Y.; Wu, Z.; Yang, K.; Chen, J.; Liao, Q.; Tang, Y.; Sun, H.; Woo, H. Y.; Fabiano, S.; Facchetti, A.; Guo, X. Nature 2021, 599, 6773,  DOI: 10.1038/s41586-021-03942-0
  38. 38
    Dong, C.; Deng, S.; Meng, B.; Liu, J.; Wang, L. Angew. Chem., Int. Ed. 2021, 60, 1618416190,  DOI: 10.1002/anie.202105127
  39. 39
    Wang, S.; Sun, H.; Ail, U.; Vagin, M.; Persson, P. O. Å.; Andreasen, J. W.; Thiel, W.; Berggren, M.; Crispin, X.; Fazzi, D.; Fabiano, S. Adv. Mater. 2016, 28, 1076410771,  DOI: 10.1002/adma.201603731
  40. 40
    Yang, C.-Y.; Stoeckel, M.-A.; Ruoko, T.-P.; Wu, H.-Y.; Liu, X.; Kolhe, N. B.; Wu, Z.; Puttisong, Y.; Musumeci, C.; Massetti, M.; Sun, H.; Xu, K.; Tu, D.; Chen, W. M.; Woo, H. Y.; Fahlman, M.; Jenekhe, S. A.; Berggren, M.; Fabiano, S. Nat. Commun. 2021, 12, 2354,  DOI: 10.1038/s41467-021-22528-y
  41. 41
    Lu, Y.; Yu, Z.-D.; Zhang, R.-Z.; Yao, Z.-F.; You, H.-Y.; Jiang, L.; Un, H.-I.; Dong, B.-W.; Xiong, M.; Wang, J.-Y.; Pei, J. Angew. Chem., Int. Ed. 2019, 58, 1139011394,  DOI: 10.1002/anie.201905835
  42. 42
    Großkopf, J.; Plaza, M.; Seitz, A.; Breitenlechner, S.; Storch, G.; Bach, T. J. Am. Chem. Soc. 2021, 143, 2124121245,  DOI: 10.1021/jacs.1c11266
  43. 43
    Alsufyani, M.; Stoeckel, M.-A.; Chen, X.; Thorley, K.; Hallani, R. K.; Puttisong, Y.; Ji, X.; Meli, D.; Paulsen, B. D.; Strzalka, J.; Regeta, K.; Combe, C.; Chen, H.; Tian, J.; Rivnay, J.; Fabiano, S.; McCulloch, I. Angew. Chem., Int. Ed. 2022, 61, e202113078,  DOI: 10.1002/anie.202113078
  44. 44
    Marks, A.; Chen, X.; Wu, R.; Rashid, R. B.; Jin, W.; Paulsen, B. D.; Moser, M.; Ji, X.; Griggs, S.; Meli, D.; Wu, X.; Bristow, H.; Strzalka, J.; Gasparini, N.; Costantini, G.; Fabiano, S.; Rivnay, J.; McCulloch, I. J. Am. Chem. Soc. 2022, 144, 46424656,  DOI: 10.1021/jacs.2c00735
  45. 45
    Tang, H.; Liang, Y.; Liu, C.; Hu, Z.; Deng, Y.; Guo, H.; Yu, Z.; Song, A.; Zhao, H.; Zhao, D.; Zhang, Y.; Guo, X.; Pei, J.; Ma, Y.; Cao, Y.; Huang, F. Nature 2022, 611, 271277,  DOI: 10.1038/s41586-022-05295-8
  46. 46
    Wang, Y.; Nakano, M.; Michinobu, T.; Kiyota, Y.; Mori, T.; Takimiya, K. Macromolecules 2017, 50, 857864,  DOI: 10.1021/acs.macromol.6b02313
  47. 47
    Liu, J.; Garman, M. P.; Dong, J.; van der Zee, B.; Qiu, L.; Portale, G.; Hummelen, J. C.; Koster, L. J. A. ACS Appl. Energy Mater. 2019, 2, 66646671,  DOI: 10.1021/acsaem.9b01179
  48. 48
    Liu, J.; Qiu, L.; Portale, G.; Koopmans, M.; Ten Brink, G.; Hummelen, J. C.; Koster, L. J. A. Adv. Mater. 2017, 29, 1701641,  DOI: 10.1002/adma.201701641
  49. 49
    Liu, J.; van der Zee, B.; Alessandri, R.; Sami, S.; Dong, J.; Nugraha, M. I.; Barker, A. J.; Rousseva, S.; Qiu, L.; Qiu, X.; Klasen, N.; Chiechi, R. C.; Baran, D.; Caironi, M.; Anthopoulos, T. D.; Portale, G.; Havenith, R. W. A.; Marrink, S. J.; Hummelen, J. C.; Koster, L. J. A. Nat. Commun. 2020, 11, 5694,  DOI: 10.1038/s41467-020-19537-8
  50. 50
    Zhang, Y.; van Doremaele, E. R. W.; Ye, G.; Stevens, T.; Song, J.; Chiechi, R. C.; van de Burgt, Y. Adv. Mater. 2022, 34, 2200393,  DOI: 10.1002/adma.202200393
  51. 51
    Mei, J.; Kim, D. H.; Ayzner, A. L.; Toney, M. F.; Bao, Z. J. Am. Chem. Soc. 2011, 133, 2013020133,  DOI: 10.1021/ja209328m
  52. 52
    Razzell-Hollis, J.; Fleischli, F.; Jahnke, A. A.; Stingelin, N.; Seferos, D. S.; Kim, J.-S. J. Phys. Chem. C 2017, 121, 20882098,  DOI: 10.1021/acs.jpcc.6b11675
  53. 53
    Madu, I. K.; Muller, E. W.; Kim, H.; Shaw, J.; Burney-Allen, A. A.; Zimmerman, P.; Jeffries-El, M.; Goodson, T., III J. Phys. Chem. C 2018, 122, 1704917066,  DOI: 10.1021/acs.jpcc.8b03914
  54. 54
    Sun, Y.; Zhang, C.; Dai, B.; Lin, B.; Yang, H.; Zhang, X.; Guo, L.; Liu, Y. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 19151926,  DOI: 10.1002/pola.27643
  55. 55
    Chen, S.; Pan, Y.; Chen, K.; Chen, P.; Shen, Q.; Sun, P.; Hu, W.; Fan, Q. Angew. Chem., Int. Ed. 2023, 62, e202215372,  DOI: 10.1002/anie.202215372
  56. 56
    Liu, J.; Qiu, L.; Portale, G.; Torabi, S.; Stuart, M. C. A.; Qiu, X.; Koopmans, M.; Chiechi, R. C.; Hummelen, J. C.; Anton Koster, L. J. Nano Energy 2018, 52, 183191,  DOI: 10.1016/j.nanoen.2018.07.056
  57. 57
    Jacobs, I. E.; Aasen, E. W.; Oliveira, J. L.; Fonseca, T. N.; Roehling, J. D.; Li, J.; Zhang, G.; Augustine, M. P.; Mascal, M.; Moulé, A. J. J. Mater. Chem. C 2016, 4, 34543466,  DOI: 10.1039/C5TC04207K
  58. 58
    Euvrard, J.; Revaux, A.; Bayle, P.-A.; Bardet, M.; Vuillaume, D.; Kahn, A. Org. Electron. 2018, 53, 135140,  DOI: 10.1016/j.orgel.2017.11.020
  59. 59
    Zhang, Y.; Ye, G.; van der Pol, T. P. A.; Dong, J.; van Doremaele, E. R. W.; Krauhausen, I.; Liu, Y.; Gkoupidenis, P.; Portale, G.; Song, J.; Chiechi, R. C.; van de Burgt, Y. Adv. Funct. Mater. 2022, 32, 2201593,  DOI: 10.1002/adfm.202201593
  60. 60
    Tietze, M. L.; Benduhn, J.; Pahner, P.; Nell, B.; Schwarze, M.; Kleemann, H.; Krammer, M.; Zojer, K.; Vandewal, K.; Leo, K. Nat. Commun. 2018, 9, 1182,  DOI: 10.1038/s41467-018-04275-9
  61. 61
    Méndez, H.; Heimel, G.; Winkler, S.; Frisch, J.; Opitz, A.; Sauer, K.; Wegner, B.; Oehzelt, M.; Röthel, C.; Duhm, S.; Többens, D.; Koch, N.; Salzmann, I. Nat. Commun. 2015, 6, 8560,  DOI: 10.1038/ncomms9560
  62. 62
    Salzmann, I.; Heimel, G.; Duhm, S.; Oehzelt, M.; Pingel, P.; George, B. M.; Schnegg, A.; Lips, K.; Blum, R.-P.; Vollmer, A.; Koch, N. Phys. Rev. Lett. 2012, 108, 035502  DOI: 10.1103/PhysRevLett.108.035502

Cited By

Click to copy section linkSection link copied!

This article is cited by 3 publications.

  1. Suryoday Prodhan, Alessandro Troisi. Effective Model Reduction Scheme for the Electronic Structure of Highly Doped Semiconducting Polymers. Journal of Chemical Theory and Computation 2024, 20 (22) , 10147-10157. https://doi.org/10.1021/acs.jctc.4c01131
  2. Xinyi Fan, Sihui Deng, Xu Cao, Bin Meng, Junli Hu, Jun Liu. Isomers of n-Type Poly(thiophene-alt-co-thiazole) for Organic Thermoelectrics. ACS Applied Materials & Interfaces 2024, 16 (35) , 46741-46749. https://doi.org/10.1021/acsami.4c08553
  3. Xiantao Peng, Gang Ye, Linlong Zhang, Yazhuo Kuang, Shuyan Shao, Jian Liu. Enhancing Charge Transport Performance of n-Doped Conjugated Polymers by Customizing Amphipathic Side Chains. Macromolecules 2024, 57 (15) , 7156-7164. https://doi.org/10.1021/acs.macromol.4c00837

ACS Materials Letters

Cite this: ACS Materials Lett. 2024, 6, 4, 1207–1215
Click to copy citationCitation copied!
https://doi.org/10.1021/acsmaterialslett.4c00068
Published February 29, 2024

Copyright © 2024 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY 4.0 .

Article Views

1998

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. Chemical structures of NDI-2Tz-based D–A copolymers with different substituted OEG side chains and n-type dopant N-DMBI.

    Figure 2

    Figure 2. Normalized UV–vis–NIR absorption spectra of P-3O, P-6O, and P-B3O in dilute chloroform (CHCl3) (10–5 M) and in films (spin coated from CHCl3 solutions).

    Figure 3

    Figure 3. (a) Electrical conductivities, (b) Seebeck coefficients, and (c) power factors recorded for P-3O, P-6O, and P-B3O as functions of the N-DMBI ratio employed.

    Figure 4

    Figure 4. 2D GIWAXS patterns of pristine P-3O (a), P-6O (b), and P-B3O (c) films.

    Figure 5

    Figure 5. Charge carrier density (a), doping efficiency (b), and mobility (c) of 5-wt %-doped P-3O, P-6O, and P-B3O thin films.

  • References


    This article references 62 other publications.

    1. 1
      Wang, H.; Yu, C. Joule 2019, 3, 5380,  DOI: 10.1016/j.joule.2018.10.012
    2. 2
      Sun, Y.; Di, C. A.; Xu, W.; Zhu, D. Adv. Electron. Mater. 2019, 5, 1800825,  DOI: 10.1002/aelm.201800825
    3. 3
      Lu, N.; Li, L.; Liu, M. Phys. Chem. Chem. Phys. 2016, 18, 1950319525,  DOI: 10.1039/C6CP02830F
    4. 4
      Shi, W.; Wang, D.; Shuai, Z. Adv. Electron. Mater. 2019, 5, 1800882,  DOI: 10.1002/aelm.201800882
    5. 5
      Sun, H.; Guo, X.; Facchetti, A. Chem. 2020, 6, 13101326,  DOI: 10.1016/j.chempr.2020.05.012
    6. 6
      Mao, J.; Liu, Z.; Zhou, J.; Zhu, H.; Zhang, Q.; Chen, G.; Ren, Z. Adv. Phys. 2018, 67, 69147,  DOI: 10.1080/00018732.2018.1551715
    7. 7
      Kroon, R.; Mengistie, D. A.; Kiefer, D.; Hynynen, J.; Ryan, J. D.; Yu, L.; Müller, C. Chem. Soc. Rev. 2016, 45, 61476164,  DOI: 10.1039/C6CS00149A
    8. 8
      Lu, Y.; Wang, J.-Y.; Pei, J. Chem. Mater. 2019, 31, 64126423,  DOI: 10.1021/acs.chemmater.9b01422
    9. 9
      Russ, B.; Glaudell, A.; Urban, J. J.; Chabinyc, M. L.; Segalman, R. A. Nat. Rev. Mater. 2016, 1, 16050,  DOI: 10.1038/natrevmats.2016.50
    10. 10
      Li, Z. P.; Deng, L.; Lv, H. C.; Liang, L. R.; Deng, W. J.; Zhang, Y. C.; Chen, G. M. Adv. Funct. Mater. 2021, 31, 2104836,  DOI: 10.1002/adfm.202104836
    11. 11
      Villalva, D. R.; Haque, M. A.; Nugraha, M. I.; Baran, D. ACS Appl. Energy Mater. 2020, 3, 91269132,  DOI: 10.1021/acsaem.0c01511
    12. 12
      Xue, Y.; Gao, C.; Liang, L.; Wang, X.; Chen, G. J. Mater.Chem. A 2018, 6, 2238122390,  DOI: 10.1039/C8TA09656B
    13. 13
      Fan, Z.; Du, D.; Guan, X.; Ouyang, J. Nano Energy 2018, 51, 481488,  DOI: 10.1016/j.nanoen.2018.07.002
    14. 14
      Culebras, M.; Gómez, C. M.; Cantarero, A. J. Mater. Chem. A 2014, 2, 1010910115,  DOI: 10.1039/C4TA01012D
    15. 15
      Kim, G. H.; Shao, L.; Zhang, K.; Pipe, K. P. Nat. Mater. 2013, 12, 719723,  DOI: 10.1038/nmat3635
    16. 16
      Bubnova, O.; Khan, Z. U.; Malti, A.; Braun, S.; Fahlman, M.; Berggren, M.; Crispin, X. Nat. Mater. 2011, 10, 429433,  DOI: 10.1038/nmat3012
    17. 17
      Naab, B. D.; Gu, X.; Kurosawa, T.; To, J. W. F.; Salleo, A.; Bao, Z. Adv. Electron. Mater. 2016, 2, 1600004,  DOI: 10.1002/aelm.201600004
    18. 18
      Wang, S.; Sun, H.; Erdmann, T.; Wang, G.; Fazzi, D.; Lappan, U.; Puttisong, Y.; Chen, Z.; Berggren, M.; Crispin, X.; Kiriy, A.; Voit, B.; Marks, T. J.; Fabiano, S.; Facchetti, A. Adv. Mater. 2018, 30, 1801898,  DOI: 10.1002/adma.201801898
    19. 19
      Song, Y.; Ding, J.; Dai, X.; Li, C.; Di, C.-a.; Zhang, D. ACS Mater. Lett. 2022, 4, 521527,  DOI: 10.1021/acsmaterialslett.2c00026
    20. 20
      Wang, Y.; Takimiya, K. Adv. Mater. 2020, 32, 2002060,  DOI: 10.1002/adma.202002060
    21. 21
      Liu, J.; Ye, G.; Zee, B. V.; Dong, J.; Qiu, X.; Liu, Y.; Portale, G.; Chiechi, R. C.; Koster, L. J. A. Adv. Mater. 2018, 30, e1804290,  DOI: 10.1002/adma.201804290
    22. 22
      Liu, J.; Qiu, L.; Alessandri, R.; Qiu, X.; Portale, G.; Dong, J.; Talsma, W.; Ye, G.; Sengrian, A. A.; Souza, P. C. T.; Loi, M. A.; Chiechi, R. C.; Marrink, S. J.; Hummelen, J. C.; Koster, L. J. A. Adv. Mater. 2018, 30, 1704630,  DOI: 10.1002/adma.201704630
    23. 23
      Kiefer, D.; Giovannitti, A.; Sun, H.; Biskup, T.; Hofmann, A.; Koopmans, M.; Cendra, C.; Weber, S.; Anton Koster, L. J.; Olsson, E.; Rivnay, J.; Fabiano, S.; McCulloch, I.; Müller, C. ACS Energy Lett. 2018, 3, 278285,  DOI: 10.1021/acsenergylett.7b01146
    24. 24
      Liu, J.; Ye, G.; Potgieser, H. G. O.; Koopmans, M.; Sami, S.; Nugraha, M. I.; Villalva, D. R.; Sun, H.; Dong, J.; Yang, X.; Qiu, X.; Yao, C.; Portale, G.; Fabiano, S.; Anthopoulos, T. D.; Baran, D.; Havenith, R. W. A.; Chiechi, R. C.; Koster, L. J. A. Adv. Mater. 2021, 33, e2006694,  DOI: 10.1002/adma.202006694
    25. 25
      Ye, G.; Liu, J.; Qiu, X.; Stater, S.; Qiu, L.; Liu, Y.; Yang, X.; Hildner, R.; Koster, L. J. A.; Chiechi, R. C. Macromolecules 2021, 54, 38863896,  DOI: 10.1021/acs.macromol.1c00317
    26. 26
      Yang, C.-Y.; Jin, W.-L.; Wang, J.; Ding, Y.-F.; Nong, S.; Shi, K.; Lu, Y.; Dai, Y.-Z.; Zhuang, F.-D.; Lei, T.; Di, C.-A.; Zhu, D.; Wang, J.-Y.; Pei, J. Adv. Mater. 2018, 30, 1802850,  DOI: 10.1002/adma.201802850
    27. 27
      Yan, X.; Xiong, M.; Li, J.-T.; Zhang, S.; Ahmad, Z.; Lu, Y.; Wang, Z.-Y.; Yao, Z.-F.; Wang, J.-Y.; Gu, X.; Lei, T. J. Am. Chem. Soc. 2019, 141, 2021520221,  DOI: 10.1021/jacs.9b10107
    28. 28
      Yan, X.; Xiong, M.; Deng, X.-Y.; Liu, K.-K.; Li, J.-T.; Wang, X.-Q.; Zhang, S.; Prine, N.; Zhang, Z.; Huang, W.; Wang, Y.; Wang, J.-Y.; Gu, X.; So, S. K.; Zhu, J.; Lei, T. Nat. Commun. 2021, 12, 5723,  DOI: 10.1038/s41467-021-26043-y
    29. 29
      Lu, Y.; Yu, Z.-D.; Un, H.-I.; Yao, Z.-F.; You, H.-Y.; Jin, W.; Li, L.; Wang, Z.-Y.; Dong, B.-W.; Barlow, S.; Longhi, E.; Di, C.-a.; Zhu, D.; Wang, J.-Y.; Silva, C.; Marder, S. R.; Pei, J. Adv. Mater. 2021, 33, 2005946,  DOI: 10.1002/adma.202005946
    30. 30
      Lu, Y.; Yu, Z.-D.; Liu, Y.; Ding, Y.-F.; Yang, C.-Y.; Yao, Z.-F.; Wang, Z.-Y.; You, H.-Y.; Cheng, X.-F.; Tang, B.; Wang, J.-Y.; Pei, J. J. Am. Chem. Soc. 2020, 142, 1534015348,  DOI: 10.1021/jacs.0c05699
    31. 31
      Shi, K.; Zhang, F.; Di, C.-A.; Yan, T.-W.; Zou, Y.; Zhou, X.; Zhu, D.; Wang, J.-Y.; Pei, J. J. Am. Chem. Soc. 2015, 137, 69796982,  DOI: 10.1021/jacs.5b00945
    32. 32
      Zhao, X.; Madan, D.; Cheng, Y.; Zhou, J.; Li, H.; Thon, S. M.; Bragg, A. E.; DeCoster, M. E.; Hopkins, P. E.; Katz, H. E. Adv. Mater. 2017, 29, 1606928,  DOI: 10.1002/adma.201606928
    33. 33
      Han, J.; Fan, H.; Zhang, Q.; Hu, Q.; Russell, T. P.; Katz, H. E. Adv. Funct. Mater. 2021, 31, 2005901,  DOI: 10.1002/adfm.202005901
    34. 34
      Feng, K.; Guo, H.; Wang, J.; Shi, Y.; Wu, Z.; Su, M.; Zhang, X.; Son, J. H.; Woo, H. Y.; Guo, X. J. Am. Chem. Soc. 2021, 143, 15391552,  DOI: 10.1021/jacs.0c11608
    35. 35
      Shi, Y.; Li, J.; Sun, H.; Li, Y.; Wang, Y.; Wu, Z.; Jeong, S. Y.; Woo, H. Y.; Fabiano, S.; Guo, X. Angew. Chem., Int. Ed. 2022, 61, e202214192,  DOI: 10.1002/anie.202214192
    36. 36
      Liu, J.; Shi, Y.; Dong, J.; Nugraha, M. I.; Qiu, X.; Su, M.; Chiechi, R. C.; Baran, D.; Portale, G.; Guo, X.; Koster, L. J. A. ACS Energy Lett. 2019, 4, 15561564,  DOI: 10.1021/acsenergylett.9b00977
    37. 37
      Guo, H.; Yang, C.-Y.; Zhang, X.; Motta, A.; Feng, K.; Xia, Y.; Shi, Y.; Wu, Z.; Yang, K.; Chen, J.; Liao, Q.; Tang, Y.; Sun, H.; Woo, H. Y.; Fabiano, S.; Facchetti, A.; Guo, X. Nature 2021, 599, 6773,  DOI: 10.1038/s41586-021-03942-0
    38. 38
      Dong, C.; Deng, S.; Meng, B.; Liu, J.; Wang, L. Angew. Chem., Int. Ed. 2021, 60, 1618416190,  DOI: 10.1002/anie.202105127
    39. 39
      Wang, S.; Sun, H.; Ail, U.; Vagin, M.; Persson, P. O. Å.; Andreasen, J. W.; Thiel, W.; Berggren, M.; Crispin, X.; Fazzi, D.; Fabiano, S. Adv. Mater. 2016, 28, 1076410771,  DOI: 10.1002/adma.201603731
    40. 40
      Yang, C.-Y.; Stoeckel, M.-A.; Ruoko, T.-P.; Wu, H.-Y.; Liu, X.; Kolhe, N. B.; Wu, Z.; Puttisong, Y.; Musumeci, C.; Massetti, M.; Sun, H.; Xu, K.; Tu, D.; Chen, W. M.; Woo, H. Y.; Fahlman, M.; Jenekhe, S. A.; Berggren, M.; Fabiano, S. Nat. Commun. 2021, 12, 2354,  DOI: 10.1038/s41467-021-22528-y
    41. 41
      Lu, Y.; Yu, Z.-D.; Zhang, R.-Z.; Yao, Z.-F.; You, H.-Y.; Jiang, L.; Un, H.-I.; Dong, B.-W.; Xiong, M.; Wang, J.-Y.; Pei, J. Angew. Chem., Int. Ed. 2019, 58, 1139011394,  DOI: 10.1002/anie.201905835
    42. 42
      Großkopf, J.; Plaza, M.; Seitz, A.; Breitenlechner, S.; Storch, G.; Bach, T. J. Am. Chem. Soc. 2021, 143, 2124121245,  DOI: 10.1021/jacs.1c11266
    43. 43
      Alsufyani, M.; Stoeckel, M.-A.; Chen, X.; Thorley, K.; Hallani, R. K.; Puttisong, Y.; Ji, X.; Meli, D.; Paulsen, B. D.; Strzalka, J.; Regeta, K.; Combe, C.; Chen, H.; Tian, J.; Rivnay, J.; Fabiano, S.; McCulloch, I. Angew. Chem., Int. Ed. 2022, 61, e202113078,  DOI: 10.1002/anie.202113078
    44. 44
      Marks, A.; Chen, X.; Wu, R.; Rashid, R. B.; Jin, W.; Paulsen, B. D.; Moser, M.; Ji, X.; Griggs, S.; Meli, D.; Wu, X.; Bristow, H.; Strzalka, J.; Gasparini, N.; Costantini, G.; Fabiano, S.; Rivnay, J.; McCulloch, I. J. Am. Chem. Soc. 2022, 144, 46424656,  DOI: 10.1021/jacs.2c00735
    45. 45
      Tang, H.; Liang, Y.; Liu, C.; Hu, Z.; Deng, Y.; Guo, H.; Yu, Z.; Song, A.; Zhao, H.; Zhao, D.; Zhang, Y.; Guo, X.; Pei, J.; Ma, Y.; Cao, Y.; Huang, F. Nature 2022, 611, 271277,  DOI: 10.1038/s41586-022-05295-8
    46. 46
      Wang, Y.; Nakano, M.; Michinobu, T.; Kiyota, Y.; Mori, T.; Takimiya, K. Macromolecules 2017, 50, 857864,  DOI: 10.1021/acs.macromol.6b02313
    47. 47
      Liu, J.; Garman, M. P.; Dong, J.; van der Zee, B.; Qiu, L.; Portale, G.; Hummelen, J. C.; Koster, L. J. A. ACS Appl. Energy Mater. 2019, 2, 66646671,  DOI: 10.1021/acsaem.9b01179
    48. 48
      Liu, J.; Qiu, L.; Portale, G.; Koopmans, M.; Ten Brink, G.; Hummelen, J. C.; Koster, L. J. A. Adv. Mater. 2017, 29, 1701641,  DOI: 10.1002/adma.201701641
    49. 49
      Liu, J.; van der Zee, B.; Alessandri, R.; Sami, S.; Dong, J.; Nugraha, M. I.; Barker, A. J.; Rousseva, S.; Qiu, L.; Qiu, X.; Klasen, N.; Chiechi, R. C.; Baran, D.; Caironi, M.; Anthopoulos, T. D.; Portale, G.; Havenith, R. W. A.; Marrink, S. J.; Hummelen, J. C.; Koster, L. J. A. Nat. Commun. 2020, 11, 5694,  DOI: 10.1038/s41467-020-19537-8
    50. 50
      Zhang, Y.; van Doremaele, E. R. W.; Ye, G.; Stevens, T.; Song, J.; Chiechi, R. C.; van de Burgt, Y. Adv. Mater. 2022, 34, 2200393,  DOI: 10.1002/adma.202200393
    51. 51
      Mei, J.; Kim, D. H.; Ayzner, A. L.; Toney, M. F.; Bao, Z. J. Am. Chem. Soc. 2011, 133, 2013020133,  DOI: 10.1021/ja209328m
    52. 52
      Razzell-Hollis, J.; Fleischli, F.; Jahnke, A. A.; Stingelin, N.; Seferos, D. S.; Kim, J.-S. J. Phys. Chem. C 2017, 121, 20882098,  DOI: 10.1021/acs.jpcc.6b11675
    53. 53
      Madu, I. K.; Muller, E. W.; Kim, H.; Shaw, J.; Burney-Allen, A. A.; Zimmerman, P.; Jeffries-El, M.; Goodson, T., III J. Phys. Chem. C 2018, 122, 1704917066,  DOI: 10.1021/acs.jpcc.8b03914
    54. 54
      Sun, Y.; Zhang, C.; Dai, B.; Lin, B.; Yang, H.; Zhang, X.; Guo, L.; Liu, Y. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 19151926,  DOI: 10.1002/pola.27643
    55. 55
      Chen, S.; Pan, Y.; Chen, K.; Chen, P.; Shen, Q.; Sun, P.; Hu, W.; Fan, Q. Angew. Chem., Int. Ed. 2023, 62, e202215372,  DOI: 10.1002/anie.202215372
    56. 56
      Liu, J.; Qiu, L.; Portale, G.; Torabi, S.; Stuart, M. C. A.; Qiu, X.; Koopmans, M.; Chiechi, R. C.; Hummelen, J. C.; Anton Koster, L. J. Nano Energy 2018, 52, 183191,  DOI: 10.1016/j.nanoen.2018.07.056
    57. 57
      Jacobs, I. E.; Aasen, E. W.; Oliveira, J. L.; Fonseca, T. N.; Roehling, J. D.; Li, J.; Zhang, G.; Augustine, M. P.; Mascal, M.; Moulé, A. J. J. Mater. Chem. C 2016, 4, 34543466,  DOI: 10.1039/C5TC04207K
    58. 58
      Euvrard, J.; Revaux, A.; Bayle, P.-A.; Bardet, M.; Vuillaume, D.; Kahn, A. Org. Electron. 2018, 53, 135140,  DOI: 10.1016/j.orgel.2017.11.020
    59. 59
      Zhang, Y.; Ye, G.; van der Pol, T. P. A.; Dong, J.; van Doremaele, E. R. W.; Krauhausen, I.; Liu, Y.; Gkoupidenis, P.; Portale, G.; Song, J.; Chiechi, R. C.; van de Burgt, Y. Adv. Funct. Mater. 2022, 32, 2201593,  DOI: 10.1002/adfm.202201593
    60. 60
      Tietze, M. L.; Benduhn, J.; Pahner, P.; Nell, B.; Schwarze, M.; Kleemann, H.; Krammer, M.; Zojer, K.; Vandewal, K.; Leo, K. Nat. Commun. 2018, 9, 1182,  DOI: 10.1038/s41467-018-04275-9
    61. 61
      Méndez, H.; Heimel, G.; Winkler, S.; Frisch, J.; Opitz, A.; Sauer, K.; Wegner, B.; Oehzelt, M.; Röthel, C.; Duhm, S.; Többens, D.; Koch, N.; Salzmann, I. Nat. Commun. 2015, 6, 8560,  DOI: 10.1038/ncomms9560
    62. 62
      Salzmann, I.; Heimel, G.; Duhm, S.; Oehzelt, M.; Pingel, P.; George, B. M.; Schnegg, A.; Lips, K.; Blum, R.-P.; Vollmer, A.; Koch, N. Phys. Rev. Lett. 2012, 108, 035502  DOI: 10.1103/PhysRevLett.108.035502
  • Supporting Information

    Supporting Information


    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c00068.

    • Additional synthesis details, materials, and characterization including 1H NMR spectra, 13C NMR spectra, HRMS spectra, GPC plots, TGA plots, IR spectra, DSC plots, UV–vis–NIR absorption spectra, cyclic voltammogram plots, DFT-optimized molecular geometries and orbitals, AFM image, Mott–Schottky analysis plots, OFET plots, and GIWAXS patterns and linecuts (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.